```
Number-on-
    Forehead
Complexity
Mitropolsky
Introduction
Definitions
Example: EQ
Lay of the land

\title{
Number-on-Forehead Complexity
}

\author{
Dan Mitropolsky
}

April 27, 2022

\section*{Multiparty Communication \\ Complexity}

How do we define communication complexity for \(k\) parties?

Given \(f: \mathcal{X}_{1} \times \mathcal{X}_{2} \times \cdots \times \mathcal{X}_{k} \rightarrow \mathcal{Z}\)
Definition 1 (Number-in-hand model, "NOH") Player \(i\) sees input \(x_{i} \in \mathcal{X}_{i}\) only.

Definition 2 (Number-on-forehead model, "NOF") Player \(i\) sees every input \(x_{j} \in \mathcal{X}_{j}\) for \(j \neq i\).

\section*{Notation}

Mitropolsky
- Often by \(f\) we mean a function family \(f_{n, k}:\left(\{0,1\}^{n}\right)^{k} \rightarrow\{0,1\}\).
- Write \(D_{k}(f)\) for deterministic communication complexity of \(f_{n, k}\)
- For distribution \(\mu\) over \(\left(\{0,1\}^{n}\right)^{k}\) and \(\epsilon>0\), write \(R_{k}^{\epsilon, \mu}(f)\) for communication complexity of \(f_{n, k}\) where inputs drawn \(\mu\), and the (deterministic) protocol can err on at most \(\epsilon\) fraction of inputs.

\section*{Motivating Example: EQ}

\section*{Introduction}
- Consider \(E Q_{k}:\left(\{0,1\}^{n}\right)^{k} \rightarrow\{0,1\}\).
- For \(k=2\), NIH \(=\) NOF model.
- For \(k=2, D_{2}(E Q)=n\) (maximal).
- But for \(k>3\), in NOF model, \(D_{k}(E Q)=2\).
- In NIH mode, CC is \(\Omega(n)\).
- in NOF, we can exploit overlap of information for efficiency!

\section*{Motivating Example: EQ}

\author{
Mitropolsky
}

\section*{Introduction}

Solution: Player 1 sends 1 iff other players' inputs equal. Player 2 sends 1 iff other players' input equal. \(E Q\left(x_{1}, \ldots, x_{k}\right)=\) \(1 \Longleftrightarrow\) both bits are 1 .

\section*{Lower Bounds}

Very little is known!!!
"one good method" gives \(n / 4^{k}\)-type bounds
- Generalized Inner Product: \(D_{k}(\) GIP \() \geq \Omega\left(\frac{n}{4^{k}}\right)\)
- Disjointness: \(D_{k}(\) DISJ \() \geq \Omega\left(\frac{n}{4^{k}}\right)\)
- Exactly-n, \(k=3\) : \(D_{3}(\) EXACTLY- \(n) \geq\) \(\Omega(\log \log \log n)\)

\section*{Lay of the land}

\section*{Upper Bounds}

We know a few surprising efficient protocols!
- Generalized Inner Product: \(D_{k}(\mathrm{GIP}) \leq O\left(k \frac{n}{2^{k}}\right)\)
- Exactly-n, \(k=3\) : \(D_{3}(\) Exactly \(-n) \leq\) \(\sqrt{\log n}\).

\section*{Connection to \(\mathrm{ACC}^{0}\)}

Another reason to care about NOF!

Definition \(\mathrm{AC}^{0}[m]\) is the class of languages that can be computed by a family of circuits \(\left\{C_{n}\right\}\) such that each \(C_{n}:\{0,1\}^{n} \rightarrow\{0,1\}\) is: constant depth, size poly \((n)\), gates are \(\{\wedge, \vee, \neg, \bmod m\}\) with unbounded fan-in.

