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1 Randomized Communication Complexity

1.1 Definitions

A (private coin) randomized protocol is a protocol where Alice and Bob have access to random
strings rA and rB, respectively. These two strings are chosen independently, according to some
probability distribution. We can classify randomized protocols by considering different types of
error:

• zero-error protocol P:
∀x, y Pr

rA,rB
[P(x, rA, y, rB) = f(x, y)] = 1

• ε-error protocol P:
∀x, y Pr

rA,rB
[P(x, rA, y, rB) = f(x, y)] ≥ 1− ε

• one-sided ε-error protocol P:

∀x, y : f(x, y) = 0⇒ PrrA,rB [P(x, rA, y, rB) = 0] = 1
f(x, y) = 1⇒ PrrA,rB [P(x, rA, y, rB) = 1] ≥ 1− ε

Due to randomization, the number of bits exchanged may differ in different executions of the
protocol on the same input (x, y). So, there are two natural choices for measuring the running time
of a randomized protocol:

• The worst case running time P on input (x, y) is the maximum number of bits communicated
over all choices of the random strings rA and rB. The worst case cost of P is the maximum,
over all inputs (x, y), of the worst case running time of P on (x, y).

• The average case running time P on input (x, y) is the expected number of bits communicated
over all choices of the random strings rA and rB. The average case cost of P is the maximum,
over all inputs (x, y), of the average case running time of P on (x, y).

So, for a function f : X × Y → {0, 1}, we define the following complexity measures. All of these
definitions are for private coin protocols.

• R0(f) is the minimum average case cost of a randomized protocol that computes f with zero
error.

• For 0 < ε < 1
2 , Rε(f) is the minimum worst case cost of a randomized protocol that computes

f with error ε.

• For 0 < ε < 1, R1
ε (f) is the minimum worst case cost of a randomized protocol that computes

f with one-sided error ε.
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These lead naturally to the following complexity classes:

• ZPP cc = {f | R0(f) ∈ O(polylog(n))}

• BPP cc = {f | Rε(f) ∈ O(polylog(n))}

• RP cc = {f | R1
ε (f) ∈ O(polylog(n))}

Analogous definitions hold in a public coin model, that is, a model where both Alice and Bob see
the results of a single series of random coin flips. A randomized protocol in the public coin model
can be viewed as a distribution of deterministic protocols, that is, Alice and Bob choose together a
string r (according to a probability distribution Π, and independently of x and y) and then follow
the deterministic protocol Pr. The success probability of a public coin protocol on input (x, y)
is the probability of choosing a deterministic protocol, according to the probability distribution
Π, that computes f(x, y) correctly. We use the same complexity measures as in the private coin

model, but add a superscript ‘pub’, i.e., Rpub0 (f), Rpubε (f), R1 pub
ε (f). We have previously seen the

following facts:

• Rpubε (f) ≤ Rε(f)

• for every δ > 0 and every ε > 0, Rε+δ(f) ≤ Rpubε (f) +O(log n+ log δ−1)

1.2 Distributional Complexity

Let µ be a probability distribution overX×Y , X = {0, 1}n, Y = {0, 1}n. The (µ, ε)-distributional
communication complexity of f , Dµ

ε (f), is the cost of the best deterministic protocol that gives the
correct answer for f on at least a (1− ε) fraction of all inputs in X × Y , weighted by µ.

Theorem 1 Rpubε (f) = maxµD
µ
ε (f)

Proof First, we show that Rpubε (f) ≥ maxµD
µ
ε (f). Let P be a randomized public coin protocol

with worst-case cost Rpubε (f) that computes f with success probability at least 1− ε for every input
(x, y). Therefore, if Π is the probability distribution of P’s public coin flips,

Pr
r∈Π,(x,y)∈(X×Y )µ

(Pr(x, y) = f(x, y)) ≥ 1− ε

By a counting argument, there exists a fixed choice of public coin flips r′ such that

Pr
(x,y)∈(X×Y )µ

(Pr′(x, y) = f(x, y)) ≥ 1− ε

Thus, Pr′ is a deterministic protocol that gives the correct answer for f on at least a 1− ε fraction
of all inputs in X × Y , weighted by µ. So, Rpubε (f) ≥ cost(Pr′) ≥ maxµD

µ
ε (f).

