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1 Introdution

In the last leture, we ompleted the proof that any bounded-depth Frege proof of the propositional

pigeonhole priniple requires exponential size. In this �nal leture, we will �rst disuss the best

known upper bounds for the pigeonhole priniple.

Then we will step bak and review the relative omplexities of the various proof systems dis-

ussed in this ourse: Resolution, Cutting Planes, bounded-depth Frege, Frege, LK, Extended

Frege, and the Hajos Calulus. The next step is to prove superpolynomial lower bounds for Frege

systems. This would be a major breakthrough in logi and omplexity theory and seems to be

beyond present reah.

We will disuss potential hard tautologies for proving superpolynomial lower bounds for Frege

systems.

We will onlude with a disussion of other important open problems.

2 Upper Bounds for the Pigeonhole Priniple

As we mentioned in an earlier leture, Buss has shown the following theorem.

Theorem 1 (Buss). For all n, there are polynomial-size (depth O(log n)) Frege proofs of PHP

n+1

n

.

The proof of the above theorem is not diÆult oneptually, but the proof is nontrivial. The

idea is to de�ne a multi-output polynomial-size formula that takes as input a binary vetor, and

outputs the number of 1's in the vetor. This is well-known to be doable with arry-save addition

iruits. Then using standard properties of addition, that an be eÆiently proven about the arry-

save addition iruits, it is shown that from the pigeon assumptions of :PHP

n+1

n

, that the sum of

all of the variables P

i;j

is at least n+ 1, and from the hole assumptions, that the sum of this same

set of variables is at most n, and hene we reah a ontradition.

For the weak pigeonhole priniple, ParisWoods andWilkie showed that there are quasipolynomial-

size bounded-depth proofs. Reently their result was improved by Maiel, Pitassi and Woods who

give a proof of depth that is only :5. This means that eah formula in the LK derivation is either

a onjuntion of polylogn many literals, or a disjuntion of polylogn many literals.

Theorem 2. For all n, PHP

n

2

n

has depth :5 LK proofs of size n

O(logn)

, and PHP

2n

n

has depth :5

LK proofs of size n

O(log n)

2

.
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3 Relative Complexity of Proof Systems

Reall the proof system hierarhy from Leture 2. In previous letures, we have proven exponential

lower bounds for Resolution, Cutting Planes and bounded-depth Frege proofs.

Figure 1: Proof System Hierarhy

The most outstanding open problem is to extend the lower bounds to Frege systems. Currently,

the best size lower bound for Frege systems is the following theorem, due to Sam Buss.

Theorem 3 (Buss). There is a family of tautologies that require an O(n) line Frege or Extended

Frege proof, and an O(n

2

) size Frege or Extended Frege proof.

The family of tautologies are very simple. They are of the form F _ (F _ (F _ :::(F _ T ):::).

The idea behind the lower bound is simple. The formula is a tautology but it is not an instane

of a shorter tautology. Therefore, eah onnetive must be \peeled" o� by some rule. Sine eah

rule involves only a �nite number of ative onnetives, the total number of rules must be linear

in the size of the tautology. The size bound is proven by formalizing the fat that the rule must

break apart the statement from outside to inside and indoing so, it ends up repeating subformulas

many times.
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Although substitution Frege (sF) is polynomially equivalent to Extended Frege, it is substan-

tially harder to prove lower bounds on the length of sF proofs. The best lower bound for sF is

due to Urquhart, who proved that there is a family of formulas that require an O(n= log n) line sF

proof. The proof does not give an expliit family of formulas. Proving quadrati lower bounds on

the symbol size of an sF proof is also an open problem.

4 Potential Hard Examples for Frege

4.1 Partial Consisteny statements

The lassi example of statements that are unprovable in systems of arithmeti are onsisteny

statements. Ordinary onsisteny statements are not expressible propositionally and hene they

do not apply to our setting. However, it is possible to ome up with a partial onsisteny statement

that is formalizable propositionally. The idea here is that there is a parameter n, and Con

S

(n)

expresses that there is no S-proof of False with size at most n.

Cook was the �rst to formalize partial self-onsisteny statements for EF, Con

EF

(n). He showed

that there are polynomial-size EF proofs of Con

EF

(n). Later, Buss studied partial onsisteny

statements for Frege as well, and he proved that there are short Frege proofs of Con

Frege

(n).

Below we will outline Buss's formalization of Con

S

(n) for a propositional Frege system S. In

order to formalize Con

S

(n), we have to show how to represent an S-proof as a bit sequene, and

show how to de�ne formulas for interpreting the sequene as a sequene of formulas.

Proofs in S will be represented by words/strings in a 19 harater alphabet � ontaining p,

0, 1, parenthesis, omma and 13 propositional onnetives. A propositional variable p

i

will be

represented by \p" followed by a string of 0's and 1's oding i in binary. Commas will be used to

separate formulas in a proof. Strings over � are further enoded over the language L = f0; 1g by

assigning a unique 5-bit ode to eah symbol in �. Thus an S-formula with k symbols (ounting

the symbols used to ode the subsripts of the variables) will be oded by 5k truth values.

