Mitropolsky

Number-on-Forehead Complexity

Dan Mitropolsky

April 27, 2022

Mitropolsky

Introduction

Definitions

Example: EQ Lay of the land

Connection to ACC⁰

Lower bounds Cylinders Discrepancy method Cube measure of GIP Bounding discrepancy

Upper bounds Exactly-n

Multiparty Communication Complexity

How do we define communication complexity for k parties?

Given $f : \mathcal{X}_1 \times \mathcal{X}_2 \times \cdots \times \mathcal{X}_k \to \mathcal{Z}$

Definition 1 (*Number-in-hand model, "NOH"*) Player *i* sees input $x_i \in \mathcal{X}_i$ only.

Definition 2 (*Number-on-forehead model, "NOF"*) Player *i* sees every input $x_j \in \mathcal{X}_j$ for $j \neq i$.

Notation

Introduction

Number-on-Forehead

Complexity Mitropolsky

Definitions

Example: EQ Lay of the land

- Connection to ACC⁰
- Lower bounds Cylinders Discrepancy method Cube measure of GIP Bounding discrepancy
- Upper bounds

- Often by f we mean a function family $f_{n,k}: (\{0,1\}^n)^k \to \{0,1\}.$
- Write D_k(f) for deterministic communication complexity of f_{n,k}
- For distribution μ over ({0,1}ⁿ)^k and ε > 0, write R^{ε,μ}_k(f) for communication complexity of f_{n,k} where inputs drawn μ, and the (deterministic) protocol can err on at most ε fraction of inputs.

Mitropolsky

Introduction

Definitions

Example: EQ

Lay of the land

Connection to ACC⁰

Lower bounds Cylinders Discrepancy method Cube measure of GIP Bounding discrepancy

Upper bounds

Exactly-n

Motivating Example: EQ

- Consider $EQ_k : (\{0,1\}^n)^k \to \{0,1\}.$
- For k = 2, NIH = NOF model.
- For k = 2, $D_2(EQ) = n$ (maximal).
- But for k > 3, in NOF model, $D_k(EQ) = 2$.
- In NIH mode, CC is $\Omega(n)$.
- in NOF, we can *exploit overlap of information* for efficiency!

Motivating Example: EQ

Introduction

Number-on-Forehead

Complexity Mitropolsky

Definitions

Example: EQ

Lay of the land

Connection to ACC⁰

Lower bounds Cylinders Discrepancy method Cube measure of GIP Bounding discrepancy

Upper bounds

Exactly-n

Solution: Player 1 sends 1 iff other players' inputs equal. Player 2 sends 1 iff other players' input equal. $EQ(x_1, \ldots, x_k) = 1 \iff$ both bits are 1.

Mitropolsky

Lower Bounds

Definitions Example: EQ Lay of the land

Connection to ACC⁰

Lower bounds Cylinders Discrepancy method Cube measure of GIP Bounding discrepancy

Upper bounds

Exactly-n

Very little is known!!!

"one good method" gives $n/4^k$ -type bounds

- Generalized Inner Product: $D_k(\text{GIP}) \ge \Omega(\frac{n}{4^k})$
- Disjointness: $D_k(\text{DISJ}) \ge \Omega(\frac{n}{4^k})$
- Exactly-n, k = 3: $D_3(\text{EXACTLY-}n) \ge \Omega(\log \log \log n)$

Lay of the land

Upper Bounds

We know a few surprising efficient protocols!

- Generalized Inner Product: $D_k(\text{GIP}) \le O(k \frac{n}{2^k})$
- Exactly-n, k = 3: $D_3(\text{EXACTLY-}n) \le \sqrt{\log n}$.

Mitropolsky

Introduction

Definitions Example: EQ Lay of the land

$\begin{array}{c} \text{Connection to} \\ \text{ACC}^0 \end{array}$

Lower bounds

Cylinders Discrepancy method Cube measure of GIF Bounding discrepancy

Upper bounds

Exactly-n

Connection to ACC⁰

Definition $AC^0[m]$ is the class of languages that can be computed by a family of circuits $\{C_n\}$ such that each $C_n : \{0,1\}^n \to \{0,1\}$ is: constant depth, size poly(n), gates are $\{\wedge, \lor, \neg, \mod m\}$ with unbounded fan-in.