Next, we show that Rpubε (f) ≤ maxµD
µ
ε (f). Let c = maxµD

µ
ε (f).
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1.2.1 Minimax Theorem

We will show this direction of the theorem by an application of Von Neumann’s Minimax Theorem.
In a two-player, zero-sum game, there are two players, P1 and P2. P1 has a finite set A =
{a1, . . . , am} of pure strategies, and P2 has a finite set of pure strategies, B = {b1, . . . , bn}. Each
player has a utility for each pair (ai, bj) of actions. The utility for P1 is denoted by U1(ai, bj) and
the utility for P2 is denoted by U2(ai, bj). It is a zero-sum game if for all i, j U1(ai, bj) = −U2(ai, bj).
In our case, for each (ai, bj), one of the players will win and the other one will lose.

Each player can use a mixed strategy by creating a probability mass function and playing each
pure strategy with a fixed probability. Let pi denote the probability that P1 plays action ai and
let qj denote the probability that P2 plays action bj . Since p and q are probabilities, we have that
each pi, qj ≥ 0, and the sum of the pi’s is 1, and the sum of the qj ’s is 1. A mixed strategy for P1
will be denoted by p, and similarly q denotes a mixed strategy for P2. For each mixed strategy
pair (p, q), the payoff M(p, q) is defined to be

m∑
i=1

n∑
j=1

piM(ai, bj)qj .

When P1 uses pure strategy ai and P2 uses mixed strategy q, then M(ai, q) =
∑n

j=1M(ai, bj)qj ,
and analogously for M(p, bj). We let P and Q denote the set of all mixed strategies available to
player 1 and 2 respectively. Player P1’s objective is to select a mixed strategy p ∈ P soas to
maximize minqM(p, q), and at the same time P2’s objective is to select a mixed strategy q ∈ Q
soas to minimize maxpM(p, q).

The Minimax theorem states that for every two-person zero-sum game, there exists an equilib-
rium strategy. That is there exists a value v such that

maxpminqM(p, q) = minqmaxpM(p, q)

In other words, in every two-person zero-sum game with finite strategies, there exists a value
v and a mixed strategy for each player such that: (a) given Player 2’s strategy, the best payoff for
Player 1 is v, and (b) given Player 1’s strategy, the best payoff for Player 2 is −v.

In our context, we define a two-player zero-sum game as follows:

• P1 (the protocol designer): his pure strategies are all c-bit deterministic protocols P∇, one
for each choice of coin flips. His mixed strategies are all randomized protocols, P , (each of
which is a distribution over the deterministic protocols).

• P2 (the adversary): her pure strategies are all inputs (x, y). Her mixed strategies are all
distributions µ over the inputs.

• P1 has payoff 1 if Pr(x, y) = f(x, y) and -1 otherwise. That is, the designer (P1) wins the
game iff this protocol is correct on (x, y), and otherwise P2 wins.

We are given as our assumption that for all distributions µ over inputs (x, y), there exists a
pure strategy (a protocol) P such that the probability of a win is at least 1− ε. This means that
MinµMaxPM(µ, P ) ≥ 1− ε. (Since for each choice of µ, there is a fixed strategy Pr that achieves
payoff 1−ε, so no matter what µ we choose, the designer will be able to come up with a protocol that
wins 1−ε of the time. Now by the Minimax theorem, this means that MaxPMinµM(µ, P ) ≥ 1−ε.
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From this it follows that there is a randomized strategy P such that for all fixed (x, y), the payoff
is at least 1− ε.

Theorem 1 is useful because, for any choice of µ, a lower bound for Dµ
ε gives a lower bound on

Rpubε (f).

Definition A distribution µ over X × Y is a product distribution if µ(x, y) = µX(x) · µY (y) for
some distributions µX over X and µY over Y . Let R[ ](f) = maxµD

µ(f), where the maximum is
taken over all product distributions µ.

Exercise: Prove that R
[ ]
ε (DISJ) = O(

√
n log n). On the other hand, show that Rε(DISJ) = Θ(n).

Sherstov showed a separation between product and non-product distributional complexity by
proving the existence of a function f such that R[ ](f) = Θ(1) but Rε(f) = Θ(n).

2 Discrepancy

We now consider a technique for proving lower bounds for Dµ
ε . It consists of finding an upper

bound for the size of rectangles in Mf that are “almost” monochromatic. If we can prove that all
such rectangles for a given function f are small, then we need a lot of rectangles to “cover” the
function.

Definition Let f : X × Y → {0, 1} be a function, R be any rectangle, and µ be a probability
distribution on X × Y .

