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1 Introduction

Throughout these notes, f is a function f : X1 × X2 × · · · × Xk → Z. Most often, f will be a function

family fn,k : ({0, 1}n)k → {0, 1}. We could study the multiparty communication complexity of computing

fn,k, the k inputs of length n are divided between k parties. We could try to characterize the commu-

nication complexity as a function of n and k. There are in fact two widespread models for multiparty

communication:

Definition 1. In the Number-in-hand (NIH) model, each player i sees input xi ∈ Xi only.

Definition 2. In the Number-on-forehead model (NOF) Player i sees every input xj ∈ Xj for j ̸= i.

Important: in both these models, the communication is “broadcast”; that is, all communication bits

are written on a blackboard for all parties to see.

Definition 3. Just like in 2-party protocols, a k-party protocol Π for f specifies:

(a) which player communicates given the round i and the communication so far;

(b) if player j communication at round i, what bits they write on the blackboard as a function of i, the

communication so far, and the input (which in the NIH model is xi, and in the NOF model is xj
for j ̸= i);

(c) the value of f(x1, . . . , xk) from the communication when the protocol terminates.

Note that an essentially equivalent definition would replace (c) with the requirement that the com-

munication transcript ends with f(x1, . . . , xk).

Now, both the NIH and NOF models are interesting and are studied, but these notes are focused on

the NOF model.

In these notes we will study two notions of communication complexity, although the analogues of

non-deterministic, and public/private-coin randomized communication complexity from the 2-party case

also carry over and are also sometimes studied in the NOF model.

Definition 4. The k-party deterministic communication complexity of f is the minimum communication

over all deterministic protocols computing f and is denoted Dk(f).

Definition 5. The randomized communication complexity of f with respect to a distribution µ over

X1×X2×· · ·×Xk with error ϵ is the minimum communication over all deterministic protocols computing

such that the protocol errs on at most ϵ fraction of the inputs when they are drawn from µ. This is

denoted Rϵ,µ
k (f).
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Note that in the most frequent case, when f is shorthand for a function family fn,k : ({0, 1}n)k →
{0, 1}, Dk(f) and Rϵ,µ

k (f) will be functions of k and n; perhaps the notation should take n into ac-

count (Dk(fn) or Dn,k(f) for instance) but this should be clear from context (and is consistent with the

literature).

1.1 A motivating example

As a motivating example we will consider the function EQ, that is, the function family EQn,k : ({0, 1}n)k →
{0, 1} which outputs 1 iff all the k-inputs are equal. What is its multiparty communication complexity,

in the NIH and NOF models?

Observation 6. For k = 2, the NOF model is equivalent to the NIH model, and both are the same as our

normal 2-party communication model. For k = 2 we know that EQn,2 requires n bits of communication,

so it has maximal communication complexity.

Observation 7. For k ≥ 3, in the NIH model, the communication complexity is still ≥ n, since 2 players

could easily simulate additional players in order to use a k-party protocol to solve equality.

Now we will see our first example where computation in the NOF model is significantly different from

the NIH model:

Claim 8. For k ≥ 3, in the NOF model, Dk(EQ) = 2.

Proof. The protocol is as follows: player 1 sends 1 iff all the other parties’ inputs are equal, and player

2 sends 1 iff all the other parties’ input equal. EQ(x1, . . . , xk) iff both bits are 1. Also, any protocol

computing EQ must use at least 2 bits of communication: for a 1-bit protocol where player i sends the

bit, we could change only their input in order to change the value of EQ but not the bit sent by player

i.

The “takeway” from this example is that in the NOF model, we can exploit the fact that players see

multiple inputs, and that these inputs overlap, to come up with an efficient protocol for certain functions.

We could not do this in the NIH model.

Observation 9. Another observation is that the EQ protocol is extremely simple in the following way:

the communication of each player does not depend on the communication of any other player– we call

such players oblivious, and if every player is oblivious, the protocol is “oblivious” or “simultaneous” since

they could all write their communication at the same time.

Perhaps since NOF communication complexity is a relatively new field and much is unknown, many

of the known protocols in the field are oblivious. In other words, we have rarely used adaptivity based

on previous players’ communication to do anything clever.

Definition 10. The simultaneous deterministic communication complexity of f is the minimum commu-

nication over simultaneous protocols computing f in the NOF model. Denote this Sk(n).

