CSC2541 Guest Lecture

Economic Notions of Fairness in Machine Learning

Overview of This Lecture

Background

- Study of fairness in economics
- Fairness in resource allocation (cake-cutting and indivisible goods)

Adaptation to machine learning

- Classification
- Clustering
- Future work

Study of Fairness in Economics

- Almost a century old
 - Started from the work of Steinhaus in 1948
 - Introduced fairness in the classic cake-cutting setting
- Notions of individual fairness
 - > Proportionality (Prop) [Steinhaus, 1948]
 - > Envy-freeness (EF) [Foley, 1967]
 - > Equitability (EQ) [Pazner and Schmeidler, 1978]
 - $\,\circ\,$ More generally, "egalitarian-equivalence"
 - Maximin share (MMS) [Budish, 2011]

Study of Fairness in Economics

- Extended to groupwise notions of fairness
 - Stronger than individual fairness
 - > The core [Varian, 1974]
 - Implies proportionality
 - > Group envy-freeness (GEF) [Berliant, Thomson, Dunz, 1992]
 - \circ Implies envy-freeness
 - Group fairness (GF)
 [Conitzer, Freeman, Shah, Wortman-Vaughan, 2019]
 O Implies both core and group envy-freeness

Study of Fairness in Economics

- Often, approximate versions are sought when exact versions cannot be guaranteed
 - Proportionality up to one (Prop1) [Conitzer, Freeman, Shah, 2017]
 - Envy-freeness up to one (EF1) [Budish 2011]
 - > Core up to one (Core1) [Munagala, Fain, Shah, 2018]
 - Group fairness up to one (GF1) [Conitzer, Freeman, Shah, Wortman-Vaughan, 2019]

Fairness: Cake-Cutting & Indivisible Goods

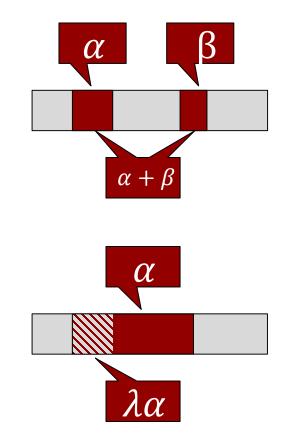
Cake-Cutting

- A heterogeneous, divisible good
 - Heterogeneous: different parts valued differently by different individuals
 - Divisible: we can split it between individuals
- Represented as [0,1]

• How can we fairly divide the cake between *n* agents?

Agent Valuations

- Set of agents $N = \{1, ..., n\}$
- Agent *i* has utility function $u_i > u_i(X) =$ utility for getting $X \subseteq [0,1]$
- Additive: For $X \cap Y = \emptyset$, $u_i(X) + u_i(Y) = u_i(X \cup Y)$
- Normalized: $u_i([0,1]) = 1$
- Divisible: $\forall \lambda \in [0,1]$ and X, $\exists Y \subseteq X$ s.t. $u_i(Y) = \lambda u_i(X)$



Fairness Goals

- Allocation $A = (A_1, ..., A_n)$ is a partition of the cake into n disjoint bundles
- Proportionality (Prop):

$$\forall i \in N: \ u_i(A_i) \ge 1/n$$

• Envy-Freeness (EF):

$$\forall i, j \in N: u_i(A_i) \ge u_i(A_j)$$

• Equitability (EQ): $\forall i, j \in N: u_i(A_i) = u_j(A_j)$

Fairness Goals

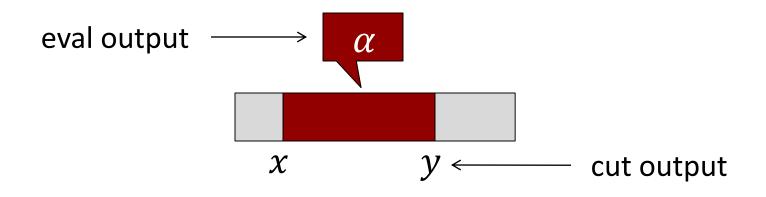
- Prop: $\forall i \in N$: $u_i(A_i) \ge 1/n$
- EF: $\forall i, j \in N: u_i(A_i) \ge u_i(A_j)$
- Question: What is the relation between Prop & EF?
 - 1. Prop \Rightarrow EF
 - 2.) EF \Rightarrow Prop
 - 3. Equivalent
 - 4. Incomparable

CUT-AND-CHOOSE

- Algorithm for n = 2 agents
- Agent 1 divides the cake into two pieces X, Y s.t. $V_1(X) = V_1(Y) = 1/2$
- Agent 2 chooses the piece she prefers.
- This is EF and therefore proportional.
 > Why?