Discµ(R) = |µ(R ∩ f−1(1))− µ(R ∩ f−1(0)|.

The discrepancy of f under µ is the maximum over all possible rectangles:

Discµ(f) = maxRDiscµ(R).

If f has small discrepancy it means (informally) that all large rectangles are roughly balanced.
Consider a deterministic protocol that partitions the input space into rectangles R1, . . . , R2c .

And suppose it has success probability 2/3 with respect to µ. The best thing that the protocol
can do if it has to give one output ai for all inputs in the rectangle Ri is to set ai to the bit
value with the highest weight in that rectangle. This contributes µ(Ri ∩ f−1(ai)) to the success
probability and µ(Ri∩f−1(1−ai)) to the failure probability. Thus the overall success probability is∑

i µ(Ri ∩ f−1(ai)) and the overall error probability is
∑

i µ(Ri ∩ f−1(1− ai)). Since the difference
between these two has to be at least 2/3− 1/3 = 1/3, we have
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1/3 ≤
2c∑
i=1

µ(Ri ∩ f−1(ai))−
2c∑
i=1

µ(Ri ∩ f−1(1− ai)) (1)

≤
2c∑
i=1

|µ(Ri ∩ f−1(ai))− µ(Ri ∩ f−1(1− ai))| (2)

=

2c∑
i=1

Discµ(Ri) (3)

≤ 2cDiscµ(f). (4)

This gives a lower bound on communication: c ≥ log(1/3Discµ(f)). To get a lower bound for
randomized protocols, it suffices to find a distribution µ such that Discµ(f) is small.

We have proved

Theorem 2 For every distribution µ, Rµ(f) ≥ log(1/3Discµ(f)).

We now demonstrate how to prove a lower bound for the inner product (IP) function by
calculating the discrepancy of IP according to the uniform distribution. Before we prove this
result, we will study the communication matrix for the IP function for n = 3 to get some intuition.
We will actually switch things a little bit and analyze the matrix whose (x, y) entry is (−1)x·y. This
is just the communication matrix for IP, with 0’s replaced by 1’s and 1’s replaced by -1’s. With
this switch of basis, The associated IP matrices are the Hadamard matrices. Hadamard matrices
are defined to be square matrices where each entry is either +1 or −1 and such that all pairs of
rows are mutually orthogonal.

The IP matrix, Hn, for n = 3 looks like this:

1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 -1 1
1 1 1 1 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1

More generally H0 = [1] and Hn is built from Hn−1 as follows: the lower right quadrant of Hn

is equal to −Hn−1 and the other three quadrants are equal to Hn−1.
The following facts are easy to prove about Hn:

• Every pair of rows is orthogonal, and therefore H2
n = N · I.

• We can interpret the rows as parity functions

• The matrix is symmetric about the diagonal

• The eigenvectors form an orthonormal basis. (That is < vi, vj >= 0 for all i 6= j, and v2
i = 1

for all i.)
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• The only eigenvalues of Hn are +/−
√
N .

We want to find the eigenvalues of the Hadamard matrices, as claimed in the last bullet point
above. Recall these are defined by the following recursive construction:

H0 = [1], Hn+1 =

[
Hn Hn

Hn −Hn

]
.

Lemma 3 For each n, H2
n = HHT = 2nI2n.

Proof The proof is by induction. Since H0 = I1, the lemma is correct for n = 0.
Given that H2

n = 2nI, we can calculate H2
n+1 explicitly:

H2
n+1 =

[
Hn Hn

Hn −Hn

2
]

=

[
H2
n +H2

n H2
n −H2

n

H2
n −H2

n H2
n +H2

n

]
=

[
2n+1I2n 0

0 2n+1I2n

]
= 2n+1I2n+1 .

Corollary 4 The eigenvalues of Hn are all ±2n/2.

Proof
By the above lemma, for all v, vHHT = 2nv and therefore 2n is the only eigenvalue of HHT .

Thus, the only eigenvalues of H are ±2n/2.

We denote the discrepancy of f (with respect to the uniform distribution) and a rectangle A×B
by disc(f,A×B). All our results can be generalized to arbitrary distributions by multiplying each
entry of Mf by the probability of the corresponding cell.

Recall that Boolean functions can be considered as taking values in either {0, 1} or {+1,−1}.
In this section, we will use the ±1 convention when describing the matrices and rectangles.

