
CS 2429 - Propositional Proof Complexity Leture #3: September 26, 2002

CS 2429 - Propositional Proof Complexity

Leture #3: September 26, 2002

Leturer: Toniann Pitassi

Sribe Notes by: Daniel Ivan

We have seen in the previous letures di�erent propositional proof systems, suh as Resolution,

Davis-Putnam, DPLL, and Cutting Planes. Today we will disuss Frege Systems and the Sequent

Calulus (PK). We will then talk about some de�nitions and metris whih allows us to ompare

di�erent proof systems.

1 The Sequent Calulus (PK)

It turns out that the Frege Systems and the Sequent Calulus are general, robust, and they are

stronger than the other proof systems mentioned above.

We will briey reall from the previous letures that Frege Systems are based on an underlying

set of omplete onnetives (for example :, _, ^), a �nite set of shemati axioms whih are tau-

tologies, and rules of inferene whih allow to derive other tautologies by reasoning with arbitrary

formulas.

The Sequent Calulus is based on statements of the form A

1

, A

2

, : : :, A

k

! B

1

, B

2

, : : :, B

`

,

meaning that the onjuntions of the A's implies the disjuntion of the B's: A

1

^ A

2

^ : : : ^ A

k

� B

1

_ B

2

_ : : : _ B

`

() A

1

_ A

2

_ : : : _ A

k

_ B

1

_ B

2

_ : : : B

`

. The Sequent Calulus starts

with an axiom shema of the type A ! A whih is valid, and for any sequents of formulas � and

�, there are the following rules:

1



CS 2429 - Propositional Proof Complexity Leture #3: September 26, 2002

weakening left:

�! �

�; A! �

weakening right:

�;! �

�! �; A

exhange left:

�! �; A;B

�! �; B;A

exhange right:

�; A;B ! �

�; B;A! �

ontration left:

�! �; A;A

�! �; A

ontration right:

�; A;A! �

�; A! �

: left:

�! �; A

:A;�! �

: right:

A;�! �;

�! �;:A

_ left:

A;�! � B;�! �

A _B;�! �

_ right:

�! �; A;B

�! �; A _B

^ left:

�; A;B ! �

�; A ^B ! �

^ right:

�! �; A �! �; B

�! �; A ^B

All of the above formulas satisfy the Subformula Property. The Subformula Property states

that in any PK proof, any formula appearing in the proof must appear in the �nal sequent of the

proof.

The following ut rule does not satisfy the Subformula Property, but it provides a way to

shorten PK proofs.

ut rule:

�! �; A A;�! �

�! �

The soundness property of the PK proof systems says that if some sequent formula is provable

in PK, then it is valid. The ompleteness property of the PK proof system says that if some

sequent formula is valid, then it is provable in PK.

Theorem 1 PK is sound and omplete.

Proof Soundness is proven by indution on the number of sequents in the proof. If the proof

onsists of a single sequent, then it must be an instane of the axiom shema, and therefore is valid.

To prove the indutive step we onsider eah rule one at a time, and prove that the rules preserve

soundness. That is, if the sequent S is obtained by a applying one of the rules to the two previous

sequents S

1

and S

2

, then if S

1

and S

2

are valid, then so is S.

To prove ompleteness, we want to show that if the sequent �! � is valid, then it has a PK

proof. We prove this by indution on the number of logial onnetives ouring in � ! �. If

there are no onnetives, and if it is valid, then it must be of the form x

1

; : : : ; x

k

! y

1

; : : : ; y

l

,

where some variable x ours on both the left and the righthand side. Thus, this sequent an be

obtained from the axiom x ! x by weakening. For the indutive step, we will need the following

inversion lemma.

Lemma 2 (Inversion Lemma) Let S be a sequent derivable from two sequents S

1

and S

2

by one

of the PK rules. Then if S is valid, so are S

1

and S

2

.

