
Prniacyinttt

Tonia 'm Pitas si Richard Zemel

( SC 2541

October 8
,
2019



Whyirray ?

Microsoft : tool for diagnosing pancreatic cancer
in

by monitoring Bing queries

Netflix : film recommender algorithm
"

anonym , fed "

-

model inversion attacks :
mm
train ML model using sensitive information

hackers can invert model to recover very
sensitive individual info ( credit card number )



Privacy-Preserving Data Analysis

q1

a1

! Census, epidemic detection based on OTC drug purchases; 
analysis of loan application data for evidence of discrimination,…  

! 50+ year old problem

Database data analyst

M
q2

a2

q3

a3



• What analyses on a database might violate 
privacy? What analyses are privacy-
preserving?

2Age



what to promise?

delete identifying information

4

maybe not
-I

•



Latanya Sweeney’s Attack (1997) 

slide 16 

Massachusetts hospital discharge dataset 

Public voter dataset 

egged



K-Anonymity: Intuition 

• The information for each person contained in 
the released table cannot be distinguished 
from at least k-1 individuals whose 
information also appears in the release 
– Example: you try to identify a man in the released 

table, but the only information you have is his 
birth date and gender.  There are k men in the 
table with the same birth date and gender. 

• Any quasi-identifier present in the released 
table must appear in at least k records 

 
slide 19 Added



Curse of Dimensionality 

• Generalization fundamentally relies 
   on spatial locality 

– Each record must have k close neighbors 
• Real-world datasets are very sparse 

– Many attributes (dimensions) 
• Netflix Prize dataset: 17,000 dimensions 
• Amazon customer records: several million dimensions 

– “Nearest neighbor” is very far 
• Projection to low dimensions loses all info � 
   k-anonymized datasets are useless 

slide 26 

Aggarwal (VLDB 2005) 

EAST



what to promise?

only ask questions that pertain 
to large populations

3

maybe notI
•



The Statistics Masquerade 
! Differencing Attack 

! How many members of House of Representatives have sickle cell trait? 
! How many members of House, other than the Speaker, have the trait? 

!  Needle in a Haystack 
! Determine presence of an individual’s genomic data in GWAS case group 

! The Big Bang attack  
! Reconstruct “depression” bit column 

Depression?

Homer+’08Dinur and Nissim’03



Fundamental Law of Info Recovery
! “Overly accurate” estimates of “too many” statistics is 

blatantly non-private.



what to promise?

access to the output should 
not enable one to learn 
anything about an individual 
that could not be learned 
without access

6

is this 
desirable?

M cryptographic
definition

B
•



Privacy-Preserving Data Analysis?

! “Can’t learn anything new about Helen”? 
! Then what is the point?

q1

a1

Database data analyst

M
q2

a2

q3

a3



what to promise?

access to the output should 
not enable one to learn much 
more about an individual than 
could be learned via the same 
analysis omitting that individual 
from the database

8good



Privacy-Preserving Data Analysis?

! Ideally: learn same things if Helen is replaced by another random 
member of the population (“stability”)

q1

a1

Database data analyst

M
q2

a2

q3

a3

-EdogtATgTATfggT



Privacy-Preserving Data Analysis?

! Stability preserves Helen’s privacy AND prevents over-fitting 
! Privacy and Generalization are aligned! 

q1

a1

Database data analyst

M
q2

a2

q3

a3



• X set of possible entries/rows

one row per person

• database x a set of rows; x ∈ ℕ|X| 
(histogram)

statistical database model

13

name DOB sex weight smoker lung 
cancer

John Doe 12/1/51 M 185 Y N
Jane Smith 3/3/46 F 140 N N
Ellen Jones 4/24/59 F 160 Y Y
Jennifer Kim 3/1/70 F 135 N N
Rachel Waters 9/5/43 F 140 N N



what’s a small change?

require nearly identical behavior on neighboring 
databases differing by the addition or removal of 
a single row:

||x - y||1 ≤ 1 

for x,y ∈ ℕ|X| 

neighboring databases

15SEITZ



ε-Differential Privacy for algorithm M:

for any two neighboring data sets x1, x2 , differing 
by the addition or removal of a single row

any S ⊆ range(M),
Pr[M(x1) ∈ S] ≤ eε Pr[M(x2) ∈ S]

differential privacy
[DinurNissim03, DworkNissimMcSherrySmith06, Dwork06] 

