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1 Introduction

In the last lecture, we completed the proof that any bounded-depth Frege proof of the propositional
pigeonhole principle requires exponential size. In this final lecture, we will first discuss the best
known upper bounds for the pigeonhole principle.

Then we will step back and review the relative complexities of the various proof systems dis-
cussed in this course: Resolution, Cutting Planes, bounded-depth Frege, Frege, LK, Extended
Frege, and the Hajos Calculus. The next step is to prove superpolynomial lower bounds for Frege
systems. This would be a major breakthrough in logic and complexity theory and seems to be
beyond present reach.

We will discuss potential hard tautologies for proving superpolynomial lower bounds for Frege
systems.

We will conclude with a discussion of other important open problems.

2 Upper Bounds for the Pigeonhole Principle

As we mentioned in an earlier lecture, Buss has shown the following theorem.
Theorem 1 (Buss). For alln, there are polynomial-size (depth O(logn)) Frege proofs of PHP L.

The proof of the above theorem is not difficult conceptually, but the proof is nontrivial. The
idea is to define a multi-output polynomial-size formula that takes as input a binary vector, and
outputs the number of 1’s in the vector. This is well-known to be doable with carry-save addition
circuits. Then using standard properties of addition, that can be efficiently proven about the carry-
save addition circuits, it is shown that from the pigeon assumptions of ~PHP?*! that the sum of
all of the variables P; ; is at least n + 1, and from the hole assumptions, that the sum of this same
set of variables is at most n, and hence we reach a contradiction.

For the weak pigeonhole principle, Paris Woods and Wilkie showed that there are quasipolynomial-
size bounded-depth proofs. Recently their result was improved by Maciel, Pitassi and Woods who
give a proof of depth that is only .5. This means that each formula in the LK derivation is either
a conjunction of polylogn many literals, or a disjunction of polylogn many literals.

Theorem 2. For all n, PHP,Zf has depth .5 LK proofs of size n°1°8™)  and PHP?" has depth .5
LK proofs of size nOogn)?
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3 Relative Complexity of Proof Systems

Recall the proof system hierarchy from Lecture 2. In previous lectures, we have proven exponential
lower bounds for Resolution, Cutting Planes and bounded-depth Frege proofs.

(Extended Frege / Hajos Calculus)

!

( Frege / Sequent Calculus )

A
A Lower Bounds Unknown \

VExponentiaI Lower Bounds Known

Cutting Planes

DPLL / Tree Resolution

Polynomial Calculus

Nullstellensatz

Figure 1: Proof System Hierarchy

The most outstanding open problem is to extend the lower bounds to Frege systems. Currently,
the best size lower bound for Frege systems is the following theorem, due to Sam Buss.

Theorem 3 (Buss). There is a family of tautologies that require an O(n) line Frege or Extended
Frege proof, and an O(n?) size Frege or Extended Frege proof.

The family of tautologies are very simple. They are of the form F'V (FV (FV ...(FVT)...).
The idea behind the lower bound is simple. The formula is a tautology but it is not an instance
of a shorter tautology. Therefore, each connective must be “peeled” off by some rule. Since each
rule involves only a finite number of active connectives, the total number of rules must be linear
in the size of the tautology. The size bound is proven by formalizing the fact that the rule must
break apart the statement from outside to inside and indoing so, it ends up repeating subformulas
many times.
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Although substitution Frege (sF) is polynomially equivalent to Extended Frege, it is substan-
tially harder to prove lower bounds on the length of sF proofs. The best lower bound for sF is
due to Urquhart, who proved that there is a family of formulas that require an O(n/logn) line sF
proof. The proof does not give an explicit family of formulas. Proving quadratic lower bounds on
the symbol size of an sF proof is also an open problem.

4 Potential Hard Examples for Frege

4.1 Partial Consistency statements

The classic example of statements that are unprovable in systems of arithmetic are consistency
statements. Ordinary consistency statements are not expressible propositionally and hence they
do not apply to our setting. However, it is possible to come up with a partial consistency statement
that is formalizable propositionally. The idea here is that there is a parameter n, and Cong(n)
expresses that there is no S-proof of False with size at most n.

Cook was the first to formalize partial self-consistency statements for EF, Congr(n). He showed
that there are polynomial-size EF proofs of Congp(n). Later, Buss studied partial consistency
statements for Frege as well, and he proved that there are short Frege proofs of Congyege(n).

Below we will outline Buss’s formalization of Cong(n) for a propositional Frege system S. In
order to formalize Cong(n), we have to show how to represent an S-proof as a bit sequence, and
show how to define formulas for interpreting the sequence as a sequence of formulas.