2



CS 2429 - Propositional Proof Complexity Leture #3: September 26, 2002

Now onsider a sequent �! �whih involves k onnetives. Choose some outermost onnetive

ourring in either a formula from � or a formula from �. Apply the appropriate logial rule in

reverse in order to obtain two sequents S

1

= �

1

! �

1

, and S

2

= �

2

! �

2

suh that S = � ! �

an be obtained from these two sequents by applying the logial rule, and where both S

1

and S

2

ontain at most k�1 logial onnetives. By the inversion lemma, both S

1

and S

2

are valid beause

S is valid. Now by the indution hypothesis, both S

1

and S

2

have valid PK proofs. Notie that

we atually proved that any valid sequent has a ut-free PK proof. That is, a PK proof where the

ut rule is not used.

We de�ne the size of a PK proof as the total number of onnetives ourring in all the sequents

of the proof. The line size represents the total number of sequents in the proof.

A PK proof has a tree-like struture when eah intermediate sequent in the proof is used at

most one. Otherwise, if there is any intermediate sequent in the proof whih is used more than

one, the PK proof is DAG-like (DAG stands for Diret Ayli Graph).

2 Polynomial simulations

Now, as we have seen various proof systems, it would be interesting to ompare di�erent proof

systems. We de�ned the notion of p-simulation earlier, whih allowed us to ompare the strength

of two di�erent proof systems for the same language. Now we will generalize this notion to allow us

to ompare proof systems for di�erent languages. In what follows, L

1

and L

2

will be two di�erent

languages, usually with polynomial-time redutions between them (in both diretions). Often both

L

1

and L

2

will both be oNP-omplete, but not always.

De�nition Let L

1

, L

2

be two languages (usually both o-NP omplete), and let f

2

be a polynomial-

time redution from L

2

to L

1

. Then V

1

for L

1

polynomially simulates (p-simulates) V

2

for L

2

under

redution f

2

if there exists a polynomial-time h suh that 8 x 2 L

2

, V

2

(x; p) aepts if and only if

V

1

(f

2

(x); h(p)) aepts.

Notie that if V

1

and V

2

are two proof sytems proofs systems for the same language L, then if

V

1

polynomially simulates V

2

, then lower bounds for V

1

imply lower bounds for V

2

. To see this,

onsider some in�nite olletion of strings x

1

; : : : ; where all x

i

2 L and jx

i

j > jx

i�1

j. Suppose that

any V

1

proof of x

i

requires superpolynomial size. Now suppose for sake of ontradition that eah

x

i

has a polynomial-size V

1

proof, p

i

. Then by the p-simulation, h(p

i

) will be a polynomial-size V

1

proof of x

i

, a ontradition.

However, the above argument doesn't always work when V

1

and V

2

are proof systems for di�erent

languages, beause the underlying redutions between them are not neessarily onto. Nonetheless,

we an add an extra ondition (essentially saying that the redution an be eÆiently proven orret

within the proof system) allowing us to extrat lower bounds for V

1

from lower bounds for V

2

.

Lemma 3 Let L

1

and L

2

be two languages, and let f

1

be a polynomial-time redution from L

1

to

L

2

and let f

2

be a polynomial-time redution from L

2

to L

1

. Let V

1

be a proof system for L

1

and

let V

2

be a proof system for L

2

. Assume that: (1) V

1

polynomially-simulates V

2

under f

2

; and (2)

for all x 2 L

1

, if f

2

(f

1

(x)) has a short V

1

proof, then so does x. Then lower bounds for V

1

imply

lower bounds bounds for V

2

, under redutions f

1

and f

2

.

3



CS 2429 - Propositional Proof Complexity Leture #3: September 26, 2002

Let x

1

; : : : ; be an in�nite olletion of strings where x

i

2 L

1

for all i, and jx

i

j > jx

i�1

j. Suppose

that any V

1

proof of x

i

requires superpolynomial size. Now suppose for sake of ontradition that

f

1

(x

i

) has a polynomial-size V

2

proof, p

i

. Then by (1) h(p

i

) will be a polynomial-size V

1

proof

of f

2

(f

1

(x

i

)). Now by (2), there is also a short V

1

proof of x

i

, ontraditing the fat that x

i

was

supposed to require a large V

1

proof.

