CS 2429 - Propositional Proof Complexity Lecture #4: October 3, 2002
CS 2429 - Propositional Proof Complexity

Lecture #4: October 3, 2002

Lecturer: Toniann Pitassi

Scribe Notes by: Mehrdad Sabetzadeh

1 Resolution Lower Bound for the Pigeon Hole Principle

In the previous lecture, we introduced the Pigeon Hole Principle problem, or PHP for short, and
drew an outline of how we want to prove a lower bound on the length of Resolution proofs for
PHP. We now carry out the proof in detail.

Roughly speaking, the proof of resolution lower bound for PHP proceeds as follows: first, we
show that every proof of PHP) | contains a medium complezity clause and further that every
medium complexity clause is large. Second, we show that a partial assignment to the variables,
called a restriction, can be applied to every small proof so that

(a) every large clause disappears.

(b) the result is still a PHP™, | proof for some good size n/.

A proof by contradiction will then get us a lower bound on the proof size of PHP],_;.

Proposition 1 (Number of CNF Clauses in PHP],_,) The number of clauses in PHP, _, is
n+ (5)(n—1) = 0(n?).

Notation: Any CNF clause in PHP], | problem can be visualized by an n x (n — 1) table in which
every cell ¢;; in the table represents P;;. The table that corresponds to a CNF clause has a “+”
(“”) in cell ¢;; iff P;; (—F;;) appears in the CNF clause. The table is interpreted as the disjunction
of the literals. Figure 1 illustrates the tables for two PHP3 clauses.

Pigeons
1 2 3 4 1 2 3 4
1
2

Holes 1+

) 2+
Each table is read as the 3T

disjunction of all literals.

PV PV P Py V Py

Figure 1: Tabular presentation of PHP clauses

Definition We say a truth assignment is i-critical if it matches all n — 1 holes to all pigeons but
pigeon 7 (see Figure 2.)

CS 2429 - Propositional Proof Complexity Lecture #4: October 3, 2002

() Pigeons

Holes

Figure 2: An i-critical truth assignment

Such an assignment is barely unsatisfying: it always satisfies all one-to-one, onto and function
clauses and all but one of the clauses saying that f is total. The only clause it falsifies is C; =
(Pi1VPV...VPy,_1)) which says that pigeon i is mapped somewhere. We will only care about the
properties of the clauses in the proof when evaluated on critical truth assignments. The properties
of critical truth assignments make it convenient to convert each such clause C' to a totally monotone
clause M (C) by replacing each occurrence of = F;; in C with (Py; V...V Pi_1);V Pip1y; V...V Pyj).
An example has been depicted in Figure 3.

1 2 3 4 1 2 3 4

B NN 2
Translation s +

Figure 3: Making clauses monotone

Taking the one-to-one and onto clauses of PHP into account, it is easy to check that the set of
monotone clauses is equivalent to the original clauses with respect to critical truth assignments and
therefore, inferences using these clauses are still sound with respect to critical truth assignments.

Tabular Resolution: Based on the definition of the pigeon hole principle and the argument given
above, tabular resolution for monotone clauses can be defined as in Figure 4.

Example: c, C,
1 2 3 4 1 2 3 4
— | 1]+ 1] [+
2 2
The chosen row + +
+ 3] |+
1 2 3 4
1
24|+
3|4+
q . For that row: take the intersection of literals in the row.
Resolution Rule: Choose one row and { For the other rows: take the union of literals in those rows.

Figure 4: Tabular Resolution

CS 2429 - Propositional Proof Complexity Lecture #4: October 3, 2002

Definition Given a clause C, let badpigions(C') = {i| there is some i-critical assignment « falsifying C'}.
We define the complexity of C, comp(C) = |badpigions(C)|. Figure 5 illustrates three examples:
the first two tables represent two initial clauses and the third one represents A, the final clause.

