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1 Introdu
tion

In the last le
ture, we 
ompleted the proof that any bounded-depth Frege proof of the propositional

pigeonhole prin
iple requires exponential size. In this �nal le
ture, we will �rst dis
uss the best

known upper bounds for the pigeonhole prin
iple.

Then we will step ba
k and review the relative 
omplexities of the various proof systems dis-


ussed in this 
ourse: Resolution, Cutting Planes, bounded-depth Frege, Frege, LK, Extended

Frege, and the Hajos Cal
ulus. The next step is to prove superpolynomial lower bounds for Frege

systems. This would be a major breakthrough in logi
 and 
omplexity theory and seems to be

beyond present rea
h.

We will dis
uss potential hard tautologies for proving superpolynomial lower bounds for Frege

systems.

We will 
on
lude with a dis
ussion of other important open problems.

2 Upper Bounds for the Pigeonhole Prin
iple

As we mentioned in an earlier le
ture, Buss has shown the following theorem.

Theorem 1 (Buss). For all n, there are polynomial-size (depth O(log n)) Frege proofs of PHP

n+1

n

.

The proof of the above theorem is not diÆ
ult 
on
eptually, but the proof is nontrivial. The

idea is to de�ne a multi-output polynomial-size formula that takes as input a binary ve
tor, and

outputs the number of 1's in the ve
tor. This is well-known to be doable with 
arry-save addition


ir
uits. Then using standard properties of addition, that 
an be eÆ
iently proven about the 
arry-

save addition 
ir
uits, it is shown that from the pigeon assumptions of :PHP

n+1

n

, that the sum of

all of the variables P

i;j

is at least n+ 1, and from the hole assumptions, that the sum of this same

set of variables is at most n, and hen
e we rea
h a 
ontradi
tion.

For the weak pigeonhole prin
iple, ParisWoods andWilkie showed that there are quasipolynomial-

size bounded-depth proofs. Re
ently their result was improved by Ma
iel, Pitassi and Woods who

give a proof of depth that is only :5. This means that ea
h formula in the LK derivation is either

a 
onjun
tion of polylogn many literals, or a disjun
tion of polylogn many literals.

Theorem 2. For all n, PHP

n

2

n

has depth :5 LK proofs of size n

O(logn)

, and PHP

2n

n

has depth :5

LK proofs of size n

O(log n)

2

.
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3 Relative Complexity of Proof Systems

Re
all the proof system hierar
hy from Le
ture 2. In previous le
tures, we have proven exponential

lower bounds for Resolution, Cutting Planes and bounded-depth Frege proofs.

Figure 1: Proof System Hierar
hy

The most outstanding open problem is to extend the lower bounds to Frege systems. Currently,

the best size lower bound for Frege systems is the following theorem, due to Sam Buss.

Theorem 3 (Buss). There is a family of tautologies that require an O(n) line Frege or Extended

Frege proof, and an O(n

2

) size Frege or Extended Frege proof.

The family of tautologies are very simple. They are of the form F _ (F _ (F _ :::(F _ T ):::).

The idea behind the lower bound is simple. The formula is a tautology but it is not an instan
e

of a shorter tautology. Therefore, ea
h 
onne
tive must be \peeled" o� by some rule. Sin
e ea
h

rule involves only a �nite number of a
tive 
onne
tives, the total number of rules must be linear

in the size of the tautology. The size bound is proven by formalizing the fa
t that the rule must

break apart the statement from outside to inside and indoing so, it ends up repeating subformulas

many times.
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Although substitution Frege (sF) is polynomially equivalent to Extended Frege, it is substan-

tially harder to prove lower bounds on the length of sF proofs. The best lower bound for sF is

due to Urquhart, who proved that there is a family of formulas that require an O(n= log n) line sF

proof. The proof does not give an expli
it family of formulas. Proving quadrati
 lower bounds on

the symbol size of an sF proof is also an open problem.