De�nition Two proof systems V

1

for L

1

and V

2

for L

2

are said to be polynomially equivalent

under redutions f

1

and f

2

if lower bounds for V

1

follow from lower bounds for V

2

and vie versa

(for redutions f

1

and f

2

).

There are surprisingly few examples omparing proof systems for di�erent languages. One

example is the following.

Theorem 4 (Pitassi, Urquhart) The Hajos alulus and Extended Frege are polynomially equiva-

lent

The above theorem is interesting sine it had been an open problem to prove lower bounds

for the Hajos alulus. While we still do not know how to prove suh lower bounds, the above

theorem tells us that the problem is basially equivalent to proving lower bounds for Extended Frege

systems! Moreover, formal relationships between di�erent proof systems for di�erent languages an

help us to leverage ideas and analyses from one domain area to a di�erent domain area.

3 Resolution

We will now begin to study Resolution in detail. Resolution is the most popular theorem prover

known. It is the basis for many automated theorem provers for both propositional as well as �rst

order logi. It is also the basis for the best urrent algorithms for satis�ability testing.

Before we begin to talk about what is hard for Resolution, we want to point out that there are

some important speial ases of CNF formulas that are easy for Resolution. The resolution system

an produe polynomial-size proofs for any unsatis�able 2CNF formula, and for any unsatis�able

Horn formula. To see this for 2CNF, notie that if we begin with a 2CNF formula, we an only

generate lauses ontaining at most 2 literals. The number of suh lauses is polynomial in n.

Thus Resolution when run on a 2CNF formula will either produe all lauses of size 2, inluding

the empty lause, and then halt (running in polynomial time) and output unsatis�able, or the

algorithm will get to a point where it will not be able to generate any new lause of size at most

2, and in this ase if the empty lause has not yet been generated, then the algorithm an halt

and output "satis�able". In either ase, the algorithm halts in polynomial-time. The ase of Horn

formulas will be left as a homework exerise.

We will now show that Resolution an be simulated by PK. After that, we will see that PK is

stronger, by proving that the propositional pigeonhole priniple has short PK proofs, but requires

exponential-size Resolution proofs.

Theorem 5 The PK proof system p-simulates the resolution proof system.

Proof

4



CS 2429 - Propositional Proof Complexity Leture #3: September 26, 2002

First note that the PK proof system proves that a sequent is a tautology, whereas the Resolution

proof systems shows that a set of lauses are unsatis�able. But a set of lauses is unsatis�able if

and only if its negation is a tautology.

The idea of the proof is to assoiate a sequent formula to eah lause of the refutation of the

resolution prove. Eah refutation rule applied to two lauses orresponds to a PK rule. Therefore

the last lause of the resolution refutation will be equivalent to the sequent ! whih is unsat-

is�able. Therefore if the resolution refutation prove refutes some set of lauses g, then by the

orrespondenes desribed above between eah lause of the refutation and a sequent in the PK

proof :g is proved to be unsatis�able in PK.

Example Let g = (x

1

_x

2

)^ (x

1

_x

3

)^ (x

1

_x

2

)^ (x

1

_x

2

)^ (x

3

) If g has a resolution refutation,

then :g = (x

1

^ x

2

) _ (x

1

^ x

3

) _ (x

1

^ x

2

) _ (x

1

^ x

2

) _ (x

3

) is polynomially (in the size of the

refutation of g) provable in PK to be valid, whih means ! :g has a valid PK proof. So g ! has

a valid PK proof.

In order to arry out this simulation, we will onvert eah lause of g to an equivalent sequent.

