CS 2429 - Propositional Proof Complexity Lecture #7: 24 October 2002

CS 2429 - Propositional Proof Complexity

Lecture #7: 24 October 2002

Lecturer: Toniann Pitassi

Scribe Notes by: Philipp Hertel

1 Today’s Topics:
e Feasible Interpolation for Resolution
e Monotone Feasible Interpolation for Resolution
e Feasible Interpolation for Cutting Planes

e Monotone Feasible Interpolation for Cutting Planes

2 Definitions: Feasible, Interpolation, Monotone, Uniform
Recall the definitions of feasible interpolatin and monotone feasible interpolation from last class.

Definition A proof System V has feasible interpolation iff for all unsatisfiable formulas of the
form A(P,q) A B(P,7T) there is a boolean circuit of size at most polynomial in s computing an
interpolant C for A(P, ¢)AB(P, 7 ), where s is the size of shortest V-proof of A(7, ¢)AB(F, 7).

Definition A proof system V has monotone feasible interpolation iff P occuring only positively
in A implies that C' as described above is monotone.

We now give a new, uniform version of feasible interpolation suggested by Steve Cook. It turns
out that all propositional proof systems that we currently know admitting feasible interpolation
also admit uniform feasible interpolation.

Definition A proof system V has uniform feasible interpolation iff there exists a uniform polyno-
mial time algorithm M (o, P) where P is a V-proof of A(7, ¢) AB(7, 7) and « is an assignment
to P, and M outputs:

0 only if A(«, @) is unsatisifiable
1 only if B, 7) is unsatisfiable



CS 2429 - Propositional Proof Complexity Lecture #7: 24 October 2002

A claim that a proof system has uniform feasible interpolation is a stronger claim than it
having feasible interpolation. The condition that it has a uniform polynomial time algorithm
requires that every instance, regardless of its size, must be computed using the same algorithm.
Feasible interpolation, if it exists for a propositional proof system, is usually uniform. The two
proof systems discussed in this lecture, Resolution and Cutting Planes both have uniform feasible
interpolation.

Recall from the last lecture that if a proof-system V has monotone feasible interpolation, then
unconditional super-polynomial lower bounds follow for V. If V' has feasible interpolation, then
superpolynomial lower bounds for V' hold, assuming that NP is not contained in P/poly.

In the next section, we will show that Resolution has feasible interpolation and monotone feasi-
ble interpolation, and thus we obtain unconditional superpolynomial lower bounds for Resolution.
Next we will show that Cutting Planes has (uniform) feasible interpolation. However, we will not
show that Cutting Planes has monotone feasible interpolation, but we will nonetheless be able to
prove unconditional lower bounds for Cutting Planes as well by showing that there is a feasible
monotone real circuit for any A(P,q) A B(P, ™) with an efficient Cutting Planes proof. By
extending Razborov’s theorem for monotone circuits, lower bounds for monotone real circuits can
also be shown, and thus we obtain unconditional superpolynomial lower bounds for Cutting Planes
as well.

3 Interpolation for Resolution

Theorem 1 Resolution has feasible interpolation.
Theorem 2 Resolution has uniform feasible interpolation.

Proof To show that Resolution has uniform feasible interpolation (and therefore feasible interpo-
lation) we will give a general procedure for constructing a circuit from a resolution proof P of a
formula F' of the form A(P,¢) A B(7, 7). We will then modify the procedure slightly to to deal
with the monotone case.

Let F be an arbitrary formula of the form A(7, ) A B(P, 7).

Let P be an arbitrary DAG resolution proof of F. Use the topology of P to construct the
circuit corresponding to P, ie. each node in the DAG corresponds to a node in the circuit.

The circuit examines each clause starting with the intial clauses and works towards ¢. The
value at a node of the circuit reflects whether the clause resolved at that node was derived from
the ¢ side or the 7 side of F. The value is 0 if the clause at the node was derived from the ¢
side and 1 if the clause was derived from the 7 side under the restriction of an assignment « to
7.

We will say that a clause is a g-clause if it contains only variables from 7 or 7. If a clause
contains only variables from P then it is a ¢ — clause only if its ancestors are g-clauses.

Similarly, we will say that a clause is a r-clause if it contains only variables from 7 or 7. If a
clause contains only variables from 7 then it is a r — clause only if its ancestors are r-clauses.

Replace each clause by a subclause which is either a g-clause or an r-clause using the following
rules:

e Each initial clause is already either a g-clause or an r-clause so it remains unchanged.