Proofs in S will be represented by words/strings in a 19 character alphabet ¥ containing p,
0, 1, parenthesis, comma and 13 propositional connectives. A propositional variable p; will be
represented by “p” followed by a string of 0’s and 1’s coding ¢ in binary. Commas will be used to
separate formulas in a proof. Strings over ¥ are further encoded over the language £ = {0,1} by
assigning a unique 5-bit code to each symbol in ¥. Thus an S-formula with k& symbols (counting
the symbols used to code the subscripts of the variables) will be coded by 5k truth values.

Let x represent a vector of propositional variables z1,...,z5,. We want to show that “x codes
a formula” can be represented by a polynomial-size propositional formula. The key tool to parsing
a formula coded by x is to show how to count parenthesis. Let |x| denote the number of logical
symbols in x. Then “x codes a formula” will be expressed as: (1) ...

Now we need to define the concept of an S-proof with a polynomial-size formula. A proof is
coded by formulas separated by commas, where each formula is either an instance of an axiom
scheme or follows by modus ponens from two previous formulas. For S there are a finite number of
axiom schemes so it is easy to define a polynomial-size formula expressing “x is an instance of an
axiom scheme.” Similarly it is possible to define a polynomial-size formula expressing “x is derived
from y and z by modus ponens.”

Buss proved, using clever formulas for evaluating the truth value of a formula on a given input,
that Congyege(n) is provable with polynomial-size Frege proofs. He also showed that Congp(n) is
provable with polynomial-size Frege proofs if and only if Frege can polynomially simulate Extended
Frege. Thus Congp(n) is a potential hard example for Frege.

Partial consistency formulas are excellent from one point of view: if there are hard examples
at all separating EF from Frege, then we know that Coner is such an example. However, a
disadvantage of these formulas is that there is no to believe that they are hard in the first place,
other than the belief that EF is stronger than Frege. So these examples seem to provide no further
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evidence that Frege is not polynomially bounded.

In an attempt to rectify the above criticism, Avigad reformulates partial consistency statements
for Frege and Extended Frege systems in an extremely elegant way, by using a particularly simple
formulation of a Frege system over the single NAND connective. He defines a Frege system JF; over
this one connective consisting of only one axiom:

nand(§7 77 nand(?) ) ’

and one rule:

nand(g, f), nand(g, nand(f))
nand(q)

and proves that F, is complete.
Because of the simplicity of F,, he can relate the consistency of Fo, to a combinatorial property
of hereditarily finite sets.

4.2 Matrix identities

There are several propositional statements that come from linear algebra that do not seem to have
feasible Frege proofs. The simplest of these (due to Steve Cook) expresses the fact that for any
two m by n matrices A and B,

AB=1— BA=1.

To express this propositionally, we consider 0/1 matrices A and B over GFy. For each n, there
are 2n? underlying variables a; ; and b; ; describing the matrices. It is not hard to express this
identity in these variables with polynomial-size formulas, or by introducing a linear number of
auxillary variables, one can obtain a CNF formula of polynomial-size. for each n. We will denote
these tautologies by AB,,.

What is known about the complexity of these tautologies? Bonet, Buss and Pitassi originally
conjectured that these tautologies should have EF proofs of polynomial-size, and Frege proofs of
quasipolynomial-size. The reasoning behind this conjecture is based on the fact that iall concepts
in the standard proof are expressible as quasipolynomial-size formulas. Therefore it is reasonable
to expect that the relevant properties of these concepts (determinant, etc) can also be proven in
quasipolynomial-size, to give a Frege proof of quasipolynomial-size, simulating the standard proof.

However, despite considerable effort, there is still no known subexponential-size Frege proof of
these tautologies to date! The best known proof, due to Cook and Soltys, is a polynomial-size
Extended Frege proof. In a systematic study of matrix identities (including this one), Cook and
Soltys developed a quantifier-free, three-sorted logical theory for linear algebra called LA. The
sorts are indices, field elements and matrices. In LA one can express universal matrix identities
such as the one above, and prove all of the ring properties of matrices. Further, formulas in LA
translate into familes of propositional formulas. Using the language of LA, they formalize Gaussian
elimination enabling them to give polynomial-size EF proofs of AB,,, along with short proofs for
many other matrix identities. They also put the identities into equivalence classes (based on how
much proof-theoretic strength beyond LA seems to be required to prove them) and give LA proofs
of equivalences within each class.
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4.3 Circuit Lower Bounds

In this section we will explain one way of expressing that SAT (or some other N P-hard language)
does not have polynomial-size circuits with a family of propositional formulas.

