
APPLICATIONS
@

• streaming

• Property testing } TODAY• game theory

• TIME/ SPACE Turing Machine LBS

• Circuit complexity
• Proof complexity
• Extension complexity
• clique cocligue, graphTheory, Learning Partial ☒unctions



Main CC Lower Bounds

UDISJ : disjointness with

promise that either

theorems BPP
"
( Diss] = Icn) 1×41=0 or Hay 1=1

BPP
"
CUDISJ) = Icn)

CONP
"

(UDISJ) = Icn)

theorem
the K- player NOF randomized cc of DISJ

,
UDISJ

is r(E)

We will prove these in a couple of weeks
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STREAMING LOWER BOUNDS
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STREAMING LOWER BOUNDS

5 c- (n)
m

is a length m stream

computing frequency moments of S :

Let M
,
=/ Ej c- Cm] IS; = i } /

The Kr frequency moment of S , F, = §
,
Mi
"

Fo = A- distinct elements in stream

F
,

= length of stream

F- =
# occurrences of most frequent item

theorem Fo
,
iz can be approx'd to within a (1+-8) factor (wp > 1- s)

in space 0409^+10,911109%-1



STREAMING LOWER BOUNDS

21 10 1 14 I 1 I 113 / 3 / 10/7/51 .
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5 c- (n)
m

is a length m stream

computing frequency moments of S :

Let M
,
=/ Ej c- cm] IS; = i } /

⇐Me ")É
The Kr frequency moment of S , F,, = { M

"

(= ,
i

Fo = A- distinct elements in stream

F
,

= length of stream

F- =
# occurrences of most frequent item

them computing F- requires r(min {m,n3) space

stronger : any randomized alg for F- to within (II.2) factor wp 373
requires space Almir {m,n3)

.



THEY computing F- requires rcn) space/memory (m=n)

PI Reduction from Dist → low - space streaming alg for F-
Let A be space c streaming alg

Alice : ✗ → stream a×= { i / ✗ i= I } 011011 → 2
, 3,5, 6

Bob : y → stream b×= { j / y, = , } 100100 → 1,4

Fact DISJCX, g)=/ ⇒ F- (9×4)=12
DISJCX

,y) -0 ⇒ F- Ca×b×) = I



THEY computing F- requires rcn) space/memory

PI Reduction from Dist → low - space streaming alg for F-
Let A be space c streaming alg

Alice : ✗ → stream a×= { i / ✗ i = I } 011011 → 2
, 3,5, 6

Bob : y → stream b×= { j / y, = , } 100100 → 1,4

Fact DISJCX, g)= I ⇒ F- (9×6×1--12)DISJCX
,y) -0 ⇒ F- Caxbx) = I

s^Ñ Alice simulates 1- on ax a sends content 4 memory
Cc bits) to Bob

,

- then Bob simulates rest of
computation on by



MORE STREAMING LOWER BOUNDS

Previous 43 actually showed something stronger ;

than Any randomized streaming alg that for anystreams
of length m computes F- to within (II.2) factor

(with prob > %) requires space 5h (min Em, n} ) .

Thy Fork# every randomized streaming alg for computing
F
, exactly requires space R(

min {m
,
n} )

&
In our reduction F- is 1 vs 2

so a factor of 2 difference
.

For k± , the correct
value will still be different in the 2 cases



MORE STREAMING LOWER BOUNDS

In contrast
,
we had very low space approx. algs

for Fo and Fz

thm Fo
,

F
,
can be approx'd to within ✗ Ie)

factor with prob = CI - s) using
-

space of
e-Yoga + log m) log 's )

-
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PROPERTY TESTING

Let D= domain (usually D= {0,15 )
R = range

A property P is a set of functions from ☐ → R

Example
E① Linearity .

D= IF
"

R = IF

P = set of all linear functions

② Monotonicity D= {0,15
,
12=90,1 }

f- set of all monotone functions f : {0,11^-710,1}

③ graph testing D :{0,13*1 R :{0,13
☒ = all graphs that haha K-clique, etc . - .



goal of properly testing
: given any large input

( like a graph or Boolean function on n inputs )
want to look at feud places in input to decide
-if it is close to an input with property P or tan
from all inputs in P

view function (cngiut ) as a vector indexed by D

Defy f is e- far from P if tge P , f and g differ in 7- EID /
entries

.

ie
. changing f to some g c- P requires changing
at least an E fraction of its values



gain properly P defined Wrt D
,
R

on input f- :D → R, determine if

① fop or

② f is E- far from P

A tested for P queries input f (a decision tree)

Query complexity of P =

min . decision tree depth on all testers for P

÷
• •

.