4 Potential Hard Examples for Frege

4.1 Partial Consisten
y statements

The 
lassi
 example of statements that are unprovable in systems of arithmeti
 are 
onsisten
y

statements. Ordinary 
onsisten
y statements are not expressible propositionally and hen
e they

do not apply to our setting. However, it is possible to 
ome up with a partial 
onsisten
y statement

that is formalizable propositionally. The idea here is that there is a parameter n, and Con

S

(n)

expresses that there is no S-proof of False with size at most n.

Cook was the �rst to formalize partial self-
onsisten
y statements for EF, Con

EF

(n). He showed

that there are polynomial-size EF proofs of Con

EF

(n). Later, Buss studied partial 
onsisten
y

statements for Frege as well, and he proved that there are short Frege proofs of Con

Frege

(n).

Below we will outline Buss's formalization of Con

S

(n) for a propositional Frege system S. In

order to formalize Con

S

(n), we have to show how to represent an S-proof as a bit sequen
e, and

show how to de�ne formulas for interpreting the sequen
e as a sequen
e of formulas.

Proofs in S will be represented by words/strings in a 19 
hara
ter alphabet � 
ontaining p,

0, 1, parenthesis, 
omma and 13 propositional 
onne
tives. A propositional variable p

i

will be

represented by \p" followed by a string of 0's and 1's 
oding i in binary. Commas will be used to

separate formulas in a proof. Strings over � are further en
oded over the language L = f0; 1g by

assigning a unique 5-bit 
ode to ea
h symbol in �. Thus an S-formula with k symbols (
ounting

the symbols used to 
ode the subs
ripts of the variables) will be 
oded by 5k truth values.

Let x represent a ve
tor of propositional variables x

1

; : : : ; x

5k

. We want to show that \x 
odes

a formula" 
an be represented by a polynomial-size propositional formula. The key tool to parsing

a formula 
oded by x is to show how to 
ount parenthesis. Let jxj denote the number of logi
al

symbols in x. Then \x 
odes a formula" will be expressed as: (1) ...

Now we need to de�ne the 
on
ept of an S-proof with a polynomial-size formula. A proof is


oded by formulas separated by 
ommas, where ea
h formula is either an instan
e of an axiom

s
heme or follows by modus ponens from two previous formulas. For S there are a �nite number of

axiom s
hemes so it is easy to de�ne a polynomial-size formula expressing \x is an instan
e of an

axiom s
heme." Similarly it is possible to de�ne a polynomial-size formula expressing \x is derived

from y and z by modus ponens."

Buss proved, using 
lever formulas for evaluating the truth value of a formula on a given input,

that Con

Frege

(n) is provable with polynomial-size Frege proofs. He also showed that Con

EF

(n) is

provable with polynomial-size Frege proofs if and only if Frege 
an polynomially simulate Extended

Frege. Thus Con

EF

(n) is a potential hard example for Frege.

Partial 
onsisten
y formulas are ex
ellent from one point of view: if there are hard examples

at all separating EF from Frege, then we know that Con

eF

is su
h an example. However, a

disadvantage of these formulas is that there is no to believe that they are hard in the �rst pla
e,

other than the belief that EF is stronger than Frege. So these examples seem to provide no further
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eviden
e that Frege is not polynomially bounded.

In an attempt to re
tify the above 
riti
ism, Avigad reformulates partial 
onsisten
y statements

for Frege and Extended Frege systems in an extremely elegant way, by using a parti
ularly simple

formulation of a Frege system over the single NAND 
onne
tive. He de�nes a Frege system F

1

over

this one 
onne
tive 
onsisting of only one axiom:

nand(g; f ; nand(f));

and one rule:

nand(g; f); nand(g; nand(f))

nand(g)

and proves that F

1

is 
omplete.

Be
ause of the simpli
ity of F

1

, he 
an relate the 
onsisten
y of F

1

to a 
ombinatorial property

of hereditarily �nite sets.

