
CS 2429 - Propositional Proof Complexity Leture #7: 24 Otober 2002

CS 2429 - Propositional Proof Complexity

Leture #7: 24 Otober 2002

Leturer: Toniann Pitassi

Sribe Notes by: Philipp Hertel

1 Today's Topis:

� Feasible Interpolation for Resolution

� Monotone Feasible Interpolation for Resolution

� Feasible Interpolation for Cutting Planes

� Monotone Feasible Interpolation for Cutting Planes

2 De�nitions: Feasible, Interpolation, Monotone, Uniform

Reall the de�nitions of feasible interpolatin and monotone feasible interpolation from last lass.

De�nition A proof System V has feasible interpolation i� for all unsatis�able formulas of the

form A(

�!

p ;

�!

q ) ^B(

�!

p ;

�!

r ) there is a boolean iruit of size at most polynomial in s omputing an

interpolant C forA(

�!

p ;

�!

q )^B(

�!

p ;

�!

r ), where s is the size of shortest V -proof of A(

�!

p ;

�!

q )^B(

�!

p ;

�!

r ).

De�nition A proof system V has monotone feasible interpolation i�

�!

p ouring only positively

in A implies that C as desribed above is monotone.

We now give a new, uniform version of feasible interpolation suggested by Steve Cook. It turns

out that all propositional proof systems that we urrently know admitting feasible interpolation

also admit uniform feasible interpolation.

De�nition A proof system V has uniform feasible interpolation i� there exists a uniform polyno-

mial time algorithm M(�; P ) where P is a V -proof of A(

�!

p ;

�!

q )^B(

�!

p ;

�!

r ) and � is an assignment

to

�!

p , and M outputs:

0 only if A(�;

�!

q ) is unsatisi�able

1 only if B(�;

�!

r ) is unsatis�able

1



CS 2429 - Propositional Proof Complexity Leture #7: 24 Otober 2002

A laim that a proof system has uniform feasible interpolation is a stronger laim than it

having feasible interpolation. The ondition that it has a uniform polynomial time algorithm

requires that every instane, regardless of its size, must be omputed using the same algorithm.

Feasible interpolation, if it exists for a propositional proof system, is usually uniform. The two

proof systems disussed in this leture, Resolution and Cutting Planes both have uniform feasible

interpolation.

Reall from the last leture that if a proof-system V has monotone feasible interpolation, then

unonditional super-polynomial lower bounds follow for V . If V has feasible interpolation, then

superpolynomial lower bounds for V hold, assuming that NP is not ontained in P=poly.

In the next setion, we will show that Resolution has feasible interpolation and monotone feasi-

ble interpolation, and thus we obtain unonditional superpolynomial lower bounds for Resolution.

Next we will show that Cutting Planes has (uniform) feasible interpolation. However, we will not

show that Cutting Planes has monotone feasible interpolation, but we will nonetheless be able to

prove unonditional lower bounds for Cutting Planes as well by showing that there is a feasible

monotone real iruit for any A(

�!

p ;

�!

q ) ^ B(

�!

p ;

�!

r ) with an eÆient Cutting Planes proof. By

extending Razborov's theorem for monotone iruits, lower bounds for monotone real iruits an

also be shown, and thus we obtain unonditional superpolynomial lower bounds for Cutting Planes

as well.

3 Interpolation for Resolution

Theorem 1 Resolution has feasible interpolation.

Theorem 2 Resolution has uniform feasible interpolation.

Proof To show that Resolution has uniform feasible interpolation (and therefore feasible interpo-

lation) we will give a general proedure for onstruting a iruit from a resolution proof P of a

formula F of the form A(

�!

p ;

�!

q )^B(

�!

p ;

�!

r ). We will then modify the proedure slightly to to deal

with the monotone ase.

Let F be an arbitrary formula of the form A(

�!

p ;

�!

q ) ^B(

�!

p ;

�!

r ).