Query Model

- To capture the complexity of computing various solution concepts, we need a model for accessing utilities
- Robertson-Webb model
 - > $Eval_i(x, y)$ returns $u_i([x, y])$
 - > $\operatorname{Cut}_i(x, \alpha)$ returns y such that $u_i([x, y]) = \alpha$



Complexity of Proportionality

- Theorem [Even and Paz, 1984]
 - There exists a protocol for computing a proportional allocation using O(n log n) queries in the Robertson-Webb model.
 - > Uses a simple divide-and-conquer idea
- Theorem [Edmonds and Pruhs, 2006]
 - > Any protocol computing a proportional allocation needs $\Omega(n \log n)$ queries in the Robertson-Webb model.

Complexity of Envy-Freeness

- [Brams and Taylor, 1995]
 > First unbounded EF protocol
- [Procaccia 2009] > $\Omega(n^2)$ lower bound for EF
- Major open question: bounded EF protocol?
- [Aziz and Mackenzie, 2016]
 - > Breakthrough $O(n^{n^{n^n}})$ protocol!
 - > Not a typo!

Complexity of Equitability

- [Procaccia and Wang, 2017]
 - > Any protocol for computing an equitable allocation requires an unbounded number of queries in the Robertson-Webb model.
 - > An ϵ -equitable allocation can be computed in $O(1/\epsilon \ln(1/\epsilon))$ queries
 - > A corresponding lower bound is $\Omega(\ln(1/\epsilon) \ln \ln(1/\epsilon))$

Other Desiderata

• Pareto optimality (PO)

- > Allocation A is PO if $\nexists B$ s.t. $u_i(B_i) \ge u_i(A_i)$ for all *i*, and at least one inequality is strict.
- "There should be no unilaterally better allocation."
- Strategyproofness (SP)
 - > If A and A' denote allocations obtained when agent i reports u_i and u'_i respectively, fixing the reports of the other agents, then $u_i(A_i) \ge u_i(A'_i)$.
 - "Regardless of what the other agents do, there is no incentive for agent *i* to misreport."

PO and SP

- By themselves, PO and SP are easy to achieve
- Serial dictatorship
 - > Agent 1 takes any part of the cake she likes
 - > From what's left, agent 2 takes any part that she likes
 - ≻ ...
- The goal is to achieve them along with fairness

PO + EF

• Theorem [Weller '85]

> There always exists an allocation of the cake that is both envy-free and Pareto optimal.

> One method: maximize Nash welfare argmax_A $\Pi_i u_i(A_i)$

- > Informal proof of EF on the board (if time permits)
- > Named after John Nash.

Special Case

- There are *m* "divisible" goods
 - > E.g. a gold bar, a pile of money, ...
 - > Agents only care about the fraction of each good they get

Notation

- > $u_{i,g}$ = utility to agent i for all of good g
- > $x_{i,g}$ = fraction of good g given to agent i
- $\succ u_i(A_i) = \sum_g x_{i,g} \cdot u_{i,g}$
- > Feasibility: $\sum_i x_{i,g} = 1$ for all g

Indivisible Goods

- Indivisible goods?
 - > Allocation = partition of goods
 - Splitting not allowed
- If randomized allocations are permitted...
 - > Any "divisible" allocation can be "implemented" [Birkhoff-von-Neumann theorem]
- What if only deterministic allocations are allowed?

Indivisible Goods

	8	7	20	5
e	9	11	12	8
	9	10	18	3

Given such a matrix of numbers, assign each good to a agent. We assume additive values. So, e.g., $V_{\odot}(\{\blacksquare, \blacksquare\}) = 8 + 7 = 15$

Indivisible Goods

- Theorem [Caragiannis et al. 2016]
 - For indivisible goods, maximizing Nash welfare over integral allocations returns an allocation that is envy-free up to one good (EF1) and Pareto optimal (PO).
- EF1:

$$\succ \forall i, j, \exists g \in A_j \text{ s.t. } u_i(A_i) \ge u_i(A_j \setminus \{g\})$$

• EFX:

 $\succ \forall i, j, \forall g \in A_j \text{ s.t. } u_i(A_i) \ge u_i(A_j \setminus \{g\})$

> Open question: Does an EFX allocation always exist?

Enough about fair division!

How do I apply this to machine learning?

