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1 Resolution Lower Bound for the Pigeon Hole Prin
iple

In the previous le
ture, we introdu
ed the Pigeon Hole Prin
iple problem, or PHP for short, and

drew an outline of how we want to prove a lower bound on the length of Resolution proofs for

PHP. We now 
arry out the proof in detail.

Roughly speaking, the proof of resolution lower bound for PHP pro
eeds as follows: �rst, we

show that every proof of PHP

n

n�1


ontains a medium 
omplexity 
lause and further that every

medium 
omplexity 
lause is large. Se
ond, we show that a partial assignment to the variables,


alled a restri
tion, 
an be applied to every small proof so that

(a) every large 
lause disappears.

(b) the result is still a PHP

n

0

n

0

�1

proof for some good size n

0

.

A proof by 
ontradi
tion will then get us a lower bound on the proof size of PHP

n

n�1

.

Proposition 1 (Number of CNF Clauses in PHP

n

n�1

) The number of 
lauses in PHP

n

n�1

is

n+

�

n

2

�

(n� 1) = �(n

3

).

Notation: Any CNF 
lause in PHP

n

n�1

problem 
an be visualized by an n� (n�1) table in whi
h

every 
ell 


ij

in the table represents P

ij

. The table that 
orresponds to a CNF 
lause has a \+"

(\-") in 
ell 


ij

i� P

ij

(:P

ij

) appears in the CNF 
lause. The table is interpreted as the disjun
tion

of the literals. Figure 1 illustrates the tables for two PHP

4

3


lauses.

+

+

+

1 2 3 4

1

2

3

1 2 3 4

1

2

3

- -

Ea
h table is read as the

disjun
tion of all literals.

Pigeons

Holes

P

11

_ P

12

_ P

13

:P

22

_ :P

23

Figure 1: Tabular presentation of PHP 
lauses

De�nition We say a truth assignment is i-
riti
al if it mat
hes all n� 1 holes to all pigeons but

pigeon i (see Figure 2.)
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i

Pigeons

Holes

Figure 2: An i-
riti
al truth assignment

Su
h an assignment is barely unsatisfying: it always satis�es all one-to-one, onto and fun
tion


lauses and all but one of the 
lauses saying that f is total. The only 
lause it falsi�es is C

i

=

(P

i1

_P

i2

_: : :_P

i(n�1)

) whi
h says that pigeon i is mapped somewhere. We will only 
are about the

properties of the 
lauses in the proof when evaluated on 
riti
al truth assignments. The properties

of 
riti
al truth assignments make it 
onvenient to 
onvert ea
h su
h 
lause C to a totally monotone


lauseM(C) by repla
ing ea
h o

urren
e of :P

ij

in C with (P

1j

_ : : :_P

(i�1)j

_P

(i+1)j

_ : : :_P

nj

).

An example has been depi
ted in Figure 3.

1 2 3 4

1

2

3

-

1 2 3 4

1

2

3

++ +

Translation

Figure 3: Making 
lauses monotone

Taking the one-to-one and onto 
lauses of PHP into a

ount, it is easy to 
he
k that the set of

monotone 
lauses is equivalent to the original 
lauses with respe
t to 
riti
al truth assignments and

therefore, inferen
es using these 
lauses are still sound with respe
t to 
riti
al truth assignments.

Tabular Resolution: Based on the de�nition of the pigeon hole prin
iple and the argument given

above, tabular resolution for monotone 
lauses 
an be de�ned as in Figure 4.

1 2 3 4

1

2

3

+

+

+

C

1

1 2 3 4

1

2

3

+

+

1 2 3 4

1

2

3

+

+

C

2

+

+

+

Example:

Resolution Rule: Choose one row and

�

For that row: take the interse
tion of literals in the row.

For the other rows: take the union of literals in those rows.

The 
hosen row

Figure 4: Tabular Resolution
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De�nition Given a 
lause C, let badpigions(C) = fij there is some i-
riti
al assignment � falsifying Cg.

We de�ne the 
omplexity of C, 
omp(C) = jbadpigions(C)j. Figure 5 illustrates three examples:

the �rst two tables represent two initial 
lauses and the third one represents �, the �nal 
lause.