16

eε ~ (1 + ε)

soft



differential privacy 

name DOB sex weight smoker lung 
cancer

John Doe 12/1/51 M 185 Y N
Jane Smith 3/3/46 F 140 N N
Ellen Jones 4/24/59 F 160 Y Y
Jennifer Kim 3/1/70 F 135 N N
Rachel Waters 9/5/43 F 140 N N

16 17 18 19 20

17

Pr[M(x1) ∈ S] ≤ eε Pr[M(x2) ∈ S]

D

to

/



differential privacy 

C. Dwork

Pr[M(x1) ∈ S] ≤ eε Pr[M(x2) ∈ S]



(ε,δ)-differential privacy

C. Dwork

Pr[M(x1) ∈ S] ≤ eε Pr[M(x2) ∈ S] + δ



differential privacy 

promise: if you leave 
the database, no 
outcome will change 
probability by very 
much is this achievable?

Pr[M(x1) ∈ S] ≤ eε Pr[M(x2) ∈ S]

with high accuracy
.FM )



yes!

22Tgf



Propertiesottdifferentinlpriiacy

• group Privacy

• post processing

• Composition



Thm.  Any (ε, 0)-DP mechanism M is (k ε, 0)-
DP for groups of size k. i.e.,  for all

||x - y||1 ≤ k 

 and any S ⊆ range(M),
Pr[M(x) ∈ S] ≤ eεk Pr[M(y) ∈ S] 

group privacy



Thm. Let M : ℕ|X| → R be (ε, δ)-DP. 

Let f: R → R’ be an arbitrary randomized 
mapping. 

Then f∘M : ℕ|X| → R’ is (ε, δ)-DP.

post-processing



• Thm. For i ∈ [k], let Mi : ℕ|X| → Ri be (εi, 
δi)-DP.  Then the mechanism (M1(x),
…,Mk(x)) is (∑i εi, ∑i δi)-DP.

• actually, holds even if subsequent 
computations chosen as function of previous 
results

• “advanced” version 

composition
[DworkKenthapadiMcSherryMironovNaor06,DworkLei09]

*EtGhLBpg



Dpilechanisms

• Randomized Response

• Laplacian ( a gaussian ) Mechanism

• Noisy Max

• Exponential Mechanism

• ( Better ) composition



Dpilechanisms

• Randomized Response

• Laplacian ( a gaussian ) Mechanism

• Noisy Max

• Exponential Mechanism

• ( Better ) composition



1. flip a coin

2. if tails, respond truthfully

3. if heads, flip a second coin and respond 
“yes” if heads; respond “no” if tails

30 Basic Techniques and Composition Theorems

behaviors. Let XYZ be such an activity. Faced with the query, “Have
you engaged in XYZ in the past week?” the respondent is instructed
to perform the following steps:

1. Flip a coin.

2. If tails, then respond truthfully.

3. If heads, then flip a second coin and respond “Yes” if heads and
“No” if tails.

The intuition behind randomized response is that it provides “plau-
sible deniability.” For example, a response of “Yes” may have been
offered because the first and second coin flips were both Heads, which
occurs with probability 1/4. In other words, privacy is obtained by pro-
cess, there are no “good” or “bad” responses. The process by which
the responses are obtained affects how they may legitimately be inter-
preted. As the next claim shows, randomized response is differentially
private.

Claim 3.5. The version of randomized response described above is
(ln 3, 0)-differentially private.

Proof. Fix a respondent. A case analysis shows that Pr[Response =
Yes|Truth = Yes] = 3/4. Specifically, when the truth is “Yes” the
outcome will be “Yes” if the first coin comes up tails (probabil-
ity 1/2) or the first and second come up heads (probability 1/4)),
while Pr[Response = Yes|Truth = No] = 1/4 (first comes up heads and
second comes up tails; probability 1/4). Applying similar reasoning to
the case of a “No” answer, we obtain:

Pr[Response = Yes|Truth = Yes]

Pr[Response = Yes|Truth = No]

=
3/4

1/4
=

Pr[Response = No|Truth = No]

Pr[Response = No|Truth = Yes]
= 3.

3.3 The laplace mechanism

Numeric queries, functions f : N|X | → Rk, are one of the most fun-
damental types of database queries. These queries map databases to k

Randomized Response 
[Warner65]

Claim. Randomized Response is (ln 3, 0)-DP.

Proof. 