(@] Cy
1 2 3 4 1 2 3 4 1 2 3 4
1] + 1 + 1
2|+ 2 [+
3[+ 3 [+
1={1} I={2} I=1{1,234}

comp(Cy) =1 comp(Cy) =1 comp(A) =4

Figure 5: Clause complexity examples

The complexity of initial pigeon clauses is at most one and the complexity of the final clause,
A, is n. Moreover, by soundness, we know that the complexity of a resolvent is at most the sum
of the complexities of the two clauses from which it was derived, so if clause A and B imply a
clause C, then comp(C') < comp(A)+ comp(B). Therefore, if C is the first clause in the proof with
comp(C) > n/3, we must have n/3 < comp(C) < 2n/3 because we cannot do more than double
the complexity of the resolvent in each step. Therefore, we couldn’t have jumped over (n/3,2n/3|
region. Now, it remains to show that M (C) contains a large number of variables.

For comp(C) = t, we claim that M (C) has at least (n —t)t > 2n?/9 distinct literals mentioned.
Fix some i € badpigeons(C'), and let «; be an i-critical truth assignment with C(«;) = FALSE. For
each j € badpigeons(C), define the j-critical assignment «;;, obtained from «; by toggling i and j,
that is if a;; maps ¢ to hole &, then j was mapped to k in «; (see Figure 6.)

I I

XA N -

k

i J
[}
XL
k
Figure 6: Toggle operation

Now C(a;j) = TRUE since j & badpigeons(C') and further, o; and a;; differ only in that ;; maps
i to k rather than j to k. Since C' and M (C) agree on all critical assignments and M (C) is positive,
it must contain the variable P;;. This argument may be applied for every i € badpigeons(C) and
J & badpigeons(C), yielding the size bound on M (C).

Finally, we describe the restriction argument that gets us the desired result. Restrictions in
this case are partial assignments that map certain pigeons to certain holes. To map a pigeon i to
hole j, we set P;; to TRUE and set all other Py, or Py; to FALSE (see Figure 7.) Note that we must
be very careful not to falsify any clause when applying restriction.

This reduces PHP] _; to PHPZ:,l, where n’ = n — 1. To complete the proof, let us call a
positive clause large iff it has at least n?/10 literals. Assume, for a proof by contradiction, that

CS 2429 - Propositional Proof Complexity Lecture #4: October 3, 2002

Pigeons Holes

0

Figure 7: Restriction

there is some resolution proof of PHP"_; with at most S < 2%/?° clauses C such that M(C) is
large.

On average, restricting a P;; to TRUE will satisfy S/10 of all large clauses because large clauses
each have 1/10 of all variables. Choose a P;; that satisfies the most large clauses. This restriction
decreases the number of large clauses by a factor of 9/10. Now repeat such a restriction logg /1o S <

0.329n times. The remaining proof proves PHP™, | for some n' such that 2(n/)2/9 > n2/10 and
does not have any large clauses. This is a contradiction because such a refutation, from what we

saw earlier, must have a clause of size at least 2(n')?/9 which qualifies as a large clause even for
PHP}_,.
Theorem 2 (Resolution size lower bound) For sufficiently large n, any proof of PHP' | re-
quires size at least 220,

2 Width versus Size of Resolution Proofs

Let F be a set of clauses over variables {z1,...,z,} and width(F') be the number of literals in the
largest clause in F'. If P is a resolution proof of F'; width(P) is the number of literals in the largest
clause in P. Let proofwidth(F') denote the minimum of all proofs P of F of width(P).

Theorem 3 Every Davis-Putnam (DLL)/tree-like resolution proof of F' of size S can be converted
to one of width [logy S| + width(F).

Proof We show this by induction on the size of the resolution proof. Clearly, the claim holds for
S = 1. Assume that for all sets F’ of clauses with a tree-like resolution refutation of size S’ < S,
there is a tree-like resolution proof P’ of F' with width(P') < [logy S"| + width(F").