- Two key differences from resource allocation
- Q1: No resources being partitioned across people
 > Often, a single classifier is implemented
 > What does it mean for *i* to not envy *j*?
- Q2: Is it reasonable to require that no individual envies any other individual?

If not, what would be a good relaxation?

- Q1: No resources being *partitioned* across people
 - > Often, a single classifier is implemented
 - > What does it mean for *i* to not envy *j* in this case?

• Idea 1:

- Compare the classification outcomes
- > Let \mathcal{Y} be the set of classes, \mathcal{X} be the set of individuals represented by their feature vectors
- > Classifier $h: N \to C$ is EF if $\forall i, j \in \mathcal{X}, u_i(h(i)) \ge u_i(h(j))$

 $\circ\,$ "I prefer my label to the label assigned to anyone else"

> [Balcan et al., 2019]

- Q1: No resources being *partitioned* across people
 - > Often, a single classifier is implemented
 - > What does it mean for *i* to not envy *j* in this case?

• Idea 2:

- Actually train two different classifiers h₁,h₂ for two different individuals/groups
- > Define their utility for a classifier
- > Ask that individual/group $i \in \{1,2\}$ prefer h_i to h_{3-i}
- > [Ustun et al., 2019]

- Q2: Is it reasonable to require that no individual envies any other individual?
 - > If not, what would be a good relaxation?
- Idea 1:
 - It may be reasonable if randomized (or soft) classification is allowed
 - > This still imposes many constraints
 - > How do we train for it? Does it generalize?
 - > [Balcan et al., 2019]

- Q2: Is it reasonable to require that no individual envies any other individual?
 - > If not, what would be a good relaxation?

• Idea 2:

- If deterministic classification is required, we can relax EF to require that no group, on average, envy another group
- > [Hossain et al., manuscript]

• $\mathcal{X} =$ space of individuals

Represented by feature vectors

- \mathcal{Y} = space of possible labels
 - Sometimes there's a ground truth label ŷ for each individual x, which can be treated as side information not available to the classifier but available during training
- Classifier $h : \mathcal{X} \to \mathcal{Y}$ or $h : \mathcal{X} \to \Delta(\mathcal{Y})$

- Two conflicting objectives
- Loss

> L(x, y) = loss when labeling individual x by y> For $c \in \Delta(\mathcal{Y})$, $L(x, c) = \mathbb{E}_{y \sim c}[L(x, y)]$

• Utilities

> u(x, y) = utility of individual x for receiving label y

- ≻ For $c \in \Delta(\mathcal{Y})$, $u(x, c) = \mathbb{E}_{y \sim c}[u(x, y)]$
- \succ Assumed to be *L*-Lipschitz in *x*

• Envy-freeness:

> Sample: $h : \mathcal{X} \to \Delta(\mathcal{Y})$ is EF on a set $S \subseteq \mathcal{X}$ if: $u(x, h(x)) \ge u(x, h(x')), \forall x, x' \in S$

> Distribution: h is (α, β) -EF w.r.t. a distribution P on \mathcal{X} if: $\Pr_{x,x'\sim P} \left[u(x,h(x)) < u(x,h(x')) - \beta \right] \leq \alpha$

> Questions:

Is it reasonable to require h to be EF on training data?
If it is, does it generalize to the underlying distribution?

Deterministic classifiers

- > Envy-freeness is very restrictive
- Let h(S) denote the set of all classes assigned to individuals in S
- > Then, clearly, h is EF on S iff each individual $x \in S$ is assigned her most preferred label in h(S)

Randomized classifiers

> Allow mixing a preferred label with a "low loss" label to achieve low empirical loss along with envy-freeness

Generalization

• "ERM subject to EF"

For arbitrary classifiers, we need an algorithm A to extend the classifier to unseen data (e.g., by nearest neighbor)

• Theorem:

- > There exists \mathcal{X} and a distribution P over \mathcal{X} s.t. for any A, w.p. $1 \exp(-\exp(q))$, the following happens:
- > When training set S of size $\exp(q)$ is drawn from P and A is applied to derive a classifier, it violates (α, β) -EF w.r.t. P for $\alpha < 1/25$ and $\beta < L/8$.

Generalization

Natarajan dimension

- > Generalizes VC dimension to multi-class classification
- Low dimension: One-vs-all, multiclass SVM, tree-based classifiers, error-correcting code-based classifiers, ...