4.2 Matrix identities

There are several propositional statements that 
ome from linear algebra that do not seem to have

feasible Frege proofs. The simplest of these (due to Steve Cook) expresses the fa
t that for any

two n by n matri
es A and B,

AB = I ! BA = I:

To express this propositionally, we 
onsider 0/1 matri
es A and B over GF

2

. For ea
h n, there

are 2n

2

underlying variables a

i;j

and b

i;j

des
ribing the matri
es. It is not hard to express this

identity in these variables with polynomial-size formulas, or by introdu
ing a linear number of

auxillary variables, one 
an obtain a CNF formula of polynomial-size. for ea
h n. We will denote

these tautologies by AB

n

.

What is known about the 
omplexity of these tautologies? Bonet, Buss and Pitassi originally


onje
tured that these tautologies should have EF proofs of polynomial-size, and Frege proofs of

quasipolynomial-size. The reasoning behind this 
onje
ture is based on the fa
t that iall 
on
epts

in the standard proof are expressible as quasipolynomial-size formulas. Therefore it is reasonable

to expe
t that the relevant properties of these 
on
epts (determinant, et
) 
an also be proven in

quasipolynomial-size, to give a Frege proof of quasipolynomial-size, simulating the standard proof.

However, despite 
onsiderable e�ort, there is still no known subexponential-size Frege proof of

these tautologies to date! The best known proof, due to Cook and Soltys, is a polynomial-size

Extended Frege proof. In a systemati
 study of matrix identities (in
luding this one), Cook and

Soltys developed a quanti�er-free, three-sorted logi
al theory for linear algebra 
alled LA. The

sorts are indi
es, �eld elements and matri
es. In LA one 
an express universal matrix identities

su
h as the one above, and prove all of the ring properties of matri
es. Further, formulas in LA

translate into familes of propositional formulas. Using the language of LA, they formalize Gaussian

elimination enabling them to give polynomial-size EF proofs of AB

n

, along with short proofs for

many other matrix identities. They also put the identities into equivalen
e 
lasses (based on how

mu
h proof-theoreti
 strength beyond LA seems to be required to prove them) and give LA proofs

of equivalen
es within ea
h 
lass.
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4.3 Cir
uit Lower Bounds

In this se
tion we will explain one way of expressing that SAT (or some other NP -hard language)

does not have polynomial-size 
ir
uits with a family of propositional formulas.

Let C

n

be an n input 
ir
uit of size s. We'll typi
ally assume that s is superpolynomial, and here

we'll think of s = n

log n

. C

n;s


an be represented by s

O(1)

variables. (In this 
ase n

O(logn)

boolean

variables), 


1

; : : : ; 


q

. Let f be an NP -
omplete language (su
h as SAT), and let f

n

be f on inputs

of length n. We will think of f as being �xed, and ea
h f

n

will be viewed as a parti
ular, �xed,

binary string of length 2

n

, f

n

= �

1

�

2

: : : �

2

n

. Then we 
an express that f

n


annot be 
omputed

by C

n;s

by the propositional statement, Hard(f)

n;s

, as follows.

_

i;�

i

=1

C

n;s

(i) = 0 _

_

j;�

j

=1

C

n;s

(j) = 1

where C

n;s

(i) = 0 is a propositional formula (in 


1

: : : 


q

) that is true if and only if the 
ir
uit C

n;s


oded by 


1

; : : : ; 


q

outputs 0 on input i.

In order to formulate Hard(f)

n;s

as a CNF formula, it is ne
essary introdu
e a linear number of

extra variables in addition to 


1

; : : : 


q

in order to simplify the des
ription of the formulas C

n;s

(i) =

0, and C

n;s

(i) = 1 so that they 
an be expressed in CNF form. This 
an be done in many standard

ways.

The formula Hard(f)

n;s

has length 2

O(n)

, and s

O(1)

many variables (Here, 2

O(log n)

many vari-

ables.) If in fa
t HardD(f)

n;s

is true, then a straightforward tree-like Resolution refutation of

:Hard(f)

n;s

will be exponential in the number of variables, and hen
e is not polynomial in the

size of :Hard(f)

n;s

.