Definition \(\mathrm{ACC}^{0}=\bigcup_{m \geq 2} \mathrm{ACC}^{0}[m]\)
Theorem (Beigel and Tarui '94) For \(L \in \mathrm{ACC}^{0}, \exists c, d\) s.t. \(L\) be computed by depth 2 circuits, size \(2^{\log ^{d} n}\), top gate is symmetric, and bottom layer consists of \(\wedge\) gates with fan-in \(\log ^{c} n\).
Definition The output of a symmetric gate is determined by the number of 0 and 1 inputs.

\section*{Connection to \(\mathrm{ACC}^{0}\)}

Theorem 1 (Beigel and Tarui '94) For \(L \in A C C^{0}, \exists c, d\) s.t. \(L\) be computed by depth 2 circuits, size \(2^{\log ^{d} n}\), top gate is symmetric, and bottom layer consists of \(\wedge\) gates with fan-in \(\log ^{c} n\).

Theorem 2 (Hådstad and Goldmann '91) Suppose
\(f:\{0,1\}^{n} \rightarrow\{0,1\}\) can be computed by circuits with: depth 2 , top gate is symmetric with fan-in \(s\), bottom layer consists of \(\wedge\) gates with fan-in \(\leq k-1\). Then (under any partition of \(n\) into \(k\) parties), \(D_{k}(f) \leq k \log (s)\).
Proof Each \(\wedge\) gate can be computed by some party. Partition gates among parties, each sends how many are 1.

Corollary (Theorems \(\mathbf{1 + 2}\) ) For any function \(f\) in \(\mathrm{ACC}^{0}, c, d\) s.t. under any partition of \(n\) bits to \(k=\log ^{c} n+1\) parties, NOF \(D_{k}(f) \leq\left(\log ^{c} n+1\right) \log ^{d} n=\log ^{O(1)} n\).

\section*{Connection to \(\mathrm{ACC}^{0}\)}

Corollary (Theorems \(\mathbf{1 + 2}\) ) For any function \(f\) in \(\mathrm{ACC}^{0}, c, d\) s.t. under any partition of \(n\) bits to \(k=\log ^{c} n+1\) parties, NOF \(D_{k}(f) \leq\left(\log ^{c} n+1\right) \log ^{d} n=\log ^{O(1)} n\).
- Usefulness of NOF: If we could show some \(f\) such that for any \(k=\log ^{c} n+1\), it requires \(D_{k}(f)>\log ^{O(1)} n\), this would show \(f \notin \mathrm{ACC}^{0}\) !!!
- No such lower bounds, yet...
- major goal in circuit complexity
- we know NEXP \(\subsetneq \mathrm{ACC}^{0}\) (but not with this method- Ryan Williams, 2011)

Number-on-

\section*{Limited lower bounds}

Mitropolsky

Introduction
Definitions
Example: EQ
Lay of the land
Connection to \(\mathrm{ACC}^{0}\)

Lower bounds
Cylinders
Discrepancy method Cube measure of GIP
Bounding discrepancy
- If we could show some \(f_{n, k}\) such that for any \(k=\log ^{c} n\), it requires \(D_{k}(f)>\log { }^{(1)} n\), this would show \(f \notin \mathrm{ACC}^{0}\) !!!
\begin{tabular}{|c|c|}
\hline & \\
Lower Bounds & Upper Bounds \\
- Generalized Inner & \\
Product: & Generalized Inner \\
\(D_{k}(G I P) \geq \Omega\left(\frac{n}{4^{k}}\right)\) & Product: \\
& \(D_{k}(G I P) \leq O\left(k \frac{n}{2^{k}}\right)\) \\
\hline
\end{tabular}
- Lower bound is non-trivial only when \(k<\log n\)

\section*{Generalized Inner Product}

Definition For \(x_{1}, \ldots, x_{k} \in\left(\{0,1\}^{n}\right)^{k}\),
\(\operatorname{GIP}_{n, k}\left(x_{1}, \ldots, x_{k}\right)=\bigoplus_{i=1}^{n}\left(x_{1}\right)_{i} \wedge \cdots \wedge\left(x_{n}\right)_{i}\)
That is, \(\operatorname{GIP}_{n, k}\left(x_{1}, \ldots, x_{k}\right)=\) number of coordinates that all equal \(1, \bmod 2\).