2 Connection to Circuit Complexity

One reason to care about NOF communication complexity is that it has an important connection to

showing lower bounds in circuit complexity. Specifically, we know a way to show that f is not in a certain
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circuit class given that it has high enough NOF communication complexity. However, we have not been

able to use this method yet, because we do not have good enough NOF communication complexity lower

bounds (yet). In this section we will show this (as of yet, unused) method.

Definition 11. AC0[m] is the class of languages that can be computed by a family of circuits {Cn} such

that each Cn : {0, 1}n → {0, 1} has

(a) constant depth;

(b) size polynomial in n;

(c) the gates are {∧,∨,¬, mod m}, with unbounded fan-in.

In the above definition the mod m gate has log(n) output wires. In order to capture languages

computable by such circuits with any mod-gate, we have the following complexity class:

Definition 12. ACC0 =
⋃

m≥2 ACC0[m]

Definition 13. A logical gate is symmetric if its output depends only on the number of 1’s and 0’s in

the inputs (i.e., for any permutation of the input wires, the gate computes the same function).

A weaker version of the following theorem was first shown by Yao, but the version presented was

proven slightly later by Beigen and Tarui.

Theorem 14. (Beigel and Tarui ’94, [4]) For L ∈ ACC0, ∃ c, d and circuits Cn that compute L which

have the following form:

(a) depth 2;

(b) size at most 2log
d n;

(c) the top layer is a single symmetric gate;

(d) the bottom layer consists of ∧ gates with fan-in logc n.

The above theorem is one of the most important characterizations of ACC0 languages. It is related

to the following observation:

Theorem 15. (H̊adstad and Goldmann ’91) Suppose f : {0, 1}n → {0, 1} can be computed by circuits

Cn with:

(a) depth 2;

(b) the top gate is symmetric with fan-in s;

(c) the bottom layer consists of ∧ gates with fan-in ≤ k − 1.

Then, under any partition of n into k parties, Sk(f) ≤ k log(s).

Proof. Since there are more parties than inputs to each ∧ gate, each ∧ gate can be computed by some

party (pigeonhole principle). Partition the gates among parties. Each party communicates how many of

its gates evaluate to 1 (this can be done simultaneously; since the top gate has fan-in s there are at most

s non trivial ∧-gates so total communication is k × log(s)). Since the top symmetric gate is determined

by how many of its inputs are 1, the value of f is implied by the communication.
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Note that if Dk(f) ≤ Sk(f). Combining the two theorems we have the following, where we abuse

notation and say a function f is in ACC0 if the language Ln = {x ∈ {0, 1}n : f(x) = 1} is in ACC0.

Corollary 16. For any function f in ACC0, ∃ c, d such that under any partition of n bits to k = logc n+1

parties, Dk(f) ≤ Sk(f) ≤ (logc n+ 1) logd n = logO(1) n.

The corollary above is the “connection” between circuit-complexity and NOF communication com-

plexity. Showing that functions are not in ACC0 is a major goal in circuit complexity.

Observation 17. If we could show some function f = fn,k with k = logc n+ 1 requires Sk(f) > logO(1) n,

this would show f /∈ ACC0.

This method for showing a function is not in ACC0 has not been successfully applied so far. So

far we have not shown a function where k ≥ log(n) and that has a super-logarythmic communication-

complexity. In fact, the functions for which we know the best lower bounds are in ACC0, rather trivially,

as we shall see. However this remains a major prospect for showing lower bounds. Separately, we know

that NEXP ⊊ ACC0 [9], but that was not shown using this method.

3 Lay of the land

Here is an overview of some of the most important things we know about NOF communication complexity.

3.1 Lower bounds

Our one “good” method (“discrepancy method” + removing cylinder intersections with Cauchy-Schwarz,

as it is known in the field) give lower bounds of a similar flavor:

• For the Generalized Inner Product (GIP) function, Dk(GIP) ≥ Ω( n
4k
). This function is defined in

section 4, and this result is proven in section 6

• For the Disjointness function, Dk(DISJ) ≥ Ω( n
4k
).

Similar lower bounds are known for a few other related functions. There are also a few lower bounds

from other methods, that are much weaker. The most important is

• For the function Exactly-n : [n]3 → {0, 1} (which is studied for k = 3), D3(Exactly-n) ≥
Ω(log log log n).

3.2 Upper bounds

We also known some surprising and clever algorithms in the NOF model (“clever” like our EQ algorithm

was, taking advantage of shared information), giving upper bounds on the communication complexity.