We use the notation 1A for the characteristic vector of A, which contains 1 in positions corre-
sponding to the elements of A, and 0’s elsewhere.

2.1 The Eigenvalue Method

The eigenvalue method upper bounds the discrepancy using the maximal eigenvalue of Mf .

Lemma 5 (Eigenvalue Bound) Let f be a symmetric Boolean function, i.e. f(x, y) = f(y, x).
Then

disc(f,A×B) ≤ 2−2nλmax

√
|A| · |B|,

where n = |x| = |y| is the input size, and λmax is the largest eigenvalue of the symmetric matrixMf .

Proof Since Mf is symmetric, its eigenvectors vi form an orthonormal basis for Rn. Denote by λi
the eigenvalue corresponding to vi, so that Mfvi = λivi.

Expand the characteristic vectors of A and B in this basis:

1A =
∑

αivi, 1B =
∑

βivi
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Putting these expansions into the definition of discrepancy, we are almost done. Since 22ndisc(f,A×
B) is equal to the absolute value of the difference between the number of 1’s and the number of
0’s in A×B, we have:

22ndisc(f,A×B) =
∣∣1ATMf1B

∣∣
=

∣∣∣∣(∑αivi

)T (∑
βiλivi

)∣∣∣∣
=
∣∣∣∑αiβiλi

∣∣∣ ≤ λmax

∣∣∣∑αiβi

∣∣∣ .
Note that

∑
α2
i = ‖1A‖2 = |A| by Parseval’s identity. (Parseval’s identity relates the values

of the Fourier coefficients to the values of the function. Namely, it states that for any function
f : {0, 1}n → R, the sum of the squares of the Fourier coefficients of f is equal to f2. Note that
in our case we have not normalized. If we had normalized – so that the Fourier coefficients were
normalized, then the sum of the squares of the Fouerier coefficients of f would be equal to E[f2].)

and similarly
∑
β2
i = |B|. The lemma follows from an application of Cauchy-Schwarz:

22ndisc(f,A×B) ≤ λmax

∣∣∣∑αiβi

∣∣∣
≤ λmax

√∑
α2
i

√∑
β2
i = λmax

√
|A| · |B|.

We are now ready to prove Lindsey’s Lemma which gives a bound on the disrepancy of the
inner product function:

Lemma 6 (Lindsey’s Lemma) 22ndisc(IPn, A×B) ≤
√

2n|A| · |B|.
Here IPn(x, y) =

∑
xiyi (mod 2).

Proof The matrix corresponding to IPn is Hn. We have shown that λmax(Hn) = 2n/2, and so the
lemma follows by the Eigenvalue Bound.

We are now ready to prove the following theorem.

Theorem 7 Rcc(IP ) = Ω(n)

By Lindsey’s Lemma, discrepancy is maximized when |A| = |B| = 2n, and this gives disc(IPn, A×
B) ≤ 23n/22−2n = 2−n/2. Thus R(IPn) ≥ log(1/3disc(IPn)) = log(2n/2/3) = Ω(n).

2.2 The BNS Method

In the previous lecture we’ve outlined the discrepancy method, which is a method for getting lower
bounds on randomized communication complexity given upper bounds on the discrepancy of the
matrix Mf corresponding to the function in question. We showed how to bound the discrepancy
using the largest eigenvalue of Mf . Today we will first give the BNS lemma which is another way
of bounding the discrepancy of Mf .
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Let F be a function from X ×Y to {−1, 1}. Let µ be an arbitrary distribution over X ×Y and
let R = A×B, A ⊆ X, B ⊆ Y be a combinatorial rectangle. Then

discµ(F,R) = |
∑

(x,y)∈R

µ(x, y)F (x, y)|,

discµ(F ) = maxRdiscµ(R),

disc(F ) = minµdiscµ(F ).

The following theorem has been reproven several times, for example in the original BNS paper,
and followup papers by Raz 1995, and in Sherstov’s paper “Separating AC0 from depth-2 majority
circuits.”

Theorem 8 (BNS Bound) Let F : X×Y → {−1, 1} and let µ be a distribution over X×Y . Then

discµ(F )2 ≤ |Y |
∑

x,x′∈X
|
∑
y∈Y

µ(x, y)µ(x′, y)F (x, y)F (x′, y)|.

Proof Define αx = 1 for all x ∈ A, βy = 1 for all y ∈ B and for all other x, y, let αx, βy be
independent random variables distributed uniformly over {−1, 1}.

