CS 2429 - Propositional Proof Complexity Lecture #3: September 26, 2002

CS 2429 - Propositional Proof Complexity
Lecture #3: September 26, 2002

Lecturer: Toniann Pitassi

Scribe Notes by: Daniel Ivan

We have seen in the previous lectures different propositional proof systems, such as Resolution,
Davis-Putnam, DPLL, and Cutting Planes. Today we will discuss Frege Systems and the Sequent
Calculus (PK). We will then talk about some definitions and metrics which allows us to compare
different proof systems.

1 The Sequent Calculus (PK)

It turns out that the Frege Systems and the Sequent Calculus are general, robust, and they are
stronger than the other proof systems mentioned above.

We will briefly recall from the previous lectures that Frege Systems are based on an underlying
set of complete connectives (for example —, V, A), a finite set of schematic axioms which are tau-
tologies, and rules of inference which allow to derive other tautologies by reasoning with arbitrary
formulas.

The Sequent Calculus is based on statements of the form Ay, Ao, ..., Ay — By, Bo, ..., By,
meaning that the conjunctions of the A’s implies the disjunction of the B’s: A1 A As A ... A A
DB VByV...VBy<= A VA,V ...VA, VBV ByV...By. The Sequent Calculus starts
with an axiom schema of the type A — A which is valid, and for any sequents of formulas I' and
A, there are the following rules:



CS 2429 - Propositional Proof Complexity

kening left: —— 2 kening right: — >
weakening left: T ASA weakening right: TS AA
r—-AAB ] IA,B— A
exchange left: m exchange rlght. m
traction left: > AAA tracti i oht: AJA— A
contraction lerc: F—}A,A contraction right: F,A—}A
r—-AA ) ATl — A,
Tl AT oA B N
v left: Al'>A B I'—= A V right: Ir—-AAB
e AVB,T = A e T A AV
A left: IA,B— A A rieht: r-AA I'->AB
T ANBS A gt I S AAAB

Lecture #3: September 26, 2002

All of the above formulas satisfy the Subformula Property. The Subformula Property states
that in any PK proof, any formula appearing in the proof must appear in the final sequent of the
proof.

The following cut rule does not satisfy the Subformula Property, but it provides a way to
shorten PK proofs.
r-AA AT - A

r—A

The soundness property of the PK proof systems says that if some sequent formula is provable
in PK, then it is valid. The completeness property of the PK proof system says that if some
sequent formula is valid, then it is provable in PK.

cut rule:

Theorem 1 PK is sound and complete.

Proof Soundness is proven by induction on the number of sequents in the proof. If the proof
consists of a single sequent, then it must be an instance of the axiom schema, and therefore is valid.
To prove the inductive step we consider each rule one at a time, and prove that the rules preserve
soundness. That is, if the sequent S is obtained by a applying one of the rules to the two previous
sequents S; and So, then if S; and S are valid, then so is S.

To prove completeness, we want to show that if the sequent I' — A is valid, then it has a PK
proof. We prove this by induction on the number of logical connectives occuring in I' — A. If
there are no connectives, and if it is valid, then it must be of the form zi,..., 2 — y1,...,y,
where some variable x occurs on both the left and the righthand side. Thus, this sequent can be
obtained from the axiom x — x by weakening. For the inductive step, we will need the following
inversion lemma.

Lemma 2 (Inversion Lemma) Let S be a sequent derivable from two sequents S1 and Sy by one
of the PK rules. Then if S is valid, so are S1 and Ss.



CS 2429 - Propositional Proof Complexity Lecture #3: September 26, 2002

Now consider a sequent I' — A which involves k£ connectives. Choose some outermost connective
occurring in either a formula from I’ or a formula from A. Apply the appropriate logical rule in
reverse in order to obtain two sequents S; = I'y — Ay, and So = I'y — Ag such that S =1 — A
can be obtained from these two sequents by applying the logical rule, and where both S| and S5
contain at most k—1 logical connectives. By the inversion lemma, both S; and S, are valid because
S is valid. Now by the induction hypothesis, both S; and S2 have valid PK proofs. Notice that
we actually proved that any valid sequent has a cut-free PK proof. That is, a PK proof where the
cut rule is not used.

We define the size of a PK proof as the total number of connectives occurring in all the sequents
of the proof. The line size represents the total number of sequents in the proof.

A PK proof has a tree-like structure when each intermediate sequent in the proof is used at
most once. Otherwise, if there is any intermediate sequent in the proof which is used more than
once, the PK proof is DAG-like (DAG stands for Direct Acyclic Graph).

