
CS 2429 - Propositional Proof Complexity Le
ture #3: September 26, 2002

CS 2429 - Propositional Proof Complexity

Le
ture #3: September 26, 2002

Le
turer: Toniann Pitassi

S
ribe Notes by: Daniel Ivan

We have seen in the previous le
tures di�erent propositional proof systems, su
h as Resolution,

Davis-Putnam, DPLL, and Cutting Planes. Today we will dis
uss Frege Systems and the Sequent

Cal
ulus (PK). We will then talk about some de�nitions and metri
s whi
h allows us to 
ompare

di�erent proof systems.

1 The Sequent Cal
ulus (PK)

It turns out that the Frege Systems and the Sequent Cal
ulus are general, robust, and they are

stronger than the other proof systems mentioned above.

We will brie
y re
all from the previous le
tures that Frege Systems are based on an underlying

set of 
omplete 
onne
tives (for example :, _, ^), a �nite set of s
hemati
 axioms whi
h are tau-

tologies, and rules of inferen
e whi
h allow to derive other tautologies by reasoning with arbitrary

formulas.

The Sequent Cal
ulus is based on statements of the form A

1

, A

2

, : : :, A

k

! B

1

, B

2

, : : :, B

`

,

meaning that the 
onjun
tions of the A's implies the disjun
tion of the B's: A

1

^ A

2

^ : : : ^ A

k

� B

1

_ B

2

_ : : : _ B

`

() A

1

_ A

2

_ : : : _ A

k

_ B

1

_ B

2

_ : : : B

`

. The Sequent Cal
ulus starts

with an axiom s
hema of the type A ! A whi
h is valid, and for any sequents of formulas � and

�, there are the following rules:

1



CS 2429 - Propositional Proof Complexity Le
ture #3: September 26, 2002

weakening left:

�! �

�; A! �

weakening right:

�;! �

�! �; A

ex
hange left:

�! �; A;B

�! �; B;A

ex
hange right:

�; A;B ! �

�; B;A! �


ontra
tion left:

�! �; A;A

�! �; A


ontra
tion right:

�; A;A! �

�; A! �

: left:

�! �; A

:A;�! �

: right:

A;�! �;

�! �;:A

_ left:

A;�! � B;�! �

A _B;�! �

_ right:

�! �; A;B

�! �; A _B

^ left:

�; A;B ! �

�; A ^B ! �

^ right:

�! �; A �! �; B

�! �; A ^B

All of the above formulas satisfy the Subformula Property. The Subformula Property states

that in any PK proof, any formula appearing in the proof must appear in the �nal sequent of the

proof.

The following 
ut rule does not satisfy the Subformula Property, but it provides a way to

shorten PK proofs.


ut rule:

�! �; A A;�! �

�! �

The soundness property of the PK proof systems says that if some sequent formula is provable

in PK, then it is valid. The 
ompleteness property of the PK proof system says that if some

sequent formula is valid, then it is provable in PK.

Theorem 1 PK is sound and 
omplete.

Proof Soundness is proven by indu
tion on the number of sequents in the proof. If the proof


onsists of a single sequent, then it must be an instan
e of the axiom s
hema, and therefore is valid.

To prove the indu
tive step we 
onsider ea
h rule one at a time, and prove that the rules preserve

soundness. That is, if the sequent S is obtained by a applying one of the rules to the two previous

sequents S

1

and S

2

, then if S

1

and S

2

are valid, then so is S.

To prove 
ompleteness, we want to show that if the sequent �! � is valid, then it has a PK

proof. We prove this by indu
tion on the number of logi
al 
onne
tives o

uring in � ! �. If

there are no 
onne
tives, and if it is valid, then it must be of the form x

1

; : : : ; x

k

! y

1

; : : : ; y

l

,

where some variable x o

urs on both the left and the righthand side. Thus, this sequent 
an be

obtained from the axiom x ! x by weakening. For the indu
tive step, we will need the following

inversion lemma.

Lemma 2 (Inversion Lemma) Let S be a sequent derivable from two sequents S

1

and S

2

by one

of the PK rules. Then if S is valid, so are S

1

and S

2

.