CS 2429 - Propositional Proof Complexity Lecture #7: 24 October 2002

e Case 1: Clauses within the proof of the form I' V A derived from previous clauses of the
form I' V pr, and AV —pg.

(I'Vpr) (AV -pg)
(T'vA)

Inductively I' V py is replaced by IV and AV —py is replaced by A’, and we replace I' V A by
I'Mif pp, =0 and A" if p, = 1.

e Case 2: Clauses within the proof of the form I' V A derived from previous clauses of the
form I' V g and A V —g.

(I'Vage) (AV-g)
(T'vA)

Inductively I' V g is replaced by IV and A V —q, is replaced by A’. We then replace I' V A
with the result of resolving I and A’ on g unless either IV or A’ does not contain gy, for
example if one of them is an r-clause. If one does not contain g then we replace I' VA with
it.

e Case 3: Clauses within the proof of the form I' V A derived from previous clauses of the
form I' Vrg and AV —rg.

(F V ’I“k) (A V —ITk)
TV A)

This case is the dual of case 2.

Now if we apply a restriction & to P and remove every clause which contains a variable from
7 that is assigned 1 and delete all the remaining members of P from the other clauses, we will
have a valid derivation of ¢. Furthermore, if ¢ is a g-clause, then P, « has a subproof using only
the restricted clauses from A(p, ¢) and if ¢ is an r-clause then P, o has a subproof using only the
restricted clauses from B(P, 7). In effect, this procedure has split P.

We can now construct the circuit as follows.

Define the sel function as:

sltpos) ={ 7 422

This function corresponds to the formula (px A ) V (P A y). A sel gate can therefore be
implemented in a circuit as a combination of two AND-gates, a NOT-gate, and an OR-gate.

Put constant 0 gates on every initial g-clause and constant 1 gates on every initial r-clause.
The only other cases to consider are the three described above. They can be implemented in the
following manner:



CS 2429 - Propositional Proof Complexity Lecture #7: 24 October 2002

e Case 1: If the output of the gate corresponding to I' V py gets the value x and the gate
corresponding to A V —py gets the value y then the gate corresponding to I' V A should have
the output sel(pg, z,y). We therefore put a sel gate on I' V A.

e Case 2: If the output of the gate corresponding to I' V ¢ gets the value x and the gate
corresponding to A V —q, gets the value y then the gate corresponding to I' V A should
output 0 only if both IV and A’ are g-clauses and 1 if either of the two are r-clauses. We
therefore put a OR-gate corresponding to zVy on I' V A.

e Case 3: If the output of the gate corresponding to I' V ri gets the value z and the gate
corresponding to A V —r, gets the value y then the gate corresponding to I' V' A should
output 1 only if both IV and A’ are r-clauses and 0 if either of the two are g-clauses. We
therefore put a AND-gate corresponding to z Ay on I' V A.

Note that in cases 2 & 3 the number of gates used is the same as the number of clauses in the
proof P and case 1 only adds a linear number more, so the size of the circuit is linear in the size
of P.

Example:

Let F' be the unsatisfiable formula (—g1) A (-p1 V p2 V q1) A (p1 V1) A (=p2 V —ra) A (r2 V
p3) A (=p3) A (=r1). Notice that F' has the form A(P,¢) A B(P, 7). The figure below shows the
Resolution proof of F' which will be used to construct a circuit.



CS 2429 - Propositional Proof Complexity Lecture #7: 24 October 2002

L VpeVaq) (prvr) (P2VT2) (raVps) (Ps) (71)
NS /
(P2 V@1 V1) (72)

. Resolvigg on a pj, variapfe 2. Resolving on a py

(@) (@

(qn V11V Ty)

3. Resolviﬁa p varighble

(1 V1)

4. Resolving op/an . variable

(r1)

5. Riolving i a g variable

¢

6. Resolving on a rj, variable

To construct the circuit we replace each initial g-clause with a constant 0 and each initial r-
clause with a constant 1. Then we replace each clause where we resolved on a variable from 7
with a sel gate, each clause where we resolved on a variable from ¢ with an OR-gate, and each
clause where we resolved on a variable from 7 with an AND-gate.

0 P 0 M1 p2 Pl ps 1 psl 1

1. sel 2. sel

Theorem 3 Resolution has monotone feasible interpolation.



CS 2429 - Propositional Proof Complexity Lecture #7: 24 October 2002

Proof The proof of this theorem is very similar to the proof above. The construction of the circuit
differs only in case 1. In the monotone case variables of 7 occur only positively in A(7, ) or
negatively in B(7, 7). Without loss of generality let us assume that they occur only positively in
A(7T, ). Any derived g-clause will therefore retain this property. We can therefore replace I' VA
with A’ in case 1 whenever A’ is a g-clause, regardless of the assignment to pg, since —pg will not
occur due to the monotonicity.

