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Differential privacy

Definition
Datasets X, Y ∈ NX are called adjacent if

||X − Y||1 ≤ 1

(different by the addition or removal of a single datapoint).

Definition
A randomized functionM : NX → Ω is ε-differentially private if,
for all adjacent X, Y ∈ NX , every outcome S ⊆ Ω satisfies,

Pr
M
[M(X) ∈ S] ≤ eε · Pr

M
[M(Y) ∈ S].

“No event is made much more (or less) likely
by my participation.”
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Exponential mechanism (private optimization)

Given a dataset X ∈ NX , utility of outcome r ∈ S is u(X, r) ∈ R.

Sensitivity is given by

∆u = max
r∈S

max
X,Y:||X−Y||1≤1

|u(X, r)− u(Y, r)|

Exponential mechanism optimizes u(X, r) by selecting r∗ := M(X)
with

Pr
M
[M(X) = r] ∝ exp

(
εu(X, r)
2∆

)

• satisfies ε-DP
• accuracy guaranteed according to

Pr
r∗∼M(X)

[
u(X, r∗) ≤ OPTu(X)−

2∆
ε

(
log

(
|S|

|SOPT(X)|

))]
where OPTu(X) = maxr u(X, r),
SOPT(X) = {r ∈ S : u(X, r) = OPTu(X)}.
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PAC learning (probably approximately correct)

Definition
SayM that (α, β)-PAC learns concept class C if,

for every distribution P on inputs,
for every labelling function f ∈ C, f : X → {−1,+1},
given samples x1, x2, . . . , xn

iid∼ P labelled as

(x1, f (x1)), (x2, f (x2)), . . . , (xm, f (xm)),

M produces f ∗ such that

Prx1,...,xn,M[A(f ∗,P) ≥ 1− α] ≥ 1− β

where A(f ∗,P) = Prx∼P [f ∗(x) = f (x)].

Given x1, . . . , xn and f (x1), . . . , f (xn),
natural approach is to take f ∗ = argmax

f∈C

∑
i

I[f ∗(xi) = f (xi)]︸ ︷︷ ︸
empirical accuracy maximizer

.
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Private PAC learning – sample complexity

Without privacy:

i.e., maximize u(X, f ) :=
∑

i I[f ∗(xi) = f (xi)]. [X = {(x1, f (x1)), . . . , (xn, f (xn))}]

To (α, 1/4)-PAC learn C requires at most

n = O
(
log |C|
α2

)
samples.

With privacy: [KLN+11]

Apply exponential mechanism to u to learn privately!

To (α, 1/4)-PAC learn C with ε-differential privacy requires at most

n = O
(
max

{
log |C|
εα

,
log |C|
α2

})
samples.

Good news! ε-DP for free when ε ≥ α.
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“Given x1, . . . , xn and f (x1), . . . , f (xn), take f ∗ = argmaxf
∑

i I[f ∗(xi) = f (xi)].”



Private PAC learning – sample complexity

Without privacy:

To (α, 1/4)-PAC learn C requires at most

n = O
(
VC(C)
α2

)
= O

(
log |C|
α2

)
samples

where VC(C) is the VC-dimension of C.

There exist C where VC(C) � log |C|.
⇒ Much better learning guarantees.

With privacy: [KLN+11]

To (α, 1/4)-PAC learn C with ε-differential privacy requires at most

n = O
(
max

{
VC(C) · log |X |

εα
,
VC(C) · log |X |

α2

})
samples.

Dependence on log |X | is necessary for private learners.
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Private PAC learning – computational complexity

Caveats /
Recall, the exponential mechanism selects r∗ according to

Pr
M
[M(X) = f ] ∝ exp

(
εu(X, r)
2∆

)
⇒

Pr
M
[M(X) = f ] =

exp
(

εu(X,f )
2∆

)
∑

f∈C exp
(

εu(X,f )
2∆

)
However, computing the denominator can be computationally
expensive if |C| is large.

