Definitions of Fairness, Inherent Tradeoffs +

Impossibilities

Today

1. Definitions of fairness statistical parity predictive rate parity equalised odds

2. Empossibility results: any 29 the 3 fairness conditions cannot be achieved (except in degenerate situations)

3. Tradeoff between Fairness + Accuracy

4. Tradeoffer between simplicity and Fairness

5. Other

Running Example

COMPAS : risk assessment program Propublica concluded that compAs is biased: The likelihood of blacks predicted to readizate given that they did Not is > likelihood for whites

	Hun	СС	
	Black %	White %	Black %
Accuracy*	68.2	67.6	64.9
False Positives	37.1	27.2	40.4
False Negatives	29.2	40.3	30.9

COMPAS DATA

Recidinism rate for blacks 51^{Ao}
Recidinism rate for whites 39^{Ao}

IS COMPAS BLASED?

$$x \in U$$
 feature vector [Typically $U=R^d$ or discretised
 $y \in \{0,1\}$ actual value (we are trying to predict)
Underlying distribution 'is pair of r.v.'s (X,Y)
Classifier : maps x to $\hat{y} = f(x)$.

COMPAS EXAMPLE: χ : feature vector of offender χ =1: offender did readinate, χ =0 did not $\hat{\chi}$: prediction for χ

[Confus	sion Matrix		
		$\hat{Y} = 0$		Ŷ=1
Y=0	TNR	Pr(y=0 y=0]	FPR	Pr (ŷ=1/y=0]
1=1	FNR	Pr[ý=0 Y=1]	TPR	Pr(ŷ=1/y=1]

TNP: true Negative rate FPR: False positive rate FNR: false Negative rate TPR: true positive rate

feature vector (may include A) XERª YEED,13 actual value (we are trying to predict) Underlying distribution 'is pair of r.v.'s (X,Y) Classifier : maps x to ý=f(x) Sensitive variable : A e 20,13 Joint distribution (X,Y,A,Ý)

Example: COMPAS X: vector about offender
Y: whether offender mil recidivate (Y=1)
A: black (A=1) or while (A=0)
J=f(x): predicted value of Y

Confusion Matrix A=1

Confusion Matrix A=0

	Hun	CC	
	Black %	White %	Black %
Accuracy*	68.2	67.6	64.9
False Positives	37.1	27.2	40.4
False Negatives	29.2	40.3	30.9

Definitions/Notation
$$R = f(X)$$

Classification often solved by first solving
a regression problem to summarize data
by a score, $f(x) \in R$ (we assume $e[0,1]$)
Natural score function: $f(x) = \mathbb{E}[Y|x]$
Score to \hat{y} : Pick threshold t
 $\hat{y}=1$ iff $f(x) \ge t$
R generalizes $\hat{Y} - so$ from Now on can
think of \hat{y} as special case of R

1. Statutical Parity/group Parity/Independence RLA (ŶLA) Pr[RIA]=Pr[R]

- 2. Predictive Rate Parity/Sufficiency YLAIR YLAIY Pr[YIA,R] = Pr[YIR]
- 3. Équalized Odds/separation RLAIY ŶLAIY Pr[R|A,Y] = Pr[R|Y]

2. Predictive Rate Parity (PRP) 45,6' e {0,1} Pr[y=6|ŷ=6,A=0] = Pr[y=6|ŷ=6,A=1]

Today

2. Empossibility results: any 29 the 3 fairness conditions cannot be achieved (except in degenerate situations)

- 3. Tradeoff between Fairness + Accuracy
- 4. Tradeoffer between simplicity and Fairness
- 5. Other

Impossibility Theorem

any 2 of the 3 definitions of fairness are mutually exclusive (except in degenerate cases)

Impossibility Theorem (Indep vs sufficiency) any 2 of the 3 definitions of fairness are mutually exclusive (except in degenerate cases) 1-2 Statistical parity + predictive rate parity are mutually exclusive unless ALY

ALY and ALYIY => ALY

Impossibility Theorem

◀

•

Impossibility Theorem (separantion vs sufficiency) any 2 of the 3 definitions of fairness are mutually exclusive (except in degenerate cases) 3-3 Predictive Rate pairly and Equalized odds are mutually exclusive unless ALY $A \perp \hat{\mathcal{Y}} \mid \mathcal{Y} \text{ and } A \perp \mathcal{Y} \mid \hat{\mathcal{Y}} \implies A \perp (\hat{\mathcal{Y}}, \mathcal{Y}) \implies A \perp \mathcal{Y}$ $Pr(A|\hat{Y},Y) = Pr(A|\hat{Y})$ and $Pr(A|\hat{Y},Y) = Pr(A|\hat{Y})$