• Theorem:

- > G = family of classifiers with Natarajan dimension d
- $\succ \mathcal{H}$ = mixtures of up to m classifiers from $\mathcal G$
- > (α, β) -EF on training set *S* implies $(\alpha + 7\gamma, \beta + 4\gamma)$ -EF on the underlying distribution *P* w.p. $1 - \delta$ when

$$|S| \ge O\left(\frac{dm^2}{\gamma^2}\log\frac{dm|\mathcal{Y}|}{\gamma}\right)$$

Generalization

- Key lemma (informal):
 - If H is a mixture of up to m classifiers from a low dimension family G, then a "small finite" subset of classifiers "cover" all of H
 - > Given any $h \in \mathcal{H}$, we can find some classifier in the small subset that matches h on almost all inputs

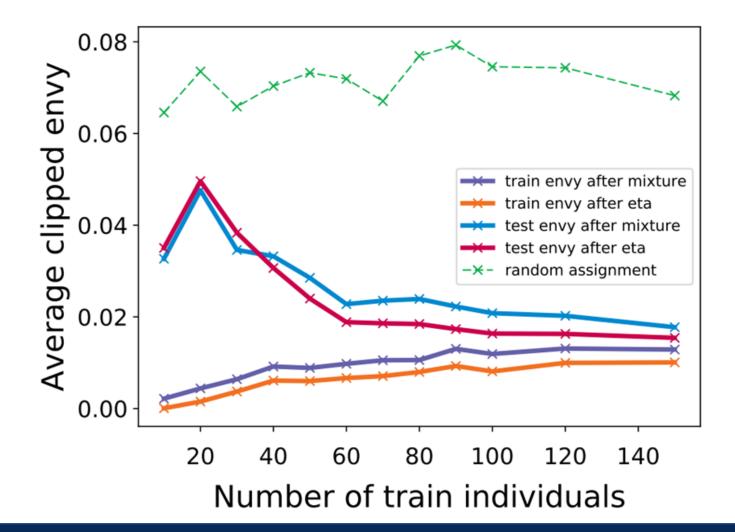
Training for EF Classification

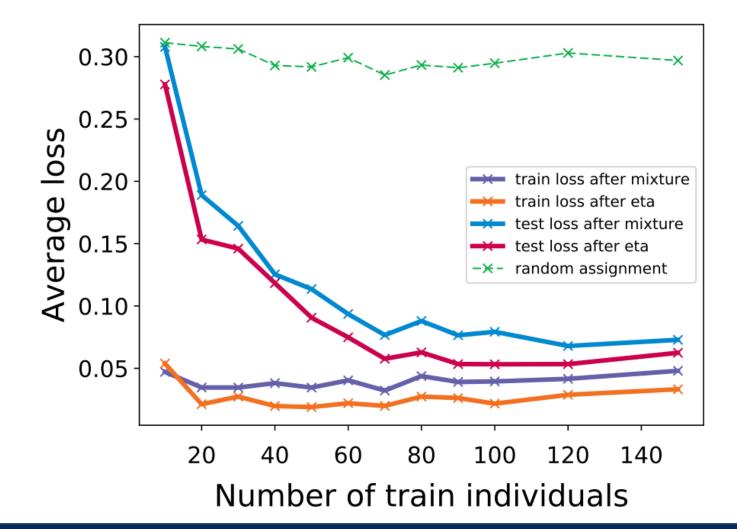
 Training a mixture through "ERM subject to EF" is not a convex program

$$\min_{\vec{g}\in\mathcal{G},\eta\in\Delta_m} \sum_{i=1}^n \sum_{k=1}^m \eta_k L(x_i, g_k(x_i))$$

s.t.
$$\sum_{k=1}^m \eta_k u(x_i, g_k(x_i)) \ge \sum_{k=1}^m \eta_k u(x_i, g_k(x_j)), \forall (i,j) \in [n]^2$$

They introduce an SVM-style convex relaxation
 Empirically results in low envy and low loss





- Groups of individuals (G_1, G_2)
- GroupEF:

 $\succ \mathbb{E}_{x_1 \sim G_1, x_2 \sim G_2} [u(x_1, h(x_2)) - u(x_1, h(x_1))] \le 0$

• GroupEQ:

$$\geq \left| \mathbb{E}_{x_1 \sim G_1} u\left(x_1, h(x_1) \right) - \mathbb{E}_{x_2 \sim 2} u\left(x_2, h(x_2) \right) \right| \le 0$$

- For both definitions...
 - \succ Replace expectation with empirical average on finite S
 - > ϵ -GroupEF / ϵ -GroupEQ if the LHS is at most ϵ