Proposition Viewing GIP \(_{n, k}\) for \(k=\log ^{c} n\) and vectors of size \(n /\left(\log ^{c} n\right)\) as a function on \(n\) bits, \(\mathrm{GIP}_{n, k} \in \mathrm{ACC}^{0}\). In fact, \(\mathrm{GIP}_{n, k} \in \mathrm{AC}^{0}[2]\).
Proof bottom layer has \(n /\left(\log ^{c} n\right)\) AND-gates, computing \(\left(x_{1}\right)_{i} \wedge \cdots \wedge\left(x_{k}\right)_{i}\) for each coordinate; top layer is a mod 2 gate \(\square\)
Circuit in proof already in Beigel-Tarui form :)

\section*{Cylinders}

Definition. A cylinder \(C_{i}\) in the \(i\)-th coordinate is a subset of the input space \(\mathcal{X}_{1} \times \cdots \times \mathcal{X}_{k}\) that does not depend on the \(i\)-th coordinate: if \(\left(x_{1}, \ldots, x_{i}, \ldots, x_{k}\right) \in C_{i}\) then for all \(x_{i}^{\prime} \in \mathcal{X}_{i},\left(x_{1}, \ldots, x_{i}^{\prime}, \ldots, x_{k}\right) \in C_{i}\).

Definition. A cylinder intersection \(C\) is an intersection of cylinders.

If \(C_{i}, C_{i}^{\prime}\) are cylinders in the \(i\)-th coordinate, so is \(C_{i} \cap C_{i}^{\prime}\). So any cylinder intersection \(C\) can be written \(\cap_{i=1}^{k} C_{i}\).

Number-on-
Forehead
Complexity
Mitropolsky

Introduction
Definitions
Example: EQ
Lay of the land
Connection to ACC \({ }^{0}\)

Lower bounds
Cylinders
Discrepancy method Cube measure of GIP
Bounding
discrepancy
Upper bounds
Exactly-n


\section*{Cylinders and Protocols}

Proposition. For a NOF protocol \(P\) with communication \(c\), the set of inputs that induce communication transcript \(t \in\{0,1\}^{c}\) is a cylinder intersection.
Proof sketch. Bit by bit. At step \(i\) when player \(j\) speaks, whether they write bit \(c_{i}\) depends only on the inputs of every other player.

Corollary. If P is a deterministic NOF protocol computing \(f\) : \(\mathcal{X}_{1} \times \mathcal{X}_{2} \times \cdots \times \mathcal{X}_{k} \rightarrow \mathcal{Z}\) with \(c\) bits of communication, \(P\) partitions \(\mathcal{X}_{1} \times \mathcal{X}_{2} \times \cdots \times \mathcal{X}_{k}\) into at most \(2^{c}\) monochromatic cylinder intersections.
- Cylinder intersections are the analogue of rectangles.
- For \(k=2\), cylinder intersection \(=\) rectangle.
- Cylinder intersections are complex combinatorial objects. Limited understanding of cylinder intersections = limited NOF bounds.

Number-on-

\section*{Cylinder intersection for \(k=2\)}


\section*{Discrepancy}

In this section, \(f: \mathcal{X}_{1} \times \cdots \times \mathcal{X}_{k} \rightarrow \pm 1\), and by abuse of notation, \(C\left(x_{1}, \ldots, x_{k}\right)=1\) if \(x_{1}, \ldots, x_{k} \in C\), else 0 .

Definition. For distribution \(\mu\) over \(\mathcal{X}_{1} \times \cdots \times \mathcal{X}_{k}\), function \(f\), cylinder intersection \(C\), the discrepancy of \(f\) w.r.t \(\mu\) and \(C\) :
\[
\operatorname{disc}_{\mu}(f, C)=\left|\mathbb{E}_{x_{1}, \ldots, x_{k} \sim \mu}\left[f\left(x_{1}, \ldots, x_{k}\right) C\left(x_{1}, \ldots, x_{k}\right)\right]\right|
\]

Definition. The discrepancy of \(f\) wrt \(\mu\) is
\[
\operatorname{disc}_{\mu}(f)=\max _{C} \operatorname{disc}_{\mu}(f, C)
\]

Intuition: "average" of \(f\) over cylinders. Close to 0 means "well-spread" over \(\pm 1\).