In the resolution refutation, from the �rst two lauses of g: (x

1

_x

2

), (x

1

_x

3

) we refute another

lause (x

2

_x

3

). But notie that (x

1

_x

2

)()! x

1

; x

2

, and (x

1

_x

3

)()! x

1

; x

3

. The refutation

(x

2

_ x

3

) ()! x

2

; x

3

is the bottom sequent of the other two mentioned above in the ut rule of

the PK prove system. Therefore generalizing along all the lauses obtained by refutation in the

resolution prove, every refutation rule is equivalent with a ut rule in the PK prove. For eah literal

we get rid of in the resolution rule, there is an equivalent ut rule in the PK prove by whih we

get rid of the same literal. The �nal step in the resolution rule is when we have an atom P and its

negation :P from whih we refute the empty set. This orresponds to an axiom in the PK prove

; ! whih is obviously valid. Therefore the PK prove of g ! was done in time linear in the size

of the resolution prove, and it follows that :g is a tautology.

Our anonial example that is hard for Resolution is the propositional pigeonhole priniple.

3.1 The Pigeon Hole Priniple

The pigeon priniple PHP

m

n

says that there is no 1-1 funtion from m objets ('pigeons') to n

objets ('holes') if m > n. The onto version of this, ontoPHP

m

n

, says that there is no 1-1, onto

funtion mapping m pigeons to n holes for m > n. This an be easily enoded as an unsatis�able

propositional formula over variables P

ij

whih represent pigeon i mapping to hole j. The lauses

ensure that any satisfying assignment to these variables orresponds to a valid 1-1, onto funtion

from m pigeons to n holes. There are four kinds of lauses:

� f is total: (P

i1

_ P

i2

_ : : : _ P

in

), for i = 1; : : : ;m

� f is 1-1: (:P

ij

_ :P

kj

), for 1 � i < k �m, j = 1; : : : ; n

� f is onto: (P

1j

_ P

2j

_ : : : _ P

mj

), for j = 1; : : : ; n

� f is a funtion: (:P

ij

_ :P

ik

), for i = 1; : : : ;m, 1 � j < k � n

Note: We usually leave out the funtion lauses. One an derive the relational form from the

funtional form by setting P

0

ij

= P

ij

^ :P

i1

^ : : : ^ :P

i(j�1)

.

While PHP

n�1

n

an be eÆiently proven in EF or Cutting Planes proof systems, any Resolution

proof must be exponentially large.

5



CS 2429 - Propositional Proof Complexity Leture #3: September 26, 2002

Theorem 6 Any resolution proof of PHP

n�1

n

requires size at least 2

n=20

.

The idea is based on the bottlenek ounting. One views truth assignments as owing through

the proof. Assignments start at ; and ow out toward input lauses. A lause in the proof only

allows the assignments it falsi�es to ow through it. A key property is that at a middle level in

the proof, lauses must talk about lots of pigeons. Suh a middle level lause falsi�es only a few

assignments and thus there must be many suh lauses to let all the assignments ow through.

We say a truth assignment is i-ritial if it mathes all n � 1 holes to all pigeons but pigeon

i. Suh an assignment is barely unsatisfying { it always satis�es all 1-1, onto and funtion lauses

and all but one of the lauses saying that f is total. The only lause it falsi�es is C

i

= (P

i1

_P

i2

_

: : : _ P

i(n�1)

) whih says that pigeon i is mapped somewhere.

The properties of ritial truth assignments make it onvenient to onvert eah suh lause C

to a positive lause M(C) that is satis�ed by preisely the same set of ritial assignments as C.

More preisely, to produeM(C), we replae :P

ij

in C with (P

1j

_ : : :_P

(i�1)j

_P

(i+1)j

_ : : :_P

nj

).

The above translation has the important property that it preserves ow of ritial assignments.

More preisely, let P be a Resolution proof, and let M(P ) be the orresponding sequene of

monotone lauses. Then for any ritial truth assignment � and for any lause C in P and

orresponding lause M(C) in M(P ), � satis�es C if and only if � satis�es M(C).

6