• For the Generalized Inner Product (GIP) function, Dk(GIP) ≤ O(k n
2k
).

• For the function Exactly−n : [n]3 → {0, 1}, which is studied for k = 3, D3(Exactly-n) ≤
√
log n.

This result is proven in section 7

Note that for the Generalized Inner Product (GIP) function, the upper-bound and lower-bound almost

match. For the Exactly−n function, there is an enormous gap between the clever algorithm achieving

communication O(
√

log(n)) and the lower bound, which is log log log(n).
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4 Generalized Inner Product

Definition 18. For x1, . . . , xk ∈ ({0, 1}n)k, GIPn,k(x1, . . . , xk) =
⊕n

i=1(x1)i ∧ · · · ∧ (xn)i. That is,

GIPn,k(x1, . . . , xk) = number of coordinates that all equal 1, mod 2.

4.1 How do the lower bounds relate to ACC0?

As mentioned, the method for showing a function is not in ACC0 via NOF communication complexity

has not been used. How exactly is it not applicable given our best lower bounds, such as the one for

GIP?

Observation 19. The lower bound for GIP is only non-trivial if k < log(n)/2. For k ≥ log(n)/2, the lower

bound is n/4k = n/42 log(n) = 1. For the method of Observation 17 to work, the lower bound would have

to be at greater than logO(1)(n) (in fact, it would also have to work for any k = logO(1)(n)).

However, in the case of GIP, we couldn’t hope for such a lower bound. On one hand, we have an

almost matching upper bound, but also:

Proposition 20. Viewing GIPn,k for k = logc n and vectors of size n as a function fn′ on n′ = n logc n

bits, fn′ ∈ ACC0. In fact, fn′ ∈ AC0[2].

Proof. The bottom layer will have n AND-gates, computing (x1)i∧ · · ·∧ (xk)i for each coordinate i ∈ [n],

which feed into a mod 2 gate, which outputs fn′ = GIPn,k.

Observation 21. In the previous proof, the circuit showing the function is in AC0[2] is, not so coinciden-

tally, in the Beigel-Tarui form of Theorem 14.

5 Basic machinery for NOF communication complexity

Definition 22. A cylinder Ci in the i-th coordinate is a subset of the input space X1 × · · · × Xk

that does not depend on the i-th coordinate. That is, if (x1, . . . , xi, . . . , xk) ∈ Ci then for all x′i ∈
Xi, (x1, . . . , x

′
i, . . . , xk) ∈ Ci.

Definition 23. A cylinder intersection C is an intersection of cylinders.

Proposition 24. If Ci, C
′
i are cylinders in the i-th coordinate, so is Ci ∩ C ′

i. Hence, any cylinder

intersection C can be written ∩k
i=1Ci.

The proof is a very easy exercise.

Proposition 25. For a NOF protocol P with communication c, the set of inputs that induce a particular

communication transcript t ∈ {0, 1}c is a cylinder intersection.

Proof. The proof is recursive, bit-by-bit of the communication transcript. It is true before any bit is

written (since the entire input space is a cylinder intersection). Inductively, at step i, the set of inputs

that results in the (partial) transcript c1, . . . , ci−1 is a cylinder intersection C. If at step i player j speaks,

whether they write bit ci depends only on the inputs of every other player, so the inputs which result in

the next bit being ci is a cylinder Ci in the j-th coordinate. Hence the set of inputs resulting in partial

transcript c1, . . . , ci−1ci is C ∩ Ci, a cylinder intersection.
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Figure 1: This figure from [1] shows a cylinder in the 3rd coordinate, for k = 3. See how it is specified
by a subset of the other coordinates (i.e. a subset of coordinate 1 × coordinate 2)

Corollary 26. If P is a deterministic NOF protocol computing f : X1×X2× · · ·×Xk → Z with c bits of

communication, P partitions X1 ×X2 × · · · × Xk into at most 2c monochromatic cylinder intersections.

Proof. Because the transcript of P determines the value of f , all inputs resulting in the same transcript

must have the same value of f .

Cylinder intersections are the analogue of rectangles from 2-party communication complexity. In fact,

it is easy to see that:

Observation 27. For k = 2, cylinder interesctions are rectangles. See Figure 2 for a “proof by picture”.

Rectangles are still far from fully understood (for instance, their exact connection to the log-rank

of a matrix), but cylinder intersections are far more complex combinatorial objects. In many ways, our

limited understanding of cylinder intersections are why we have such limited techniques and lower bounds

in NOF communication complexity.