Let P be an arbitrary DAG resolution proof of F . Use the topology of P to onstrut the

iruit orresponding to P , ie. eah node in the DAG orresponds to a node in the iruit.

The iruit examines eah lause starting with the intial lauses and works towards �. The

value at a node of the iruit reets whether the lause resolved at that node was derived from

the

�!

q side or the

�!

r side of F . The value is 0 if the lause at the node was derived from the

�!

q

side and 1 if the lause was derived from the

�!

r side under the restrition of an assignment � to

�!

p .

We will say that a lause is a q-lause if it ontains only variables from

�!

q or

�!

p . If a lause

ontains only variables from

�!

p then it is a q � lause only if its anestors are q-lauses.

Similarly, we will say that a lause is a r-lause if it ontains only variables from

�!

r or

�!

r . If a

lause ontains only variables from

�!

r then it is a r � lause only if its anestors are r-lauses.

Replae eah lause by a sublause whih is either a q-lause or an r-lause using the following

rules:

� Eah initial lause is already either a q-lause or an r-lause so it remains unhanged.

2



CS 2429 - Propositional Proof Complexity Leture #7: 24 Otober 2002

� Case 1: Clauses within the proof of the form � _ � derived from previous lauses of the

form � _ p

k

and � _ :p

k

.

(� _ p

k

) (� _ :p

k

)

(� _�)

Indutively �_ p

k

is replaed by �

0

and �_ :p

k

is replaed by �

0

, and we replae �_� by

�

0

if p

k

= 0 and �

0

if p

k

= 1.

� Case 2: Clauses within the proof of the form � _ � derived from previous lauses of the

form � _ q

k

and � _ :q

k

.

(� _ q

k

) (� _ :q

k

)

(� _�)

Indutively � _ q

k

is replaed by �

0

and � _ :q

k

is replaed by �

0

. We then replae � _�

with the result of resolving �

0

and �

0

on q

k

unless either �

0

or �

0

does not ontain q

k

, for

example if one of them is an r-lause. If one does not ontain q

k

then we replae �_� with

it.

� Case 3: Clauses within the proof of the form � _ � derived from previous lauses of the

form � _ r

k

and � _ :r

k

.

(� _ r

k

) (� _ :r

k

)

(� _�)

This ase is the dual of ase 2.

Now if we apply a restrition � to

�!

p and remove every lause whih ontains a variable from

�!

p that is assigned 1 and delete all the remaining members of

�!

p from the other lauses, we will

have a valid derivation of �. Furthermore, if � is a q-lause, then P; � has a subproof using only

the restrited lauses from A(

�!

p ;

�!

q ) and if � is an r-lause then P; � has a subproof using only the

restrited lauses from B(

�!

p ;

�!

r ). In e�et, this proedure has split P .

We an now onstrut the iruit as follows.

De�ne the sel funtion as:

sel(p

k

; x; y) =

(

x if p

k

= 0

y if p

k

= 1

This funtion orresponds to the formula (p

k

^ x) _ (�p

k

^ y). A sel gate an therefore be

implemented in a iruit as a ombination of two AND-gates, a NOT-gate, and an OR-gate.

Put onstant 0 gates on every initial q-lause and onstant 1 gates on every initial r-lause.

The only other ases to onsider are the three desribed above. They an be implemented in the

following manner:

3



CS 2429 - Propositional Proof Complexity Leture #7: 24 Otober 2002

� Case 1: If the output of the gate orresponding to � _ p

k

gets the value x and the gate

orresponding to �_:p

k

gets the value y then the gate orresponding to �_� should have

the output sel(p

k

; x; y). We therefore put a sel gate on � _�.

� Case 2: If the output of the gate orresponding to � _ q

k

gets the value x and the gate

orresponding to � _ :q

k

gets the value y then the gate orresponding to � _ � should

output 0 only if both �

0

and �

0

are q-lauses and 1 if either of the two are r-lauses. We

therefore put a OR-gate orresponding to x _ y on � _�.

