Multisensitive Attributes

So far we have only considered a single sensitive group/attribute S
Many situations involve several sensitive groups

How to handle?
 How to know what groups to consider?

Multisensitive Attributes

So far we have only considered a single sensitive group/attribute A
Many situations involve several sensitive groups

 How to handle?
 How to know what groups to consider ?
 Ex. Simpson's paradox (Probublica Was the classifier fair?

Achieving Multi-Sensitivity Fix some predefined collection of Idea: subsets. Each subset S=X should be large and simple Large: |S| = Y. | X/ Simple: S is easy to compute. let $C \in 2^{\chi}$ be a set of concept classes. Each 5 is computed by some cec. C simple: Low UC-dimension, or small ht decision trees so subsets easy to identify

Multi-sensitive Fairness Definitions

L

)

Definition 2.1 (Accurate in expectation). For any $\alpha > 0$ and $S \subseteq \mathcal{X}$, a pr in expectation (α -AE) with respect to S if

$$\left| \underset{i \sim S}{\mathbb{E}} [x_i - p_i^*] \right| \le \alpha.$$

Definition 2.7 (α -multi-AE). Let $\mathcal{C} \subseteq 2^{\mathcal{X}}$ be a collection of subsets of \mathcal{X} as x is α -multi-AE on \mathcal{C} if for all $S \in \mathcal{C}$, x is α -AE with respect to S.

For
$$v \in [0,1]$$
, $S_v = \{i \mid x_i = v\}$

Definition 2.2 (Calibration). For any $v \in [0, 1]$, $S \subseteq \mathcal{X}$, and predictor x, a For $\alpha \in [0, 1]$, x is α -calibrated with respect to S if there exists some $S' \subseteq S$ is such that for all $v \in [0, 1]$,

$$\mathbb{E}_{i \sim S_v \cap S'} [x_i - p_i^*] \le \alpha.$$

Multi Calibration

Definition 2.6 (α -multicalibration). Let $\mathcal{C} \subseteq 2^{\mathcal{X}}$ be a collection of subset predictor x is α -multicalibrated on \mathcal{C} if for all $S \in \mathcal{C}$, x is α -calibrated with

Multi-Calibration Improves accuracy

For ve
$$[0,1]$$
, $S_v = \{i \mid x_i = v\}$

Definition 2.2 (Calibration). For any $v \in [0, 1]$, $S \subseteq \mathcal{X}$, and predictor x, a For $\alpha \in [0, 1]$, x is α -calibrated with respect to S if there exists some $S' \subseteq S$ is such that for all $v \in [0, 1]$,

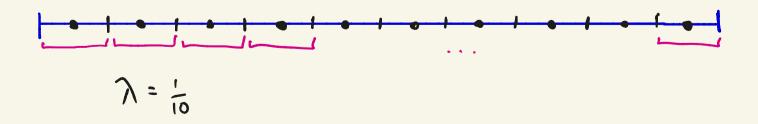
$$\left| \underset{i \sim S_v \cap S'}{\mathbb{E}} [x_i - p_i^*] \right| \le \alpha.$$

Calibration with Binning

Definition 2.8 (λ -discretization). Let $\lambda > 0$. The λ -discretization of $[0, \{\frac{\lambda}{2}, \frac{3\lambda}{2}, \dots, 1 - \frac{\lambda}{2}\}$, is the set of $1/\lambda$ evenly spaced real values over [0, 1]. F

$$\lambda(v) = [v - \lambda/2, v + \lambda/2]$$

be the λ -interval centered around v (except for the final interval, which wil

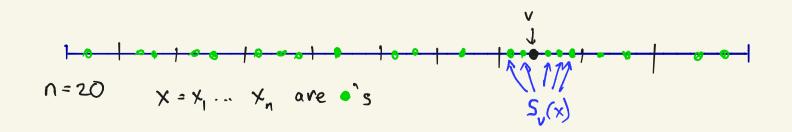


Multi-calibration with Binning

 $S_v(x) = \{i : x_i \in \lambda(v)\} \cap S \text{ for all } S \in \mathcal{C} \text{ and } v \in \Lambda[0, 1].$