5.1 Discrepancy method

The reader may recall the extremely useful “discrepancy method” in 2-party communication complexity.

It turns out this method translates exactly the NOF case with k parties. As in the 2-party case, we do

the usual trick where we replace the output space of f . From now on, f : X1 × · · · × Xk → {±1}.
From now on we will abuse notation, and for a cylinder intersection C, we will write C(x1, . . . , xk) = 1

if x1, . . . , xk ∈ C and 0 otherwise.

Definition 28. For a distribution µ over X1×· · ·×Xk, a function f : X1×· · ·×Xk → {±1}, and cylinder

intersection C, the discrepancy of f with respect to µ and C is

discµ(f, C) =
∣∣∣ E
x1,...,xk∼µ

[f(x1, . . . , xk)C(x1, . . . , xk)]
∣∣∣
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Figure 2: This illustration from [1] shows a cylinder intersection when k = 2, which is a rectangle.

Definition 29. The discrepancy of f wrt µ is

discµ(f) = max
C

discµ(f, C)

where the max is over cylinder intersections C.

The intuition behind the definition of discrepancy is that it is the biggest average value of f over any

cylinder intersection. It scales with size of the cylinder intersection. If the value is close to 0 it means

that f is “well-spread” over +1 and −1 in any cylinder intersection, and if it is large, it means there is

a large cylinder intersection that is heavily biased one way. Hence, if the discrepancy is small, we would

need many cylinder-intersections to monochromatically cover the input space.

Theorem 30. (Discrepancy Method; Babai, Nisan, Szegedy ’92, [2]) For any f : X1 × · · · × Xk → {±1},

Rϵ,µ
k ≥ log

( 1− 2ϵ

discµ(F )

)
Proof. The proof is exactly the same as the one for the discrepancy method for the k = 2 cases. In fact

it is a good exercise to revisit the original proof and see what it carries over (and exactly where and why

rectangles get replaced by cylinder intersections).

The discrepancy method is how we prove our best known lower bounds. We will show that

Theorem 31. discU (GIP) ≤ exp(−n/4k), where U = Un,k is the uniform distribution over ({0, 1}n)k.

Given the previous theorem, which is hard, the discrepancy method gives us the desired lower bound:

Theorem 32.

Rϵ,U
k (GIP) ≥ n/4k + log(1− 2ϵ)

And in particular,

Dk(GIP) ≥ n/4k
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Proof. This follows immediately from combining Theorems 30 and 31.

6 The Cube-measure bound for discrepancy

We will need some syntactic sugar for the rest of the proofs:

Definition 33. For two inputs (x01, . . . , x
0
k) and (x11, . . . , x

1
k) in ({0, 1}n)k, and a vector b ∈ {0, 1}k, xb

denotes the “mixed input” (xb11 , . . . , xbkk ).

Theorem 34. (Cube-measure bound for discrepancy) For any f : ({0, 1}k)n → {±1},

discU (f)
2k ≤ E

(x0
1,...,x

0
k)

(x1
1,...,x

1
k)

[ ∏
b∈{0,1}k

f(xb)
]

This is an extremely important theorem. The “moral” is this: it replaces the discrepancy of f with

respect to the uniform distribution, a definition that involves expectations over cylinder intersections,

with an expectation over pairs of inputs of a (somewhat complex) product of values of f . The upper

bound is crude, as we shall see, making repeated use of the Cauchy-Schwarz inequality. The point is,

however, that the expectation on the right-hand side is much easier to analyze than anything involving

cylinder-intersections. For example, we know:

Theorem 35. (Cube-measure of GIP)

E
(x0

1,...,x
0
k)

(x1
1,...,x

1
k)

[ ∏
b∈{0,1}k

GIP(xb)
]
≤ e−n/2k−1

These two theorems combine to give us Theorem 31:

Proof. discU (GIP) ≤ (e−n/2k−1
)1/2

k ≤ 2−n/4k .

The two theorems have very different and interesting proofs, but the second one is slightly simpler.