Randomized Response

given database x :X
, , . . . ,Xn where Xie { 0,13

say Xi = I if person commit ed crime

( = O
. if person did Not commit chime )

Query
: § Xi ,

( = fraction of people that committed crime )
n

Mechanism :

Step I .

For ist . . .
n

Let ye.

= Xi with probability %
,

Yi
-

- I - Xi with probability k
,

step 2 .
Let fly ,.  - yn ) = ST Yih

output fly , .  - Yn )



Lemme Mechanism is ( In 3,0 ) - dp

Pt First we show that the output of step z

y , .  - Yn
.

is ( In 3
,

o ) - dp .
Then by

post processing,
fly , .  - Yn ) -

is also C In 3
,

o) - dp ,

Consider 2 Neighboring databases

X = X ,
Xz .  - Xn ) differ only on

x
'

a X
,

. . Ii . . .
Xn word

. i

show Vy ,
. . Yn
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.  . Ynlx , .
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Pr ( Yik ) Sy
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=3 = e
'

⇒ E = In 3

-

accuracy
of Random toed Response :

Let n
'

= H of respondents who say 1 ( = § Y,

. )
Let p = { Xi In

C- C n
' ) = Cpn ) 'T t 4-pln 4 = Pna t

'ngn . I 14
so max likelihood estimator of p

, P is ( n -

y ) y = ZIN - th
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'
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Dpilechanisms

• Randomized Response
←

also locally Dp !

• Laplacian ( a gaussian ) Mechanism

• Noisy Max

• Exponential Mechanism

• ( Better ) composition



Dpilechanisms

• Randomized Response

• Laplacian ( a gaussian ) Mechanism

• Noisy Max

• Exponential mechanism

• ( Better ) composition



∆f = maxx1, x2  |f(x1) – f(x2)|1 

for neighboring data sets x1, x2

sensitivity of a function f

3

• measures how much one person can affect output

• sensitivity is 1/|x| for queries returning the average 
value of count queries mapping X to {0,1}

• linear queries : X →[0,1] over the dataset (think 
statistical queries)

f.

•TtfgggMT



Laplace distribution Lap(b)

5

pdf(z) = exp(-|z|/b)/2b  
variance = 2b2

For Y∼Lap(b), Pr[|Y| ≥ bt] = exp(-t) 

Mama

"

%8B8938tMGMM.FIggzpBABg

Iggy



Laplace mechanism

6

Def. Given f : ℕ|X| → Rk the Laplace 
Mechanism is defined as

ML(x, f(.),ε)= f(x) + (Y1, …, Yk) 

where the  Yi are iid random draws from 
Lap(b) with b = ∆f/ε. 

(If we want discrete output space, subsequently 
round accordingly.)

Sgt



Laplace mechanism: Privacy

7

Thm.  The Laplace Mechanism preserves

(ε, 0)-differential privacy.

000



Laplace Mechanism : Privacy

Thin The Laplace Mechanism preserves ( go ) - dp

PI Let x
,
x
' be Neighboring databases

,
so Nx - x 'll

,

s I
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,
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Laplace mechanism:  Accuracy

8

Thm.  The Laplace Mechanism preserves…
ihpgac curacy

of



Laplace Mechanism - Accuracy

Thy Let f : IN
' "

→ R
"

, y
-
- Me ( x , t , e) .

Then V-sc.co
,
,] :

Pr [ Il fix ) - yllo > In ( Ks ) ( at )) s s

Pf

pr-fllfcxl-ylbs.int 's ) (at ) ) = Pr fringy,
Nils . HE ) I ¥ )
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Notes
-

l .
Could replace Laplacian by gaussian Noise

add Noise scaled to N I 0
,
62 )

,
6 ~ df In ( Yg ) Ic

gives ( c
,
s) - dp

2
.

The simpler randomized response algorithm

is Loyal
However overall its accuracy

is worse
.



Dpilechanisms

• Randomized Response

• Laplacian ( a gaussian ) Mechanism

• Noisy Max

• Exponential Mechanism

• ( Belter ) composition



example

13

Suppose we wanted to determine the most 
commonly-“liked” Facebook page, subject to DP

• could give a DP count of the number of 
likes for each page, but sensitivity would 
grow with the max number of “likes” a 
person could give (bad)

• but we only want to know the max, not 
every count—could that be easier?



reportNoisyMax

14

For m count queries add noise Lap(1/ε) to 
each, and report the index of the largest noised 
query.