Then

discµ(M) = |
∑

(x,y)∈R

µ(x, y)F (x, y)| (5)

= |
∑

(x,y)∈R

E[αxβy]µ(x, y)F (x, y) +
∑

(x,y)6∈R

E[αxβy]µ(x, y)F (x, y)| (6)

= |E[
∑
x,y

αxβyµ(x, y)F (x, y)]| (7)

(8)

In particular there is a fixed assignment αx, βy ∈ {−1, 1} for all x, y such that

discµ(F ) ≤ |
∑
x,y

αxβyµ(x, y)F (x, y)|.

Squaring both sides and applying Cauchy Schwartz gives:

discµ(F )2 ≤ |Y |
∑
y

(βy
∑
x

αxµ(x, y)F (x, y))2 (9)

= |Y |
∑
x,x′

αxαx′
∑
y

µ(x, y)µ(x′, y)F (x, y)F (x′, y) (10)

≤ |Y |
∑
x,x′

|
∑
y

µ(x, y)µ(x′, y)F (x, y)F (x′, y)| (11)

(12)
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Replacing the sums by expectations we can rewrite the above as:

discµ(F )2

|X|2 × |Y |2
≤ E

x,x′
|E
y
µ(x, y)µ(x′, y)F (x, y)F (x′, y)|.

Alternative Proof. We give an alternative proof of the BNS bound for the uniform distribution.
The definition of discrepancy over the uniform distribution, where |X| = |Y | = 2n is:

disc(f,A×B) =
∑

x∈A,y∈B
F (x, y)/22n.

The discrepancy can be written using expectations as

disc(f,A×B) =

∣∣∣∣Ex,y 1A(x)1B(y)F (x, y)

∣∣∣∣ .
We can recast the Cauchy-Schwarz inequality in the form E[Z]2 ≤ E[Z2]. Thus we can obtain:

disc(F,A×B)2 =

(
E
y

1B(y)E
x

1A(x)F (x, y)

)2

≤ E
y

(
1B(y)E

x
1A(x)F (x, y)

)2

≤ E
y

(
E
x

1A(x)F (x, y)
)2

= E
y

(
E
x,x′

1A(x)1A(x′)F (x, y)F (x′, y)

)
= E

x,x′
1A(x)1A(x′)

(
E
y
F (x, y)F (x′, y)

)
≤ E

x,x′

∣∣∣∣Ey F (x, y)F (x′, y)

∣∣∣∣ .
The bound we get does not depend on the sizes of A and B, and so it is slightly inferior to

bounds which do (like Lindsey’s lemma). In practice, the difference is usually insignificant (but is
the subject of the final question in the first assignment!).

We illustrate the method by proving yet again the upper bound on the discrepancy of the inner
product function:

Lemma 9 We have disc(IPn, A×B) ≤ 2−n/2.

Proof The matrix corresponding to IPn is Hn. The rows of Hn are orthogonal and so

E
x
Hn(x, y)Hn(x, z) =

{
0 if y 6= z,

1 if y = z.

Using the BNS bound,

disc(IPn, A×B)2 ≤ E
y,z

∣∣∣E
x
Hn(x, y)Hn(x, z)

∣∣∣ = Pr[y = z] = 2−n.
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3 Degree/Discrepancy Method

The Degree/Discrepancy method, due to Sherstov, is a way to come up with other functions having
high randomized communication complexity. The basic idea is to start with some other function
(the “base” function) which is difficult under some other complexity measure, and to “lift” it to
a function which is difficult in the randomized communication complexity model. Sherstov’s main
contribution is using polynomial complexity measures to quantify the difficulty of the base function.

3.1 Polynomial Complexity Measures

We will consider several different complexity measures for the base function. All of them try to
capture the notion of being hard to approximate by a polynomial over the real numbers.

Consider a Boolean function f(x1, . . . , xq). We will assume that the inputs and outputs are the
usual 0/1 (rather than ±1). This function can be represented as a real polynomial by following
the following steps:

1. Present f as a logical formula, e.g. conjunctive normal form.

2. Convert the formula to a polynomial using the following rules:

¬(x) = 1− x,
x ∧ y = xy,

x ∨ y = x+ y − xy.

