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1 Resolution Lower Bound for the Pigeon Hole Priniple

In the previous leture, we introdued the Pigeon Hole Priniple problem, or PHP for short, and

drew an outline of how we want to prove a lower bound on the length of Resolution proofs for

PHP. We now arry out the proof in detail.

Roughly speaking, the proof of resolution lower bound for PHP proeeds as follows: �rst, we

show that every proof of PHP

n

n�1

ontains a medium omplexity lause and further that every

medium omplexity lause is large. Seond, we show that a partial assignment to the variables,

alled a restrition, an be applied to every small proof so that

(a) every large lause disappears.

(b) the result is still a PHP

n

0

n

0

�1

proof for some good size n

0

.

A proof by ontradition will then get us a lower bound on the proof size of PHP

n

n�1

.

Proposition 1 (Number of CNF Clauses in PHP

n

n�1

) The number of lauses in PHP

n

n�1

is

n+

�

n

2

�

(n� 1) = �(n

3

).

Notation: Any CNF lause in PHP

n

n�1

problem an be visualized by an n� (n�1) table in whih

every ell 

ij

in the table represents P

ij

. The table that orresponds to a CNF lause has a \+"

(\-") in ell 

ij

i� P

ij

(:P

ij

) appears in the CNF lause. The table is interpreted as the disjuntion

of the literals. Figure 1 illustrates the tables for two PHP

4

3

lauses.

+

+

+

1 2 3 4

1

2

3

1 2 3 4

1

2

3

- -

Eah table is read as the

disjuntion of all literals.

Pigeons

Holes

P

11

_ P

12

_ P

13

:P

22

_ :P

23

Figure 1: Tabular presentation of PHP lauses

De�nition We say a truth assignment is i-ritial if it mathes all n� 1 holes to all pigeons but

pigeon i (see Figure 2.)
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i

Pigeons

Holes

Figure 2: An i-ritial truth assignment

Suh an assignment is barely unsatisfying: it always satis�es all one-to-one, onto and funtion

lauses and all but one of the lauses saying that f is total. The only lause it falsi�es is C

i

=

(P

i1

_P

i2

_: : :_P

i(n�1)

) whih says that pigeon i is mapped somewhere. We will only are about the

properties of the lauses in the proof when evaluated on ritial truth assignments. The properties

of ritial truth assignments make it onvenient to onvert eah suh lause C to a totally monotone

lauseM(C) by replaing eah ourrene of :P

ij

in C with (P

1j

_ : : :_P

(i�1)j

_P

(i+1)j

_ : : :_P

nj

).

An example has been depited in Figure 3.

1 2 3 4

1

2

3

-

1 2 3 4

1

2

3

++ +

Translation

Figure 3: Making lauses monotone

Taking the one-to-one and onto lauses of PHP into aount, it is easy to hek that the set of

monotone lauses is equivalent to the original lauses with respet to ritial truth assignments and

therefore, inferenes using these lauses are still sound with respet to ritial truth assignments.

Tabular Resolution: Based on the de�nition of the pigeon hole priniple and the argument given

above, tabular resolution for monotone lauses an be de�ned as in Figure 4.

1 2 3 4

1

2

3

+

+

+

C

1

1 2 3 4

1

2

3

+

+

1 2 3 4

1

2

3

+

+

C

2

+

+

+

Example:

Resolution Rule: Choose one row and

�

For that row: take the intersetion of literals in the row.

For the other rows: take the union of literals in those rows.

The hosen row

Figure 4: Tabular Resolution
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De�nition Given a lause C, let badpigions(C) = fij there is some i-ritial assignment � falsifying Cg.

We de�ne the omplexity of C, omp(C) = jbadpigions(C)j. Figure 5 illustrates three examples:

the �rst two tables represent two initial lauses and the third one represents �, the �nal lause.