Claim: reportNoisyMax is (ε, 0)-differentially 
private.

,
and accurate



Dpilechanisms

• Randomized Response

• Laplacian ( a gaussian ) Mechanism

• Noisy Max

• Exponential Mechanism

•
( Better ) composition



Ok, but I wanted to use my data for a scenario 
where direct noise addition doesn’t make sense

selecting from among discrete set of 
alternatives

small perturbation in outcome space could 
be disastrous for outcome quality



The Exponential Mechanism 

• A mechanism 𝑀: ℕ|𝑋| → 𝑅 for some abstract 
range R. 
– i.e. 𝑅 = Red, Blue, Green, Brown, Purple  
–        𝑅 = $1.00, $1.01, $1.02, $1.03, …  

• Paired with a quality score: 
𝑞: ℕ|𝑋| × 𝑅 → ℝ 

𝑞(𝐷, 𝑟) represents how good output 𝑟 is for database 𝐷. 



The Exponential Mechanism 

• Relative parameters for privacy, solution 
quality: 
– Sensitivity of 𝑞:  
𝐺𝑆 𝑞 = max

𝑟∈𝑅,𝐷,𝐷′: 𝐷−𝐷′ 1≤1
|𝑞 𝐷, 𝑟 − 𝑞 𝐷′, 𝑟 | 

– Size and structure of 𝑅. 
• How many elements of 𝑅 are high quality? How many 

are low quality? 



The Exponential Mechanism 
Exponential(𝐷, 𝑅, 𝑞:ℕ 𝑋 → 𝑅, 𝜖): 
1. Let Δ = 𝐺𝑆(𝑞). 
2. Output 𝑟 ∼ 𝑅 with probability proportional to: 

Pr 𝑟 ∼ exp
𝜖𝑞(𝐷, 𝑟)
2Δ

  

Pr 𝑟 =  
exp (𝜖𝑞 𝐷, 𝑟2Δ )

 exp (𝜖𝑞 𝐷, 𝑟
′

2Δ )𝑟′∈𝑅

 



The Exponential Mechanism 
Exponential(𝐷, 𝑅, 𝑞:ℕ 𝑋 → 𝑅, 𝜖): 
1. Let Δ = 𝐺𝑆(𝑞). 
2. Output 𝑟 ∼ 𝑅 with probability proportional to: 

Pr 𝑟 ∼ exp
𝜖𝑞(𝐷, 𝑟)
2Δ

  

Idea: Make high quality outputs exponentially more likely at a 
rate that depends on the sensitivity of the quality score (and the 

privacy parameter)  



6

Thm. The exponential mechanism preserves   
(ε, 0)-differential privacy.



The Exponential Mechanism 
Exponential(𝐷, 𝑅, 𝑞:ℕ 𝑋 → 𝑅, 𝜖): 
1. Let Δ = 𝐺𝑆(𝑞). 
2. Output 𝑟 ∼ 𝑅 with probability proportional to: 

Pr 𝑟 ∼ exp
𝜖𝑞(𝐷, 𝑟)
2Δ

  

But is the answer any good? 



The Exponential Mechanism 
Exponential(𝐷, 𝑅, 𝑞:ℕ 𝑋 → 𝑅, 𝜖): 
1. Let Δ = 𝐺𝑆(𝑞). 
2. Output 𝑟 ∼ 𝑅 with probability proportional to: 

Pr 𝑟 ∼ exp
𝜖𝑞(𝐷, 𝑟)
2Δ

  

But is the answer any good? 
 
 

It depends… 



The Exponential Mechanism 

Define: 
𝑂𝑃𝑇𝑞 𝐷 =  max

𝑟∈𝑅
𝑞(𝐷, 𝑟)     

𝑅𝑂𝑃𝑇 = *𝑟 ∈ 𝑅 ∶ 𝑞 𝐷, 𝑟 = 𝑂𝑃𝑇𝑞 𝐷 + 
𝑟∗ = Exponential(𝐷, 𝑅, 𝑞, 𝜖) 
Theorem: 

Pr 𝑞 𝑟∗ ≤ 𝑂𝑃𝑇𝑞 𝐷 −
2Δ
𝜖

log
𝑅

𝑅𝑂𝑃𝑇
+ 𝑡 ≤ 𝑒−𝑡 

output of

← exponential
mech .



