
CS 2429 - Propositional Proof Complexity Leture #10: 21 November 2002

CS 2429 - Propositional Proof Complexity

Leture #10: 21 November 2002

Leturer: Toniann Pitassi

Sribe Notes by: Periklis A. Papakonstantinou

In the previous leture we presented the �rst part of the proof that for the AC

0

-Frege proof

systems (also alled bounded depth Frege proof systems) there exists an exponential lower bound

with respet to the proof size. In order to establish this result we started to prove that every

PHP

n+1

n

proof requires exponential proof size. The attak to this problem uses the following

tools: (a)\translation" of the swithing lemma from the iruit omplexity to the proof omplexity

ontext and (b) an interpretation from model/proof theory. From model/proof theory we apply

the idea of interpreting eah formula in a loal fashion that it is onsistent with the negation of the

pigeonhole priniple derived formula. In this leture we de�ne and sketh the proof of the swithing

lemma.

Theorem 1 Any AC

0

-Frege proof of PHP

n+1

n

requires exponential size.

1 Overview

There is a di�erene between the use of the deision trees in iruit omplexity lower bound proof

and their use in proof omplexity. The problem is that we annot straightforward relate a deision

tree with eah formula or subformula (as we did with the gates of the iruits), beause eah

formula/subformula is a tautology and hene omputes the onstant 1. So, subsequently, we are

going to de�ne the notion of Mathing Deision Trees. The high level of this proof follows:

� De�ne mathing deision trees and relate them with the restritions. Show how to \ombine"

mathing deision trees.

� Prove a variation of the swithing lemma we demonstrated in the previous leture. This

swithing lemma onerns the proof omplexity. Spei�ally it onerns the pigeonhole prin-

iple where we will use new distributions of the restritions.

In this leture we sketh the proof of the swithing lemma and we give the basi intuition behind

the semantis we are going to use.

2 Mathing Deision Trees and Restritions

We begin with some de�nitions, and then we are going to prove a few properties for them.
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Figure 1: D stands for the domain and R for the range. jDj = n+1, jRj = n and P

ij

; i � n+1; j � n

De�nition

1. A restrition � is a mathing from D to R.

2. The set of all partial mathings M

n

(there is no total mathing from D to R - �gure 2).

3. A mathing term is the assoiated set of literals (i.e. P

32

; P

45

; P

54

).
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Figure 2: A partial mathing

All of the above de�nitions are referring to the same thing. We ontinue by providing some more

de�nitions:

De�nition A mathing overs a pigeon at the hole i if some edge in mathing mentions i.

De�nition A mathing disjuntion is an unbounded disjuntion of mathing terms.

For example P

11

P

22

_ P

34

P

21

_ P

54

P

11

is a mathing disjuntion. Keep in mind that this is the

kind of mathing we really are about.
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De�nition An r-disjuntion is a mathing disjuntion where all terms have size at most 2.

Let F = C

1

_ C

2

_ : : : _ C

n

be a mathing disjuntion over fD;Rg = S and � a mathing

restrition. A anonial mathing deision tree for F over S, Tree

S

(F �

�

) is desribed as follows:

In the deision tree we are going to \trunate" all the paths that ontain assignments that do not

orrespond to the mathing. Shematially, assume that we have the mathing of �gure 3. Also,

assume that we have the (lexiographially ordered subsripts) formula

F = P

17

P

38

_ P

16

P

27

_ P

49

P

56

_ P

16

P

59

, where after the appliation of the restrition, it remains:

F �

�

= P

27

_ P

59

5

4

3

2

1

10

9

8

7

6

D R

Figure 3: Pigeon 1 goes to hole 6. Hene P

16

is true. The dashed lines orrespond to falsi�ed

variables (not all dashed lines appear in this �gure).

The deision tree of �gure 3 is going to query all possible holes where P an get mapped to.

Pay attention of how the tree is being formed. For example onsider the path 2; 7; 5. from node 5

we only ask whether \pigeon 5 goes to hole 9" and we do not ask (query) whether \pigeon 5 goes

to hole 7" beause in this path pigeon 4 has already been mapped to hole 7.

5,7
4,7

3,7

5 5

5,74,73,7

7

2,9
2,8

2

2,7

1

1
0

0 0 0

5,
9

1

5,
9

Figure 4: A anonial mathing deision tree (every

To make things more lear, onsider another formula F

0

= P

27

_ P

59

. Assume that we have a

restrition � where pigeon 2 goes to hole 8 and pigeon 3 goes to hole 7 (in F

0

pigeon 2 is mapped
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to hole 7). Thus, F

0

�

�

= P

59

.

A branh of a (deision) tree is a path from the root to a leaf. It is lear that a mathing tree

is a deision tree in whih branhes represent mathings. The formal de�nition of a mathing tree

follows:

De�nition A mathing tree T over S (remember S = D [ R)is a tree satisfying the above

onditions:

1. The nodes of the tree, other than the leaves, are labeled with verties of S.

2. If a node of a T is labeled with a vertex i 2 S then the edges leading out of the vertex are

labeled with distint pairs of the form fi; jg, where j 2 R if i 2 D or j 2 D if i 2 R.

3. No vertex or edge label is repeated on a branh of T .

4. If p is a vertex of T then the edge labels on the path from the root of T to p determine a

mathing �(p) between D and R.

Intuitively there is a need for an \interfae" between the tree and the mathing. The following

de�nitions establish this fat:

De�nition The branh of T Br(T ) is the set of all mathing terms/restritions assoiated with the

paths of T . We distinguish between the paths having as leaves 1 and 0. Then, Br

1

(T )[Br

0

(T ) =

Br(T ).

Formally, the above de�nition orresponds to Br(T ) = f�(l)jl is a leaf of Tg.