2 Polynomial simulations

Now, as we have seen various proof systems, it would be interesting to compare different proof
systems. We defined the notion of p-simulation earlier, which allowed us to compare the strength
of two different proof systems for the same language. Now we will generalize this notion to allow us
to compare proof systems for different languages. In what follows, L; and Ly will be two different
languages, usually with polynomial-time reductions between them (in both directions). Often both
L, and Lo will both be coNP-complete, but not always.

Definition Let L1, £, be two languages (usually both co-NP complete), and let fs be a polynomial-
time reduction from L9 to £1. Then V; for £ polynomially simulates (p-simulates) V5 for £, under
reduction fs if there exists a polynomial-time h such that V z € Ly, Va(z,p) accepts if and only if

Vi(f2(z), h(p)) accepts.

Notice that if V; and V, are two proof sytems proofs systems for the same language £, then if
V1 polynomially simulates Vo, then lower bounds for Vi imply lower bounds for V5. To see this,
consider some infinite collection of strings x1, ..., where all z; € £ and |z;| > |z;—1|. Suppose that
any Vi proof of x; requires superpolynomial size. Now suppose for sake of contradiction that each
x; has a polynomial-size V; proof, p;. Then by the p-simulation, A(p;) will be a polynomial-size V;
proof of z;, a contradiction.

However, the above argument doesn’t always work when V; and V5 are proof systems for different
languages, because the underlying reductions between them are not necessarily onto. Nonetheless,
we can add an extra condition (essentially saying that the reduction can be efficiently proven correct
within the proof system) allowing us to extract lower bounds for V; from lower bounds for V;.

Lemma 3 Let L1 and Ly be two languages, and let f1 be a polynomial-time reduction from L1 to
Lo and let fo be a polynomial-time reduction from Lo to L1. Let Vi be a proof system for L1 and
let Vo be a proof system for Lo. Assume that: (1) Vi polynomially-simulates Vo under fo; and (2)
for all x € Ly, if fo(fi(x)) has a short Vi proof, then so does x. Then lower bounds for Vi imply
lower bounds bounds for Vs, under reductions f1 and fo.



CS 2429 - Propositional Proof Complexity Lecture #3: September 26, 2002

Let x1, ..., be an infinite collection of strings where z; € £ for all 4, and |z;| > |z;—1|. Suppose
that any Vi proof of z; requires superpolynomial size. Now suppose for sake of contradiction that
fi(z;) has a polynomial-size Vo proof, p;. Then by (1) h(p;) will be a polynomial-size V; proof
of fo(fi(x;)). Now by (2), there is also a short V; proof of x;, contradicting the fact that z; was
supposed to require a large V; proof.

Definition Two proof systems V) for £; and V, for Lo are said to be polynomially equivalent
under reductions f; and f; if lower bounds for V; follow from lower bounds for V5 and vice versa
(for reductions f; and fs).

There are surprisingly few examples comparing proof systems for different languages. One
example is the following.

Theorem 4 (Pitassi, Urquhart) The Hajos calculus and Extended Frege are polynomially equiva-
lent

The above theorem is interesting since it had been an open problem to prove lower bounds
for the Hajos calculus. While we still do not know how to prove such lower bounds, the above
theorem tells us that the problem is basically equivalent to proving lower bounds for Extended Frege
systems! Moreover, formal relationships between different proof systems for different languages can
help us to leverage ideas and analyses from one domain area to a different domain area.

3 Resolution

We will now begin to study Resolution in detail. Resolution is the most popular theorem prover
known. It is the basis for many automated theorem provers for both propositional as well as first
order logic. It is also the basis for the best current algorithms for satisfiability testing.

Before we begin to talk about what is hard for Resolution, we want to point out that there are
some important special cases of CNF formulas that are easy for Resolution. The resolution system
can produce polynomial-size proofs for any unsatisfiable 2CNF formula, and for any unsatisfiable
Horn formula. To see this for 2CNF, notice that if we begin with a 2CNF formula, we can only
generate clauses containing at most 2 literals. The number of such clauses is polynomial in n.
Thus Resolution when run on a 2CNF formula will either produce all clauses of size 2, including
the empty clause, and then halt (running in polynomial time) and output unsatisfiable, or the
algorithm will get to a point where it will not be able to generate any new clause of size at most
2, and in this case if the empty clause has not yet been generated, then the algorithm can halt
and output ”satisfiable”. In either case, the algorithm halts in polynomial-time. The case of Horn
formulas will be left as a homework exercise.

We will now show that Resolution can be simulated by PK. After that, we will see that PK is
stronger, by proving that the propositional pigeonhole principle has short PK proofs, but requires
exponential-size Resolution proofs.

Theorem 5 The PK proof system p-simulates the resolution proof system.