It has been 
onje
tured that Hard(f)

n;s

requires superpolynomial-length Frege proofs for f

an NP-
omplete language, and s = n

logn

. Of 
ourse, if Hard(f)

n;s

is not true, then the 
onje
-

ture is va
uous. But if f really does require large 
ir
uits, then lower bounds for Hard(f)

n;s

in


ertain proof systems are important sin
e they shed light on the metamathemati
al properties of

proving 
ir
uit lower bounds. Re
ently it has been shown by Razborov that Hard(f)

n;s

requires

superpolynomial-size Resolution proofs for many values of s.

Lower bounds for Hard(f)

n;s

are open not only for Frege, but also for Cutting Planes and

bounded-depth Frege systems. Note that this is a family of formulas that is parameterized not

only by n (the size of the input to f) but also by s, the size of the 
ir
uit, C

n;s

. When s is small

enough (say sublinear), then Hard(f)

n;s

is known to be true, and when s is extremely large (say

2

n

) then Hard(f)

n;s

is known to be false sin
e there are exponential-size 
ir
uits for 
omputing

any boolean fun
tion. Thus as s de
reases, the formula Hard(f)

n;s

be
omes \more true" and

therefore should be easier to prove. Noti
e also that when s de
reases then the number of variables

underlying Hard(f)

n;s

gets smaller, so the obvious tree-like Resolution proof does get smaller.

Random (unsatis�able) kCNF formulas are another example of a family of formulas that are

parameterized by two values, n, the number of variables, and m, the number of 
lauses. When n is

�xed, as m in
reases, a random formula with n variables and m 
lauses is \more false" and hen
e

should be easier to refute.

Both of these families of formulas (random formulas and formulas expressing the hardness of


omputing a spe
i�
 NP-hard fun
tion) are generally believed to be hard for Frege systems for some

nontrivial value of the parameters. However, there is no real eviden
e that I know of indi
ating

that this should be the 
ase.
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4.4 Number theoreti
 statements

Another ri
h sour
e of hard examples 
omes from number theory.

Let Composite(a) be a propositional formula stating that there exist two numbers 1 < u; v < a

su
h that uv = a. Then for ea
h prime number p, let Prime

p

be the propositional formula

:Composite(p). Jan Kraji
ek has suggested that this family of tautologies should be hard for


ertain primes. Charlie Ra
ko� 
onje
tures that it is hard for every prime.

5 Open Problems

� Is there a strongest proof system? Give some eviden
e one way or the other.

� Prove that random kCNF formulas are hard for AC

0

-Frege.

� Prove that the Tseitin graph tautologies are hard for Cutting Planes.

� There are several proof systems along the lines of Cutting Planes that are important and

relatively unexplored. One example is the Lovasz-S
hriver Proof System, whi
h is based on

0/1 programming. The initial inequalities are like those for Cutting Planes. However, now

one 
an substitute x for x

2

anywhere. Also the division rule is not present. Non-negative

degree 2 polynomials 
an be obtained by multiplying two non-negative linear quantities or by

adding the square of any linear quantity. This system polynomially simulates resolution and


an also prove the propositional pigeonhole prin
iple eÆ
iently. It has feasible interpolatin,

and hen
e it is known to be not polynomially bounded under the assumption that NP is not


ontained in P=poly. However there is no expli
it hard tautuology known for it. Another

question is whether or not this system 
an eÆ
iently simulate Cutting Planes.

� Does the matrix identity AB = I ! BA = I have quasipolynomial-size Frege proofs?

� How do the various plausibly hard tautologies that we dis
ussed above 
ompare with one an-

other. For example, how does AB

n


ompare with Con

EF

(n)? Can Frege plus AB

n

eÆ
iently

prove Con

EF

(n)? Can AC

0

Frege plus AB

n

prove Con

F

(n)? Give a systemati
 treatment

of the relative 
omplexities of these various 
lasses of examples.
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