If M is the set of mathings, then T is omplete for M if for every vertex p in T labeled with a

vertex i 2 S, the set of mathings f�(q)jq is a hild of pg onsists of all mathings of M of the

form �(q) [ ffi; jgg.

De�nition If F is a mathing disjuntion and T is a mathing deision tree then T represents F

if for every � 2 B

r

(T ); F �

�

= 1. If � is labeled 1 in T and F �

�

= 0 if � is labeled by 0 in T .

Below we provide the indutive de�nition of a anonial mathing tree.

De�nition Let F = C

1

_ : : : _ C

m

be a mathing disjuntion over S. The anonial mathing

deision tree for F over S, Tree

S

F , is de�ned indutively as follows:

1. If F � 0 then Tree

S

(F ) is a single node labeled 0. If F � 1 then Tree

S

(F ) is a single node

labeled 1.

2. If F 6� 1 and F 6� 0, then let C be the �rst mathing term in F suh that C 6� 0. Then

Tree

S

(F ) is onstruted as follows:

(a) Construt the full mathing tree for the verties that are assoiated with variables

ourring in C.

(b) Replae eah leaf l of the previously onstruted full mathing tree by the anonial

mathing deision tree Tree

S�

�(l)

(F � �(l)).
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Follows a key onept of this proof:

Important Remark: The same tree an represent a lot of formulae. The reason is that we

do not have values for the hole truth assignment.

We shematially sketh the de�nition of a restrition applied to a omplete mathing deision

tree: Let T be a omplete mathing deision tree and � a restrition. Consider the tree of �gure

4. Then T �

�

is another mathing deision tree obtained as in �gure 5. You an observe that the

restrition shrinks the tree. The new (derived under the restrition) tree is the one of �gure 6.

5,7
4,7

3,7

5 5

5,74,73,7

7

2,9
2,8

2

2,7

1

1
0

0 0 0

5,
9

1

5,
9

Figure 5: We apply the restrition � : 4! 7

2,9

2

0

5

1

5,
9

Figure 6: The resulting tree, after the appliation of the restrition (see �gure 5).

A few more de�nitions and we the subsequent lemma are provided.

De�nition Let T be a mathing deision tree, then T



is the tree T with the leaf labels omple-

mented (just hange the leaves from 0 to 1 and vie versa).

De�nition Disj(T ) = t

1

_ : : : _ t

m

, where ft

1

; : : : ; t

m

g = Br

1

(T ).

Lemma 2 Let T be a mathing deision tree, � a restrition.

1. Disj(T ) �

�

= Disj(T �

�

).
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2. If T is omplete for D;R then T �

�

is omplete for D �

�

; R �

�

.

3. (T �

�

)



= T



�

�

4. If l is a leaf in T �

l

then there is a leaf l

0

in T with the same label as l so that �(l

0

) � �(l)[�,

where � is a restrition or a mathing term.

5. If T represents F , then T �

�

represents F �

�

.

From the above lemma the \most important" part for our proof is the (5).

3 Evaluations and the Mathing Swithing Lemma

Let P be a small (that is 2

n

s

, where s <

1

5

d

) depth of Frege proof of PHP

n+1

n

. P = F

1

; F

2

; : : : ; F

m

,

where F

m

=PHP

n+1

n

bounded depth Frege proof. Let R be their set of all subformulae ourring

in P (think of it of the orresponding way, of as having many iruits).

De�nition R = R

1

[R

2

[ : : : [R

d

, where R

i

is the depth

1

i subformulae in R.

Let M

�

n

= f� 2 M

n

jR �

�

= lg. We intuitively de�ne whih is bad: \you" are bad if the

orresponding anonial tree has height bigger than s. Hene:

Bad

l

n

(F; s) = f� 2M

l

n

j height(Tree

S�

�

(F �

�

)) � sg

Lemma 3 Let F be an r-disjuntion over D;R, where jDj = n + 1; jRj = n; l � 10; � =

l

n

. If

r � l and p

4

n

3

� 1=10 then:

jBad

l

n

(F; 2s)j

jM

l

n

j

� (11p

4

n

3

r)

s

The proof goes like the one we have seen in the previous leture (leture 9). Now we are going

to put everything together:

De�nition Let R be as de�ned previously. A k-evaluation T is an assignment of a omplete

mathing deision trees T (A) to formulae A in R suh that:

1. T (A) has depth less or equal to k.

2. T (1) is the single node labeled 1, and T (0) is the single node labeled 0.

3. T (P

ij

) is the full tree for i; j over D;R (i.e. the anonial tree for P

ij

).

4. T (:A) = T (A)



5. If A is a disjuntion A = A

1

_A

2

_ : : : _A

k

, then T (A) represents _

i2I

Disj(T (A

i

)).

This is one of the basi onepts of the proof. Semantially there is some onnetion with the

tree and the representation as it is shown in �gure 7. For example if all leaves are labeled to 1 we

have a \kind" of \tautology". However this notion of \tautology" is not preserved under (sound)

inferenes. This is the key idea of the lower bound argument.

This onnetion an be demonstrated by the example of �gure 8 (Attention! This is not a

formula whih orresponds to the PHP; we provided it here only to exemplify things). We will talk

about this \semanti onnetion" in the next leture.

1

For a de�nition of iruit depth see at leture 9
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Associated
 with

A1 A2 Am

0 0 1 1 0 0 1 1 1 1 0 0 0 0 1

Figure 7: XXX

1,2

P11 \/ P12 \/ ... \/ P1n

0 1 1

1 1 1

1,1 Hole 1

Pigeon 1

0 1

Pigeon 1

1 1 1

Hole 2

1

Figure 8: XXX
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