Let x represent a vetor of propositional variables x

1

; : : : ; x

5k

. We want to show that \x odes

a formula" an be represented by a polynomial-size propositional formula. The key tool to parsing

a formula oded by x is to show how to ount parenthesis. Let jxj denote the number of logial

symbols in x. Then \x odes a formula" will be expressed as: (1) ...

Now we need to de�ne the onept of an S-proof with a polynomial-size formula. A proof is

oded by formulas separated by ommas, where eah formula is either an instane of an axiom

sheme or follows by modus ponens from two previous formulas. For S there are a �nite number of

axiom shemes so it is easy to de�ne a polynomial-size formula expressing \x is an instane of an

axiom sheme." Similarly it is possible to de�ne a polynomial-size formula expressing \x is derived

from y and z by modus ponens."

Buss proved, using lever formulas for evaluating the truth value of a formula on a given input,

that Con

Frege

(n) is provable with polynomial-size Frege proofs. He also showed that Con

EF

(n) is

provable with polynomial-size Frege proofs if and only if Frege an polynomially simulate Extended

Frege. Thus Con

EF

(n) is a potential hard example for Frege.

Partial onsisteny formulas are exellent from one point of view: if there are hard examples

at all separating EF from Frege, then we know that Con

eF

is suh an example. However, a

disadvantage of these formulas is that there is no to believe that they are hard in the �rst plae,

other than the belief that EF is stronger than Frege. So these examples seem to provide no further
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evidene that Frege is not polynomially bounded.

In an attempt to retify the above ritiism, Avigad reformulates partial onsisteny statements

for Frege and Extended Frege systems in an extremely elegant way, by using a partiularly simple

formulation of a Frege system over the single NAND onnetive. He de�nes a Frege system F

1

over

this one onnetive onsisting of only one axiom:

nand(g; f ; nand(f));

and one rule:

nand(g; f); nand(g; nand(f))

nand(g)

and proves that F

1

is omplete.

Beause of the simpliity of F

1

, he an relate the onsisteny of F

1

to a ombinatorial property

of hereditarily �nite sets.

4.2 Matrix identities

There are several propositional statements that ome from linear algebra that do not seem to have

feasible Frege proofs. The simplest of these (due to Steve Cook) expresses the fat that for any

two n by n matries A and B,

AB = I ! BA = I:

To express this propositionally, we onsider 0/1 matries A and B over GF

2

. For eah n, there

are 2n

2

underlying variables a

i;j

and b

i;j

desribing the matries. It is not hard to express this

identity in these variables with polynomial-size formulas, or by introduing a linear number of

auxillary variables, one an obtain a CNF formula of polynomial-size. for eah n. We will denote

these tautologies by AB

n

.

What is known about the omplexity of these tautologies? Bonet, Buss and Pitassi originally

onjetured that these tautologies should have EF proofs of polynomial-size, and Frege proofs of

quasipolynomial-size. The reasoning behind this onjeture is based on the fat that iall onepts

in the standard proof are expressible as quasipolynomial-size formulas. Therefore it is reasonable

to expet that the relevant properties of these onepts (determinant, et) an also be proven in

quasipolynomial-size, to give a Frege proof of quasipolynomial-size, simulating the standard proof.

However, despite onsiderable e�ort, there is still no known subexponential-size Frege proof of

these tautologies to date! The best known proof, due to Cook and Soltys, is a polynomial-size

Extended Frege proof. In a systemati study of matrix identities (inluding this one), Cook and

Soltys developed a quanti�er-free, three-sorted logial theory for linear algebra alled LA. The

sorts are indies, �eld elements and matries. In LA one an express universal matrix identities

suh as the one above, and prove all of the ring properties of matries. Further, formulas in LA

translate into familes of propositional formulas. Using the language of LA, they formalize Gaussian

elimination enabling them to give polynomial-size EF proofs of AB

n

, along with short proofs for

many other matrix identities. They also put the identities into equivalene lasses (based on how

muh proof-theoreti strength beyond LA seems to be required to prove them) and give LA proofs

of equivalenes within eah lass.
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4.3 Ciruit Lower Bounds

In this setion we will explain one way of expressing that SAT (or some other NP -hard language)

does not have polynomial-size iruits with a family of propositional formulas.

Let C

n

be an n input iruit of size s. We'll typially assume that s is superpolynomial, and here

we'll think of s = n

log n

. C

n;s

an be represented by s

O(1)

variables. (In this ase n

O(logn)

boolean

variables), 

1

; : : : ; 

q

. Let f be an NP -omplete language (suh as SAT), and let f

n

be f on inputs

of length n. We will think of f as being �xed, and eah f

n

will be viewed as a partiular, �xed,

binary string of length 2

n

, f

n

= �

1

�

2

: : : �

2

n

. Then we an express that f

n

annot be omputed

by C

n;s

by the propositional statement, Hard(f)

n;s

, as follows.