Pr(A| ý=1)=Pr(y=0)Pr(A| ý=1,y=0) + Pr (y=1) Pr (A) ý=1, y=1) = Pr(y=0) Pr(A(y=0))Pr(y=1) Pr(A|y=1)= Pr(A)

Pr (A) ý=1, y=0)= P((A | y=0) $Pr(A|\hat{\gamma}=1,\gamma=1)=Pr(A|\gamma=1)$

Impossibility Theorem (Indep vs separation) any 2 of the 3 definitions of fairness are mutually exclusive (except in degenerate cases) D-3 Statistical Parity & Equalitied Odds (* For binary y*) are mutually exclusive unless ALY or JLY ALY and ALY IY => ALY or YLY

Impossibility Theorem (Indep vs separation) any 2 of the 3 definitions of fairness are mutually exclusive (except in degenerate cases) D-3 Statistical Parity & Equalized Odds (* For binary y*) are mutually exclusive unless ALY or JLY $A \perp \hat{\gamma} \text{ and } A \perp \hat{\gamma} | \gamma \implies A \perp \gamma \text{ or } \hat{\gamma} \perp \gamma$ $Pr[\hat{\gamma} = b] = Pr[\hat{\gamma} = b|A = \alpha] = \underset{\gamma}{\leq} Pr[\hat{\gamma} = b|A = \alpha, \gamma = \gamma] Pr[\gamma = \gamma|A = \alpha]$ $= \underset{\gamma}{\leq} Pr[\hat{\gamma} = b|\gamma = \gamma] Pr[\gamma = \gamma|A = \alpha]$ $\mathcal{P}(\hat{Y} = b) = \sum_{y} \mathcal{P}(\hat{Y} = b/Y = y) \mathcal{P}(y = y)$

So $Z Pr [\hat{Y} \cdot b | Y \cdot Y] Pr (Y \cdot Y) = Z Pr [\hat{Y} \cdot b | Y \cdot Y] Pr (Y - y | A - a)$ by 7 1 by $Pb_{0} + (1-p)b_{1} = Pab_{0} + (1-pa)b_{1}$ $p(b_{0}-b_{1})+b_{1} = P_{\alpha}(b_{0}-b_{1})+b_{1}$ $p(b_{\delta}-b_{1})=p_{\alpha}(b_{\delta}-b_{1})$ so either b=b, or P=Pa ÝLY YLA

BACK TO COMPAS

CALIBRATION ~ PREDICTIVE RATE PARITY

*Note the Natural score function R(x) = E(Y=1/x) is calibrated

CALIBRATION ~ PREDICTIVE RATE PARITY

*Note the natural score function $R(x) = \mathbb{E}[Y=1|x,A]$ is calibrated by group CALIBRATION ~ PREDICTIVE RATE PARITY

$$\frac{1}{Pr[Y=1|R,A]} = Pr[Y=1|R]$$

② R satisfies PRP => ∃L s.t. L(R) safisfies calibration by group

.: R(R) is calibrated by group.

(Semi-) Intuitive Proof (call bration is equalized odds)

$$N_a = \# people in group A=a$$

 $N_a^* = \# people in group A=a$, with $Y=1$
 $N_a^* = \# people in group A=a$, in $Y=0$
 $R_a = \# people (sum q scores) for people in group A=a$
 $R_a^* = \# people (sum q scores) for people in group A=a$
 $R_a^* = \# people (sum q scores) for people in group A=a$
 $R_a^* = \# people (sum q scores) for people in group A=a$
 $R_a^* = \# people (sum q scores) for people in group A=a$
 $R_a^* = \# people (sum q scores) for people in group A=a$
 $R_a^* = \# people (sum q scores) for people in group A=a$
 $R_a^* = \# people (sum q scores) for people in group A=a$
 $R_a^* = \# people (sum q scores) for people in group A=a$
 $R_a^* = \# people (sum q scores) for people in group A=a$
 $R_a^* = \# people (score (sum q scores) for people in group A=a$
 $R_a^* = \# people (score (sum q scores) for people in group A=a$
 $R_a^* = \# people (score (sum q scores) for people in group A=a$
 $R_a^* = \# people (score (sum q scores) for people in group A=a$
 $R_a^* = \# people (score (sum q scores) for people in group A=a$
 $R_a^* = \# people (score (sum q scores) for people in group A=a$
 $R_a^* = \# people (score (sum q scores) for people in group A=a$
 $R_a^* = \# people (score (sum q scores) for people in group A=a$
 $R_a^* = \# people (score (sum q scores) for people in group A=a$
 $R_a^* = \# people (score (sum q scores) for people in group A=a$
 $R_a^* = \# people (score (sum q scores) for people in group A=a$
 $R_a^* = \# people (score (sum q scores) for people (scores) for people (sc$