For learning,
• computational complexity of exp. mechanism: ≥ linear in |C|
• sample complexity of exp. mechanism: logarithmic in |C|

Typically, |C| ≥ 2Ω(d) where d is dimension.
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Computationally efficient learning with statistical queries

Statistical queries [DR14]

The statistical query model of machine learning
restricts the learner’s distribution access to an oracle which,

given φ : X × {−1, 1} → [−1, 1],

returns z, where |Ex∼Pφ(x, f (x))− z| ≤ α.

Since each φ has sensitivity

∆φ := max
||X−Y||1=1

||φ(x)− φ(x)|| = 1/n,

they can be answered with the Laplace mechanism.(previous lecture)

⇒ Learning algorithm which requires answers to m SQs
can be simulated with ε-DP given

n = O
(
max

{
m logm

εα
,
m logm

α2

})
samples.

Useful if m logm < |C|. , 8



Central model / local model

Central model (DP)

x1
x2
x3
...
...

xn−2
xn−1
xn

M
ε-DP

Local model (LDP)

x1

x2

...

...

xn−1

xn

R1

R2

Rn

Rn−1

aggregator

ε-DP
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· trusted central coordinator
· only final output is ε-DP

· each row held by a distinct agent
· entire transcript must be ε-DP



Local differential privacy

We have seen LDP before:

Randomized response

If each agent i reports their bit bi ∈ {0, 1} as b̃i

• truthfully, with probability 1+ε
2 ,

• falsely, with probability 1−ε
2 .

Even if every bit b̃i is released, ε-DP is preserved.

10



Local differential privacy

General local protocols
A local protocol may be obtained
by having agents communicate in rounds.

Each round t is assigned a privacy parameter εt.

In round t, each agent reports on their sample xi with εt-DP.
⇒ Entire transcript is ε-DP for ε :=

∑
t εt.

Not the only way of obtaining local privacy [JMNR19],
but we restrict ourselves to protocols such as these.

11



SQ and local models

For local DP,
the Laplace mechanism can be applied to a single sample.

Local Laplace mechanism
Consider a dataset X = {x} of one sample.

The `1 sensitivity of φ : X → [−1,+1] is

∆φ = max
x,y∈X

||φ(x)− φ(y)||1 = 1

so ε-DP is satisfied when an agent releases

R(x) = φ(x) + w where w ∼ Lap(∆φ/ε).

When x1, . . . , xn iid∼ P , then z := 1
n
∑

i∈[n] R(xi) satisfies

Pr[|z − Eb∼P [φ(b)]| ≤ τ ] ≥ 3
4 with n = O

(
1

τ 2ε2

)
samples.*

*Note: O( 1
τε

) samples suffice for Laplace in the central model.
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SQ and local models

SQ-algorithm⇒ Local protocol

Answering SQs with the local Laplace mechanism
allows simulation of any SQ-learner in the local model:

Theorem [KLN+11]
Any SQ-algorithm A which

(α, β)-PAC learns C with m SQs of accuracy τ ,
may be used to obtain

a locally ε-DP protocol which (α, 2β)-PAC learns C with

n = O
(
m log(m/β)

ε2τ 2

)
samples.

A convenient way to obtain
locally private protocols!
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SQ and local models

Local protocol⇒ SQ-algorithm

Theorem [KLN+11]
Any locally ε-DP protocolM on n agents which (α, β)-PAC learns C
may be used to obtain
an SQ-algorithm A which (α, 2β)-PAC learns C
by making O(n · eε) SQs of accuracy τ = Θ(β/(e2εn)).

Proof idea.

Given ε-DP R : X → Z , want to sample z ∈ Z with prob. p(z) = PrR,x[R(x) = z].

Uses fact that p(z) can be approximated with SQ since
p(z) = Ex[φ(x)] where φ(x) := Pr

R
[R(x) = z].