Definition
$$ACC^0 = \bigcup_{m \ge 2} ACC^0[m]$$

Theorem (Beigel and Tarui '94) For $L \in ACC^0$, $\exists c, d \text{ s.t. } L$ be computed by depth 2 circuits, size $2^{\log^d n}$, top gate is *symmetric*, and bottom layer consists of \land gates with fan-in $\log^c n$.

Definition The output of a *symmetric* gate is determined by the *number* of 0 and 1 inputs.

Mitropolsky

Introduction

Definitions Example: EQ Lay of the land

$\begin{array}{c} \text{Connection to} \\ \text{ACC}^0 \end{array}$

Lower bounds

Cylinders Discrepancy method Cube measure of GIP Bounding discrepancy

Upper bounds Exactly-n

Connection to ACC^0

Theorem 1 (Beigel and Tarui '94) For $L \in ACC^0$, $\exists c, d \text{ s.t. } L$ be computed by depth 2 circuits, size $2^{\log^d n}$, top gate is *symmetric*, and bottom layer consists of \land gates with fan-in $\log^c n$.

Theorem 2 (Hådstad and Goldmann '91) Suppose $f : \{0,1\}^n \rightarrow \{0,1\}$ can be computed by circuits with: depth 2, top gate is symmetric with fan-in *s*, bottom layer consists of \land gates with fan-in $\leq k - 1$. Then (under *any* partition of *n* into *k* parties), $D_k(f) \leq k \log(s)$. **Proof** Each \land gate can be computed by some party. Partition

gates among parties, each sends how many are 1.

Corollary (Theorems 1+2) For any function f in ACC⁰, c, d s.t. under any partition of n bits to $k = \log^c n + 1$ parties, NOF $D_k(f) \le (\log^c n + 1) \log^d n = \log^{O(1)} n$.

Mitropolsky

Introduction

Definitions Example: EQ Lay of the land

$\begin{array}{c} \text{Connection to} \\ \text{ACC}^0 \end{array}$

Lower bounds

Cylinders Discrepancy method Cube measure of GIF Bounding discrepancy

Upper bounds

Corollary (Theorems 1+2) For any function f in ACC⁰, c, d s.t. under any partition of n bits to $k = \log^c n + 1$ parties, NOF $D_k(f) \le (\log^c n + 1) \log^d n = \log^{O(1)} n$.

Connection to ACC^{0}

- Usefulness of NOF: If we could show some f such that for any k = log^c n + 1, it requires D_k(f) > log^{O(1)} n, this would show f ∉ ACC⁰ !!!
- No such lower bounds, yet...
- major goal in circuit complexity
- we know NEXP \subsetneq ACC⁰ (but not with this method– Ryan Williams, 2011)

Mitropolsky

Introduction

Definitions Example: EQ Lay of the land

$\begin{array}{c} \text{Connection to} \\ \text{ACC}^0 \end{array}$

Lower bounds

Cylinders Discrepancy method Cube measure of GIP Bounding discrepancy

Upper bounds

Exactly-n

If we could show some f_{n,k} such that for any k = log^c n, it requires D_k(f) > log^{O(1)} n, this would show f ∉ ACC⁰ !!!

Lower Bounds

• Generalized Inner Product: $D_k(\text{GIP}) \ge \Omega(\frac{n}{4k})$ Upper Bounds

I imited lower bounds

• Generalized Inner Product: $D_k(\text{GIP}) \le O(k \frac{n}{2^k})$

• Lower bound is non-trivial only when $k < \log n$

Mitropolsky

Introduction

Definitions Example: EQ Lay of the land

Connection to ACC⁰

Lower bounds Cylinders Discrepancy method Cube measure of GIP Bounding discrepancy

Upper bounds

Exactly-n

Generalized Inner Product

Definition For
$$x_1, \ldots, x_k \in (\{0, 1\}^n)^k$$
,
 $\operatorname{GIP}_{n,k}(x_1, \ldots, x_k) = \bigoplus_{i=1}^n (x_1)_i \wedge \cdots \wedge (x_n)_i$

That is, $GIP_{n,k}(x_1, \ldots, x_k) =$ number of coordinates that all equal 1, mod 2.