\section*{Discrepancy Method}

Definition. The discrepancy of \(f\) wrt \(\mu\) is \(\operatorname{disc}_{\mu}(f)=\max _{C} \operatorname{disc}_{\mu}(f, C)\)

Theorem (Discrepancy Method; Babai, Nisan, Szegedy '92) For any \(f\)
\[
R_{k}^{\epsilon, \mu} \geq \log \left(\frac{1-2 \epsilon}{\operatorname{disc}_{\mu}(F)}\right)
\]

Proof identical to \(k=2\) case (we did it in class!)
Intuition: upper bound on discrepancy: for any cylinder intersection, \(f\) is "well spread" over \(\pm 1\), hard to partition monochromatically. Gives lower bound on NOF.

Number-on-

\section*{Lower bound for GIP}

\section*{Theorem (Discrepancy Method) For any \(f\)}
\[
R_{k}^{\epsilon, \mu} \geq \log \left(\frac{1-2 \epsilon}{\operatorname{disc}_{\mu}(F)}\right)
\]

Theorem \(\operatorname{disc}_{U}(\) GIP \() \leq \exp \left(-n / 4^{k}\right)\)
Theorem (GIP lower bound)
\[
R_{k}^{\epsilon, U}(\mathrm{GIP}) \geq n / 4^{k}+\log (1-2 \epsilon)
\]

And in particular,
\[
D_{k}(\mathrm{GIP}) \geq n / 4^{k}
\]

\section*{Overview of Two Theorems}

\section*{Theorem 1 (Goal) discu(GIP) \(\leq \exp \left(-n / 4^{k}\right)\)}

For two inputs to \(f\), that is \(\left(x_{1}^{0}, \ldots, x_{k}^{0}\right)\) and \(\left(x_{1}^{1}, \ldots, x_{k}^{1}\right)\), for a vector \(b \in\{0,1\}^{k}, x^{b}\) denotes the mixed input \(\left(x_{1}^{b_{1}}, \ldots, x_{k}^{b_{k}}\right)\).

Theorem 2 (Cube-measure bound for discrepancy)
For any f,
\[
\operatorname{disc}_{U}(f)^{2^{k}} \leq \underset{\substack{\left(x_{1}^{0}, \ldots, x_{k}^{0}\right) \\\left(x_{1}^{1}, \ldots, x_{k}^{1}\right)}}{\mathbb{E}}\left[\prod_{b \in\{0,1\}^{k}} f\left(x^{b}\right)\right]
\]

Theorem 3 (Cube-measure of GIP)
\[
\underset{\substack{\left(x_{1}^{0}, \ldots, x_{k}^{0}\right) \\\left(x_{1}^{1}, \ldots, x_{k}^{1}\right)}}{\mathbb{E}}\left[\prod_{b \in\{0,1\}^{k}} \operatorname{GIP}\left(x^{b}\right)\right] \leq e^{-n / 2^{k-1}}
\]
\(\operatorname{disc}_{u}(\) GIP \() \leq\left(e^{-n / 2^{k-1}}\right)^{1 / 2^{k}} \leq 2^{-n / 4^{k}}\) to get Theorem 1.