- Applicable in a non-ground truth setting
 - E.g. targeted advertising context of Balcan et al. [2019]
 Groups typically defined using sensitive attributes
- Also applicable in a ground truth setting
 - > E.g. making loan/bail decisions
 - Groups defined using a combination of sensitive attributes and ground truth
 - > E.g. $G_1 = \{ \text{male applicants who can repay the loan} \}, G_2 = \{ \text{female applicants who can repay the loan} \}$

Ground truth setting

> Sensitive attribute A, ground truth \widehat{Y}

- Generalizes demographic parity (DP)
 G₁ = {A = a₁}, G₂ = {A = a₂}
- Generalizes equalized odds (EO)

$$G_1^1 = \{ A = a_1 \land \hat{Y} = 1 \}, G_2^1 = \{ A = a_2 \land \hat{Y} = 1 \}$$

$$> G_1^2 = \{ A = a_1 \land \hat{Y} = 0 \}, G_2^2 = \{ A = a_2 \land \hat{Y} = 0 \}$$

• For group EF, also need to add reverse sets

Ground truth setting

> Sensitive attribute A, ground truth \hat{Y}

- Generalizes demographic parity (DP) and equalized odds (EO)
 - > Allows extending these definitions to multi-class classification
 - E.g. how should DP or EO be applied when there are k different types of loans available and applicants have different preferences over these loans?

Problems with Group EF/EQ

- Post-processing a given (unfair) classifier to achieve fairness by just "rebalancing" rates is not an option
- Theorem [Hossain et al., manuscript]
 - > The only way to post-process a classifier to get group EF with respect to (G_1, G_2) without accessing utilities is to return h such that for each $x \in G_1$, $\Pr[h(x) = c]$ is the average of $\Pr[h(x_2) = c]$ over $x \in G_2$.
 - > The only way to post-process a classifier to get group EQ with respect to (G_1, G_2) without accessing utilities is to assign a uniformly random label to each individual.

Generalization of Group EF/EQ

• Rademacher complexity approach

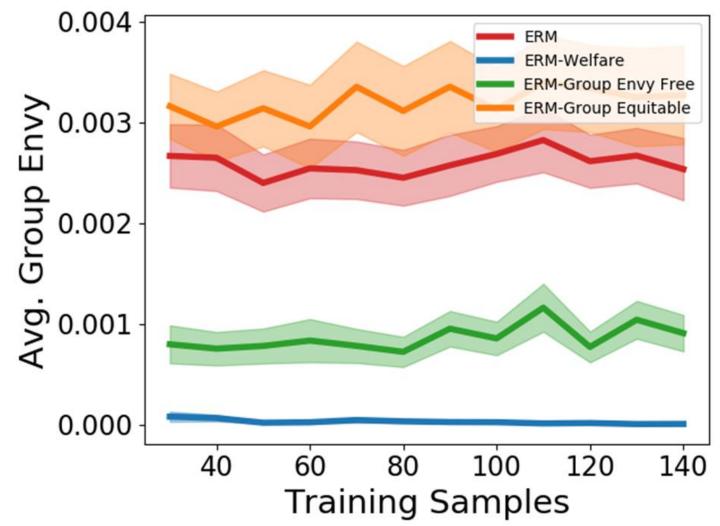
$$> Rad(A) = \frac{1}{m} \mathbb{E}[\sup_{a \in A} \sum_{i=1}^{m} \sigma_i a_i]$$

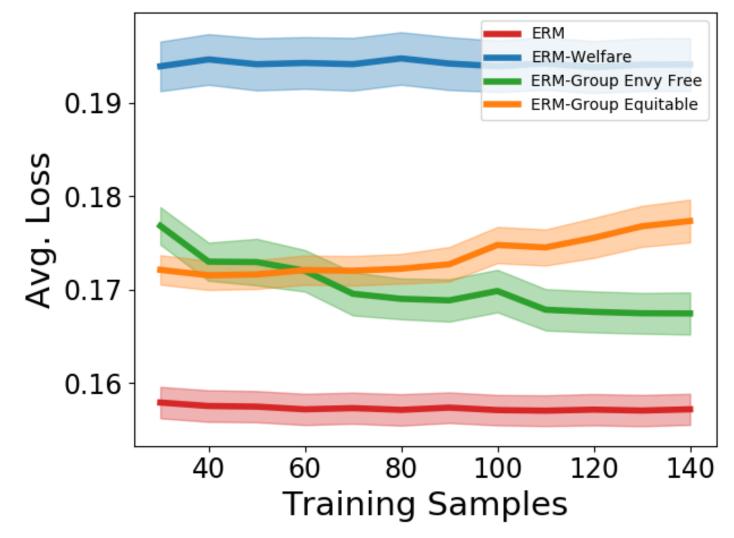
- Problems adapting to this framework
 - Usually defined for functions that map to [0,1], not for multi-class classification
 - > Writing group envy or equitability violation on population involves a product of utility and group membership indicators