6.1 Cube-measure of GIP

In this section we prove Theorem 35. Recall that we switched the output space of our functions to {±1}:

E
(x0

1,...,x
0
k)

(x1
1,...,x

1
k)

[ ∏
b∈{0,1}k

GIP(xb)
]
= E

[ ∏
b∈{0,1}k

n∏
i=1

(−1)x
b1
1,i∧···∧x

bk
k,ii

]

= E
[ n∏
i=1

∏
b∈{0,1}k

(−1)x
b1
1,i∧···∧x

bk
k,i

]
Because the inputs are uniform, the coordinates are independent, and hence we can move the product

out of the expectation:

=
n∏

i=1

E
[ ∏
b∈{0,1}k

(−1)x
b1
1,i∧···∧x

bk
k,i

]
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But again because the coordinates are independent, by symmetry the expectation inside the product

is the same for any coordinate. Hence we get,

=
(
Ex0

1,...,x
0
k∈{0,1}

x1
1,...x

1
k∈{0,1}

[ ∏
b∈{0,1}k

(−1)x
b1
0 ∧···∧xbk

k

])n

Where, since the expectation is only over one coordinate, we replaced the two lists of vectors with

two lists of bits. Now, fix x01, . . . , x
0
k and x11, . . . , x

1
k and consider the value of the product:

• If for all j ∈ [k], x0j ̸= x1j , then the product is −1. This is because there is a unique b such that

f(xb) = −1.

• If for some j, x0j = x1j , then product is 1. This is because for any b such that f(xb) = −1, b′ which

is b but flips the bit in position j also has f(xb
′
) = −1, so they cancel.

The probability of x01, . . . , x
0
k and x11, . . . , x

1
k that are of the first case is exactly 1/2k, and the probability

of the second case is 1− (1/2k). Hence,(
Ex0

1,...,x
0
k∈{0,1}

x1
1,...x

1
k∈{0,1}

[ ∏
b∈{0,1}k

(−1)x
b1
0 ∧···∧xbk

k

])n
=

(
(1− 1/2k)− 1/2k)n

= (1− 1/2k−1)n

=≤ e−n/2k−1

This concludes the proof of Theorem 35.

6.2 Proof of cube-measure bound

In this section we prove Theorem 34. We will need:

Lemma 36. (Cauchy-Schwarz)

E[Z]2 ≤ E[Z2]

Now, recall that

discU (f) = max
C

discU (f, C)

= max
C

∣∣∣ E
x1,...,xk

[f(x1, . . . , xk)C(x1, . . . , xk)]
∣∣∣

The proof is by induction: assume the theorem statement is true for any function with k − 1 players

where the inputs have size n. We will show that it is true for any function with k players where inputs

have size n (in this way, the theorem is separately true for every n and k).

For f : ({0, 1}n)k, let C = ∩k
i=1Ci be the maximizing cylinder intersection for discrepancy, i.e.

discU (f) =
∣∣∣ E
x1,...,xk

[f(x1, . . . , xk)Π
k
i=1Ci(x1, . . . , xk)]

∣∣∣
Since Ck does not depend on xk,

= | E
x1,...,xk−1

[Ck(x1, . . . , xk−1, ·)E
xk

[f(x1, . . . , xk)Π
k−1
i=1Ci(x1, . . . , xk)] |
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By squaring both sides, and applying Cauchy-Schwarz,

discU (f)
2 ≤ E

x1,...,xk−1

[(Exk
[(Ck(x1, . . . , xk−1, ·))2f(x1, . . . , xk)Πk−1

i=1Ci(x1, . . . , xk)])
2]

≤ E
x1,...,xk−1

[(Exk
[f(x1, . . . , xk)Π

k−1
i=1Ci(x1, . . . , xk)])

2]

Where the second inequality is true because Ck(x1, . . . , xk−1, ·) ∈ {0, 1} and because of the squaring, the

inside of the expectation is non-negative. Now, we actually expand the square:

= E
x1,...,xk−1,x

0
k,x

1
k

[f(. . . , x0k)f(. . . , x
1
k)Π

k−1
i=1Ci(. . . , x

0
k)Ci(. . . , x

1
k)]

= E
x0
k,x

1
k

[ E
x1,...,xk−1

[fx0
k,x

1
k(x1, . . . , xk−1)Π

k−1
i=1C

x0
k,x

1
k

i (x1, . . . , xk−1)]

Above, the last line is just a way to re-write the previous line. That is, we define fx0
k,x

1
k(x1, . . . , xk−1) :=

f(. . . , x0k)f(. . . , x
1
k), and C

x0
k,x

1
k

i (x1, . . . , xk−1) := Ci(. . . , x
0
k)Ci(. . . , x

1
k). But note that (after fixing x0k and

x1k), f
x0
k,x

1
k is just some function on k − 1 inputs of size n, and C

x0
k,x

1
k

i is just some cylinder over k − 1

coordinates (well, the indicator of a cylinder). Hence, for any fixed x0k, x
1
k, the inner expectation upper

bounded by discU (f
x0
k,x

1
k).