Now cousider a tree-like resolution refutation of size S of a set F' of clauses and let « be the last
variable resolved to derive the empty clause A. Clearly, one of the two subtrees at the top has size
at most S/2 and the other has size strictly smaller than S. Without loss of generality, let these be
the left and the right subtree, respectively. Also, assume Z comes from the left subtree and z from
the right as in Figure 8 (left).

Since we can prove Z from F in size at most S/2, we can also prove A from F|, 1 in size at
most S/2. The induction hypotheses now implies that we can also derive from F'|,.; in width at
most w — 1 = [logy(S/2)] 4+ width(F) = [logy(S)]| + width(F) — 1. Adding Z to each of the clauses

CS 2429 - Propositional Proof Complexity Lecture #4: October 3, 2002

Figure 8: Converting a small size proof to one with small width

in this proof lets us derive z from F in width w = [log,(S)] + width(F'). In a similar way, starting
with the right subtree, which is of size strictly smaller than S, we can derive A from F|z in
width at most w = [log,(S)| + width(F).

Now use a copy of the left sub-tree to resolve with each leaf clause of the right subtree that
contains an z as in Figure 8 (right). This allows us to eliminate z at the very bottom of the right
subtree, and we are effectively left with F|;. . From what we said before, we can now derive A
from this in width [logy(S)] + width(F'). This completes the proof.

Corollary 4 Any Davis-Putnam (DLL)/tree-like resolution proof of F requires size at least
9 (proofwidth (F)—width(F'))

In an almost similar way, we can prove the following theorem and its corollary:

Theorem 5 FEvery resolution proof of F of size S can be converted to one of width

V2nIn S 4 width(F).

Corollary 6 Any resolution proof of F' requires size at least e(proofwidth(F)—width(F))/(2n)

3 Resolution Proofs Based on the Width-Size Relationship

Given F, a set of unsatisfiable clauses, let s(#') be the size of the minimum subset of F' that is
unsatisfiable. Define the boundary §F of F' to be the set of variables appearing in exactly one
clause of F. Let the sub-critical expansion of F' be

e(F)= max min {|0G|: G C F,|G| = s}

s(F) 25(F)
T SsS Ty

The following lemma (depicted in Figure 9) relates the width of a proof F' to its sub-critical
expansion:

CS 2429 - Propositional Proof Complexity Lecture #4: October 3, 2002

) ¢ 2 S(E)
3 3

A
f/ N ~N N
O oo a o o o
N \\\ /7 \\’/ / //
//
/7 7

N S Y \ 7/
\ \/ \ /« //,
Contains 0¢¢ \ /
/
\ /
\ /

™

Figure 9: Relating proof width to sub-critical expansion

Lemma 7 If P is a resolution proof of F', then width(P) > e(F).

Proof Given a clause C' in P and a collection of clauses G C F', write G =p C if all the clauses in
G are used in P to derive C. In a resolution proof, if a literal appears in a clause C' then the only
way it can be removed from clauses derived using C is if the literal is resolved with its negation.
Therefore, if G =p C then every variable in §G appears in C' and so width(C) > |6G|.

Define the complexity, comp p(C), of a clause C in P to be the size of the set G C F such that
G =p C. By definition compp(A) > s(F') and compp(C) =1 for any clause in F'. Furthermore,
comp p is sub-additive, comp p(C) < comp p(A) + comp p(B) if C is a resolvent of A and B. Any
clause C in P such that s(F)/3 < compp(C) < 2s(F')/3 satisfies width(C') > |dG| for some set
G C F with s(F)/3 < |G| < 2s(F)/3. Maximizing over all choices of s, s(F)/3 < s < 2s(F)/3
where |G| = s, we get width(P) > e(F).

(F)

Corollary 8 Any Davis-Putnam/DLL proof of F requires size at least 2°") and any resolution

proof requires size at least 22 (F)/n)