2



CS 2429 - Propositional Proof Complexity Le
ture #3: September 26, 2002

Now 
onsider a sequent �! �whi
h involves k 
onne
tives. Choose some outermost 
onne
tive

o

urring in either a formula from � or a formula from �. Apply the appropriate logi
al rule in

reverse in order to obtain two sequents S

1

= �

1

! �

1

, and S

2

= �

2

! �

2

su
h that S = � ! �


an be obtained from these two sequents by applying the logi
al rule, and where both S

1

and S

2


ontain at most k�1 logi
al 
onne
tives. By the inversion lemma, both S

1

and S

2

are valid be
ause

S is valid. Now by the indu
tion hypothesis, both S

1

and S

2

have valid PK proofs. Noti
e that

we a
tually proved that any valid sequent has a 
ut-free PK proof. That is, a PK proof where the


ut rule is not used.

We de�ne the size of a PK proof as the total number of 
onne
tives o

urring in all the sequents

of the proof. The line size represents the total number of sequents in the proof.

A PK proof has a tree-like stru
ture when ea
h intermediate sequent in the proof is used at

most on
e. Otherwise, if there is any intermediate sequent in the proof whi
h is used more than

on
e, the PK proof is DAG-like (DAG stands for Dire
t A
y
li
 Graph).

2 Polynomial simulations

Now, as we have seen various proof systems, it would be interesting to 
ompare di�erent proof

systems. We de�ned the notion of p-simulation earlier, whi
h allowed us to 
ompare the strength

of two di�erent proof systems for the same language. Now we will generalize this notion to allow us

to 
ompare proof systems for di�erent languages. In what follows, L

1

and L

2

will be two di�erent

languages, usually with polynomial-time redu
tions between them (in both dire
tions). Often both

L

1

and L

2

will both be 
oNP-
omplete, but not always.

De�nition Let L

1

, L

2

be two languages (usually both 
o-NP 
omplete), and let f

2

be a polynomial-

time redu
tion from L

2

to L

1

. Then V

1

for L

1

polynomially simulates (p-simulates) V

2

for L

2

under

redu
tion f

2

if there exists a polynomial-time h su
h that 8 x 2 L

2

, V

2

(x; p) a

epts if and only if

V

1

(f

2

(x); h(p)) a

epts.

Noti
e that if V

1

and V

2

are two proof sytems proofs systems for the same language L, then if

V

1

polynomially simulates V

2

, then lower bounds for V

1

imply lower bounds for V

2

. To see this,


onsider some in�nite 
olle
tion of strings x

1

; : : : ; where all x

i

2 L and jx

i

j > jx

i�1

j. Suppose that

any V

1

proof of x

i

requires superpolynomial size. Now suppose for sake of 
ontradi
tion that ea
h

x

i

has a polynomial-size V

1

proof, p

i

. Then by the p-simulation, h(p

i

) will be a polynomial-size V

1

proof of x

i

, a 
ontradi
tion.

However, the above argument doesn't always work when V

1

and V

2

are proof systems for di�erent

languages, be
ause the underlying redu
tions between them are not ne
essarily onto. Nonetheless,

we 
an add an extra 
ondition (essentially saying that the redu
tion 
an be eÆ
iently proven 
orre
t

within the proof system) allowing us to extra
t lower bounds for V

1

from lower bounds for V

2

.

Lemma 3 Let L

1

and L

2

be two languages, and let f

1

be a polynomial-time redu
tion from L

1

to

L

2

and let f

2

be a polynomial-time redu
tion from L

2

to L

1

. Let V

1

be a proof system for L

1

and

let V

2

be a proof system for L

2

. Assume that: (1) V

1

polynomially-simulates V

2

under f

2

; and (2)

for all x 2 L

1

, if f

2

(f

1

(x)) has a short V

1

proof, then so does x. Then lower bounds for V

1

imply

lower bounds bounds for V

2

, under redu
tions f

1

and f

2

.

3



CS 2429 - Propositional Proof Complexity Le
ture #3: September 26, 2002

Let x

1

; : : : ; be an in�nite 
olle
tion of strings where x

i

2 L

1

for all i, and jx

i

j > jx

i�1

j. Suppose

that any V

1

proof of x

i

requires superpolynomial size. Now suppose for sake of 
ontradi
tion that

f

1

(x

i

) has a polynomial-size V

2

proof, p

i

. Then by (1) h(p

i

) will be a polynomial-size V

1

proof

of f

2

(f

1

(x

i

)). Now by (2), there is also a short V

1

proof of x

i

, 
ontradi
ting the fa
t that x

i

was

supposed to require a large V

1

proof.