Proposition Viewing $GIP_{n,k}$ for $k = \log^{c} n$ and vectors of size $n/(\log^{c} n)$ as a function on n bits, $GIP_{n,k} \in ACC^{0}$. In fact, $GIP_{n,k} \in AC^{0}[2]$.

Proof bottom layer has $n/(\log^c n)$ AND-gates, computing $(x_1)_i \land \cdots \land (x_k)_i$ for each coordinate; top layer is a mod 2 gate \Box

Circuit in proof already in Beigel-Tarui form :)

Cylinders

Number-on-Forehead

Complexity Mitropolsky

Definitions Example: EQ Lay of the land

Connection to ACC⁰

Lower bounds

Cylinders

Discrepancy method Cube measure of GIP Bounding discrepancy

Upper bounds

Definition. A cylinder C_i in the *i*-th coordinate is a subset of the input space $\mathcal{X}_1 \times \cdots \times \mathcal{X}_k$ that does not depend on the *i*-th coordinate: if $(x_1, \ldots, x_i, \ldots, x_k) \in C_i$ then for all $x'_i \in \mathcal{X}_i, (x_1, \ldots, x'_i, \ldots, x_k) \in C_i$.

Definition. A cylinder intersection C is an intersection of cylinders.

If C_i, C'_i are cylinders in the *i*-th coordinate, so is $C_i \cap C'_i$. So any cylinder intersection C can be written $\bigcap_{i=1}^k C_i$.

Mitropolsky

Introduction

Definitions Example: EQ Lay of the lan

Connection to ACC⁰

Lower bounds

Cylinders

Discrepancy method Cube measure of GIP Bounding discrepancy

Upper bounds

Exactly-n

X₂ **X**3 X_1

Cylinders

Mitropolsky

Introduction

Definitions Example: EQ Lay of the land

Connection to ACC⁰

Lower bounds

Cylinders

Discrepancy method Cube measure of GIP Bounding discrepancy

Upper bounds

Exactly-n

Proposition. For a NOF protocol *P* with communication *c*, the set of inputs that induce communication transcript $t \in \{0,1\}^c$ is a cylinder intersection.

Cylinders and Protocols

Proof sketch. Bit by bit. At step *i* when player *j* speaks, whether they write bit c_i depends only on the inputs of every *other* player.

Corollary. If P is a deterministic NOF protocol computing f: $\mathcal{X}_1 \times \mathcal{X}_2 \times \cdots \times \mathcal{X}_k \rightarrow \mathcal{Z}$ with c bits of communication, P partitions $\mathcal{X}_1 \times \mathcal{X}_2 \times \cdots \times \mathcal{X}_k$ into at most 2^c monochromatic cylinder intersections.

- Cylinder intersections are the analogue of *rectangles*.
- For k = 2, cylinder intersection = rectangle.
- Cylinder intersections are complex combinatorial objects. Limited understanding of cylinder intersections = limited NOF bounds.

Mitropolsky

Introduction

Definitions Example: EQ Lay of the lar

Connection to ACC⁰

Lower bounds

Cylinders

Discrepancy method Cube measure of GIF Bounding discrepancy

Upper bounds

Exactly-n

Cylinder intersection for k = 2

Discrepancy

Number-on-Forehead Complexity

Mitropolsky

Introduction

Definitions Example: EQ Lay of the land

Connection to ACC⁰

Lower bounds Cylinders Discrepancy method Cube measure of GIF

Bounding discrepancy

Upper bounds

In this section, $f : \mathcal{X}_1 \times \cdots \times \mathcal{X}_k \to \pm 1$, and by abuse of notation, $C(x_1, \ldots, x_k) = 1$ if $x_1, \ldots, x_k \in C$, else 0.