Definition 2.9 ((α, λ) -multicalibration). Let $\mathcal{C} \subseteq 2^{\mathcal{X}}$ be a collection of $\alpha, \lambda > 0$, a predictor x is (α, λ) -multicalibrated on \mathcal{C} if for all $S \in \mathcal{C}, v \in \Lambda$ $S_v(x)$ such that $|S_v(x)| \ge \alpha \lambda |S|$, we have

$$\left|\sum_{i\in S_v(x)} x_i - p_i^*\right| \le \alpha \left|S_v(x)\right|.$$



Claim 2.10. For $\alpha, \lambda > 0$, suppose $\mathcal{C} \subseteq 2^{\mathcal{X}}$ is a collection of subsets multicalibrated on \mathcal{C} , then x^{λ} is $(\alpha + \lambda)$ -multicalibrated on \mathcal{C} .

Multi-accuracy Learning Algorithm for C

PAC Learning (
$$p$$
 unknown, ξ , ε fixed)
Let D be a distribution over X (think of D as
uniform distribution).
Learning algorithm A get n labelled samples
 $\{(i, 0;), i=1, ..., n\}$
where i drawn uniformly from X
and $0; \varepsilon \{20,1\}$ drawn from Bernoulli distrib
where $p_i^* = prob.$ of 1
 A outputs a hypothesis h such that with prob $21-\xi$
 $\|h-p^*\|_2 \leq \varepsilon$

Statistical Query Learning Algorithms

· PAC learning Where access to training data (labelled samples) is restricted

Definition 2.4 (Statistical Query Kea98). For a subset of the universe S For $\tau \in [0,1]$, a statistical query with tolerance τ returns some $\tilde{p}(S)$ satisfy

 $p_S^* - \tau N \le \tilde{p}(S) \le p_S^* + \tau N.$

.

2. Iteratively:
Find some S such that
$$p^*(s)$$
 is far
from χ_s
Update χ_s accordingly
when NO such S is found, output χ

Potential Argument (Main idea)
1. Initially
$$||p^* - \times ||_2^2$$
 is at most N
2. Everytime we find an S where accuracy
on S is bad, since S is large, the updated
 $||p^* - \times ||_2^2$ will drop by dN
.: algorithm iterates for $\frac{1}{2}$ steps

Potential Argument (Main idea)
1. Initially
$$\| \vec{p}^* - \times \|_2^2$$
 is at most N
2. Everytime we find an S where accuracy
on S is bad, since S is large, the updated
 $\| \vec{p}^* - \times \|_2^2$ will drop by dN
 \therefore algorithm iterates for \leq steps
Since we only get an estimate $\tilde{p}(s)$, analysis
slightly more complicated, and number of
iterations is polynomial in $\geq \frac{1}{2}$

Algorithm 3.1 – Learning an α -multi-AE predictor on \mathcal{C}

Let $\alpha, \gamma > 0$ and let $\mathcal{C} \subseteq 2^{\mathcal{X}}$ be such that for all $S \in \mathcal{C}$, $|S| \ge \gamma N$. For $S \subseteq \mathcal{X}$, let $\tilde{p}(S)$ be the output of a statistical query with tolerance $\tau < \alpha$

- Initialize:
 - Let $x = (1/2, \dots, 1/2) \in [0, 1]^N$
- Repeat:
 - For each $S \in \mathcal{C}$:

- Let
$$\Delta_S = \tilde{p}(S) - \sum_{i \in S} x_i$$

- If $|\Delta_S| > \alpha |S| \tau N$: update $x_i \leftarrow x_i + \frac{\Delta_S}{|S|}$ for all $i \in S$ (projecting x_i onto [0, 1] if neces
- \circ If no $S \in \mathcal{C}$ updated: exit and output x

Lemma 3.2. Suppose $\alpha, \gamma > 0$ and $\mathcal{C} \subseteq 2^{\mathcal{X}}$ such that for all $S \in \mathcal{C}$, |S|Then Algorithm 3.1 makes $O(1/\alpha^2 \gamma)$ updates to x before terminating.