\section*{Cube-measure of GIP (Theorem 3)}

Theorem 3 (Cube-measure of GIP)
\[
\underset{\substack{\left(x_{1}^{0}, \ldots, x_{k}^{0}\right) \\\left(x_{1}^{1}, \ldots, \ldots, x_{k}^{\prime}\right)}}{\mathbb{E}}\left[\prod_{b \in\{0,1\}^{k}} \operatorname{GIP}\left(x^{b}\right)\right] \leq e^{-n / 2^{k-1}}
\]

Proof:
\[
\begin{aligned}
& =\mathbb{E}\left[\prod_{b \in\{0,1\}^{k}} \prod_{i=1}^{n}(-1)^{x_{1, i}^{b_{1}} \wedge \cdots \wedge x_{k, i} b_{k}}\right] \\
& =\mathbb{E}\left[\prod_{i=1}^{n} \prod_{b \in\{0,1\}^{k}}(-1)^{x_{1, i}^{b_{1}} \wedge \cdots \wedge x_{k, i}^{b_{k}}}\right]
\end{aligned}
\]

Because the inputs are uniform, the coordinates are independent, hence
\[
=\prod_{i=1}^{n} \mathbb{E}\left[\prod_{b \in\{0,1\}^{k}}(-1)^{x_{1, i}^{b_{1}} \wedge \cdots \wedge x_{k, i}^{b_{k}}}\right]
\]

Number-on-

\section*{Cube-measure of GIP (Theorem 3)}

\section*{Theorem 3 (Cube-measure of GIP)}
\[
\left.\left.\begin{array}{rl} 
& \mathbb{E}_{\left(x_{1}^{0}, \ldots, x_{k}^{0}\right)}^{\left(x_{1}^{1}, \ldots, x_{k}^{\prime}\right)} \\
)
\end{array} \prod_{b \in\{0,1\}^{k}} \operatorname{GIP}\left(x^{b}\right)\right] \leq e^{-n / 2^{k-1}}\right)
\]
- if for all \(j \in[k], x_{j}^{0} \neq x_{j}^{1}\) then the product is -1
- prob of above \(=1 / 2^{k}\)
- if for some \(j, x_{j}^{0}=x_{j}^{1}\), then product is 1
\[
\begin{aligned}
& =\left(\left(1-1 / 2^{k}\right)-1 / 2^{k}\right)^{n} \\
& =\left(1-1 / 2^{k-1}\right)^{n} \\
& =\leq e^{-n / 2^{k-1}}
\end{aligned}
\]
\[
\operatorname{disc} U(f)^{2^{k}} \leq \underset{\substack{\left(x_{1}^{0}, \ldots, x_{k}^{0}\right) \\\left(x_{1}^{1}, \ldots, x_{k}^{1}\right)}}{\mathbb{E}}\left[\prod_{b \in\{0,1\}^{k}} f\left(x^{b}\right)\right]
\]

Recall: \(\operatorname{disc}_{U}(f)=\max _{C} \operatorname{disc}_{U}(f, C)=\) \(\max _{C}\left|\mathbb{E}_{x_{1}, \ldots, x_{k}}\left[f\left(x_{1}, \ldots, x_{k}\right) C\left(x_{1}, \ldots, x_{k}\right)\right]\right|\)
- the main technique (and limitation) for NOF lower-bounds
- uses repeated Cauchy-Schwarz to get rid of cylinder intersections, replacing them with product over double-expectation
Cauchy-Schwarz Lemma: \(\mathbb{E}[Z]^{2} \leq \mathbb{E}\left[Z^{2}\right]\).