1 2 3 4

1

2

3

+

+

+

I = f2gI = f1g

omp(C

1

) = 1 omp(C

2

) = 1

1 2 3 4

1

2

3

I = f1; 2; 3; 4g

omp(�) = 4

1 2 3 4

1

2

3

+

+

+

C

1

C

2

Figure 5: Clause omplexity examples

The omplexity of initial pigeon lauses is at most one and the omplexity of the �nal lause,

�, is n. Moreover, by soundness, we know that the omplexity of a resolvent is at most the sum

of the omplexities of the two lauses from whih it was derived, so if lause A and B imply a

lause C, then omp(C) � omp(A)+omp(B). Therefore, if C is the �rst lause in the proof with

omp(C) > n=3, we must have n=3 < omp(C) � 2n=3 beause we annot do more than double

the omplexity of the resolvent in eah step. Therefore, we ouldn't have jumped over (n=3; 2n=3℄

region. Now, it remains to show that M(C) ontains a large number of variables.

For omp(C) = t, we laim that M(C) has at least (n� t)t � 2n

2

=9 distint literals mentioned.

Fix some i 2 badpigeons(C), and let �

i

be an i-ritial truth assignment with C(�

i

) = False. For

eah j 62 badpigeons(C), de�ne the j-ritial assignment �

ij

, obtained from �

i

by toggling i and j,

that is if �

ij

maps i to hole k, then j was mapped to k in �

i

(see Figure 6.)

�

II

i

i

j

j

k

k

�

i

�

ij

Figure 6: Toggle operation

Now C(�

ij

) = True sine j 62 badpigeons(C) and further, �

i

and �

ij

di�er only in that �

ij

maps

i to k rather than j to k. Sine C andM(C) agree on all ritial assignments andM(C) is positive,

it must ontain the variable P

ik

. This argument may be applied for every i 2 badpigeons(C) and

j 62 badpigeons(C), yielding the size bound on M(C).

Finally, we desribe the restrition argument that gets us the desired result. Restritions in

this ase are partial assignments that map ertain pigeons to ertain holes. To map a pigeon i to

hole j, we set P

ij

to True and set all other P

ik

or P

kj

to False (see Figure 7.) Note that we must

be very areful not to falsify any lause when applying restrition.

This redues PHP

n

n�1

to PHP

n

0

n

0

�1

, where n

0

= n � 1. To omplete the proof, let us all a

positive lause large i� it has at least n

2

=10 literals. Assume, for a proof by ontradition, that
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1

Pigeons

j

Holes

0

0

0

i

0

0

0

0

i

j

Figure 7: Restrition

there is some resolution proof of PHP

n

n�1

with at most S < 2

n=20

lauses C suh that M(C) is

large.

On average, restriting a P

ij

to True will satisfy S=10 of all large lauses beause large lauses

eah have 1=10 of all variables. Choose a P

ij

that satis�es the most large lauses. This restrition

dereases the number of large lauses by a fator of 9=10. Now repeat suh a restrition log

9=10

S <

0:329n times. The remaining proof proves PHP

n

0

n

0

�1

for some n

0

suh that 2(n

0

)

2

=9 > n

2

=10 and

does not have any large lauses. This is a ontradition beause suh a refutation, from what we

saw earlier, must have a lause of size at least 2(n

0

)

2

=9 whih quali�es as a large lause even for

PHP

n

n�1

.

Theorem 2 (Resolution size lower bound) For suÆiently large n, any proof of PHP

n

n�1

re-

quires size at least 2

n=20

.

2 Width versus Size of Resolution Proofs

Let F be a set of lauses over variables fx

1

; : : : ; x

n

g and width(F ) be the number of literals in the

largest lause in F . If P is a resolution proof of F , width(P ) is the number of literals in the largest

lause in P . Let proofwidth (F ) denote the minimum of all proofs P of F of width(P ).

Theorem 3 Every Davis-Putnam (DLL)/tree-like resolution proof of F of size S an be onverted

to one of width dlog

2

Se+ width(F ).

Proof We show this by indution on the size of the resolution proof. Clearly, the laim holds for

S = 1. Assume that for all sets F

0

of lauses with a tree-like resolution refutation of size S

0

< S,

there is a tree-like resolution proof P

0

of F

0

with width(P

0

) � dlog

2

S

0

e+ width(F

0

).