•

. . .

all scores . | total score for bin r = (H peuple in bin r) r $= (N_{a,r})r = N_{a,r}^{+}$ so $= R_{\alpha}$ $N_{q}^{\dagger} = \sum_{r} N_{q,r}^{\dagger}$ $= N_{o}^{+}$ $R_{\alpha} = N_{\alpha}^{+} \overline{R_{\alpha}^{+}} + N_{\alpha}^{-}$ So メ

Today

5. Other

Tradeoff between Fairness + Accuracy Example suppose y=1 iff A=1 Then accuracy obviously at odds with fairness "Inherent Tradeoffs in Learning fair Representations" [Zhao, gordon] quantifative tradeoffs between statistical parity accuracy via dutance between distributions of (y) and of (y) A=0 • I.e., if saturfies stat. parity, error = drv (D, (y), D, (y))

Today

1. Definitions of fairness statutical parity predictive rate parity equalited olds 2. Empossibility results: any 29 the 3 fairness conditions cannot be achieved (except in degenerate situations) 3. Tradeoff between Fairness + Accuracy 4. Tradeoffer between simplicity and Fairness

5. Other

Simplicity/Fairness Tradeoffs (Kleinberg, Mullainathan, 2019)

Setup:

- set of applicants, can accept an r fraction $x \in \mathbb{R}^{K}$, $(K + 1)^{s+}$ dimension x_{K+1} is membership in A
- S(x) gives a score to x
- · s is simple it it doesn't depend on A
- · top r percent (based on score) are admitted

Conditions:

() <u>DISADVANTAGE</u> condition on s Let $\mu(x, A=b)$ be fraction of population with value (x,b)For all x such that s(x) > s(x') $\frac{\mu(x, A=0)}{\mu(x, A=1)} > \frac{\mu(x', A=0)}{\mu(x', A=1)}$

Conditions:

1) DISADVANTAGE condition on s Let $\mu(x, A=b)$ be fraction of population with value (x,b) For all x such that s(x) > s(x') $\frac{\mathcal{M}(x, A=0)}{\mathcal{M}(x, A=1)} > \frac{\mathcal{M}(x', A=0)}{\mathcal{M}(x', A=1)}$ 2 gENERICITY condition on s for S, T subsets of applicants, $E[s(s)] \ge E[s(T)]$

> Censures No further simplification of score is possible

Simple S-approximators: Decision trees

For a path p in decision tree with partial assignment p, label leaf of p with E [s(x)] x, x consistent with p

Simple S-approximators: Decision trees A decision tree f approximates s as follows: order subcubes highest to lowest (by leaf value) and output individuals in this order until we reach rate r

Efficiency of
$$f$$
, $V_{f}(r)$: avg value of s
for the admitted people
Equity of f , $W_{f}(r)$: fraction of admitted
people who belong to
 $A = 1$ (disadvantaged group)

Theorem 1 Let s satisfy disadvantage + genericity conditions. Then every simple S-approximator is strictly improvable:

For every nontrival simple approximator g to s, there is a refinement hof g that is better: $\forall r \ V_g(r) \leq V_h(r), \ W_g(r) \leq W_h(r)$ and $\exists r^* \ st \ V_g(r^*) < V_h(r^*), \ V_g(r^*) < V_h(r^*)$

Simplicity/Fairness Tradeoffs
Theorem 2 Say that an s-approximator
$$f(simple)$$

is "group-agnostic" if $f(x, A=0) + f(x, A=1) \forall x$
Let f be a group agnostic approximator and let
 f' be the approximator to f obtained by
splitting/retining each cell c_i of f according
to group membership in A .
Then $V_{g'} > V_{g}$ but $W_{g'} < W_{g}$

ie. It we try to approx s by a group agnostic g. This incentivizes a rule that depends on A where value improves at expense of equity

Simple S-approximators: Decision trees A decision tree f approximates s as follows: order subcubes highest to lowest (by leaf value) and output individuals in this order until we reach rate r

Efficiency of
$$f$$
, $V_{f}(r)$: avg value of s
for the admitted people
Equity of f , $W_{f}(r)$: fraction of admitted
people who belong to
 $A = 1$ (disadvantaged group)

Today

1. Definitions of fairness statutical parity predictive rate parity equalited odds 2. Empossibility results: any 29 the 3 fairness conditions cannot be achieved (except in degenerate situations) 3. Tradeoff between Fairness + Accuracy

4. Tradeoffer between simplicity and Fairness

5. Other