\section*{Theorem 2}

For any f,

\section*{Bounding discrepancy}

\section*{Bounding Discrepancy}

Proof is by induction: assume true for any function on \(k-1\) players. For \(f\) on \(k\) players, for the maximizing cylinder \(C=\cap_{i=1}^{k} C_{i}\),
\[
\operatorname{disc} U(f)=\left|\underset{x_{1}, \ldots, x_{k}}{\mathbb{E}}\left[f\left(x_{1}, \ldots, x_{k}\right) \Pi_{i=1}^{k} C_{i}\left(x_{1}, \ldots, x_{k}\right)\right]\right|
\]

Since \(C_{k}\) does not depend on \(x_{k}\),
\(=\mid \underset{x_{1}, \ldots, x_{k-1}}{\mathbb{E}}\left[C_{k}\left(x_{1}, \ldots, x_{k-1}, \cdot\right) \underset{x_{k}}{\mathbb{E}}\left[f\left(x_{1}, \ldots, x_{k}\right) \Pi_{i=1}^{k-1} C_{i}\left(x_{1}, \ldots, x_{k}\right)\right]\right]\)
By Cauchy-Schwarz, and \(C_{k}(\cdots) \leq 1\)
\(\operatorname{disc}_{U}(f)^{2} \leq \underset{x_{1}, \ldots, x_{k-1}}{\mathbb{E}}\left[\left(\mathbb{E}_{x_{k}}\left[f\left(x_{1}, \ldots, x_{k}\right) \Pi_{i=1}^{k-1} C_{i}\left(x_{1}, \ldots, x_{k}\right)\right]\right)^{2}\right]\)

Number-on-

\section*{Bounding Discrepancy}

Mitropolsky
\[
\begin{aligned}
& \operatorname{discu}(f)^{2} \leq \underset{x_{1}, \ldots, x_{k-1}}{\mathbb{E}}\left[\left(\mathbb{E}_{x_{k}}\left[f\left(x_{1}, \ldots, x_{k}\right) \Pi_{i=1}^{k-1} C_{i}\left(x_{1}, \ldots, x_{k}\right)\right]\right)^{2}\right] \\
& =\underset{x_{1}, \ldots, x_{k-1}, x_{k}^{0}, x_{k}^{1}}{\mathbb{E}}\left[f\left(\ldots, x_{k}^{0}\right) f\left(\ldots, x_{k}^{1}\right) \Pi_{i=1}^{k-1} C_{i}\left(\ldots, x_{k}^{0}\right) C_{i}\left(\ldots, x_{k}^{1}\right)\right] \\
& =\underset{x_{k}^{0}, x_{k}^{1}}{\mathbb{E}}\left[\underset{x_{1}, \ldots, x_{k-1}}{\mathbb{E}}\left[f^{x_{k}^{0}, x_{k}^{1}}\left(x_{1}, \ldots, x_{k-1}\right) \Pi_{i=1}^{k-1} C_{i}^{x_{k}^{0}, x_{k}^{1}}\left(x_{1}, \ldots, x_{k-1}\right)\right]\right.
\end{aligned}
\]

Raise both sides to power of \(2^{k-1}\). By Cauchy-Schwarz,
\(\operatorname{disc} u(f)^{2^{k}} \leq\)
\(\underset{x_{k}^{0}, x_{k}^{1}}{\mathbb{E}}\left[\left(\underset{x_{1}, \ldots, x_{k-1}}{\mathbb{E}}\left[f^{x_{k}^{0}, x_{k}^{1}}\left(x_{1}, \ldots, x_{k-1}\right) \Pi C_{i}^{x_{k}^{0}, x_{k}^{1}}\left(x_{1}, \ldots, x_{k-1}\right)\right)^{2^{k-1}}\right]\right.\)

\section*{Bounding Discrepancy}

\section*{\(\operatorname{disc}_{U}(f)^{2^{k}} \leq\)}
\[
\underset{x_{k}^{0}, x_{k}^{1}}{\mathbb{E}}\left[\left(\underset{x_{1}, \ldots, x_{k-1}}{\mathbb{E}}\left[f^{x_{k}^{0}, x_{k}^{1}}\left(x_{1}, \ldots, x_{k-1}\right) \Pi C_{i}^{x_{k}^{0}, x_{k}^{1}}\left(x_{1}, \ldots, x_{k-1}\right)\right)^{2^{k-1}}\right]\right.