Generalization of Group EF/EQ

- Theorem (informal) [Hossain et al., manuscript]
 - $\succ \mathcal{H}$ = family of classifiers
 - > S = training set such that $\mathcal{R}(\mathcal{H} \circ S) \leq \epsilon/8$
 - > If $|S| ≥ O\left(\frac{1}{\epsilon^2} \ln\left(\frac{|G|}{\delta}\right)\right)$, then w.p. 1δ , all constraints in *G* generalize up to ϵ additive error.
 - $\circ \mathcal{G} = \text{set of } (G_1, G_2) \text{ pairs}$
- Theorem (informal)

> For linear one-vs-all classifiers in d dimensions, $|S| = O\left(\frac{d^3m}{\epsilon^2}\ln\left(\frac{dm}{\epsilon}\right)\right)$ is enough.





- Decoupled Classifiers [Utsun et al., 2019]
 - > Train a pair of classifiers: h_1 for group G_1 and h_2 for G_2 > (h_1, h_2) is envy-free if

 $\mathbb{E}_{x \sim G_1} \left[u \left(x, h_1(x) \right) \right] \geq \mathbb{E}_{x \sim G_1} \left[u \left(x, h_2(x) \right) \right]$

and a similar inequality holds for group G_2 .

- > One problem: Even when preferences are identical...
 - $\circ h_1$ might assign bad labels to G_1
 - h₂ might assign great labels to G₂, but when applied on G₁, might apply even worse labels than h₁ by "detecting" certain features
 Intuitively unfair but satisfies the fairness guarantee

- Individual Fairness [Dwork et al., 2011]
 - "Similar individuals should be treated similarly"
 - ≻ Given a distance d, $||h(x) h(y)|| \le d(x, y)$, $\forall x, y$
- Preference-Informed Fairness [Kim et al., 2019]
 - > What if the individuals have heterogeneous preferences?
 - > y is similar to x, but doesn't like h(x)
 - $\succ \forall x, y \exists c u(y, h(y)) \ge u(y, c) \land ||h(x) c|| \le d(x, y)$

 "I could've given you c, which would have satisfied individual fairness. I'm only giving you something you like more."

- Preference-Informed Fairness [Kim et al., 2019] $\Rightarrow \forall x, y \exists c u(y, h(y)) \ge u(y, c) \land ||h(x) - c|| \le d(x, y)$
 - > Almost a "justified envy-freeness" concept
 - > When u is L-Lipschitz continuous, PIF implies $|u(y,h(x)) - u(y,c)| \le L \cdot d(x,y)$ $\Rightarrow u(y,h(y)) \ge u(y,h(x)) - L \cdot d(x,y)$
 - > Every y envies x by at most $L \cdot d(x, y)$

- Circumventing Harmful Fairness [Ben-Porat et al., 2019]
 - > ERM subject to EO:
 - $\,\circ\,$ May harm the disadvantaged group in terms of welfare
 - > ERM subject to group EQ:
 - $\,\circ\,$ Can never harm the disadvantaged group in terms of welfare
 - > Characterize ERM subject to Group EQ outcomes, and give algorithms to compute them quickly

• Fairness in clustering

- > n data points, k cluster centers
- Sometimes clustering is used for facility location, where k facilities are located to serve n data points
- ≻ Core
 - A clustering *C* is in the core if there exist no group *S* of n/k data points and a possible cluster center *y* such that d(i, y) < d(i, C) for all $i \in S$, where $d(i, C) = \min_{c \in C} d(i, c)$
- > There exist instances with no core clustering, but $1 + \sqrt{2}$ approximation is possible [Munagala et al., 2019]

Incentives

- > How does fairness play with incentives?
- > Do fair algorithms provide greater incentives to individuals to lie about their sensitive attributes?
- > Ongoing research...

The New York Times

Rachel Dolezal, Who Pretended to Be Black, Is Charged With Welfare Fraud

Los Angeles Times

CALIFORNIA

Admissions scandal: Mom who rigged son's ACT, lied about his race gets 3 weeks in prison