The Exponential Mechanism 

Theorem: 

Pr 𝑞 𝑟∗ ≤ 𝑂𝑃𝑇𝑞 𝐷 −
2Δ
𝜖

log
𝑅

𝑅𝑂𝑃𝑇
+ 𝑡 ≤ 𝑒−𝑡 

Corollary:  

Pr 𝑞 𝑟∗ ≤ 𝑂𝑃𝑇𝑞 𝐷 −
2Δ
𝜖
log |𝑅| + 𝑡 ≤ 𝑒−𝑡 

Proof: 
𝑅𝑂𝑃𝑇 ≥ 1 by definition.  



Privateering ( using Exponential Mech )

Labelled example : CX
, g) E X x 20,13

Let D be a distribution over Labelled examples .

Algorithm A PAC Learns a class of functions C

( on d dimensions
,

so x c- Eo
, 1) d) - if VL

,
B 20

am -

- poly Cd ,
K

, log 7) s
.
t

.
for leery

distribution D
,
A takes m Labelled examples D

from D
,
and outputs f c- C such that

with prob 7- I - f

err Cf
, D) effing

err ( ft
,
D) + a



Privateering ( using Exponential Mech )

Labelled example : CX
, g) E X x 20,13

Let D be a distribution over labelled examples .

Algorithm A Png a class of functions C

( on d dimensions
,

so x c- Eo
, 1) d) - if VL

,
B 20

am -

- poly Cd ,
K

, log 7) s
.
t

.
for eury

distribution D
,
A takes m Labelled examples D

from D
,
and outputs f c- C such that

with prob 7- I - f

err

,
Cf

, D) effing
err ( ft

,
D) + a

• a

Fx I {Cx. # D1 fix )¥y3/ Pr [ fix ) # y)
Cx , y) - D



prwatepsclearn.in#
Now A is randomized

.
Takes m samples ,

D
,

from D
.
Should output fee

differential privacy : V- Neighboring D
,
D
'

Pr ( ACD) -
- f ] a Pr ( ACD ' ) =f ]

Q : How many additional samples are

required to privately learn ?



Privateering
① Use exponential mechanism : R = C

QCD , f) =
- ¥,

I ENDED If * yes / . sensitivity : In

with high prob . exponential mech returns some fec st
.

err Cf
,
D) engaging

err CE
,
D) to ( 'ES )



Privateering
① Use exponential mechanism : R = C

QCD , f) =
- ¥,

I ENDED If * y3/ . sensitivity : In

with high prob . exponential mech returns some fee sit
.

err Cf
,
D) e Fagin

err CE
,
D) to C

'ES ) ← mzlogkt
EL

② generalization tf GC :

( err Cf , D) - err Cf
, D) / E O ( ¥ ) ← me logic

L2

ie
.

m so ( max ( WILL
,
109¥ ) to get error

within 2 of OPT



privatePACLearn.in#

So exponential mechanism gives private sac
- I

learning algorithms with Little increase

in sample complexity !



privatePACLearn.in#

So exponential mechanism girls private sac
- I

learning algorithms with Little increase

in sample complexity !

BADNESS : very inefficient

But can often do much better



Dpilechanisms

• Randomized Response

• Laplacian ( a gaussian ) Mechanism

• Noisy Max

• Exponential Mechanism

•
( Better ) composition



Basic composition
• Setting:

• 𝑀𝑖 be (𝜖𝑖, 𝛿𝑖)-differentially private
• 𝑀 applies 𝑀1,… ,𝑀𝑡 on its input (the inner 𝑀1,… ,𝑀𝑡 use independent 

randomness).  
• Basic composition theorem [DMNS06, DL09]: 

• 𝑀 is (σ𝑖 𝜖𝑖, σ𝑖 𝛿𝑖)-differentially private
• Basic composition suggests that 𝜖 (and to a lesser account 𝛿) can be treated as a 

‘privacy budget’:
• Split ‘privacy budget’ 𝜖 into smaller budget σ𝑖 𝜖𝑖 ; allocate portion 𝜖𝑖 to 

mechanism 𝑀𝑖
• Spend your budget carefully!