De�nition Two proof systems V

1

for L

1

and V

2

for L

2

are said to be polynomially equivalent

under redu
tions f

1

and f

2

if lower bounds for V

1

follow from lower bounds for V

2

and vi
e versa

(for redu
tions f

1

and f

2

).

There are surprisingly few examples 
omparing proof systems for di�erent languages. One

example is the following.

Theorem 4 (Pitassi, Urquhart) The Hajos 
al
ulus and Extended Frege are polynomially equiva-

lent

The above theorem is interesting sin
e it had been an open problem to prove lower bounds

for the Hajos 
al
ulus. While we still do not know how to prove su
h lower bounds, the above

theorem tells us that the problem is basi
ally equivalent to proving lower bounds for Extended Frege

systems! Moreover, formal relationships between di�erent proof systems for di�erent languages 
an

help us to leverage ideas and analyses from one domain area to a di�erent domain area.

3 Resolution

We will now begin to study Resolution in detail. Resolution is the most popular theorem prover

known. It is the basis for many automated theorem provers for both propositional as well as �rst

order logi
. It is also the basis for the best 
urrent algorithms for satis�ability testing.

Before we begin to talk about what is hard for Resolution, we want to point out that there are

some important spe
ial 
ases of CNF formulas that are easy for Resolution. The resolution system


an produ
e polynomial-size proofs for any unsatis�able 2CNF formula, and for any unsatis�able

Horn formula. To see this for 2CNF, noti
e that if we begin with a 2CNF formula, we 
an only

generate 
lauses 
ontaining at most 2 literals. The number of su
h 
lauses is polynomial in n.

Thus Resolution when run on a 2CNF formula will either produ
e all 
lauses of size 2, in
luding

the empty 
lause, and then halt (running in polynomial time) and output unsatis�able, or the

algorithm will get to a point where it will not be able to generate any new 
lause of size at most

2, and in this 
ase if the empty 
lause has not yet been generated, then the algorithm 
an halt

and output "satis�able". In either 
ase, the algorithm halts in polynomial-time. The 
ase of Horn

formulas will be left as a homework exer
ise.

We will now show that Resolution 
an be simulated by PK. After that, we will see that PK is

stronger, by proving that the propositional pigeonhole prin
iple has short PK proofs, but requires

exponential-size Resolution proofs.

Theorem 5 The PK proof system p-simulates the resolution proof system.

Proof

4



CS 2429 - Propositional Proof Complexity Le
ture #3: September 26, 2002

First note that the PK proof system proves that a sequent is a tautology, whereas the Resolution

proof systems shows that a set of 
lauses are unsatis�able. But a set of 
lauses is unsatis�able if

and only if its negation is a tautology.

The idea of the proof is to asso
iate a sequent formula to ea
h 
lause of the refutation of the

resolution prove. Ea
h refutation rule applied to two 
lauses 
orresponds to a PK rule. Therefore

the last 
lause of the resolution refutation will be equivalent to the sequent ! whi
h is unsat-

is�able. Therefore if the resolution refutation prove refutes some set of 
lauses g, then by the


orresponden
es des
ribed above between ea
h 
lause of the refutation and a sequent in the PK

proof :g is proved to be unsatis�able in PK.

Example Let g = (x

1

_x

2

)^ (x

1

_x

3

)^ (x

1

_x

2

)^ (x

1

_x

2

)^ (x

3

) If g has a resolution refutation,

then :g = (x

1

^ x

2

) _ (x

1

^ x

3

) _ (x

1

^ x

2

) _ (x

1

^ x

2

) _ (x

3

) is polynomially (in the size of the

refutation of g) provable in PK to be valid, whi
h means ! :g has a valid PK proof. So g ! has

a valid PK proof.

In order to 
arry out this simulation, we will 
onvert ea
h 
lause of g to an equivalent sequent.