Now onsider a tree-like resolution refutation of size S of a set F of lauses and let x be the last

variable resolved to derive the empty lause �. Clearly, one of the two subtrees at the top has size

at most S=2 and the other has size stritly smaller than S. Without loss of generality, let these be

the left and the right subtree, respetively. Also, assume �x omes from the left subtree and x from

the right as in Figure 8 (left).

Sine we an prove �x from F in size at most S=2, we an also prove � from F j

x 1

in size at

most S=2. The indution hypotheses now implies that we an also derive from F j

x 1

in width at

most w� 1 = dlog

2

(S=2)e+width(F ) = dlog

2

(S)e+width(F )� 1. Adding �x to eah of the lauses
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�

S

2

< S < S

�� �

� w

�x

�x

�x �x �x �x

x x

�!

�!

� w

� w � w� w � w

Figure 8: Converting a small size proof to one with small width

in this proof lets us derive �x from F in width w = dlog

2

(S)e+width(F ). In a similar way, starting

with the right subtree, whih is of size stritly smaller than S, we an derive � from F j

x 0

in

width at most w = dlog

2

(S)e+ width(F ).

Now use a opy of the left sub-tree to resolve with eah leaf lause of the right subtree that

ontains an x as in Figure 8 (right). This allows us to eliminate x at the very bottom of the right

subtree, and we are e�etively left with F j

x 0

. From what we said before, we an now derive �

from this in width dlog

2

(S)e + width(F ). This ompletes the proof.

Corollary 4 Any Davis-Putnam (DLL)/tree-like resolution proof of F requires size at least

2

(proofwidth (F )�width(F ))

.

In an almost similar way, we an prove the following theorem and its orollary:

Theorem 5 Every resolution proof of F of size S an be onverted to one of width

p

2n lnS + width(F ).

Corollary 6 Any resolution proof of F requires size at least e

(proofwidth(F )�width(F ))

2

=(2n)

.

3 Resolution Proofs Based on the Width-Size Relationship

Given F , a set of unsatis�able lauses, let s(F ) be the size of the minimum subset of F that is

unsatis�able. De�ne the boundary ÆF of F to be the set of variables appearing in exatly one

lause of F . Let the sub-ritial expansion of F be

e(F ) = max

s(F )

3

�s�

2s(F )

3

min fjÆGj : G � F; jGj = sg

The following lemma (depited in Figure 9) relates the width of a proof F to its sub-ritial

expansion:
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s(F )

G

�

ÆGContains

s(F )

3

to

2s(F )

3

Figure 9: Relating proof width to sub-ritial expansion

Lemma 7 If P is a resolution proof of F , then width(P ) � e(F ).

Proof Given a lause C in P and a olletion of lauses G � F , write G)

P

C if all the lauses in

G are used in P to derive C. In a resolution proof, if a literal appears in a lause C then the only

way it an be removed from lauses derived using C is if the literal is resolved with its negation.

Therefore, if G)

P

C then every variable in ÆG appears in C and so width(C) � jÆGj.

De�ne the omplexity, omp

P

(C), of a lause C in P to be the size of the set G � F suh that

G )

P

C. By de�nition omp

P

(�) � s(F ) and omp

P

(C) = 1 for any lause in F . Furthermore,

omp

P

is sub-additive, omp

P

(C) � omp

P

(A) + omp

P

(B) if C is a resolvent of A and B. Any

lause C in P suh that s(F )=3 � omp

P

(C) � 2s(F )=3 satis�es width(C) � jÆGj for some set

G � F with s(F )=3 � jGj � 2s(F )=3. Maximizing over all hoies of s, s(F )=3 � s � 2s(F )=3

where jGj = s, we get width(P ) � e(F ).

Corollary 8 Any Davis-Putnam/DLL proof of F requires size at least 2

e(F )

and any resolution

proof requires size at least 2


(e

2

(F )=n)

.

6