Raising both sides of the inequality by 2k−1 and applying Cauchy-Schwarz k − 1 times, we have

discU (f)
2k ≤ E

x0
k,x

1
k

[
(

E
x1,...,xk−1

[fx0
k,x

1
k(x1, . . . , xk−1)Π C

x0
k,x

1
k

i (x1, . . . , xk−1)]
)2k−1

]

Applying induction to the inner expectation (separately for each x0k, x
1
k, which we can based off how

we worded the inductive hypothesis so that it’s true for function with k − 1 parties), we have,

≤ E
x0
k,x

1
k

E
(x0

1,...,x
0
k−1)

(x1
1,...,x

1
k−1)

[
Π

b∈{0,1}k−1
fx0

k,x
1
k(xb)

]

= E
(x0

1,...,x
0
k)

(x1
1,...,x

1
k)

[
Π

b∈{0,1}k−1
f(xb, x0k)f(x

b, x1k)
]

= E
(x0

1,...,x
0
k)

(x1
1,...,x

1
k)

[
f

b∈{0,1}k
(xb)

]

This concludes the proof of Theorem 30.

7 An algorithm for Exactly−n

In this section we prove one of the other results listed in the lay-of-the-land of Section 3, namely the

upper-bound for Exactly−n. The algorithm is beautiful and uses geometric arguments. In the 3-party

case, we will refer to the players as Alice, Bob, and Charlie.

Definition 37. Exactly-n is the 3-party function f : [n]3 → {0, 1} where f(x, y, z) = 1 iff x+ y + z = n.

10



1 2 3 4 5 6

1 2 3 4 5 6

Figure 3: The first coloring is 3-AP free, the second is not.

It is important to remember that the input size here is log(n). Hence there is a trivial protocol

with log(n) + 1 bits of communication (Alice sends Bob’s input, and Bob outputs f). That is, a trivial

upper-bound linear in the input size.

Though we did not define communication complexity over protocols that themselves use randomness,

we briefly mention it in connection to this problem:

Proposition 38. If the parties are allowed to use random coins, and must succeed with error at most

1/3, there is a protocol with log log(n) communication (logarithmic in the input size).

Proof. Charlie computes z′ = n − x − y, and Alice and Charlie run the 2-party equality protocol with

Alice using Charlie’s input z and Charlie using z′. Note x+y+z = n iff z = z′. Because the random-coin

communication complexity of equality is logarithmic in the input size, this protocol uses log log(n) bits

of communication.

In fact, Exactly-n is part of a broader category of 3-party functions called graph functions. Let

g : {0, 1}m × {0, 1}m → {0, 1}l be a 2-party function. The graph function of g, fg : {0, 1}m × {0, 1}m ×
{0, 1}l → {0, 1} is the function fg(x, y, z) = 1 iff g(x, y) = z. These are well studied because of this

additional structure. Exactly-n is the graph function of g : [n]× [n] → [n] given by g(x, y) = n− x− y.

The above proposition and proof clearly applies to any graph function, giving a random-coin protocol

with communication log(l) (in our case l = log(n)).

Now, back to deterministic communication complexity. We will show a protocol with communication

square-root in the input size, that is

Theorem 39. S3(f) ≤
√
log n

Recall that S3(f) is the simultaneous deterministic communication complexity of f , in particular

D3(f) ≤ S3(f). This is the best algorithm at the time of writing; it may be that non-simultaneity (i.e.

adaptivity) could be exploited to get a better protocol.

Definition 40. A coloring is a mapping from [n] to a color set C. It is “3-AP-free” (AP stands for

arithmetic progression) if for any sequence a, a+ b, a+ 2b ∈ [n], they do not have the same color.

See Figure 3 for an example of colorings.

The algorithm is based on the following classic result:

Theorem 41. (Behrend, 1946 [3]) There is a 3-AP-free coloring of [n] with 2O(
√
logn) colors.

First we show how to prove theorem 39 given this theorem:

Proof. Let x′ = n− y − z, y′ = n− x− z. Observe x− x′ = y − y′ = x+ y + z − n.