Definition. For distribution μ over $\mathcal{X}_1 \times \cdots \times \mathcal{X}_k$, function f, cylinder intersection C, the *discrepancy* of f w.r.t μ and C:

$$\mathsf{disc}_{\mu}(f,C) = |\mathbb{E}_{\mathsf{x}_1,\ldots,\mathsf{x}_k \sim \mu}[f(\mathsf{x}_1,\ldots,\mathsf{x}_k)C(\mathsf{x}_1,\ldots,\mathsf{x}_k)]|$$

Definition. The *discrepancy* of f wrt μ is

$$\mathsf{disc}_\mu(f) = \max_C \mathsf{disc}_\mu(f,C)$$

Intuition: "average" of f over cylinders. Close to 0 means "well-spread" over ± 1 .

Mitropolsky

Introduction

Definitions Example: EQ Lay of the land

Connection to ACC⁰

Lower bounds Cylinders Discrepancy method Cube measure of GIR Bounding

Upper bounds

Exactly-n

Discrepancy Method

Definition. The *discrepancy* of f wrt μ is $disc_{\mu}(f) = max_{C} disc_{\mu}(f, C)$

Theorem (Discrepancy Method; Babai, Nisan, Szegedy '92) For any *f*

$${\it R}_k^{\epsilon,\mu} \geq \log \Big(rac{1-2\epsilon}{{\sf disc}_\mu({\it F})}\Big)$$

Proof identical to k = 2 case (we did it in class!)

Intuition: *upper bound* on discrepancy: for any cylinder intersection, f is "well spread" over ± 1 , hard to partition monochromatically. Gives *lower bound* on NOF.

Mitropolsky

Introduction

Definitions Example: EQ Lay of the land

Connection to ACC⁰

Lower bounds Cylinders Discrepancy method

Cube measure of Bounding discrepancy

Upper bounds

Exactly-n

Lower bound for GIP

$$R_k^{\epsilon,\mu} \geq \log\left(\frac{1-2\epsilon}{{\rm disc}_\mu(F)}\right)$$

Theorem disc_U(GIP)
$$\leq \exp(-n/4^k)$$

Theorem (GIP lower bound)

$$R_k^{\epsilon,U}(ext{GIP}) \geq n/4^k + \log(1-2\epsilon)$$

And in particular,

 $D_k(\mathrm{GIP}) \geq n/4^k$

Mitropolsky

Introduction

Definitions Example: EQ Lay of the land

Connection to ACC⁰

Lower bounds Cylinders Discrepancy method Cube measure of GIF Bounding

Upper bounds

Exactly-n

Overview of Two Theorems

Theorem 1 (Goal) disc_U(GIP) $\leq \exp(-n/4^k)$

For **two inputs** to f, that is (x_1^0, \ldots, x_k^0) and (x_1^1, \ldots, x_k^1) , for a vector $b \in \{0, 1\}^k$, x^b denotes the mixed input $(x_1^{b_1}, \ldots, x_k^{b_k})$.

Theorem 2 (Cube-measure bound for discrepancy) For *any* f,

$$\mathsf{disc}_U(f)^{2^k} \leq \underset{\substack{(x_1^0, \dots, x_k^0) \\ (x_1^1, \dots, x_k^1)}}{\mathbb{E}} \Big[\prod_{b \in \{0,1\}^k} f(x^b) \Big]$$

Theorem 3 (Cube-measure of GIP)
$$\begin{split} & \underset{(x_1^0,...,x_k^0)}{\mathbb{E}} \Big[\prod_{b \in \{0,1\}^k} \operatorname{GIP}(x^b) \Big] \le e^{-n/2^{k-1}} \\ & \text{disc}_{II}(\operatorname{GIP}) < (e^{-n/2^{k-1}})^{1/2^k} < 2^{-n/4^k} \text{ to get Theorem 1.} \end{split}$$

