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In the previous leture, we explored a lower bound on the length of Resolution proofs for random

formulas and disussed some open problems related to Resolution lower bounds. We ended with a

brief introdution to automatizability and proof searh for Resolution.

In this leture, we will introdue a broader notion of automatizability that allows us to derive

weaker forms of automatizability for resolution. We will also introdue the notion of an interpolant.

Finally, we will show how interpolants an be used to exploit known lower bounds for iruit lasses

in order to bound the omplexity of proof systems.

1 f(n; s)-Automatizability and Resolution

Reall the de�nition of automatizable from the previous leture:

De�nition A proof system P is automatizable if there is a polynomial-time algorithm that ap-

proximates MLP

P

(Minimum Length Proof) to within a polynomial fator.

What follows is a generalization of this notion of automatizability.

De�nition Let f : N � N �! N be a funtion. A propositional proof system, V , is f(n; S)-

automatizable if and only if there is an algorithm A

v

suh that given any unsatis�able formula

x, with jxj = n, A

v

outputs a proof P (in V ) in time at most f(n; S) where S is the size of the

shortest V -proof for x.

Note that our original de�nition of automatizable an be framed in this light by requiring that

f be n

O(1)

S

O(1)

(i.e. f is polynomial). Using this new notion of f(n; S)-automatizability, we now

derive a ouple of weak forms of automatizability for Resolution.

Theorem 1 For kCNF formulas, Tree Resolution is S

O(log n)

-automatizable.

Proof (sketh) Reall Theorem 3 from leture #4 that states that every tree-like resolution proof of

F of size S an be onverted to one of width dlog

2

Se+width(F ). There are only 2

log S

 

n

log S

!

=

n

O(log S)

= S

O(log n)

lauses of size at most log S. By Theorem 3 from leture #4, we an onvert

these lauses into a tree proof. If we do not are about spae, then we an run a breadth-�rst

resolution only deriving lauses of width at most logS. Alternatively, spae requirements an be

redued to polynomial by making the searh reursive.
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Theorem 2 For kCNF formulas, Resolution is 2

O(

p

n log S�log n)

automatizable.

Proof The proof is similar to that of the previous theorem however it uses Theorem 5 from

leture #4 whih states that every resolution proof of F of size S an be onverted to one of width

p

2n � lnS + width(F ).

The fat that the above theorems hold for kCNF formulas is not muh of a restrition sine any

formula an be onverted into an equivalent 3CNF formula, by Cook's theorem. There are similar

results for Polynomial Calulus with Resolution to those derived above for Resolution. Moreover,

very weak systems suh as truth tables are trivially automatizable. We onlude this setion by

noting, however, that there are few other known positive results on automatizability.

2 Interpolation

Although we present the following results in the ontext of propositional logi, the onept of

interpolation was originally de�ned for First Order Logi. Let A(p;q) denote a formula over the

vetors of variables p and q. Similarly, let B(p; r) denote a formula over the vetors of variables p

and r. Finally, let q \ r = �.

De�nition If A(p;q) �! B(p; r) is a tautology, then a Craig interpolant is any funtion C suh

that for any truth assignment � to p,

1. C(�) = 0 implies that :A(p;q) is a tautolgy, and

2. C(�) = 1 implies that B(p; r) is a tautolgy.

The origin of the term interpolant is obviated when one noties that A(p;q) �! C(p) and

C(p) �! B(p; r). There is also a dual de�nition of an interpolant for unsatis�able CNF formulas,

A(p;q) ^B(p; r), that says whih one of A(p;q) and B(p; r) is unsatis�able.

De�nition If A(p;q) ^ B(p; r) is an unsatis�able CNF formula, then a Craig interpolant is any

funtion C suh that for any truth assignment � to p,

1. C(�) = 0 implies that A(p;q) is unsatis�able, and

2. C(�) = 1 implies that B(p; r) is unsatis�able.

Theorem 3 If for every unsatis�able formula A(p; q) ^ B(p; r) there exists a polynomial time

omputable interpolant, then NP \ CoNP � P=poly.

Proof (sketh) Fix some language L 2 NP \CoNP . For eah �xed length n, let A(p;q) ode "q

is a witness that p is in L," where p has length n, And let B(p; r) ode "r is a witness that p is not

in L". Suh formulas A and B exist sine L is in NP \CoNP . Now if there is a polynomial-time

interpolant for A(p;q)^B(p; r), then by de�nition, there is a polynomial-size iruit C that takes

as input �, and determines whether or not A(�;q) is satis�able. But A(�;q) is satis�able if and

only if � is in L, and thus this iruit iruit deides L on inputs of length n, and therefore L is in

P=poly.
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The above theorem implies that we annot, in general, expet that an interpolant for a formula

A(p;q) ^ B(p; r) is going to be small. If however, A(p;q) ^ B(p; r) is unsatis�able and has a

short resolution proof, then we an ome up with a polynomial size iruit for omputing a Craig

interpolant.

2.1 Interpolation and Lower Bounds for Ciruit Classes

Restriting various harateristis of the iruits that ompute interpolants, suh as size and mono-

toniity, allows us to re�ne the notion of interpolation in order to exploit the lower bounds that

have been proven for various iruit lasses. That is, if we have a proof system whose interpolants

are in suh a iruit lass, then we an try to build a formula whose interpolant will be a iruit

for a hard problem in the iruit lass.