Proof



CS 2429 - Propositional Proof Complexity Lecture #3: September 26, 2002

First note that the PK proof system proves that a sequent is a tautology, whereas the Resolution
proof systems shows that a set of clauses are unsatisfiable. But a set of clauses is unsatisfiable if
and only if its negation is a tautology.

The idea of the proof is to associate a sequent formula to each clause of the refutation of the
resolution prove. Each refutation rule applied to two clauses corresponds to a PK rule. Therefore
the last clause of the resolution refutation will be equivalent to the sequent — which is unsat-
isfiable. Therefore if the resolution refutation prove refutes some set of clauses g, then by the
correspondences described above between each clause of the refutation and a sequent in the PK
proof —g is proved to be unsatisfiable in PK.

Example Let g = (x1 Vx2) A(T1Vx3)A(r1VT2)A(T1VT2)A(T3) If g has a resolution refutation,
then =g = (T1 AZ2) V (x1 AT3) V (T1 A z2) V (21 A 22) V (z3) is polynomially (in the size of the
refutation of g) provable in PK to be valid, which means — —¢ has a valid PK proof. So g — has
a valid PK proof.

In order to carry out this simulation, we will convert each clause of g to an equivalent sequent.

In the resolution refutation, from the first two clauses of g: (z1Vz2), (Z1Vx3) we refute another
clause (z9 V z3). But notice that (z1 Vxy) <=— z1,x9, and (T} Vz3) <=— T1,z3. The refutation
(xg V x3) <=— x9,x3 is the bottom sequent of the other two mentioned above in the cut rule of
the PK prove system. Therefore generalizing along all the clauses obtained by refutation in the
resolution prove, every refutation rule is equivalent with a cut rule in the PK prove. For each literal
we get rid of in the resolution rule, there is an equivalent cut rule in the PK prove by which we
get rid of the same literal. The final step in the resolution rule is when we have an atom P and its
negation =P from which we refute the empty set. This corresponds to an axiom in the PK prove
() — which is obviously valid. Therefore the PK prove of g — was done in time linear in the size
of the resolution prove, and it follows that —g is a tautology.

Our canonical example that is hard for Resolution is the propositional pigeonhole principle.

3.1 The Pigeon Hole Principle

The pigeon principle PH P} says that there is no 1-1 function from m objects (’pigeons’) to n
objects (’holes’) if m > n. The onto version of this, ontoPH P]", says that there is no 1-1, onto
function mapping m pigeons to n holes for m > n. This can be easily encoded as an unsatisfiable
propositional formula over variables F;; which represent pigeon i mapping to hole j. The clauses
ensure that any satisfying assignment to these variables corresponds to a valid 1-1, onto function
from m pigeons to n holes. There are four kinds of clauses:

o fistotal: (P VPoV...VPy), fori=1,...,m

o fis 1-1: (=P VFy),for 1<i<k<m,j=1,...,n

o fisonto: (PijVPyV...VPyj),forj=1,...,n

e fisa function: (—FP;; V-Py), fori=1,....m,1<j<k<n

Note: We usually leave out the function clauses. One can derive the relational form from the
functional form by setting Pj; = P A =P A ... A =Py 1.

While PH P~ can be efficiently proven in EF or Cutting Planes proof systems, any Resolution
proof must be exponentially large.



CS 2429 - Propositional Proof Complexity Lecture #3: September 26, 2002

Theorem 6 Any resolution proof of PHP" ! requires size at least on/20

The idea is based on the bottleneck counting. One views truth assignments as flowing through
the proof. Assignments start at () and flow out toward input clauses. A clause in the proof only
allows the assignments it falsifies to flow through it. A key property is that at a middle level in
the proof, clauses must talk about lots of pigeons. Such a middle level clause falsifies only a few
assignments and thus there must be many such clauses to let all the assignments flow through.

We say a truth assignment is i-critical if it matches all n — 1 holes to all pigeons but pigeon
7. Such an assignment is barely unsatisfying — it always satisfies all 1-1, onto and function clauses
and all but one of the clauses saying that f is total. The only clause it falsifies is C; = (P;1 V P2 V
..V Py,_1)) which says that pigeon i is mapped somewhere.

The properties of critical truth assignments make it convenient to convert each such clause C'
to a positive clause M (C) that is satisfied by precisely the same set of critical assignments as C.
More precisely, to produce M (C), we replace ~F;; in C with (Py; V...V P;_1); V Piy1); V...V Pj).

The above translation has the important property that it preserves flow of critical assignments.
More precisely, let P be a Resolution proof, and let M (P) be the corresponding sequence of
monotone clauses. Then for any critical truth assignment « and for any clause C' in P and
corresponding clause M (C) in M (P), « satisfies C if and only if « satisfies M (C).