3. Use the identity x2 = x to reduce any repeated variables in the monomials.

The result is some polynomial whose degree is at most q, if f is a q-CNF formula.
This prompts the following definition:

Definition The degree (also polynomial degree) of a function f , written deg(f), is the minimal
degree of a real polynomial P such that f(x1, . . . , xq) = P (x1, . . . , xq) on all Boolean inputs.

In general, it is difficult to represent functions exactly by polynomials, and so the fact that
a function has high polynomial degree isn’t strong enough for our purposes. A rather lenient
alternative is the following:

Definition The sign degree (sometimes polynomial threshold degree) of a function f , written
sign-deg(f), is the minimal degree of a real polynomial P such that for all Boolean inputs x1, . . . , xq:

• If f(x1, . . . , xq) = 1 then P (x1, . . . , xq) > 0.

• If f(x1, . . . , xq) = 0 then P (x1, . . . , xq) < 0.

This definition is so permissive that it is hard to prove lower bounds on the sign degree. Here
are two examples of functions for which a lower bound is known:

• The parity function on q inputs has the maximal sign degree q.

• The Minsky-Papert “tribes” function
∨m
i=1

∧4m2

j=1 xij has sign degree m = 3
√
q/4.
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Lower bounding the sign degree can be difficult simply because a function with high polynomial
degree can be sign-represented by a very low degree polynomial. An extreme example is the
OR function (the logical inclusive or of all inputs). This function is sign-represented by the linear
polynomial

∑
xi− 1

2 , but an exact representation necessitates a degree q polynomial. This prompts
the need for some sort of an interpolation between these two extreme definitions.

The following definition generalizes both previous ones:

Definition [ε-Approximation Degree] Given a real 0 ≤ ε ≤ 1
2 , the ε-degree (more officially, ε-

approximation degree) of a function f , written ε-deg(f), is the minimal degree of a real polynomial P
such that for all Boolean inputs,

|f(x1, . . . , xq)− P (x1, . . . , xq)| ≤ ε.

If ε = 0 this reduces to the regular degree, while if ε = 1
2 then this (almost) reduces to the sign

degree. Clearly the ε-degree is monotone decreasing in ε, and so for general 0 < ε < 1
2 we have

0 ≤ sign-deg(f) ≤ ε-deg(f) ≤ deg(f) ≤ q.

As an example, the OR function, whose sign-degree is 1 and whose polynomial degree is q, has
ε-degree O(

√
q) for ε = 1/8.

Nisan and Szegedy related the ε-degree to decision tree complexity, defined as follows:

Definition A decision tree for a Boolean function is a binary tree whose inner vertices are labelled
by input variables, and whose leaves are labelled by 0/1. The computation outlined by the tree
proceeds from the root by querying the labelled variable, taking the left branch if the respective
variable is 0, the right branch if it is 1. Upon reaching a leaf, its label is output.

The decision tree complexity of a function f , written DTC(f), is the depth of the shallowest
decision tree which represents it.

Using the method outlined above for converting a formula into a real polynomial, one sees that the
decision tree complexity upper bounds the polynomial degree. In particular, ε-deg(f) ≤ DTC(f).
Nisan and Szegedy proved a matching upper bound:

ε-deg(f) ≤ DTC(f) ≤ ε-deg(f)8.

Formulated differently, we have log ε-deg(f) = Θ (log DTC(f)).

4 Discrepancy and Duality of Sign Degree

Theorem 10 (Duality of sign degree) Let f : {−1, 1}n d ≥ 0

Then sign-deg(f) is at least d if and only if there exists a distribution µ over {−1, 1}n such that

Ex∼µ [f(x) · χS(x)] = 0 ∀S, |S| < d

That is to say, “f is orthogonal to χS for small s”, where χS is the parity function over the indices
in S

11



Communication Complexity and Applications

Theorem 11 (Duality of approximation degree) (Sherstov, Shi-Zhu)
Fix ε ≥ 0. Let f : {−1, 1}n → {−1, 1}, degε(f) = d ≥ 1.
Then ∃g : {−1, 1}n → {−1, 1} and a distribution µ over {−1, 1}n such that:

(1) E
x∼µ

[g(x)χS(x)] = 0 ∀S |S| ≤ d

(2) corrµ(f, g) > ε (corrµ(f, g) = E
x∼µ

[f(x)g(x)])

Proof (Duality of sign degree) This is an instance of the “Gordon Transposition Lemma”
Let A be a matrix of dimension m× n. Then ∃~u s.t. ~uTA > 0 iff ∃~v > 0 s.t. A~v = 0

We want a polynomial f ′ which sign-approximates f . We look for coefficients αs, |S| < d to
produce f ′ =

∑
S αsχs

Fix ρ. If f(ρ) = 1
∑

S αsχs > 0, and if f(ρ) = −1
∑

S αsχs < 0. So,
∑
αsχsf(ρ) > 0, that is

to say, they match in sign.