� Case 3: If the output of the gate orresponding to � _ r

k

gets the value x and the gate

orresponding to � _ :r

k

gets the value y then the gate orresponding to � _ � should

output 1 only if both �

0

and �

0

are r-lauses and 0 if either of the two are q-lauses. We

therefore put a AND-gate orresponding to x ^ y on � _�.

Note that in ases 2 & 3 the number of gates used is the same as the number of lauses in the

proof P and ase 1 only adds a linear number more, so the size of the iruit is linear in the size

of P .

Example:

Let F be the unsatis�able formula (:q

1

) ^ (:p

1

_ p

2

_ q

1

) ^ (p

1

_ r

1

) ^ (:p

2

_ :r

2

) ^ (r

2

_

p

3

) ^ (:p

3

)^ (:r

1

). Notie that F has the form A(

�!

p ;

�!

q )^B(

�!

p ;

�!

r ). The �gure below shows the

Resolution proof of F whih will be used to onstrut a iruit.

4



CS 2429 - Propositional Proof Complexity Leture #7: 24 Otober 2002

(q

1

_ r

1

)

6. Resolving on a r

k

variable

3. Resolving on a p

k

variable

5. Resolving on a q

k

variable

4. Resolving on an r

k

variable

2. Resolving on a p

k

variable

1. Resolving on a p

k

variable

(�p

3

)

(�r

1

)

(p

2

_ q

1

_ r

1

) (r

2

)

(q

1

_ r

1

_ �r

2

)

(r

1

)

�

(r

2

_ p

3

)(�p

2

_ �r

2

)(�q

1

) (�p

1

_ p

2

_ q

1

) (p

1

_ r

1

)

To onstrut the iruit we replae eah initial q-lause with a onstant 0 and eah initial r-

lause with a onstant 1. Then we replae eah lause where we resolved on a variable from

�!

p

with a sel gate, eah lause where we resolved on a variable from

�!

q with an OR-gate, and eah

lause where we resolved on a variable from

�!

r with an AND-gate.

4.

3. sel

5.

6.

2. sel1. sel

1

^

_

^^

_

^

_

_

^^

^ ^

p

2

p

3

�p

2

�p

3

p

1

�p

1

0

111

1

0

Theorem 3 Resolution has monotone feasible interpolation.

5



CS 2429 - Propositional Proof Complexity Leture #7: 24 Otober 2002

Proof The proof of this theorem is very similar to the proof above. The onstrution of the iruit

di�ers only in ase 1. In the monotone ase variables of

�!

p our only positively in A(

�!

p ;

�!

q ) or

negatively in B(

�!

p ;

�!

r ). Without loss of generality let us assume that they our only positively in

A(

�!

p ;

�!

q ). Any derived q-lause will therefore retain this property. We an therefore replae �_�

with �

0

in ase 1 whenever �

0

is a q-lause, regardless of the assignment to p

k

, sine :p

k

will not

our due to the monotoniity.

The sel gate an therefore be replaed by a new monotone gate equivalent to (p

k

_x)^ y. This

new gate is monotone and di�ers from sel only on the input p

k

= 1, x = 1, y = 0 whih orresponds

to the situation ruled out above.

4 Interpolation for Cutting Planes

The idea behind the proof of the interpolation theorem for utting planes proof is similar to that

of resolution. We want to split the proof into q-inequalities and r-inequalities by restriting the

variables

�!

p whih are ommon to both parts and by doing so we want to derive a refutation of

either the q-side or the r-side.

The only utting planes rule whih allows q-lauses and r-lauses to mix is the addition rule.

We will therefore not do additions when the result would be a mixed lause, but rather keep two

separate inequalities. This would pose problems in an unrestrited utting planes proof due to

division. But given an assignment � to

�!

p this problem disappears sine we an treat �(

�!

p ) as part

of the onstant term.