Mitropolsky

Introduction

Definitions Example: EQ

Connection to ACC⁰

Lower bounds Cylinders Discrepancy method Cube measure of GIP

Bounding discrepancy

Upper bounds

Exactly-n

Cube-measure of GIP (Theorem 3)Theorem 3 (Cube-measure of GIP) $\mathbb{E}_{\substack{(x_1^0,...,x_k^0) \\ (x_1^1,...,x_1^1)}} \left[\prod_{b \in \{0,1\}^k} \operatorname{GIP}(x^b) \right] \le e^{-n/2^{k-1}}$

Proof:

Because the inputs are uniform, the coordinates are *independent*, hence

$$=\prod_{i=1}^{n}\mathbb{E}\Big[\prod_{b\in\{0,1\}^{k}}(-1)^{x_{1,i}^{b_{1}}\wedge\cdots\wedge x_{k,i}^{b_{k}}}\Big]$$

Mitropolsky

Introduction

Definitions Example: EQ Lay of the land

Connection t ACC⁰

- Lower bounds Cylinders Discrepancy method Cube measure of GIP
- Bounding discrepancy

Upper bounds

Exactly-n

Cube-measure of GIP (Theorem 3) Theorem 3 (Cube-measure of GIP) $\mathbb{E}_{\substack{(x_1^0,...,x_k^0)\\(x_1^1,...,x_k^1)}} \left[\prod_{b \in \{0,1\}^k} \operatorname{GIP}(x^b)\right] \le e^{-n/2^{k-1}}$

$$= \left(\mathbb{E}_{x_1^0, \dots, x_k^0 \in \{0,1\}} \left[\prod_{b \in \{0,1\}^k} (-1)^{x_0^{b_1} \wedge \dots \wedge x_k^{b_k}} \right] \right)'$$

- if for all $j \in [k]$, $x_j^0 \neq x_j^1$ then the product is -1
- prob of above $= 1/2^k$
- if for some j, $x_j^0 = x_j^1$, then product is 1

$$= ((1 - 1/2^{k}) - 1/2^{k})^{n}$$
$$= (1 - 1/2^{k-1})^{n}$$
$$= \le e^{-n/2^{k-1}}$$

Mitropolsky

Introduction

Definitions Example: EQ Lay of the land

Connection to ACC⁰

```
Lower bounds
Cylinders
Discrepancy method
Cube measure of GIP
Bounding
```

discrepancy

Upper bounds

Exactly-n

Bounding discrepancy

Theorem 2

For any f,

$$\mathsf{disc}_U(f)^{2^k} \leq \underset{\substack{(x_1^0, \dots, x_k^0) \\ (x_1^1, \dots, x_k^1)}}{\mathbb{E}} \Big[\prod_{b \in \{0,1\}^k} f(x^b) \Big]$$

Recall: disc_U(f) = max_C disc_U(f, C) = max_C $|\mathbb{E}_{x_1,\dots,x_k}[f(x_1,\dots,x_k)C(x_1,\dots,x_k)]|$

- the main technique (and limitation) for NOF lower-bounds
- uses repeated Cauchy-Schwarz to get rid of cylinder intersections, replacing them with product over double-expectation

Cauchy-Schwarz Lemma: $\mathbb{E}[Z]^2 \leq \mathbb{E}[Z^2]$.

Mitropolsky

Introduction

Definitions Example: EQ Lay of the land

Connection to ACC⁰

Lower bounds Cylinders Discrepancy method Cube measure of GIF Bounding

discrepancy

Exactly-n

Bounding Discrepancy

Proof is by induction: assume true for any function on k-1 players. For f on k players, for the maximizing cylinder $C = \bigcap_{i=1}^{k} C_i$,

$$\mathsf{disc}_U(f) = | \underset{x_1, \dots, x_k}{\mathbb{E}} [f(x_1, \dots, x_k) \Pi_{i=1}^k C_i(x_1, \dots, x_k)] |$$

Since C_k does not depend on x_k ,

 $= | \mathop{\mathbb{E}}_{x_1,...,x_{k-1}} [C_k(x_1,...,x_{k-1},\cdot) \mathop{\mathbb{E}}_{x_k} [f(x_1,...,x_k) \prod_{i=1}^{k-1} C_i(x_1,...,x_k)]]$