Proof. We use a potential argument, tracking the progress the algorithm m terms of the ℓ_2^2 distance between our learned predictor x and the true protection of the predictor after updating x on set S and let $\pi : \mathbb{R} \to [0, 1]$ denote produce the fact that the ℓ_2^2 can only decrease under this projection. For nota $\delta_S = \frac{\Delta_S}{|S|} = \frac{1}{|S|} (\tilde{p}(S) - \sum_{i \in S} x_i)$. We have

$$\begin{aligned} \|p^* - x\|^2 - \|p^* - x'\|^2 &= \sum_{i \in S} (p_i^* - x_i)^2 - \sum_{i \in S} (p_i^* - \pi(x_i + \sum_{i \in S} ((p_i^* - x_i)^2 - (p_i^* - (x_i + \delta_S))))) \\ &= \sum_{i \in S} (2(p_i^* - x_i)\delta_S - \delta_S^2) \\ &= \left(2\delta_S \sum_{i \in S} (p_i^* - x_i)\right) - \delta_S^2 |S| \\ &\ge 2\delta_S (\delta_S |S| - \operatorname{sgn}(\delta_S)\tau N) - \delta_S^2 |S| \\ &\ge \delta_S^2 |S| - 2 |\delta_S| \tau N. \end{aligned}$$

By setting $\tau = \alpha \gamma / 4$ and by the bound $|\Delta_S| \ge \alpha |S| - \tau N \ge 3\alpha |S| / 4$, the find $\Omega(\alpha^2 |S|) \longrightarrow have$

$$\delta_S^2 |S| - 2 |\delta_S| \tau N \ge \left(\frac{3\alpha}{4}\right)^2 |S| - 2 \left(\frac{3\alpha}{4}\right) \left(\frac{\alpha\gamma}{4}\right) N$$
$$= \frac{3\alpha^2}{16} |S|.$$

The ℓ_2^2 distance between p^* and any other predictor (in particular, our initial bounded by N. Thus, given that all $S \in \mathcal{C}$ have $|S| \geq \gamma N$, we make at least potential at each update, so the lemma follows.

Theorem 3.3. For $\alpha, \gamma > 0$ and for any $\mathcal{C} \subseteq 2^{\mathcal{X}}$ satisfying $|S| \geq \gamma N$ j a statistical query algorithm with tolerance $\tau = \alpha \gamma/4$ that learns a α -mult $O(|\mathcal{C}|/\alpha^2 \gamma)$ queries.

Sample complexity

Corollary 3.4. Suppose $\alpha, \gamma, \xi > 0$ and $\mathcal{C} \subseteq 2^{\mathcal{X}}$ is such that for all $S \in$ there is an algorithm that learns an α -multi-AE predictor on \mathcal{C} with probability $n = \tilde{O}\left(\frac{\log(|\mathcal{C}|/\xi)}{\alpha^2\gamma}\right)$ samples.

Sample complexity

Corollary 3.4. Suppose $\alpha, \gamma, \xi > 0$ and $\mathcal{C} \subseteq 2^{\mathcal{X}}$ is such that for all $S \in$ there is an algorithm that learns an α -multi-AE predictor on \mathcal{C} with probability $n = \tilde{O}\left(\frac{\log(|\mathcal{C}|/\xi)}{\alpha^2\gamma}\right)$ samples.

multi-calibrated Learning Algorithm

Theorem 2. Suppose $\mathcal{C} \subseteq 2^{\mathcal{X}}$ is collection of sets such that for all $S \in$ suppose set membership can be evaluated in time t. Then there is an a predictor of $p^* : \mathcal{X} \to [0,1]$ that is α -multicalibrated on \mathcal{C} from $O(\log(|\mathcal{C}|)$ time $O(|\mathcal{C}| \cdot t \cdot \operatorname{poly}(1/\alpha, 1/\gamma))$.

Multi - Calibrated Learning Algorithm · Divide [0]] into 7 bins • Run prevous algorithm but now run over all pairs (S, 7(4)), VE ZI [0,1] such that ISV is large S. = { i | x, e interval R(v) and ies] It estimate of S, is bad, fix it

Algoritic learning a (d, 7) ing a calibrated predistation on C

Let $\alpha, \gamma > 0$ and let $\mathcal{C} \subseteq 2^{\mathcal{X}}$ be such that for all $S \in \mathcal{C}$, $|S| \ge \gamma N$. For $S \subseteq \mathcal{X}$, let $\tilde{p}(S)$ be the output of a statistical query with tolerance $\tau < \alpha$

• Initialize:

• Let
$$x = (1/2, \dots, 1/2) \in [0, 1]^N$$

- Repeat:
 For each ,S ∉ €: A[0,1], for each S = S ∧ ξi | x; ∈ λ(x)] such that
 ISI > «λ 15/
 - Let $\Delta_S = \tilde{p}(S) \sum_{i \in S} x_i$ - If $|\Delta_S| > \alpha |S| - \tau N$: update $x_i \leftarrow x_i + \frac{\Delta_S}{|S|}$ for all $i \in S$ (projecting x_i onto [0, 1] if neces
 - \circ If $\mathbf{r} \hspace{0.5mm} S \in \mathcal{C}$ updated: exit and output x

Multi - Calibrated Learning Algorithm · Divide [9] into 7 bins • Run previous algorithm but now run over all pairs (5,76), v E ZL[0,1] such that 15, 1s large Su = {i (xi e interval n(v) and ies] If estimate of S, is bad, fix it · Same analysis but now union bound our (ef. -A Pairs Naive analysis gives 2484 iterations, and n=2680 samples

Multi - Calibrated Learning Algorithm · Divide [9] into 7 bins • Run previous algorithm but now run over all pairs (5,761), v E ZI [0,1] such that 15/ is large S, = { i (x; einterval 7(v) and ces} It estimate of S, is bad, fix it · Same analysis but now union bound our (c(.; A pairs More complicated analysis using differential privacy gives 24x queries, 242 322 samples

Bad News

Algorithm is sample-efficient but terrible runtime -- - - - - - - - - - - - ((E()), and (E() is typically > N, where N is unliese size

Bad News

Efficient agnostic learning algorithm for e => efficient multi-calibrated learner for e

Theorem 3 (Informal). If there is a weak agnostic learner for C that runs is an algorithm for learning an α -multicalibrated predictor on $C' = \{S \in C : time \ O(T \cdot \text{poly}(1/\alpha, 1/\gamma)).$ Efficient Multi-calibrated Learner for C => efficient agnostic Learning algorithm for C

Theorem 4 (Informal). If there is an algorithm for learning an α -multicalic collection of sets $\mathcal{C}' = \{S \in \mathcal{C} : |S| \geq \gamma N\}$ that runs in time T, then there implements a (ρ, τ) -weak agnostic learner in time $O(T \cdot \text{poly}(1/\tau))$ for an $\text{poly}(\rho, \gamma, \alpha)$.

Agnostic Learning C
Let D be a distribution over X
A (p, T) - weak agnostic learner Z for C over D
solves the following problem:
given samples
$$\{(i, Y_i)\}\)$$
 where $i \sim D$, $Y_i \in [-1, i]$
such that some concept $c \in C$ has high correlation with
the samples: $\langle c, Y \rangle_D > P$,
Z returns some hypothesis h: $X \rightarrow [-1, 1]$ such
that $\langle h, Y \rangle_D > T$

Theorem 3 (Informal). If there is a weak agnostic learner for C that runs is an algorithm for learning *c*-accurate ulticalibrated predictor on $C' = \{S \in C : time \ O(T \cdot \text{poly}(1/\alpha, 1/\gamma)).$

IDEA Instead of bruteforce search own all
subgroups S to find one where
$$\|p^*(s) - X_s\|_2^2$$

is large, use agnostic learner A to
find some S' that is close to S, and
update X accordingly.

Theorem 3 (Informal). If there is a weak agnostic learner for C that runs is an algorithm for learning *c*-accurate ulticalibrated predictor on $C' = \{S \in C : time \ O(T \cdot \text{poly}(1/\alpha, 1/\gamma)).$

Idea: Assume A is a weak agnostic learner for C
If some
$$c \in C$$
 has $\iint \sum_{i \in C'(i)} x_i - p_i^* || > d | C'(i) |$
Then since $C'(i)$ is large, $\langle C, A_c \rangle > \rho$
(c is correlated with A_c)
So run agnostic learner A on samples
(i, $x_i - p_i^*$)

ACHIEVING MULTIACCURA Kim, Gorba

Main idea: Auditor iteratively uses a binary c. Postprocessing ("sensitive variable(s)") that most violates moded and and improves current classifier to satisfy it

Definition (Multiaccuracy auditing). Let $\alpha > 0, m \in \mathbb{N}$, and let $\mathcal{A} : \mathcal{X}^m \to \{$ algorithm. Suppose $D \sim \mathcal{D}^m$ is a set of independent random samples. A hype passes (\mathcal{A}, α) -multiaccuracy auditing if for $h = \mathcal{A}(D)$:

 $\mathop{\mathbb{E}}_{x \sim \mathcal{D}} \left[h(x) \cdot \left(f(x) - y(x) \right) \right] \le \alpha.$

Multiaccuracy-Boost algorithm:

- 1. Starts with black-box classifier f_0
- 2. Iterative post-processing algorithm like boosting:
- Auditor identifies most sub-optimal predictions
- Classifier uses multiplicative weights to improve those not harm others

ACHIEVING MULTIACCURA Kim, Gorba

Main idea: Auditor iteratively uses a binary costing of the sensitive variable(s)") that most violates more dury and improves current classifier to satisfy it

Definition (Multiaccuracy auditing). Let $\alpha > 0, m \in \mathbb{N}$, and let $\mathcal{A} : \mathcal{X}^m \to \{$ algorithm. Suppose $D \sim \mathcal{D}^m$ is a set of independent random samples. A hyperpasses (\mathcal{A}, α) -multiaccuracy auditing if for $h = \mathcal{A}(D)$:

x is u

Multiaccuracy-Boost algorithm: is close to some ce C

- 1. Starts with black-box classifier f_0
- 2. Iterative post-processing algorithm like boosting:
- Auditor identifies most sub-optimal predictions
- Classifier uses multiplicative weights to improve those not harm others

MULTIACCURACY BOOST

Given: initial hypothesis $f_0 : \mathcal{X} \to (0, 1)$; auditing algorithm \mathcal{A} ; accuracy proven validation data $D = D_0, \ldots, D_T \sim \mathcal{D}^m$:

$$\begin{aligned} \mathcal{X}_0 &\leftarrow \{ x \in \mathcal{X} : f_0(x) \leq 1/2 \} \\ \mathcal{X}_1 &\leftarrow \{ x \in \mathcal{X} : f_0(x) > 1/2 \} \\ \mathcal{S} &\leftarrow \{ \mathcal{X}, \mathcal{X}_0, \mathcal{X}_1 \} \end{aligned}$$

Partition

Repeat: from t = 0, 1, ...

- For $S \in \mathcal{S}$: $h_{t,S} \leftarrow \mathcal{A}^{f_t}(D_t)$ // audit current hypothesis f
- $S^* \leftarrow \operatorname{argmax}_{S \in \mathcal{S}} \mathbb{E}_{x \sim D_t} [h_{t,S}(x) \cdot (f_t(x) y(x))]$ // tak
- if $\mathbb{E}_{x \sim D_t}[h_{t,S^*}(x) \cdot (f_t(x) y(x))] \le \alpha$: // terminate return f_t
- $f_{t+1}(x) \propto e^{-\eta h_{t,S^*}(x)} f_t(x) \quad \forall x \in S^*$ // multiplicat

Intuition $-h_t$ based on gradient of (cross-entropy) loss wrt

Code available online

EXPERIMENTS

1). Adult:

- gender and race removed
- train 2-layer network on 27K individuals
- Multiaccuracy boost on 31K validation examples

Stage	All	F	M	в	W	BF	BN
Population Percentage (%)	100.0	32.3	67.7	86.1	9.2	4.6	4.
Initial Model (%)	19.3	9.3	24.2	10.5	20.3	4.8	15
MULTIACCURACY BOOST (%)	14.7	7.2	18.3	9.4	15.0	4.5	13
Subgroup-Specific (%)	19.7	9.5	24.6	10.5	19.9	5.5	15
Table 1. Teat	0.000.000.000	atos for	A daala	Incom	a Data	Cat	

Table 1: Test error rates for Adult Income Data Set

2). Faces:

- Train base network on Celeb-A, classify gender, race re
- Multiaccuracy boost on LFW+a dataset

Stage	All	\mathbf{F}	\mathbf{M}	в	N	\mathbf{BF}				
Population Percentage (%)	100	21.0	79.0	4.9	95.1	2.1				
Initial Model (%)	5.4	23.1	0.7	10.2	5.1	20.4				
MULTIACCURACY BOOST (%)	4.1	11.3	3.2	6.0	4.9	8.2				
Subgroup-Specific (%)	4.5	14.0	2.0	8.1	4.4	14.3				
Retraining (%)	4.5	13.5	2.1	6.0	4.4	8.8				
Table 2: Test error rates for LFW+a gender classification da										