Given an assignment � to

�!

p , we then replae eah inequality in P by two inequalities and suh

that the following property holds:

P

e

i

p

i

+

P

b

i

q

i

+

P



i

r

i

� D is replaed by:

P

b

i

q

i

� D

0

and

P



i

r

i

� D

1

where D

0

+D

1

� D �

P

e

i

�(p

i

)

This is done indutively, starting at the leaves of the Cutting Planes proof. An initial inequality

from the A side of the form

P

e

i

p

i

+

P

b

i

q

i

� D is transformed into the two inequalities

P

b

i

q

i

�

D�

P

e

i

�

i

and 0 � 0. Similarly an initial inequality from the B side of the form

P

e

i

p

i

+

P



i

r

i

� D

is replaed by the two inequalities 0 � 0 and

P



i

r

i

� D�

P

e

i

�

i

. If some inequality L

3

is derived by

addition from L

1

and L

2

, where L

1

and L

2

are transformed into (L

1

1

; L

2

1

) and (L

1

2

; L

2

2

) respetively,

then the two inequalities assoiated with L

3

are obtained by summing eah separately. That is,

(L

1

3

; L

2

3

) is (L

1

1

+L

1

2

; L

2

1

+L

2

2

). Similarly, if L

3

is derived from L

2

by multipliation (division), then

the pair (L

1

3

; L

2

3

) is obtained by multiplying (dividing) by eah separately.

This transformation will break the proof into two disjoint setions so that the last line no

longer looks like 0 � 1, but instead it is replaed by two sums,

P

0q

i

� D

0

and

P

0r

i

� D

1

. Sine

D

0

+D

1

� 1 and D

0

and D

1

are integer valued, it follows that at least one of D

0

or D

1

is greater

than or equal to 1. If D

0

is 1, then we an onlude that A(�;

�!

q ) is unsatis�able, and otherwise

we an onlude that B(�;

�!

r ) is unsatis�able.

We have to hek that the above transformation proess satisies the property mentioned above.

This involves heking that eah of the rules preserves the inequality D

0

+ D

1

� D �

P

e

i

�(p

i

).

6



CS 2429 - Propositional Proof Complexity Leture #7: 24 Otober 2002

The only slightly triky ase is division. But if D

0

+ D

1

� D �

P

e

i

�(p

i

), then d

D

0

2

e + d

D

1

2

e �

d

D

2

e �

P

e

i

2

�(p

i

) sine rounding up makes numbers larger.

Sine +, �, �, and � an all be omputed with polynomial time algorithms, they an also be

omputed with polynomial iruits. We an therefore build a polynomial iruit to ompute the

interpolant of utting planes refutations. We also know that D

i

s have polynomial upper-bounds

from a theorem by Buss and Clote whih states that a utting planes proof P an be transformed

into another proof P

0

suh that P

0

is at most polynomially larger than P and all the oeÆients

in P

0

have polynomially bounded binary length.

The monotone version of the above requires the use of monotone real iruits. We only sketh

the argument here. For details and proofs, onsult Pudlak's paper.

De�nition A monotone real iruit is a iruit whih omputes with real numbers and uses

arbitrary non-dereasing real unary and binary funtions as gate. We say that a monotone real

iruit omputes a boolean funtion if for all 0/1 inputs the iruit outputs 0 or 1.

Let P be a Cutting Planes refutation of A(

�!

p ;

�!

q ) ^B(

�!

p ;

�!

r ); where

�!

p ours only positively

in A. Then it is possible to obtain a monotone real iruit that omputes an interpolant for this

formula of size polynomial in the size of P , and the number of variables. The idea is as follows.

The iruit only needs to ompute the onstant �D

0

orresponding to the �nal inequality. This

an be done by omputing suessively �D

0

from eah pair. Again this an be done by using the

graph of the proof to obtain the monotone real iruit. The gate produes the new �D

0

value from

the previous ones. The input to the monotone real iruit is 0, 1, and the variables of

�!

p . The

gates need to be able to add two integers, and divide by 2 with downwards rounding. It an be

shown that these operations are both monotone, and thus the entire iruit an be omputed by a

monotone real iruit.

7