By Cauchy-Schwarz, and $C_k(\cdots) \leq 1$ $\operatorname{disc}_U(f)^2 \leq \underset{x_1,\ldots,x_{k-1}}{\mathbb{E}}[(\mathbb{E}_{x_k}[f(x_1,\ldots,x_k)\prod_{i=1}^{k-1}C_i(x_1,\ldots,x_k)])^2]$

Mitropolsky

Introduction

Example: EQ Lay of the land

Connection to ACC⁰

Lower bounds Cylinders Discrepancy method Cube measure of GI

Bounding discrepancy

Upper bounds

Exactly-n

Bounding Discrepancy

$$\operatorname{lisc}_{U}(f)^{2} \leq \mathbb{E}_{x_{1},\dots,x_{k-1}}[(\mathbb{E}_{x_{k}}[f(x_{1},\dots,x_{k})\prod_{i=1}^{k-1}C_{i}(x_{1},\dots,x_{k})])^{2}]$$

$$= \underset{x_{1},...,x_{k-1},x_{k}^{0},x_{k}^{1}}{\mathbb{E}} [f(\ldots,x_{k}^{0})f(\ldots,x_{k}^{1})\prod_{i=1}^{k-1}C_{i}(\ldots,x_{k}^{0})C_{i}(\ldots,x_{k}^{1})]$$

$$= \underset{x_{k}^{0},x_{k}^{1}}{\mathbb{E}} [\underset{x_{1},...,x_{k-1}}{\mathbb{E}} [f^{x_{k}^{0},x_{k}^{1}}(x_{1},\ldots,x_{k-1})\prod_{i=1}^{k-1}C_{i}^{x_{k}^{0},x_{k}^{1}}(x_{1},\ldots,x_{k-1})]$$

Raise both sides to power of 2^{k-1} . By Cauchy-Schwarz,

$$disc_{U}(f)^{2^{k}} \leq \\ \underset{x_{k}^{0}, x_{k}^{1}}{\mathbb{E}}[\left(\underset{x_{1}, \dots, x_{k-1}}{\mathbb{E}}[f^{x_{k}^{0}, x_{k}^{1}}(x_{1}, \dots, x_{k-1})\Pi C_{i}^{x_{k}^{0}, x_{k}^{1}}(x_{1}, \dots, x_{k-1})\right)^{2^{k-1}}]$$

Mitropolsky

Introduction

Definitions Example: EQ Lay of the land

Connection to ACC⁰

Lower bounds Cylinders Discrepancy method Cube measure of GI Bounding

Bounding discrepancy

Upper bounds

Exactly-n

Bounding Discrepancy

$$disc_{U}(f)^{2^{k}} \leq \\ \underset{x_{k}^{0}, x_{k}^{1}}{\mathbb{E}} \left[\left(\underset{x_{1}, \dots, x_{k-1}}{\mathbb{E}} \left[f^{x_{k}^{0}, x_{k}^{1}}(x_{1}, \dots, x_{k-1}) \Pi C_{i}^{x_{k}^{0}, x_{k}^{1}}(x_{1}, \dots, x_{k-1}) \right)^{2^{k-1}} \right]$$

Inner expectation upper bounded by $disc_U(f^{x_k^0,x_k^1})$. This is a function on k-1 parties, so by induction,

$$\leq \underbrace{\mathbb{E}}_{\substack{x_{k}^{0}, x_{k}^{1}(x_{1}^{0}, \dots, x_{k-1}^{0}) \\ (x_{1}^{1}, \dots, x_{k-1}^{1})}}_{\substack{(x_{1}^{1}, \dots, x_{k-1}^{1})}} \begin{bmatrix} \prod_{b \in \{0,1\}^{k-1}} f^{(x_{k}^{0}, x_{k}^{0})} f(x^{b}, x_{k}^{1}) \end{bmatrix} \\ = \underbrace{\mathbb{E}}_{\substack{(x_{1}^{0}, \dots, x_{k}^{0}) \\ (x_{1}^{1}, \dots, x_{k}^{1})}}_{\substack{(x_{1}^{1}, \dots, x_{k}^{1})}} \begin{bmatrix} f \\ b \in \{0,1\}^{k}} (x^{b}) \end{bmatrix} \Box \\ \underbrace{\mathbb{E}}_{\substack{(x_{1}^{0}, \dots, x_{k}^{0}) \\ (x_{1}^{1}, \dots, x_{k}^{1})}} \begin{bmatrix} f \\ b \in \{0,1\}^{k}} (x^{b}) \end{bmatrix} \Box$$