• More refined theorems (later):
• Advanced composition [DRV10]
• Optimal composition [KOV15, MV15]



What is privacy loss? 
• Measured by the ‘privacy loss’ parameter 𝜖
• Fix adjacent 𝑥0, 𝑥1, draw 𝐶 ← 𝑀 𝑥0

• Is C more likely to come from 𝑥0 or 𝑥1

• Define 𝐿𝑜𝑠𝑠 𝐶 = ln Pr 𝑀 𝑥0 =𝐶
Pr[𝑀 𝑥1 =𝐶]

• 𝜀, 0 − 𝐷𝑃:𝑤. 𝑝. 1 𝑜𝑣𝑒𝑟 𝐶, 𝐿𝑜𝑠𝑠 𝐶 ≤ 𝜀
• 𝜀, 𝛿 − 𝐷𝑃∗: 𝑤. 𝑝. 1 − 𝛿 𝑜𝑣𝑒𝑟 𝐶, 𝐿𝑜𝑠𝑠 𝐶 ≤ 𝜀

4019

“19” more likely as 
output on 𝑥0 than on 𝑥1

“40” more likely as 
output on 𝑥1 than on 𝑥0

Log of likelihood ratio



What is privacy loss? 
• Fix adjacent 𝑥0, 𝑥1, draw 𝐶 ← 𝑀 𝑥0

𝐿𝑜𝑠𝑠 𝐶 = ln
Pr 𝑀 𝑥0 = 𝐶
Pr[𝑀 𝑥1 = 𝐶]

• In multiple independent executions loss accumulates
• Worst case: Loss= 𝜀 for every execution (as in analysis of basic 

composition)
• This is pessimistic: Loss can be positive, negative Æ cancellations
• Random variable, has a mean ([DDN03, DRV10]…)



Privacy Loss in Randomized Response
( general case follows similar argument)

RR
,

Cx )⇒{
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Privacy Loss in Randomized Response

So - E E Ci e E

c- Cci ] = e. ÷ ,

- elect, ] elite )
.

e
'

so Ei%ci ] -

-

,
:& C- Cci ] - K . e

'

•

-

. Expected cumulative loss E [ Ecu ] n KE
'

and I
i

-is .ci/sE
So this is a Martingale



Azuma 's Inequality

Let 4 , Cz ,
. . Ck be real valued r.v. 's

satisfying this c. Lipchitz property : Vj
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Price .
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Azuma 's Inequality

Let 4 , Cz ,
. . Ck be real valued r.v. 's

satisfying this c. Lipchitz property : V-j
I a .

- iscilee
Then htt so

Price .

> ECE.ci) + t ] e 2-
take '

We have C- I &.sc , ] - ke
' so we have

choose teae gives
Cd

,
s ) - dp

Pr Lii > ke
'

+YE . e) e S
-

E
'

ios.



Advanced Composition [DRV10]
Composing 𝑘 pure-DP algorithms (each 𝜀0-DP):

𝜀𝑔 = 𝑂 𝑘 ⋅ ln 1
𝛿𝑔
⋅ 𝜀0 + 𝑘 ⋅ 𝜀02 with all but 𝛿𝑔 probability.

For all 𝛿𝑔 simultaneously

Dominant if 𝑘 ≪ 1
𝜖02

Dominant if 𝑘 ≫ 1
𝜖02



DP ⇒ generalization

what is generalization?

say we train a model on training set x
,

where X = n
Labelled examples

ie . Xi : choose u ~ P
,

x. =

Cu
,

findIf model is accurate on x
,

then we

want to conclude model is accurate

on wholedlstwb.fm



Differential privacy Æ generalization “on average”

• Intuition: “Overfitting is a common enemy”
• Theorem [McSherry, folklore]: 𝔼 ℎ 𝑆 − 𝔼 ℎ 𝑃 ≤ 𝜖 + 𝛿

Intuition:
consider two 
experiments:

𝑠𝑖 : a random
element of 𝑆

≈
𝑫𝑷

• 𝑆 = 𝑠1, … , 𝑠𝑛 ∼ 𝑃
• 𝑧 ∼ 𝑃
• 𝑖 ∈𝑅 𝑛
• ℎ ← 𝑀 𝑆
• Return ℎ 𝑠𝑖

• 𝑆 = 𝑠1, … , 𝑠𝑛 ∼ 𝑃
• 𝑧 ∼ 𝑃
• 𝑖 ∈𝑅 𝑛
• ℎ ← 𝑀 𝑆 ∖ {𝑠𝑖} ∪ {𝑧}
• Return ℎ 𝑠𝑖

𝑠𝑖 : a random
element of 𝑃

Mechanism M
(𝜖, 𝛿)-

differentially 
private

ℎ: 𝑋 → [0,1]
Probability 
distribution

P
Sample

S



Differential privacy Æ generalization “on average”