Let C,, be an n input circuit of size s. We’ll typically assume that s is superpolynomial, and here
we’ll think of s = nlo8n, Ch,s can be represented by s9() variables. (In this case nO008n) hoolean
variables), ci,...,¢q. Let f be an NP-complete language (such as SAT), and let f, be f on inputs
of length n. We will think of f as being fixed, and each f, will be viewed as a particular, fixed,
binary string of length 2", f, = ajay...as». Then we can express that f, cannot be computed
by C,, s by the propositional statement, Hard(f)y s, as follows.

\/ Cn,s(i)zov \/ Cn,s(j):1

i,0;=1 Jraj=1

where C), 4(7) = 0 is a propositional formula (in ¢; ...¢,) that is true if and only if the circuit C), ,
coded by c1,..., ¢, outputs 0 on input 4.

In order to formulate Hard(f), s as a CNF formula, it is necessary introduce a linear number of
extra variables in addition to ci, ... ¢4 in order to simplify the description of the formulas C,, 4(i) =
0, and C), 4(i) = 1 so that they can be expressed in CNF form. This can be done in many standard
ways.

The formula Hard(f),, s has length 20(m) and s(1) many variables (Here, 2008 many vari-
ables.) If in fact HardD(f)n, is true, then a straightforward tree-like Resolution refutation of
~Hard(f)n,s will be exponential in the number of variables, and hence is not polynomial in the
size of ~Hard(f)n,s-

It has been conjectured that Hard(f),,s requires superpolynomial-length Frege proofs for f
an NP-complete language, and s = n'°8". Of course, if Hard(f), s is not true, then the conjec-
ture is vacuous. But if f really does require large circuits, then lower bounds for Hard(f),,s in
certain proof systems are important since they shed light on the metamathematical properties of
proving circuit lower bounds. Recently it has been shown by Razborov that Hard(f),,s requires
superpolynomial-size Resolution proofs for many values of s.

Lower bounds for Hard(f),, are open not only for Frege, but also for Cutting Planes and
bounded-depth Frege systems. Note that this is a family of formulas that is parameterized not
only by n (the size of the input to f) but also by s, the size of the circuit, C, ;. When s is small
enough (say sublinear), then Hard(f),,s is known to be true, and when s is extremely large (say
2") then Hard(f),,s is known to be false since there are exponential-size circuits for computing
any boolean function. Thus as s decreases, the formula Hard(f), becomes “more true” and
therefore should be easier to prove. Notice also that when s decreases then the number of variables
underlying Hard(f)n,s gets smaller, so the obvious tree-like Resolution proof does get smaller.

Random (unsatisfiable) kCNF formulas are another example of a family of formulas that are
parameterized by two values, n, the number of variables, and m, the number of clauses. When n is
fixed, as m increases, a random formula with n variables and m clauses is “more false” and hence
should be easier to refute.

Both of these families of formulas (random formulas and formulas expressing the hardness of
computing a specific NP-hard function) are generally believed to be hard for Frege systems for some
nontrivial value of the parameters. However, there is no real evidence that I know of indicating
that this should be the case.
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4.4 Number theoretic statements

Another rich source of hard examples comes from number theory.

Let Composite(a) be a propositional formula stating that there exist two numbers 1 < u,v < a
such that uv = a. Then for each prime number p, let Prime, be the propositional formula
—Composite(p). Jan Krajicek has suggested that this family of tautologies should be hard for
certain primes. Charlie Rackoff conjectures that it is hard for every prime.

5 Open Problems
e [s there a strongest proof system? Give some evidence one way or the other.
e Prove that random kCNF formulas are hard for AC\-Frege.
e Prove that the Tseitin graph tautologies are hard for Cutting Planes.

e There are several proof systems along the lines of Cutting Planes that are important and
relatively unexplored. One example is the Lovasz-Schriver Proof System, which is based on
0/1 programming. The initial inequalities are like those for Cutting Planes. However, now
one can substitute = for 22 anywhere. Also the division rule is not present. Non-negative
degree 2 polynomials can be obtained by multiplying two non-negative linear quantities or by
adding the square of any linear quantity. This system polynomially simulates resolution and
can also prove the propositional pigeonhole principle efficiently. It has feasible interpolatin,
and hence it is known to be not polynomially bounded under the assumption that /NP is not
contained in P/poly. However there is no explicit hard tautuology known for it. Another
question is whether or not this system can efficiently simulate Cutting Planes.

e Does the matrix identity AB = I — BA = I have quasipolynomial-size Frege proofs?

e How do the various plausibly hard tautologies that we discussed above compare with one an-
other. For example, how does AB,, compare with Congr(n)? Can Frege plus AB,, efficiently
prove Congp(n)? Can AC) Frege plus AB, prove Conp(n)? Give a systematic treatment
of the relative complexities of these various classes of examples.
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