Mitropolsky

Introduction

Definitions Example: EQ Lay of the land

Connection to ACC⁰

Lower bounds Cylinders Discrepancy method Cube measure of GI

Bounding discrepancy

Upper bounds

Exactly-n

Upper bounds: Exactly-n

Definition Exactly-n is a 3-party function $f : [n]^3 \rightarrow \{0, 1\}$ where f(x, y, z) = 1 iff x + y + z = n.

- Remember, this is NOF: Alice sees *y*, *z*, Bob sees *x*, *y*, Charlie sees *x*, *y*.
- Trivial log n + 1 protocol where Alice sends y

Main theorem: $D_3(f) \leq \sqrt{\log n}$

Mitropolsky

Colorings

Main theorem: $D_3(f) \leq \sqrt{\log n}$

Definition. A *coloring* is a mapping from [n] to a color set *C*. It is "3-AP-free" if for any sequence $a, a + b, a + 2b \in [n]$, they do not have the same color.

Examples- 3-AP free?

Exactly-n

123456

Theorem (Behrend 1946) There is a 3-AP-free coloring of [n] with $2^{O(\sqrt{logn})}$ colors.

Mitropolsky

Introduction

Definitions Example: EQ Lay of the land

Connection to ACC⁰

Lower bounds Cylinders Discrepancy method Cube measure of GIP Bounding

Upper bounds

Exactly-n

Proof (main theorem)

Theorem (Behrend 1946) There is a 3-AP-free coloring of [n] with $2^{O(\sqrt{\log n})}$ colors.

Proof of main theorem.

- Let x' = n y z, y' = n x z.
- Observe: x x' = y y' = x + y + z n.
- x + 2y', x' + 2y, x + 2y is a 3-AP (with jump x + y + z n)
- They are all equal iff x + y + z = n.
- All three numbers in [-2n, 2n] and can be computed by Bob, Alice, and Charlie, respectively.
- Using the coloring for [4n], send colors and check if same: $D_3(f) \le \log(2^{O(\sqrt{\log 4n})}) = O(\sqrt{\log n})$

Mitropolsky

Introduction

Definitions Example: EQ Lay of the land

Connection to ACC⁰

Lower bounds Cylinders Discrepancy method Cube measure of GII Bounding

Upper bounds

Exactly-n

Theorem (Behrend 1946) There is a 3-AP-free coloring of [n] with $2^{O(\sqrt{logn})}$ colors.

Behrend's theorem

Intuition: a 3-AP is sequence $x, \frac{x+y}{2}, y \in [n]$. Suppose we had homomorphism from [n] to \mathbb{R}^d , and color by vector length.

Mitropolsky

Introduction

Definitions Example: EQ Lay of the land

Connection to ACC⁰

Lower bounds Cylinders Discrepancy method Cube measure of GIP Bounding discrepancy

Upper bounds

Exactly-n

Behrend's theorem

Theorem (Behrend 1946) There is a 3-AP-free coloring of [n] with $2^{O(\sqrt{logn})}$ colors.

Proof.

- Choose d, r such that 4|d and $d^r > n$. Let $v(x) \in \mathbb{R}^r$ be the base-d representation of x.
- If ||v(x)||² coloring worked, d²r = O(d² log(n)) colors would suffice. Unfortunately, doesn't work...
- Even if $||v(x)||^2 = ||v(y)||^2$, not necessarily true that $v(\frac{x+y}{2}) = \frac{v(x)+v(y)}{2}$
- Idea: add "extra info" to coloring to force this homomorphic property.