• Theorem: 𝔼 ℎ 𝑆 − 𝔼 ℎ 𝑃 ≤ 2𝜖 + 𝛿

• Proof:
𝔼 ℎ 𝑆 = 𝔼

𝑆~𝑃
𝔼

ℎ←𝑀(𝑆)
ℎ 𝑆

(reorder expectations)= 𝔼
𝑆~𝑃

𝔼
ℎ←𝑀 𝑆

𝔼
𝑖∈𝑅[𝑛]

ℎ 𝑥𝑖

(consider 𝑀′ that takes output of 𝑀 and applies 
it on 𝑥𝑖,  then apply proposition)

= 𝔼
𝑆~𝑃

𝔼
𝑖∈𝑅[𝑛]

𝔼
ℎ←𝑀 𝑆

ℎ 𝑥𝑖

(rename 𝑧 and 𝑥𝑖 as (𝑆, 𝑧) ≡ (𝑆 ∖ 𝑥𝑖 ∪ 𝑧 , 𝑥𝑖)≤ 𝔼
𝑆~𝑃

𝔼
𝑖∈𝑅 𝑛

𝑒𝜖 𝔼
𝑧~𝑃; ℎ←𝑀 𝑆∖ 𝑥𝑖 ∪ 𝑧

ℎ 𝑥𝑖 + 𝛿

(𝑒𝜖 ≤ 1 + 2𝜖 for 𝜖 < 1)= e𝜖 𝔼
𝑆~𝑃

𝔼
ℎ←𝑀 𝑆

ℎ 𝑃 + 𝛿

(for other direction: let ℎ′ 𝑥 = 1 − ℎ(𝑥))= 𝔼
𝑆~𝑃

𝔼
ℎ←𝑀 𝑆

ℎ 𝑃 + 2𝜖 + 𝛿

( 𝔼
𝑧~𝑃

ℎ 𝑧 = ℎ(𝑃))= 𝔼
𝑆~𝑃

𝔼
𝑖∈𝑅 𝑛

𝑒𝜖 𝔼
𝑧~𝑃; ℎ←𝑀 𝑆

ℎ 𝑧 + 𝛿



Differential privacy Æ generalization (summary)

• Define: ℎ 𝑆 = 1
𝑛
∑ℎ(𝑠𝑖) and ℎ 𝑃 = Pr

𝑠∼𝑃
[ℎ 𝑠 ]

Expectation 

High probability 

Theorem [McSherry, 
folklore]:

𝔼
𝑆 ∼𝑃

ℎ←𝑀 𝑆

ℎ 𝑆 ≈ 𝔼
𝑆 ∼𝑃

ℎ←𝑀 𝑆

ℎ 𝑃

Theorem [DFHPRR’15]: Pr
𝑆 ∼𝑃

ℎ←𝑀 𝑆

ℎ 𝑆 − ℎ 𝑃 > 𝜖 ≤ 𝛿𝜖

Tight theorem [BNSSSU’16] 

(𝑛 ≥ 𝑂(
ln1𝛿
𝜖2
)):

Pr
𝑆 ∼𝑃

ℎ←𝑀 𝑆

ℎ 𝑆 − ℎ 𝑃 > 𝜖 ≤ 𝛿/𝜖

Hypothesis hSample
S~Pn

M: (𝜖, 𝛿)-
differentially 

private algorithm 

Probability 
distribution

P



Application to adaptive querying
• Differential privacy closed under post processing

• Robust generalization: further post-processing unlikely to generate a non-
generalizing hypothesis!

• In standard learning, a model (that generalizes) may inadvertently reveal 
the sample, and hence lead to a non-generalizing hypothesis!

• Differential privacy closed under adaptive composition
• [DFHPRR’15]: Even adaptive querying with differential privacy would not 

lead to a non-generalizing hypothesis



SUMMARY

Many DP mechanisms that can be mixed a matched :

•

Laplace , gaussian
• sparse vector

• subsampling
a Advanced Composition
• Exponential Mechanism



SUMMARY

Many DP mechanisms that can be mixed a matched :

•

Laplace , gaussian
• sparse vector

• subsampling
• Advanced Composition
• Exponential Mechanism

DP connected to generalization in ML

and to hypothesistesting



Next class
-

Private Machine Learning
• Motivation ,

• Theory
,

&

• Practice