_

i;�

i

=1

C

n;s

(i) = 0 _

_

j;�

j

=1

C

n;s

(j) = 1

where C

n;s

(i) = 0 is a propositional formula (in 

1

: : : 

q

) that is true if and only if the iruit C

n;s

oded by 

1

; : : : ; 

q

outputs 0 on input i.

In order to formulate Hard(f)

n;s

as a CNF formula, it is neessary introdue a linear number of

extra variables in addition to 

1

; : : : 

q

in order to simplify the desription of the formulas C

n;s

(i) =

0, and C

n;s

(i) = 1 so that they an be expressed in CNF form. This an be done in many standard

ways.

The formula Hard(f)

n;s

has length 2

O(n)

, and s

O(1)

many variables (Here, 2

O(log n)

many vari-

ables.) If in fat HardD(f)

n;s

is true, then a straightforward tree-like Resolution refutation of

:Hard(f)

n;s

will be exponential in the number of variables, and hene is not polynomial in the

size of :Hard(f)

n;s

.

It has been onjetured that Hard(f)

n;s

requires superpolynomial-length Frege proofs for f

an NP-omplete language, and s = n

logn

. Of ourse, if Hard(f)

n;s

is not true, then the onje-

ture is vauous. But if f really does require large iruits, then lower bounds for Hard(f)

n;s

in

ertain proof systems are important sine they shed light on the metamathematial properties of

proving iruit lower bounds. Reently it has been shown by Razborov that Hard(f)

n;s

requires

superpolynomial-size Resolution proofs for many values of s.

Lower bounds for Hard(f)

n;s

are open not only for Frege, but also for Cutting Planes and

bounded-depth Frege systems. Note that this is a family of formulas that is parameterized not

only by n (the size of the input to f) but also by s, the size of the iruit, C

n;s

. When s is small

enough (say sublinear), then Hard(f)

n;s

is known to be true, and when s is extremely large (say

2

n

) then Hard(f)

n;s

is known to be false sine there are exponential-size iruits for omputing

any boolean funtion. Thus as s dereases, the formula Hard(f)

n;s

beomes \more true" and

therefore should be easier to prove. Notie also that when s dereases then the number of variables

underlying Hard(f)

n;s

gets smaller, so the obvious tree-like Resolution proof does get smaller.

Random (unsatis�able) kCNF formulas are another example of a family of formulas that are

parameterized by two values, n, the number of variables, and m, the number of lauses. When n is

�xed, as m inreases, a random formula with n variables and m lauses is \more false" and hene

should be easier to refute.

Both of these families of formulas (random formulas and formulas expressing the hardness of

omputing a spei� NP-hard funtion) are generally believed to be hard for Frege systems for some

nontrivial value of the parameters. However, there is no real evidene that I know of indiating

that this should be the ase.
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4.4 Number theoreti statements

Another rih soure of hard examples omes from number theory.

Let Composite(a) be a propositional formula stating that there exist two numbers 1 < u; v < a

suh that uv = a. Then for eah prime number p, let Prime

p

be the propositional formula

:Composite(p). Jan Krajiek has suggested that this family of tautologies should be hard for

ertain primes. Charlie Rako� onjetures that it is hard for every prime.

5 Open Problems

� Is there a strongest proof system? Give some evidene one way or the other.

� Prove that random kCNF formulas are hard for AC

0

-Frege.

� Prove that the Tseitin graph tautologies are hard for Cutting Planes.

� There are several proof systems along the lines of Cutting Planes that are important and

relatively unexplored. One example is the Lovasz-Shriver Proof System, whih is based on

0/1 programming. The initial inequalities are like those for Cutting Planes. However, now

one an substitute x for x

2

anywhere. Also the division rule is not present. Non-negative

degree 2 polynomials an be obtained by multiplying two non-negative linear quantities or by

adding the square of any linear quantity. This system polynomially simulates resolution and

an also prove the propositional pigeonhole priniple eÆiently. It has feasible interpolatin,

and hene it is known to be not polynomially bounded under the assumption that NP is not

ontained in P=poly. However there is no expliit hard tautuology known for it. Another

question is whether or not this system an eÆiently simulate Cutting Planes.

� Does the matrix identity AB = I ! BA = I have quasipolynomial-size Frege proofs?

� How do the various plausibly hard tautologies that we disussed above ompare with one an-

other. For example, how does AB

n

ompare with Con

EF

(n)? Can Frege plus AB

n

eÆiently

prove Con

EF

(n)? Can AC

0

Frege plus AB

n

prove Con

F

(n)? Give a systemati treatment

of the relative omplexities of these various lasses of examples.
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