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1 Today’s Topics:

• Proof Search (Automatization / Minimum Proof Length Problem)

• Proof Systems for Recognizing Tautologies and Unsatisfiability

• Proof System Hierarchy

• Standard Proof Systems

• Proof Length

• P-Simulations

2 Definitions: Proof Size versus Proof Search

As mentioned in the last lecture, the size of propositional proofs is very closely connected to
complexity theory:

Theorem 1 NP equals coNP if and only if there exists a polynomially bounded propositional proof
system.

Today we will introduce a second concept that is equally important in studying proof complexity,
namely the complexity of searching for a proof. To motivate this, consider a specific proof system
such as DPLL for propositional unsatisfiability. This is a relevant example since this is the most
popular proof system underlying automated theorem provers.

Assuming that NP does not equal coNP , it follows that there must be an infinite family of
unsatisfiable CNF formulas that require superpolynomial-size DPLL proofs. (In fact, as we will see
shortly, we can actually prove this lower bound unconditionally, without assuming anything about
NP versus coNP .) On the other hand, there still are many examples of unsatisfiable formulas
that do have efficient DPLL proofs, and then the question becomes one of proof search–how hard
is it to find these short proofs. Ideally, we would like to develop an algorithm that takes as input
an unsatisfiable CNF formula, and outputs a DPLL refutation of the formula, and such that the
algorithm runs efficiently. Efficiently here means polynomial-time in the length of the shortest
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DPLL proof of the formula. (Note that polynomial time in the size of the formula is unreasonable
since DPLL is not polynomially bounded.) This motivates the following definitions, which introduce
the concept of proof search complexity.

Definition Let V be a propositional proof system. The MinimumProofLengthProblem for V :
Given a boolean formula φ, φ ∈ TAUT, find the shortest V -proof of φ.

The above definition tries to find the absolute shortest proof. It turns out that for almost all
proof systems, this problem is NP-hard. Therefore we relax the definition so that instead of the
finding the optimal size proof, we want to come within a good approximation of the optimal.

Definition A proof system is automatizable if there is an algorithm A with input φ, φ ∈ TAUT
with output V-proof of φ, and the running time of A is polynomial in |φ| + |shortest V-proof of φ|.

Fact There exists a polynomially-bounded automatizable proof system iff P=NP.

3 Proof System Hierarchy

We begin with a definition that allows us to compare two different propositional proof systems.

Definition A propositional proof system U p-simulates V if there exists a polynomial-time func-
tion, f such that ∀p∀x V accepts (x, p) iff U accepts (x, f(p)). (This is analogous to a polynomial-
time reduction.)

Definition Two propositional proof systems U and V are polynomiallyequivalent (or p-equivalent)
if U p-simulates V and V p-simulates U .

The following diagram lists a number of standard propositional proof systems, and illustrates
their position in the Proof System Hierarchy. An arrow from Proof System A to Proof System
B indicates that A p-simulates B. Underneath the dashed line, a lack of an arrow between Proof
Systems C and D indicates that C does not p-simulate D. Nothing should be inferred about the
meaning of arrows that would cross the dashed line, but are not present.

Figure 1: Proof System Hierarchy
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4 Resolution

Resolution is a proof system for UNSAT. It takes a CNF (Conjunctive Normal Form) formula, and
proves that it is not satisfiable.

Resolution has only one inference rule:

(B ∨ x) (C ∨ x̄)

(B ∨ C)

In the above, B and C refer to a disjunction of literals, and x is a variable. A resolution
refutation (proof) of f is a sequence of clauses C1, C2, . . ., Cm such that Cm = φ, where each Ci is
either a clause in f, or follows from two previous clauses by the resolution rule of inference.
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4.1 Example 1

The following diagram illustrates a Resolution Refutation in diagramatic tree form. The corre-
sponding sequence of clauses can be obtained by taking the ordering of the clauses to be the
ordering obtained in a breadth-first traversal of the tree. Note that the empty clause is referred
to as the root, the clauses labelling the leaves of the tree are clauses from f , and clauses labelling
internal nodes of the tree are clauses derived from previous clauses by the resolution rule.

Figure 2: Tree-like resolution refutation

Definition The size of a Resolution refutation is the number of clauses in the sequence.

Definition The width of a Resolution refutation R is defined as the number of literals in the
largest clause of R.

Definition A Resolution refutation is tree− like if the underlying directed acyclic graph is a tree.

5 Resolution Refinements

We mention some very common special cases of Resolution that come up in practice.

• A Regular Resolution is one in which no variable is resolved more than once on any path
from the root to a leaf. The Resolution Refutation in Figure 2 is Regular.

• Tree Resolution is a diagramatic form of a resolution refutation. The underlying directed
acyclic graph (DAG) of a Tree Resolution is a tree. Note that in a Tree Resolution, initial
clauses may be reiterated multiple times, but derived clauses may only be used once. Figure
2 is an example of a Tree Resolution.