Apply approximate version of following rejection sampling strategy:

1. Sample z with probability PrR[R(0) = z];
2. Accept z with probability PrR,x[R(x) = z]/(eε · PrR[R(0) = z]).

· gives much better guarantee than using approximation of p(z) directly
· PrR,x[R(x) = z]/PrR[R(0) = z] ≤ eε ⇒ O(eε) rejections expected
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SQ and local models

Local protocol⇒ SQ-algorithm
SQ lower bound⇒ Local model lower bound

Definition
A parity fS : {−1, 1}d → {−1, 1} is determined by a set S ⊂ [d] with

fS(x) :=
∏
i∈S

xi

Let PARITYd be the class of all such functions.

Theorem [BFJ+94]
No SQ-learner for PARITYd using at most 2d/3 SQs of accuracy 2−d/3.

Corollary [KLN+11]
For constant ε, for all d, for some n = 2Ω(d),
there exists no locally ε-DP learner for PARITYd on n agents.
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SQ and local models

Corollary [KLN+11]
For constant ε, for all d, for some n = 2Ω(d),
there exists no locally ε-DP learner for PARITYd on n agents.

vs.

Theorem [KLN+11]
In the central model, there exists an ε-DP mechanismM which
(α, β)-PAC learns PARITYd with n = O(d log(1/β)εα ) samples.

(M can even be made computationally efficient)

Exponential separation between
local and central models!
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Factorization mechanism

Estimating SQs with LDP is building block of LDP mechanisms.
⇒ Want to answer SQs in local model with optimal sample-efficiency.

(Let X = [N].)

Given φ1, . . . , φm, where φj : X → [−1, 1], want estimates z1, · · · , zm s.t.

|Ex∼P [φj(x)]− zj| ≤ τ ∀j

when each agent i gets xi ∼ P , and P is unknown distribution on X .

Equivalently,

• consider matrix W ∈ Rm×N given by wj,k = φj(k);
• let hP := (P(1), . . . ,P(m));

and estimate WhP ∈ Rm byM(X) ∈ Rm so that

|WhP −M(X)|∞ ≤ τ.
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Factorization mechanism

We saw that n = O
(m logm

ε2τ2

)
samples sufficed to obtain, w.h.p.,

|WhP −M(X)|∞ ≤ τ.

However, naivly estimating Ex∼P [φi(x)] separately for each φi can be badly
sub-optimal.

Example: Repeated queries

If φ1 = · · · = φm, then

n = O
(

1
ε2τ 2

)
samples suffice to obtain z = Ex∼P [φ1(x)]± τ .

Then z can be reused to answer each of the queries φ2 · · ·φm.
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Factorization mechanism

Example: Threshold queries (estimating the CDF of P)

The set of threshold queries {φj}j∈[N] on [N] is given by

φj(x) =
{
1 x ≤ j
0 otherwise

Strategy: Factor W as W = RA where R and A are also matrices.

Then WhP = R(Ahp).

So, obtain an estimate Z of Ahp in the local model. Then return RZ.

One such factorization gives A which corresponds to queries

φ1:N(x)
φ1:N/2(x), φN/2+1:N(x)
φ1:N/4(x), φ1:N/4(x), · · · , φ3N/4+1:N(x)
...
φ0:1(x), φ1:2(x), · · · , φN−1:N(x)


where φs:t(x) :=

{
1 s < x ≤ j
0 otherwise

Answers to these queries allow us to reconstruct an answer for each φi ,
i.e. Ex∼Pφ7(X) = Ex∼Pφ1:4(X) + Ex∼Pφ5:6(X) + Ex∼Pφ6:7(X)

19



Factorization mechanism

The factorization strategy may be generally applied.

For a factorization W = RA, we may bound the error of our
mechanism by

||R||2→∞||A||1→2
√
logm

ε
√
n

where || · ||2→∞ and || · ||1→2 are matrix operator norms.

This motivates us to minimize ||R||2→∞||A||1→2 subject to W = RA.

Let γ2(W) := min{||R||2→∞||A||1→2}.

In particular, error τ may be obtained with n = O
(

γ2(W)2 logm
ε2τ 2

)
samples.
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