\]

Inner expectation upper bounded by \(\operatorname{disc}_{U}\left(f^{x_{k}^{0}, x_{k}^{1}}\right)\). This is a function on \(k-1\) parties, so by induction,
\[
\begin{aligned}
& \leq \underset{\substack{x_{k}^{0}, x_{k}^{1}\left(x_{1}^{0}, \ldots, x_{k-1}^{0}\right) \\
\left(x_{1}^{1}, \ldots, x_{k-1}^{1}\right)}}{\mathbb{E}}\left[\prod_{b \in\{0,1\}^{k-1}}^{\mathbb{E}} f^{x_{k}^{0}, x_{k}^{1}}\left(x^{b}\right)\right] \\
& =\underset{\substack{\left(x_{1}^{0}, \ldots, x_{k}^{0}\right) \\
\left(x_{1}^{1}, \ldots, x_{k}^{1}\right)}}{\mathbb{E}}\left[\prod_{b \in\{0,1\}^{k-1}} f\left(x^{b}, x_{k}^{0}\right) f\left(x^{b}, x_{k}^{1}\right)\right] \\
& =\underset{\substack{\left(x_{1}^{0}, \ldots, x_{k}^{0}\right) \\
\left(x_{1}^{1}, \ldots, x_{k}^{1}\right)}}{\mathbb{E}}\left[\underset{b \in\{0,1\}^{k}}{f}\left(x^{b}\right)\right] \square
\end{aligned}
\]

\section*{Upper bounds: Exactly-n}

Definition Exactly-n is a 3-party function \(f:[n]^{3} \rightarrow\{0,1\}\) where \(f(x, y, z)=1\) iff \(x+y+z=n\).
- Remember, this is NOF: Alice sees \(y, z\), Bob sees \(x, y\), Charlie sees \(x, y\).
- Trivial \(\log n+1\) protocol where Alice sends \(y\)

Main theorem: \(D_{3}(f) \leq \sqrt{\log n}\)

\section*{Main theorem: \(D_{3}(f) \leq \sqrt{\log n}\)}

Definition. A coloring is a mapping from \([n]\) to a color set \(C\). It is "3-AP-free" if for any sequence \(a, a+b, a+2 b \in[n]\), they do not have the same color.

Examples- 3-AP free?
123456

\section*{Colorings}

123456
Theorem (Behrend 1946) There is a 3-AP-free coloring of \([n]\) with \(2^{O(\sqrt{\log n})}\) colors.

\section*{Proof (main theorem)}

Theorem (Behrend 1946) There is a 3-AP-free coloring of [ \(n\) ] with \(2^{O(\sqrt{\log n})}\) colors.

\section*{Proof of main theorem.}
- Let \(x^{\prime}=n-y-z, y^{\prime}=n-x-z\).
- Observe: \(x-x^{\prime}=y-y^{\prime}=x+y+z-n\).
- \(x+2 y^{\prime}, x^{\prime}+2 y, x+2 y\) is a 3-AP (with jump \(x+y+z-n\) )
- They are all equal iff \(x+y+z=n\).
- All three numbers in \([-2 n, 2 n]\) and can be computed by Bob, Alice, and Charlie, respectively.
- Using the coloring for [4n], send colors and check if same: \(D_{3}(f) \leq \log \left(2^{O(\sqrt{\log 4 n})}\right)=O(\sqrt{\log n})\)

\section*{Behrend's theorem}

Theorem (Behrend 1946) There is a 3-AP-free coloring of [n] with \(2^{O(\sqrt{l o g n})}\) colors.
Intuition: a \(3-\mathrm{AP}\) is sequence \(x, \frac{x+y}{2}, y \in[n]\). Suppose we had homomorphism from \([n]\) to \(\mathbb{R}^{d}\), and color by vector length.

\section*{Behrend's theorem}

Theorem (Behrend 1946) There is a 3-AP-free coloring of [ \(n\) ] with \(2^{O}(\sqrt{\log n})\) colors.

\section*{Proof.}
- Choose \(d, r\) such that \(4 \mid d\) and \(d^{r}>n\). Let \(v(x) \in \mathbb{R}^{r}\) be the base- \(d\) representation of \(x\).
- If \(\|v(x)\|^{2}\) coloring worked, \(d^{2} r=O\left(d^{2} \log (n)\right)\) colors would suffice. Unfortunately, doesn't work...