• Necessity can cause a single clause in a resolution proof to be appealed to multiple times. If
this occurs, the proof’s underlying topology is no longer tree-like. One can keep the topology
tree-like by appealing to a separate copy of a clause each time it is needed again.

• DPLL is another form of Resolution that is polynomially-equivalent to tree-like Resolution.
We will prove this next.

Theorem 2 DPLL and tree-like Resolution are polynomially equivalent.

Proof To prove this theorem, we need to show how to efficiently convert a DPLL tree for a given
unsatisfiable formula f into a tree-like Resolution refutation of f , and conversely, how to convert
a tree-like Resolution refutation of f into a DPLL-tree for f .

To construct a tree-like Resolution refutation from a DPLL tree, arrange the clauses to be
resolved in the same order as the leaves of the DPLL tree. Then resolve with respect to the clauses
and variables which the DPLL tree branched on last. This will construct a tree-like Resolution
refutation with the same topology as the original DPLL tree.
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To construct a DPLL tree from a tree-like Resolution refutation, label the branches of the
resolution tree with the truth values which falsify the clauses at the leaves of the branches such
that if some variable x was resolved at that level of the resolution tree then the branch leading
to sub-trees whose leaves contain x̄ should be labelled x = 1 and the branch leading to sub-trees
whose leaves contain x should be labelled x = 0. This will construct a DPLL tree with the same
topology as the original tree-like Resolution refutation. (There is a bit of subtlety in the case where
the same variable is resolved twice along the same path. This would still produce a DPLL tree
although some of the paths in the tree are unnecessarily long. Alternatively, one can show that in
an optimal-size tree-like Resolution refutation, no variable is resolved more than once along any
path.)

We will illustrate the above ideas with an example. We will use the same formula that we
discussed earlier.

This DPLL Resolution Refutation is equivalent to that in Figure 2. Note that any path from
the root to a leaf corresponds to a truth assignment which will falsify that leaf.

Figure 3: DPLL Resolution Refutation

5.1 Soundness and Completeness

From the above p-simulations, it is not hard to see that Resolution is sound and complete.

Theorem 3 Resolution is sound and complete.

Soundness is proved by induction on the size of the Resolution refutation, using the fact that
the underlying resolution rule is sound. To prove completeness, we want to show that given an
unsatisfiable CNF formula f , it has a Resolution refutation. Given f , derive a DPLL tree for f
by querying the underlying variables for f is some fixed order. Since f is unsatisfiable, the DPLL
tree obtained will be valid. Now by the p-simulation result, it follows that there is a (tree-like)
Resolution refutation of f as desired.

6 Cutting Planes

Cutting Planes is a Proof System that is used to refute linear inequalities. A linear inequality is
of the form Σiaixi ≥ k, where ai, k are integers, and the underlying variables are xi.

6.1 Axioms

1. xi ≥ 0

2. 1 - xi ≥ 0
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6.2 Rules

1. Addition

Σ aixi ≥ k, Σ bixi ≥ k
′ ⇒ Σ (ai + bi)xi ≥ k + k

′

2. Multiplication

Σ aixi ≥ k ⇒ Σ c · aixi ≥ c · k

3. Division

Σ 2 · aixi ≥ k ⇒ Σ aixi ≥ dk2e
For Example:

2x1 + 2x2 ≥ 3 ⇒ x1 + x2 ≥ 2

A Cutting Planes refutation of a set of linear inequalities L = {C1, C2,. . ., Cq} is a sequence
of inequalities, S1, S2,. . ., Sm where each Si is either from L or is an axiom or follows from two
previous inequalities by a valid rule, and the final inequality Sm = (0 ≥ 1).

Theorem 4 Let L be the language corresponding to the set of all sets of linear inequalities with
no integer solutions. Cutting Planes is sound and complete for L.

Definition The length of a Cutting Planes proof is the number of lines in the proof.

Theorem 5 Cutting Planes p-simulates Resolution for CNF formulas.

Proof

1. Start with a CNF formula, f , and a Resolution derivation for f . As in example 1, let
f = (a ∨ b ∨ c)(a ∨ ¬b)(¬a ∨ d)(¬b), and consider the Resolution refutation for f shown in
Figure 2.

2. Rewrite each clause in f as a set of linear inequalities by the following conversion. Given
a clause C = (l1 ∨ l2 ∨ . . . ∨ lk) convert C to the inequality f(l1) + . . . + f(lk) ≥ 1, where
f(x) = x and f(¬x)→ 1− x.

3. Simulate the resolution steps by addition followed with division with rounding if required as
shown in the following example for f .

Below is an example of the formula that we’ve been working with converted to a Cutting Planes
refutation.

Figure 4: Cutting planes proof of the unsatisfiability of f
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