Mitropolsky

Introduction

Definitions Example: EQ Lay of the land

Connection to ACC⁰

Lower bounds Cylinders Discrepancy method Cube measure of GIP Bounding discrepancy

Upper bounds

Exactly-n

Behrend's Coloring

Theorem (Behrend 1946) There is a 3-AP-free coloring of [n] with $2^{O(\sqrt{logn})}$ colors.

- v(x) = base-d representation of x.
- Let w(x) ∈ ℝ^d be the approximation of v(x): w(x)_i is largest number jd/4 for j ∈ {0, 1, 2, 3, 4} such that jd/4 ≤ x_i.
- Color v by (v(x), w(x))
- At most $5^r = 2^{O(r)}$ values for w(x), and d^2r for v(x)
- overall have $2^{O(r)+\log d}$ colors. Use $r = \sqrt{\log n}$, $d = 2^{\sqrt{\log n}}$ to get $2^{O(\sqrt{\log n})}$.

Mitropolsky

Introduction

Definitions Example: EQ

Connection to ACC⁰

Lower bounds Cylinders Discrepancy method Cube measure of GIP Bounding discrepancy

Upper bounds

Exactly-n

Behrend's theorem, ctd.

- Suppose $a, a + b, a + 2b \in [n]$ have same color.
- $\|v(a)\| = \|v(a+b)\| = \|v(a+2b)\|.$
- Will show that w's are the same implies $v(a+b) = \frac{v(a)+v(a+2b)}{2}$, contradiction with line above!!
- Let W(x) be the number represented by w(x) (that is, $\sum_{i=0}^{r} w(x)_i d^i$.
- The base-d representation of x W(x) is v(x) w(x).

•
$$W(a) = W(a+b) = W(a+2b)$$

$$a + 2b + a = 2(a + b)$$

$$a + 2b - W(a + 2b) + a - W(a) = 2(a + b - W(a + b))$$

$$v(a + 2b) - w(a + 2b) + v(a) - w(a) = 2(v(a + b) - w(a + b))$$

$$v(a + 2b) + v(a) = 2v(a + b)$$

References I

Number-on-Forehead Complexity

Mitropolsky

Introduction

Definitions Example: EQ Lay of the land

Connection to ACC⁰

Lower bounds Cylinders Discrepancy method Cube measure of GIP Bounding discrepancy

Upper bounds

Exactly-n

Anil Ada.

Notes on communication complexity.

Excellent notes,

https://www.Fcs.mcgill.ca/~rraada/CCnotes.pdf.

László Babai, Noam Nisan, and Mario Szegedy. Multiparty protocols and logspace-hard pseudorandom sequences (extended abstract). In STOC 1989, 1989.

Troy Lee.

Lecture 2: Multiparty number-on-the-forehead complexity, 2012.

Excellent notes,

https://www.csc.kth.se/utbildning/kth/kurser/ DD2441/semteo12/lecturenotes/NotesLec13.pdf.

References II

Complexity Mitropolsky

Number-on-Forehead

Introduction

Definitions Example: EQ Lay of the land

Connection to ACC⁰

```
Lower bounds
Cylinders
Discrepancy method
Cube measure of GIP
Bounding
discrepancy
```

Upper bounds

Exactly-n

Shachar Lovett.

Cse 291: Communication complexity, winter 2019, multi-party protocols, 2019.

Excellent notes, https://cseweb.ucsd.edu/classes/ wi19/cse291-b/5-multiparty.pdf.

Toniann Pitassi.

Foundations of communication complexity, lecture 5, 2014.

First part covers connection to ACC, https://www.cs.toronto.edu/~toni/Courses/PvsNP/ Lectures/lecture5.pdf.

Mitropolsky

References III

Introduction

Definitions Example: EQ Lay of the land

Connection to ACC⁰

Lower bounds Cylinders Discrepancy method Cube measure of GIP Bounding discrepancy

Upper bounds

Exactly-n

Anup Rao and Amir Yehudayoff. Communication Complexity: and Applications. Cambridge University Press, 2020. Chapters 4 and 5 in https://yehudayoff.net. technion.ac.il/files/2016/03/book.pdf.