- Even if \(\|v(x)\|^{2}=\|v(y)\|^{2}\), not necessarily true that \(v\left(\frac{x+y}{2}\right)=\frac{v(x)+v(y)}{2}\)
- Idea: add "extra info" to coloring to force this homomorphic property.

\section*{Behrend's Coloring}

Mitropolsky

Theorem (Behrend 1946) There is a 3-AP-free coloring of [n] with \(2^{O(\sqrt{\log n})}\) colors.
- \(v(x)=\) base- \(d\) representation of \(x\).
- Let \(w(x) \in \mathbb{R}^{d}\) be the approximation of \(v(x): w(x)_{i}\) is largest number \(j d / 4\) for \(j \in\{0,1,2,3,4\}\) such that \(j d / 4 \leq x_{i}\).
- Color \(v\) by \((v(x), w(x))\)
- At most \(5^{r}=2^{O(r)}\) values for \(w(x)\), and \(d^{2} r\) for \(v(x)\)
- overall have \(2^{O(r)+\log d}\) colors. Use \(r=\sqrt{\log n}, d=2^{\sqrt{\log n}}\) to get \(2^{O(\sqrt{\log n})}\).

\section*{Behrend's theorem, ctd.}
- Suppose \(a, a+b, a+2 b \in[n]\) have same color.
- \(\|v(a)\|=\|v(a+b)\|=\|v(a+2 b)\|\).
- Will show that \(w\) 's are the same implies \(v(a+b)=\frac{v(a)+v(a+2 b)}{2}\), contradiction with line above!!
- Let \(W(x)\) be the number represented by \(w(x)\) (that is, \(\sum_{i=0}^{r} w(x)_{i} d^{i}\).
- The base- \(d\) representation of \(x-W(x)\) is \(v(x)-w(x)\).
- \(W(a)=W(a+b)=W(a+2 b)\)
\[
\begin{aligned}
a+2 b+a & =2(a+b) \\
a+2 b-W(a+2 b)+a-W(a) & =2(a+b-W(a+b)) \\
v(a+2 b)-w(a+2 b)+v(a)-w(a) & =2(v(a+b)-w(a+b)) \\
v(a+2 b)+v(a) & =2 v(a+b)
\end{aligned}
\]

\section*{References I}

目 Anil Ada.
Notes on communication complexity.
Excellent notes,
https://www.Fcs.mcgill.ca/~rraada/CCnotes.pdf.
(enszló Babai, Noam Nisan, and Mario Szegedy.
Multiparty protocols and logspace-hard pseudorandom
sequences (extended abstract).
In STOC 1989, 1989.
雷 Troy Lee.
Lecture 2: Multiparty number-on-the-forehead complexity, 2012.

Excellent notes,
https://www.csc.kth.se/utbildning/kth/kurser/
DD2441/semteo12/lecturenotes/NotesLec13.pdf.

Number-on-

\section*{References II}

Mitropolsky

Introduction
Definitions
Example: EQ
Lay of the land
Connection to \(\mathrm{ACC}^{0}\)

Lower bounds Cylinders
Discrepancy method Cube measure of GIP

R Shachar Lovett.
Cse 291: Communication complexity, winter 2019, multi-party protocols, 2019.
Excellent notes, https://cseweb.ucsd.edu/classes/ wi19/cse291-b/5-multiparty.pdf.
围 Toniann Pitassi.
Foundations of communication complexity, lecture 5, 2014.

First part covers connection to ACC, https://www.cs.toronto.edu/~toni/Courses/PvsNP/ Lectures/lecture5.pdf.

\section*{References III}

Introduction
Definitions

\section*{Example: EQ}

\section*{Lay of the land}

Connection to \(\mathrm{ACC}^{0}\)

Lower bounds Cylinders
Discrepancy method Cube measure of GIP
Bounding discrepancy

Upper bounds Exactly-n

E Anup Rao and Amir Yehudayoff. Communication Complexity: and Applications. Cambridge University Press, 2020. Chapters 4 and 5 in https://yehudayoff.net. technion.ac.il/files/2016/03/book.pdf.```