1 2 3 4

1

2

3

+

+

+

I = f2gI = f1g


omp(C

1

) = 1 
omp(C

2

) = 1

1 2 3 4

1

2

3

I = f1; 2; 3; 4g


omp(�) = 4

1 2 3 4

1

2

3

+

+

+

C

1

C

2

Figure 5: Clause 
omplexity examples

The 
omplexity of initial pigeon 
lauses is at most one and the 
omplexity of the �nal 
lause,

�, is n. Moreover, by soundness, we know that the 
omplexity of a resolvent is at most the sum

of the 
omplexities of the two 
lauses from whi
h it was derived, so if 
lause A and B imply a


lause C, then 
omp(C) � 
omp(A)+
omp(B). Therefore, if C is the �rst 
lause in the proof with


omp(C) > n=3, we must have n=3 < 
omp(C) � 2n=3 be
ause we 
annot do more than double

the 
omplexity of the resolvent in ea
h step. Therefore, we 
ouldn't have jumped over (n=3; 2n=3℄

region. Now, it remains to show that M(C) 
ontains a large number of variables.

For 
omp(C) = t, we 
laim that M(C) has at least (n� t)t � 2n

2

=9 distin
t literals mentioned.

Fix some i 2 badpigeons(C), and let �

i

be an i-
riti
al truth assignment with C(�

i

) = False. For

ea
h j 62 badpigeons(C), de�ne the j-
riti
al assignment �

ij

, obtained from �

i

by toggling i and j,

that is if �

ij

maps i to hole k, then j was mapped to k in �

i

(see Figure 6.)

�

II

i

i

j

j

k

k

�

i

�

ij

Figure 6: Toggle operation

Now C(�

ij

) = True sin
e j 62 badpigeons(C) and further, �

i

and �

ij

di�er only in that �

ij

maps

i to k rather than j to k. Sin
e C andM(C) agree on all 
riti
al assignments andM(C) is positive,

it must 
ontain the variable P

ik

. This argument may be applied for every i 2 badpigeons(C) and

j 62 badpigeons(C), yielding the size bound on M(C).

Finally, we des
ribe the restri
tion argument that gets us the desired result. Restri
tions in

this 
ase are partial assignments that map 
ertain pigeons to 
ertain holes. To map a pigeon i to

hole j, we set P

ij

to True and set all other P

ik

or P

kj

to False (see Figure 7.) Note that we must

be very 
areful not to falsify any 
lause when applying restri
tion.

This redu
es PHP

n

n�1

to PHP

n

0

n

0

�1

, where n

0

= n � 1. To 
omplete the proof, let us 
all a

positive 
lause large i� it has at least n

2

=10 literals. Assume, for a proof by 
ontradi
tion, that

3
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1

Pigeons

j

Holes

0

0

0

i

0

0

0

0

i

j

Figure 7: Restri
tion

there is some resolution proof of PHP

n

n�1

with at most S < 2

n=20


lauses C su
h that M(C) is

large.

On average, restri
ting a P

ij

to True will satisfy S=10 of all large 
lauses be
ause large 
lauses

ea
h have 1=10 of all variables. Choose a P

ij

that satis�es the most large 
lauses. This restri
tion

de
reases the number of large 
lauses by a fa
tor of 9=10. Now repeat su
h a restri
tion log

9=10

S <

0:329n times. The remaining proof proves PHP

n

0

n

0

�1

for some n

0

su
h that 2(n

0

)

2

=9 > n

2

=10 and

does not have any large 
lauses. This is a 
ontradi
tion be
ause su
h a refutation, from what we

saw earlier, must have a 
lause of size at least 2(n

0

)

2

=9 whi
h quali�es as a large 
lause even for

PHP

n

n�1

.

Theorem 2 (Resolution size lower bound) For suÆ
iently large n, any proof of PHP

n

n�1

re-

quires size at least 2

n=20

.

2 Width versus Size of Resolution Proofs

Let F be a set of 
lauses over variables fx

1

; : : : ; x

n

g and width(F ) be the number of literals in the

largest 
lause in F . If P is a resolution proof of F , width(P ) is the number of literals in the largest


lause in P . Let proofwidth (F ) denote the minimum of all proofs P of F of width(P ).

Theorem 3 Every Davis-Putnam (DLL)/tree-like resolution proof of F of size S 
an be 
onverted

to one of width dlog

2

Se+ width(F ).