Hence, x+ 2y′, x′ + 2y, x+ 2y is a 3-AP (with difference x+y+z−n between each consecutive pair).

They are all equal iff x+ y+ z = n. All three numbers are in [−2n, 3n] and can be computed by Bob,

Alice, and Charlie, respectively. Using a coloring for [5n] from Theorem 41, each player computes their

color in the progression and sends it (simultaneously). Then, f(x, y, z) = 1 iff the colors are different.

This requires communication 3× log(2O(
√

log(5n))) = O(
√
log n)

11



Figure 4: A “proof by picture” of Theorem 42

7.1 Behrend’s theorem

This section proves Theorem 41. Observe that another way to write a 3-AP in [n] is as three numbers

x, x+y
2 , y ∈ [n].

Proposition 42. Suppose we had a “homomorphism” from [n] to some vector space Rd, that is, a

mapping v : [n] → Rd with the property that for x, x+y
2 , y ∈ [n], v(x+y

2 ) = v(x)+v(y)
2 . Then, ∥v(x)∥ would

be a 3-AP-free coloring.

Proof. If we had such a mapping, and ∥v(x)∥ = ∥v(y)∥, then v(x) and v(y) are points on the d-sphere of

radius ∥v(x)∥. On the other hand, v(x)+v(y)
2 is the midpoint between the vectors and hence, by geometry

(the analytic details are omitted), does not lie on the same sphere, so its norm (and hence color) cannot

be ∥v(x)∥. See Figure 4 for a “proof by picture” of this idea.

We might try to construct such a homomorphism the inuitive way. Fix a base d, and fix r such that

dr > n. Let v(x) ∈ Rr be the base-d representation of x. We would like to say ∥v(x)∥2 works as a

coloring– if it did, then since ∥v(x)∥2 is an integer and has value at most d2r, we would get away with

d2r = O(log n) colors. With the protocol from the proof of Theorem 39, such a coloring would give a

O(log log n) communication protocol, i.e., logarithmic in the input size Unfortunately, this does not seem

to work: using base−d representations of numbers in [n] is not a “homomorphism” in our sense, i.e. it

does not guarantee the homomorphic mid-point property of Proposition 42.

The idea of the full construction is to add an extra piece to the coloring (in addition to ∥v(x)∥2) which
forces the homomorphic mid-point property, and then the geometric argument will apply (we can’t have

12



∥v(x)∥2 = ∥v(y)∥2 = ∥v(x+y
2 )∥2 if the homomorphic mid-point property holds).

We will need to choose d such that 4|d, and as before, d4 > n. The coloring will be ∥v(x)∥2 as well as a
vector w(x) ∈ Rd, called the the approximation of v(x): w(x)i is largest number jd/4 for j ∈ {0, 1, 2, 3, 4}
such that jd/4 ≤ xi (that is, w(x)i is v(x)i rounded to the nearest d/4).

The color of x is (∥v(x)∥2, w(x)). Observe that there are at most 5r = 2O(r) values for w(x) and, as

before, d2r for ∥v(x)∥2. Overall this gives 2O(r)+log d colors. Using r =
√
log n, d = 2

√
logn (for which

dr > n as needed), we get 2O(
√
logn) colors.

Finally, for a, a+ b, a+ 2b ∈ [n], we want to show that if w(a) = w(a+ b) = w(a+ 2b) then we have

the “homomorphic midpoint property” of Proposition 42, that is, v(a + b) = v(a)+v(a+2b)
2 . But then its

not possible that ∥v(x)∥2 = ∥v(y)∥2 = ∥v(x+y
2 )∥2 concluding the proof.

For x ∈ [n] let W (x) be the number represented by w(x) (that is,
∑r

i=0w(x)id
i). By construction of

w(x), the base-d representation of x −W (x) is v(x) − w(x). Additionally (and this is where 4|d comes

in), 2(x−W (x)) in vector form is 2(v−w(x)). Hence we have, beginning with a triviality and then using

the fact that w(a) = w(a+ b) = w(a+ 2b),

a+ 2b+ a = 2(a+ b)

a+ 2b−W (a+ 2b) + a−W (a) = 2(a+ b−W (a+ b))

v(a+ 2b)− w(a+ 2b) + v(a)− w(a) = 2(v(a+ b)− w(a+ b))

v(a+ 2b) + v(a) = 2v(a+ b)

Where the last line is what we wanted to force.
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