.

•

• fxns in P
¥ •

•

•
•

• f 's far
•
•

,

,

•

°

I from P
•

•
a

• f's close
to ☒



Example 1 : Linearity Testing Cover E)

Input f :{0,15 → 10,13 ( f as a vector of length 2)

Is f E-close to a painty function ?

Parity fxws = Linear fans = f(✗④ y)
= fcx) to fly) ✓×, y C- 10,1]

"

BLR Test :

Repeat ①(E) times

{ • Pick ×
, y
~ {0,15 unit

.
at random

•
If f (✗① y) f (x) ④ fly ) halt or reject

If havent yet rejected then ACCEPT

theorem
with constant probability , every function

E-far from linear
-

is rejected



Example 2 : Monotone graph Properties

Boolean case : f :{0,1¥
"

→ { 0,13
.

Picture f as choosing a subset
of vertices of n- dime boolean hypercube

Let lb
,
*
.
;) be an assignment where

ith bit is b
, remaining n

- i

bits are ✗- i

then f is monotone if Yi c- [n ] VX . ; f- (0
, ✗ . ;) ← f( 1 , X;)

Monotonicity Test
Repeat ☐(E) times :

Pick i. ×. ; at random .

f f 10.x .;) > f- ( 1 , X-D halt & Reject

If havent rejected yet , ACCEPT

thm With prob > Zz every function e-far from monotone is rejected



Example 2 : Monotone graph Properties

UB LB

Boolean [ggLRs 2000] OLE ) [FLNRRS nhlrn) nonadaptive20021
nhllugn) adaptive

[KMS 201s] O( Fe)
. [ BB '18 ] Un"*) adaptive

Range R Eggers 2000] 01h /RIG EBBM 2012] Rcn]
,
IRI --R(rn )

hurt)
[DGLRRS '

99] 01110g /A)

+
U

LBS : many excellent CDs by NEXT
Chen
,
Seruedio

,
Tan

, Weingarten
,

I



MONOTONICITY TESTING LOWER BOUNDS

generaltem-p.at:
• Map 1- inputs ix.y) of a

'
hard cc problem ( UDISJ)

to functions hay e P
• Map 0 - inputs cx,y) to h×,y that are far from P
• Use efficient tester IT for

.

P
,
plus short protocol to

evacuate hay to solve UDISJ



MONOTONICITY TESTING LOWER BOUNDS

Lemina For A
,
B c- [n]

,
Let hey, :{0,13^-72 by

ha.BG/)--2YX1+(.,)iMAl-+f,ylxnB1
Then 4) If ANB =P → ha

,
,
is monotone

Cii ) If IANB 1=1 → ha, is E-far from monotone



MONOTONICITY TESTING LOWER BOUNDS

Lemina For A
,
B c- [n]

,
Let hey, :{0,13^-7 ZL by

hey, (X) = 21×1 + (1)
IMAI

+ f.)
1×1131

Then ( i ) If AnB =P → ha
,
,
is monotone

Cii ) If IANB 1=1 → ha, is E-far from monotone

Assuming Lemmer, Let Q be a monotonicity tester (e =
'

8)

given input CA ,B) to UDISJ Alice /Bob simulate Q on ha
,
,
:

Let ✗ ← Cn] be Next query Q asks Chs
,

☐
1×7 ? )

Alice sends c-1)
Nnn

Bob sends c- 1)
1×1131

cost per query
= 2

.

°: monotonicty testing (e--
'8) requires run) queries



MONOTONICITY TESTING LOWER BOUNDS

temma For A
,
B c- [n]

,
Let hey, :{0,13^-7 ZL by

hey, (X) = 21×1+4 , )i×^Al + f.)
1×1131

-

Then ( i ) If AnB =P → ha
,
,
is monotone

Cii ) If IANB 1=1 → ha, is E-far from monotone

proofedwant to show : A
,
B disjoint ⇒ Us

,
its has (Sui ) - ha, (s) > 0

Since A
,
B disjoint , either IGA or IAB . Assume wlog it A. Then

hspscsui)- hopes) = 2 1-⑧ + f- 1)
""" "

• f- 1)
Ism"

s ;

¥ 2 to -2
☒

=o ①
or i



MONOTONICITY TESTING LOWER BOUNDS

temma For A
,
B c- [n]

,
Let hey, :{0,13^-7 2L by

hey, (X) = 21×1+4 , )i×^Al + f.)
1×1131

Then ( i ) If AnB =P → ha
,
,
is monotone

Cii ) If IANB /=/ → ha, is E-far from monotone

A B

Proot_ Let Anis = i

claim : Pr [(snit is even) and (Isf Bt is even)] = +4

When 15nA / and ISNBI are both even

has .(Sui) - hrs, (s) = 21511-2 - 21st + ( t ) - (1) t C- 1) - (1) = -2

so for at least § I
"

= Ji choices of S, ha, (Sui)
< he☐

(s)

so hs☐ is 18 - far from monotone .