In the resolution refutation, from the �rst two 
lauses of g: (x

1

_x

2

), (x

1

_x

3

) we refute another


lause (x

2

_x

3

). But noti
e that (x

1

_x

2

)()! x

1

; x

2

, and (x

1

_x

3

)()! x

1

; x

3

. The refutation

(x

2

_ x

3

) ()! x

2

; x

3

is the bottom sequent of the other two mentioned above in the 
ut rule of

the PK prove system. Therefore generalizing along all the 
lauses obtained by refutation in the

resolution prove, every refutation rule is equivalent with a 
ut rule in the PK prove. For ea
h literal

we get rid of in the resolution rule, there is an equivalent 
ut rule in the PK prove by whi
h we

get rid of the same literal. The �nal step in the resolution rule is when we have an atom P and its

negation :P from whi
h we refute the empty set. This 
orresponds to an axiom in the PK prove

; ! whi
h is obviously valid. Therefore the PK prove of g ! was done in time linear in the size

of the resolution prove, and it follows that :g is a tautology.

Our 
anoni
al example that is hard for Resolution is the propositional pigeonhole prin
iple.

3.1 The Pigeon Hole Prin
iple

The pigeon prin
iple PHP

m

n

says that there is no 1-1 fun
tion from m obje
ts ('pigeons') to n

obje
ts ('holes') if m > n. The onto version of this, ontoPHP

m

n

, says that there is no 1-1, onto

fun
tion mapping m pigeons to n holes for m > n. This 
an be easily en
oded as an unsatis�able

propositional formula over variables P

ij

whi
h represent pigeon i mapping to hole j. The 
lauses

ensure that any satisfying assignment to these variables 
orresponds to a valid 1-1, onto fun
tion

from m pigeons to n holes. There are four kinds of 
lauses:

� f is total: (P

i1

_ P

i2

_ : : : _ P

in

), for i = 1; : : : ;m

� f is 1-1: (:P

ij

_ :P

kj

), for 1 � i < k �m, j = 1; : : : ; n

� f is onto: (P

1j

_ P

2j

_ : : : _ P

mj

), for j = 1; : : : ; n

� f is a fun
tion: (:P

ij

_ :P

ik

), for i = 1; : : : ;m, 1 � j < k � n

Note: We usually leave out the fun
tion 
lauses. One 
an derive the relational form from the

fun
tional form by setting P

0

ij

= P

ij

^ :P

i1

^ : : : ^ :P

i(j�1)

.

While PHP

n�1

n


an be eÆ
iently proven in EF or Cutting Planes proof systems, any Resolution

proof must be exponentially large.

5



CS 2429 - Propositional Proof Complexity Le
ture #3: September 26, 2002

Theorem 6 Any resolution proof of PHP

n�1

n

requires size at least 2

n=20

.

The idea is based on the bottlene
k 
ounting. One views truth assignments as 
owing through

the proof. Assignments start at ; and 
ow out toward input 
lauses. A 
lause in the proof only

allows the assignments it falsi�es to 
ow through it. A key property is that at a middle level in

the proof, 
lauses must talk about lots of pigeons. Su
h a middle level 
lause falsi�es only a few

assignments and thus there must be many su
h 
lauses to let all the assignments 
ow through.

We say a truth assignment is i-
riti
al if it mat
hes all n � 1 holes to all pigeons but pigeon

i. Su
h an assignment is barely unsatisfying { it always satis�es all 1-1, onto and fun
tion 
lauses

and all but one of the 
lauses saying that f is total. The only 
lause it falsi�es is C

i

= (P

i1

_P

i2

_

: : : _ P

i(n�1)

) whi
h says that pigeon i is mapped somewhere.

The properties of 
riti
al truth assignments make it 
onvenient to 
onvert ea
h su
h 
lause C

to a positive 
lause M(C) that is satis�ed by pre
isely the same set of 
riti
al assignments as C.

More pre
isely, to produ
eM(C), we repla
e :P

ij

in C with (P

1j

_ : : :_P

(i�1)j

_P

(i+1)j

_ : : :_P

nj

).

The above translation has the important property that it preserves 
ow of 
riti
al assignments.

More pre
isely, let P be a Resolution proof, and let M(P ) be the 
orresponding sequen
e of

monotone 
lauses. Then for any 
riti
al truth assignment � and for any 
lause C in P and


orresponding 
lause M(C) in M(P ), � satis�es C if and only if � satis�es M(C).

6