We construct a matrix with columns representing values for ρ and rows representing values for
s, that is, subsets of 1..n of size ≤ d. For each value we fill in χs(ρ)f(ρ). Then the rows of our
matrix are the values for αs, which is ~uT in the above lemma, and ~v is a distribution over our
columns.

Using duality of sign degree we can prove 2-party communication complexity lower bounds. The
outline of the argument is as follows.

(1) We start with a base function f : {−1, 1}n with large sign degree d. For example, f(z) =∨m
i=1

∧4m2

j=1 zij has sign-degree m, or the parity function, with sign degree n.

(2) Use the pattern matrix method to ”lift” f to obtain a 2-player communication complexity
problem F = f ◦gn, where g : [b]×{0, 1}b → {0, 1} is the index gadget defined as g(a, b) = b|a.
That is, the value of g on input a, b is the bit in b that is pointed to by a.

That is, Alice has input x1, . . . , xn where each xi consists of a string of log b bits (that we
will view as a pointer to one of the b coordinates); Bob has input y1, . . . , yn where each yi is
a string of b bits, and the value of F = f ◦ gn on (x, y) is obtained by computing the function
f on the n bits pointed to by Alice (one per block).

(3) By duality of sign degree, there exists a distribution µ over {−1, 1}n such that f is orthogonal
to all χS , |S| < d, with respect to µ. Extend µ to a distribution λ over the domain of F
in the natural way. Then by orthogonality, the BNS Lemma will imply small discrepancy
(discrepancy less than 2−d) for F with respect to λ.

Using the above plan, we will prove the following theorem:

Theorem 12 (Sherstov) Let f be boolean over z1..zn with sign degree ≥ d.
Then disc(F )(2en/bd)d.

12
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Proof

Extending µ to λ: λ is a distribution on X × Y induced by µ. To obtain λ we pick x ∈ X
uniformly at random. We choose y|x according to µ. Then we set the rest of the bits of y uniformly
at random. So we have:

λ(x, y) = b−nµ(y|x)2−(b−1)n.

By the BNS lemma,

discλ(F )2

|X|2 × |Y |2
≤ E

x,x′
|E
y
[f(y|x)f(y|x′)λ(x, y)λ(x′, y)]|

Rewriting in terms of µ, since |X| = bn and |Y | = 2bn we get

discλ(F )2 ≤ 4n E
x,x′
|E
y
[f(y|x)f(y|x′)µ(y|x)µ(y|x′)]|.

Let Γ(x, x′) denote Ey[f(y|x)f(y|x′)µ(y|x)µ(y|x′)].

Claim 1 When |x ∩ x′| ≤ d− 1 then Γ(x, x′) = 0.

Claim 2 When |x ∩ x′| = i, |Γ(x, x′)| ≤ 2i−2n.

By these claims,

discλ(F )2 ≤
n∑
k=d

2kPr
[
|x ∩ x′| = k

]
,

P r
[
|x ∩ x′| = k

]
=

(
n

k

)
(1/b)k(1− 1/b)n−k ≤ (en/k)k(1/b)k(1− 1/b)k

(The above inequality uses
(
n
k

)
≤ (en/k)k.)

Therefore,

discλ(F )2 ≤
n∑
k=d

2k(en/k)k(1/b)k(1− 1/b)n−k (13)

=
n∑
k=d

(2en/bk)k(1− 1/b)n−k (14)

≤ (2en/bd)d (15)

(16)

For b sufficiciently large, this is at most 2−d.

Proof of Claim 1 The basic idea here will be that by orthogonality, the expectation is zero.