MONOTONICITY TESTING LOWER BOUNDS

The lower bound is then) as long as IRI =n
.

This can be implored to show same 43 Rcn) for IRI >_ rn

more generally can prove 5h ( IRT ) 43 .

OPE_M
for testing monotonicity of Boolean functions
best LB is Ñln% )

,

whereas best UB is 0 (rn )



APPLICATIONS
@

• streaming

• Property Testing
• game theory (Pure • Approximate Nash)

• TIME/ SPACE Turing Machine LBS
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• Data structures



gt-METHERY.TVRE NASH EQUILIBRIUM
e-

NASH :

Two players I , I had payoff matrices (zero sum)

T
I

I
← n→

A pure Nash equilibrium is a pair (E , J ) st
it strategy is optimal if Bob plays jt &

similarly if
-

is optimal if Allie plays i

tremmel computing whether a pure Nash equilibrium
exists requires Rcn

' ) cc



PURE NASH EQUILIBRIUM

NASI :

Two players I , I hail payoff matrices (zero sum)

T
I

I
← n→

A pure Nash equilibrium is a pair Ci , 5) st
it strategy is optimal if Bob plays J o

similarly if
-

is optimal if Allie plays i

tremmel computing whether a pure Nash equilibrium
exists requires Rcn

' ) cc

Prof Allie ×
,
Bob y 1×1=141 = N = n

'

-

00

☒# → o . → -1 :
0 0

00 8% :{ I1 i
'

r P P o
r r r por Y



tremmel computing whether a pure Nash equilibrium
exists requires Rcn

' ) cc

Prof Allie ×
,
Bob y 1×1=141 = N = ri

☒¥ →
-00

→

- : :
0 O l l
0 0

00 8% :& 'ti r
'

r P P o
r r r por Y

Extra rows/cols guarantee that only a cell Ci , ;)
where both Xp,

and Y,,
=L is a pure Nash equilibrium .

(then a players best reply always has a value of 1
so a pure equilibrium regime a cell where both matrices
hail value 1.)

•: cost any solution to Nash ⇒ cost out) protocol for DISJ . #



2-PlayerE.NashisHard2
players .

Each has an NXN payoff matrix

FifeGf¥E¥t



2-PlayerE.NashisHard2
players .

Each has an NXN payoff matrix

EffieG.fi#Eot(I. g) is an

e.IE#iumsif
:

ktAy=PAY . e tx

It By = It By . c ty



Finding
e- Nash Equilibrium is Hard

Theory [goos . Rubinstein '

18 ]

@The randomized .1
. 5.9

communication

( MJ . 2. 4.1

complexity of finding
⇒ . → ( l . 9 ° )

%Innit.am
"↳im

( Ig;]¥
~
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TM TIME /SPACE LOWER BOUNDS

Multi tape Tms : Read only input tape 01*01111 lol I
plus 04) Read/Write types 1 I 1 1 11 I

$

Let f :{0,1]^ ✗ {0,15 → {0,13 l l l l l l l

a
1 If

*

I 1 1

We say
that M recognizes /computes f- if

thy c- {0,15
"

flay)=1 ⇒ M( ✗ 0
"

y)
= I

flay):O ⇒Mlxony ) = 0

theorem Let M compute f.

Then
p
"

(f) ⇐ o (TimeCMnn)•Spn))
ie. if pact)=rlrD then any M computing f

requires Time • space -
- ring



Root
Let it be a TM that computes f. in Time

Tcn)
, space scn)

then we will construct a cc protocol for f of cost £ Tcn) isCn)

Alice has ×
,

Bob y . 1÷É-BAEAe
Alice simulates M on ✗ on until ÷,;É-input head moves to green part

xp----Then Alice sends entire content of
Rcw tape and head

locations to Bob

Bob continues simulation with y on green part
until input head mores to pink

' ' ' II
!

, ,

'
p
%

•

I L I 1 1 11 I 1 I



Comm . complexity :

# of Rounds = Tff (since they have to spend
n steps going thru middle zone)

cost per round £0 ( Sens)

i. cccf ) =
0 )

Note on in middle is kind of cheating
If we instead gave uñput 1¥ ,

the cost of protocol would be 0C # -of- Reversals * sin) )