De�nition Let V be a propositional proof system and let f : N �! N be any funtion. Then V

has f -interpolation if and only if given an unsatis�able formula A(p;q) ^ B(p; r) with minimum

proof size S in V , there exists a iruit of size at most f(S) omputing an interpolant C for

A(p;q) ^B(p; r).

We say that V has feasible interpolation whenever f is polynomial. V has monotone f-

interpolation if and only if whenever the variables p our only positively in A (or only negatively

in B) the iruit omputing an interpolant is monotone. (Note that a monotone boolean funtion

is a boolean funtion in whih, if you ip any of the inputs in p from 0 to 1, the value of the

funtion will not ip from 1 to 0. A monotone iruit on n boolean inputs is a iruit with AND

and OR gates only, and no negations. Families of monotone iruits, one for eah input length n,

ompute exatly the monotone boolean funtions.)

Theorem 4 If proof system V has feasible interpolation and NP 6� P=poly then V is not polyno-

mially bounded.

Proof (sketh) Suppose, for the sake of ontradition, that V has feasible interpolation and is

polynomially bounded (i.e. poly(jxj)) with bound p. Consider a formula A(p;q)^B(p; r) where p

odes a CNF formula, A(p;q) says that assignment q satis�es p, and B(p; r) says that r of length

p(jxj) odes a V -proof of the unsatis�ability of p.

A Feasible interpolant for this formula gives a polynomial size iruit that, for eah CNF formula

(enoded by p), tells whih of A(p;q) and B(p; r) is unsatis�able. That is, we have a polynomial

size iruit for deiding satis�ability. This implies that NP � P=poly. Note that the inequality is

strit beause P/poly is known to ontain undeidable languages that are not in NP.

In the ase that the proof system has monotone feasible interpolation, we an do better than

the above theorem by using liques and o-liques.

Theorem 5 If V has monotone feasible interpolation, then V is not polynomially bounded.

Proof

In what follows, we will derive a ontradition to the Razborov/Alon-Boppana Boolean iruit

lower bounds for the k-lique problem:
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Theorem 6 (Razborov, Alon-Boppana) There exists an " suh that for suÆiently large n,

and m =

n

10

, any monotone iruit whih outputs a 1 on all m-liques, and a 0 on all (m� 1)o-

liques requires size 2

n

"

.

Consider the formula A(p;q)^B(p; r) where p enodes an undireted graph G over n verties,

A(p;q) says that G ontains a lique of size m, and B(p; r) says that G is a o-lique of size (m-1).

Reall that an m-lique is a set of m fully onneted verties. Reall also that an (m-1) o-lique

is a graph whose verties are partitioned into m-1 groups. An edge in the (m-1) o-lique onnets

any pair of verties if and only if the two verties are ontained in di�erent groups of the partition.

Below, we give the spei�s of suh an enoding.

� p is used to enode the undireted graph G over n verties. For 1 � i < j � n, variable p

i;j

is 1 i� (i; j) is an edge in G.

� q is used to desribe a lique of size m in G. For 1 � i � m and 1 � j � n, variable q

i;j

states

that vertex j is the i

th

vertex in the lique. The following lauses are neessary to state that

G ontains an m-lique.

1. q

i;1

_ : : : ;_q

i;n

for 1 � i � m. These lauses state that some vertex is the i

th

vertex in

the lique.

2. q

i;j

_ q

i

0

;j

for i 6= i

0

and 1 � j � n. These lauses ensure that we do not plae any vertex

in the lique twie.

3. p

i;j

_ q

i;j

_ q

i

0

;j

0

for i 6= i

0

and 1 � j < j

0

� n. These lauses ensure that any two verties

in the lique are atually onneted by an edge in G.

� r is used to state that G is an (m-1) o-lique. For 1 � i � n and 1 � j � m � 1, variable

r

i;j

is 1 i� vertex i is in the j

th

group of the partition. The following lauses are neessary to

state that G is an (m� 1) o-lique.

1. r

i;1

_ : : :_ r

i;m�1

for 1 � i � n. These lauses ensure that every vertex gets plaed in at

least one group of the partition.

2. r

i;j

_ r

i

0

;j

_ p

i;i

0

for 1 � i < i

0

� n and 1 � j � m � 1. These lauses ensure that any

two verties in the same group are not onneted by an edge in G.

Assume, for the sake of ontradition, that V has monotone feasible interpolation and V is

polynomially bounded. Now onsider the family of formulas A(p;q) ^ B(p; r)

n

, for n = 1 : : :1

with m =

n

10

. Sine V is polynomially bounded, this family of formulas has polynomial size V -

proofs. Moreover, sine the variables p

i;j

appear only positively in A (and only negatively in B)

and V has a monotone feasible interpolant, we have that for all n, there is a monotone iruit

omputing an interpolant for A(p;q) ^ B(p; r)

n

. This monotone iruit in partiular outputs 0

on all (m-1) o-liques, and 1 on all m-liques, thus ontraditing the Razborov/Alon-Boppana

theorem.
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