Proof of Claim 2 This claim follows because µ is a probability distribution. We want to show
that if |x ∩ x′| = i, then |Γ(x, x′)| ≤ 2i−2n. For notational convenience we will assume that x and

13
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x′ have the same pointers in the first i blocks and different pointers in the remaining blocks. (That
is, xj = x′j for all j ≤ i and xj 6= x′j for all j > i.) Then we have:

|Γ(x, x′)| ≤ E
y
[|f(y|x)µ(y|x)f(y|x′)µ(y|x′)|]

|Γ(x, x′)| ≤ E
y
[µ(y|x)µ(yx′ ]

|Γ(x, x′)| ≤ E
y
µ(y|x) ·maxα to y|x∩x′ E

x′i+1,...,x
′
n

[µ(α, x′i+1, . . . , x
′
n]

The first expectation above is at most 2−n because µ is a probability distribution, and similarly
the second expectation in the last equation is at most 2−(n−i) again because µ is a probability
distribution.

5 Application to Circuits

In 1989, Allender proved the following theorem, showing that any AC0 function can be computed
by quasipolynomial-size depth-3 majority circuits.

Theorem 13 (Allender) Any AC0 function can be computed by a depth-3 majority circuit of
quasipolynomial (O(npolylog(n)) size.

An open question was whether or not his result could be improved. In particular, is it possible
to improve the depth, showing that every function in AC0 be computed by depth-2 majority-of-
threshold circuits of quasipolynomial size? A corollary to Sherstov’s theorem is a negative resolution
to this open problem:

Theorem 14 (Sherstov) ∃F ∈ AC0
3 (depth 3) whose computation requires majority of exponen-

tially many threshold gates.

It suffices to show an AC0 function with exponentially small discrepancy. We start with the
AC0

2 function:

f =
m∨
i=1

4m2∧
j=1

eij

We construct F(x,y) where F (x, y) = f(x|y), that is, f of the bits of x specified by y. F(x,y) is in
AC0

3 :

F (x, y) =

m∨
i=1

4m2∧
j=1

∨
α

(
yijα1 ∧ yijα2 ∧ ... ∧ yijαq ∧ xijα

)
because we can swap the order of the ∧’s within the brackets with the last

∨
and then merge them

with the middle
∧

.

By the degree/discrepancy theorem we know that because f requires a high degree polynomial
to compute, F(x,y) has low discrepancy. Each threshold gate can be computed by a O(log n) bit

14
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probabilistic CC protocol with Rpubε (f) = O(log n+ log 1
ε ).

Suppose F has (low) discrepancy e−N
ε
. Then any randomized protocol requires N ε bits. Also

let F = MAJ(h1..hS) where each hi is a threshold circuit.

The players pick a random i ∈ [S]. They evaluate hi, using O(log n) bits and output the result.

The probability of correctness of the threshold-computing protocol is 1− 1
4S if we set ε′ ∼ 1

S .

The total cost is O(log n) + logS bits. The probability of correctness is (1
2 + 1

2S )− 1
4S = 1

2 + 1
4S

on every input.

Since we know that F requires O(N ε) bits to compute, S must be exponentially large! And so
there is no polynomially-sized majority-of-threshold circuit to compute F ∈ AC0

3 .

6 Extensions of Sherstov

6.1 High approximation degree to high probabilistic communication complexity

First, the above theorem can be generalized to prove lower bounds on 2-party communication
complexity of lifted functions where the base function has high ε-approximate degree, rather than
high sign degree. The idea here is to replace the duality theorem for sign degree by the duality
theorm for approximate degree.

We follow the same three steps, showing that if f (the base function) has large approximate
degree, then there exists a function g that is highly correlated with f , and a distribution µ such
that g is orthogonal to all low degree characters with respect to µ. We then lift g to a two-
party communication complexity problem G, and lift µ to a distribution λ over G to show (using
orthogonality and BNS) that G has low discrepancy. Finally, since f is highly correlated with g,
F is highly correlated with G, and thus it follows that F also has high randomized communication
complexity.

6.2 NOF lower bounds

The above ideas can also be extended to prove lower bounds in the NOF model as well. The BNS
lemma stated above can be generalized straightforwardly to prove a similar lemma in the NOF
case. Its generalization for k = 3 looks like this:

disc(F )22 ≤ Ey1,y′1∈Y1Ey2,y′2∈Y2 |Ex∈Xf(x, y1, y2)f(x, y1, y
′
2)f(x, y′1, y2)f(x, y′1, y

′
2)|.

More generally for arbitrary k we will have a similar expression, but where the LHS is raised to
the power 2k−1. Using this stronger BNS lemma, one can prove a similar general theorem following
the basic outline that we presented.

Note that for k = log n players, the bound becomes trivial. It is a longstanding open problem
to prove a NOF communication complexity bound for an explicit function (say in NP ) for more
than log n many players.
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