The sel gate can therefore be replaced by a new monotone gate equivalent to (pg V ) Ay. This
new gate is monotone and differs from sel only on the input py = 1, z = 1, y = 0 which corresponds
to the situation ruled out above.

4 Interpolation for Cutting Planes

The idea behind the proof of the interpolation theorem for cutting planes proof is similar to that
of resolution. We want to split the proof into g-inequalities and r-inequalities by restricting the
variables 7 which are common to both parts and by doing so we want to derive a refutation of
either the ¢-side or the r-side.

The ounly cutting planes rule which allows g-clauses and r-clauses to mix is the addition rule.
We will therefore not do additions when the result would be a mixed clause, but rather keep two
separate inequalities. This would pose problems in an unrestricted cutting planes proof due to
division. But given an assignment « to P this problem disappears since we can treat a(p') as part
of the constant term.

Given an assignment « to J/, we then replace each inequality in P by two inequalities and such
that the following property holds:

Yeipi + Y. bigi + Y ¢ir; > D is replaced by:

> biq; > Do and > ¢iry > Dy
where Dy + Dy > D — Y e;a(p;)

This is done inductively, starting at the leaves of the Cutting Planes proof. An initial inequality
from the A side of the form > e;p; + > b;q; > D is transformed into the two inequalities ) b;q; >
D—> e;a; and 0 > 0. Similarly an initial inequality from the B side of the form " e;p;+> " ¢;ry > D
is replaced by the two inequalities 0 > 0 and Y ¢;r; > D—> e;jcy;. If some inequality Lg is derived by
addition from L; and Ly, where L; and Ly are transformed into (L1, L?) and (L3, L3) respectively,
then the two inequalities associated with L3 are obtained by summing each separately. That is,
(L}, L3) is (L1 + L, L3+ L3). Similarly, if L3 is derived from Ly by multiplication (division), then
the pair (L1, L3) is obtained by multiplying (dividing) by each separately.

This transformation will break the proof into two disjoint sections so that the last line no
longer looks like 0 > 1, but instead it is replaced by two sums, Y 0g; > Do and Y 0Or; > D;. Since
Dy + Dy > 1 and Dy and D; are integer valued, it follows that at least one of Dy or D; is greater
than or equal to 1. If Dy is 1, then we can conclude that A(c, @) is unsatisfiable, and otherwise
we can conclude that B(«, 77) is unsatisfiable.

We have to check that the above transformation process satisies the property mentioned above.
This involves checking that each of the rules preserves the inequality Dy + D1 > D — Y e;a(p;).



CS 2429 - Propositional Proof Complexity Lecture #7: 24 October 2002

The only slightly tricky case is division. But if Dy + Dy > D — Y e;a(p;), then [B2] + [5L] >
[%] — Y % a(p;) since rounding up makes numbers larger.

Since 4+, —, <+, and - can all be computed with polynomial time algorithms, they can also be
computed with polynomial circuits. We can therefore build a polynomial circuit to compute the
interpolant of cutting planes refutations. We also know that D;s have polynomial upper-bounds
from a theorem by Buss and Clote which states that a cutting planes proof P can be transformed
into another proof P’ such that P’ is at most polynomially larger than P and all the coefficients

in P’ have polynomially bounded binary length.

The monotone version of the above requires the use of monotone real circuits. We only sketch
the argument here. For details and proofs, consult Pudlak’s paper.

Definition A monotone real circuit is a circuit which computes with real numbers and uses
arbitrary non-decreasing real unary and binary functions as gate. We say that a monotone real
circuit computes a boolean function if for all 0/1 inputs the circuit outputs 0 or 1.

Let P be a Cutting Planes refutation of A(P,¢) A B(7, ), where J occurs only positively
in A. Then it is possible to obtain a monotone real circuit that computes an interpolant for this
formula of size polynomial in the size of P, and the number of variables. The idea is as follows.
The circuit only needs to compute the constant — Dy corresponding to the final inequality. This
can be done by computing successively —Dy from each pair. Again this can be done by using the
graph of the proof to obtain the monotone real circuit. The gate produces the new —Dg value from
the previous ones. The input to the monotone real circuit is 0, 1, and the variables of 7. The
gates need to be able to add two integers, and divide by 2 with downwards rounding. It can be
shown that these operations are both monotone, and thus the entire circuit can be computed by a
monotone real circuit.