Proof We show this by indu
tion on the size of the resolution proof. Clearly, the 
laim holds for

S = 1. Assume that for all sets F

0

of 
lauses with a tree-like resolution refutation of size S

0

< S,

there is a tree-like resolution proof P

0

of F

0

with width(P

0

) � dlog

2

S

0

e+ width(F

0

).

Now 
onsider a tree-like resolution refutation of size S of a set F of 
lauses and let x be the last

variable resolved to derive the empty 
lause �. Clearly, one of the two subtrees at the top has size

at most S=2 and the other has size stri
tly smaller than S. Without loss of generality, let these be

the left and the right subtree, respe
tively. Also, assume �x 
omes from the left subtree and x from

the right as in Figure 8 (left).

Sin
e we 
an prove �x from F in size at most S=2, we 
an also prove � from F j

x 1

in size at

most S=2. The indu
tion hypotheses now implies that we 
an also derive from F j

x 1

in width at

most w� 1 = dlog

2

(S=2)e+width(F ) = dlog

2

(S)e+width(F )� 1. Adding �x to ea
h of the 
lauses

4
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�

S

2

< S < S

�� �

� w

�x

�x

�x �x �x �x

x x

�!

�!

� w

� w � w� w � w

Figure 8: Converting a small size proof to one with small width

in this proof lets us derive �x from F in width w = dlog

2

(S)e+width(F ). In a similar way, starting

with the right subtree, whi
h is of size stri
tly smaller than S, we 
an derive � from F j

x 0

in

width at most w = dlog

2

(S)e+ width(F ).

Now use a 
opy of the left sub-tree to resolve with ea
h leaf 
lause of the right subtree that


ontains an x as in Figure 8 (right). This allows us to eliminate x at the very bottom of the right

subtree, and we are e�e
tively left with F j

x 0

. From what we said before, we 
an now derive �

from this in width dlog

2

(S)e + width(F ). This 
ompletes the proof.

Corollary 4 Any Davis-Putnam (DLL)/tree-like resolution proof of F requires size at least

2

(proofwidth (F )�width(F ))

.

In an almost similar way, we 
an prove the following theorem and its 
orollary:

Theorem 5 Every resolution proof of F of size S 
an be 
onverted to one of width

p

2n lnS + width(F ).

Corollary 6 Any resolution proof of F requires size at least e

(proofwidth(F )�width(F ))

2

=(2n)

.

3 Resolution Proofs Based on the Width-Size Relationship

Given F , a set of unsatis�able 
lauses, let s(F ) be the size of the minimum subset of F that is

unsatis�able. De�ne the boundary ÆF of F to be the set of variables appearing in exa
tly one


lause of F . Let the sub-
riti
al expansion of F be

e(F ) = max

s(F )

3

�s�

2s(F )

3

min fjÆGj : G � F; jGj = sg

The following lemma (depi
ted in Figure 9) relates the width of a proof F to its sub-
riti
al

expansion:

5
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s(F )

G

�

ÆGContains

s(F )

3

to

2s(F )

3

Figure 9: Relating proof width to sub-
riti
al expansion

Lemma 7 If P is a resolution proof of F , then width(P ) � e(F ).

Proof Given a 
lause C in P and a 
olle
tion of 
lauses G � F , write G)

P

C if all the 
lauses in

G are used in P to derive C. In a resolution proof, if a literal appears in a 
lause C then the only

way it 
an be removed from 
lauses derived using C is if the literal is resolved with its negation.

Therefore, if G)

P

C then every variable in ÆG appears in C and so width(C) � jÆGj.

De�ne the 
omplexity, 
omp

P

(C), of a 
lause C in P to be the size of the set G � F su
h that

G )

P

C. By de�nition 
omp

P

(�) � s(F ) and 
omp

P

(C) = 1 for any 
lause in F . Furthermore,


omp

P

is sub-additive, 
omp

P

(C) � 
omp

P

(A) + 
omp

P

(B) if C is a resolvent of A and B. Any


lause C in P su
h that s(F )=3 � 
omp

P

(C) � 2s(F )=3 satis�es width(C) � jÆGj for some set

G � F with s(F )=3 � jGj � 2s(F )=3. Maximizing over all 
hoi
es of s, s(F )=3 � s � 2s(F )=3

where jGj = s, we get width(P ) � e(F ).

Corollary 8 Any Davis-Putnam/DLL proof of F requires size at least 2

e(F )

and any resolution

proof requires size at least 2


(e

2

(F )=n)

.
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