
CS 2429 - Propositional Proof Complexity Le
ture #7: 24 O
tober 2002

CS 2429 - Propositional Proof Complexity

Le
ture #7: 24 O
tober 2002

Le
turer: Toniann Pitassi

S
ribe Notes by: Philipp Hertel

1 Today's Topi
s:

� Feasible Interpolation for Resolution

� Monotone Feasible Interpolation for Resolution

� Feasible Interpolation for Cutting Planes

� Monotone Feasible Interpolation for Cutting Planes

2 De�nitions: Feasible, Interpolation, Monotone, Uniform

Re
all the de�nitions of feasible interpolatin and monotone feasible interpolation from last 
lass.

De�nition A proof System V has feasible interpolation i� for all unsatis�able formulas of the

form A(

�!

p ;

�!

q ) ^B(

�!

p ;

�!

r ) there is a boolean 
ir
uit of size at most polynomial in s 
omputing an

interpolant C forA(

�!

p ;

�!

q )^B(

�!

p ;

�!

r ), where s is the size of shortest V -proof of A(

�!

p ;

�!

q )^B(

�!

p ;

�!

r ).

De�nition A proof system V has monotone feasible interpolation i�

�!

p o

uring only positively

in A implies that C as des
ribed above is monotone.

We now give a new, uniform version of feasible interpolation suggested by Steve Cook. It turns

out that all propositional proof systems that we 
urrently know admitting feasible interpolation

also admit uniform feasible interpolation.

De�nition A proof system V has uniform feasible interpolation i� there exists a uniform polyno-

mial time algorithm M(�; P ) where P is a V -proof of A(

�!

p ;

�!

q )^B(

�!

p ;

�!

r ) and � is an assignment

to

�!

p , and M outputs:

0 only if A(�;

�!

q ) is unsatisi�able

1 only if B(�;

�!

r ) is unsatis�able

1



CS 2429 - Propositional Proof Complexity Le
ture #7: 24 O
tober 2002

A 
laim that a proof system has uniform feasible interpolation is a stronger 
laim than it

having feasible interpolation. The 
ondition that it has a uniform polynomial time algorithm

requires that every instan
e, regardless of its size, must be 
omputed using the same algorithm.

Feasible interpolation, if it exists for a propositional proof system, is usually uniform. The two

proof systems dis
ussed in this le
ture, Resolution and Cutting Planes both have uniform feasible

interpolation.

Re
all from the last le
ture that if a proof-system V has monotone feasible interpolation, then

un
onditional super-polynomial lower bounds follow for V . If V has feasible interpolation, then

superpolynomial lower bounds for V hold, assuming that NP is not 
ontained in P=poly.

In the next se
tion, we will show that Resolution has feasible interpolation and monotone feasi-

ble interpolation, and thus we obtain un
onditional superpolynomial lower bounds for Resolution.

Next we will show that Cutting Planes has (uniform) feasible interpolation. However, we will not

show that Cutting Planes has monotone feasible interpolation, but we will nonetheless be able to

prove un
onditional lower bounds for Cutting Planes as well by showing that there is a feasible

monotone real 
ir
uit for any A(

�!

p ;

�!

q ) ^ B(

�!

p ;

�!

r ) with an eÆ
ient Cutting Planes proof. By

extending Razborov's theorem for monotone 
ir
uits, lower bounds for monotone real 
ir
uits 
an

also be shown, and thus we obtain un
onditional superpolynomial lower bounds for Cutting Planes

as well.

3 Interpolation for Resolution

Theorem 1 Resolution has feasible interpolation.

Theorem 2 Resolution has uniform feasible interpolation.

Proof To show that Resolution has uniform feasible interpolation (and therefore feasible interpo-

lation) we will give a general pro
edure for 
onstru
ting a 
ir
uit from a resolution proof P of a

formula F of the form A(

�!

p ;

�!

q )^B(

�!

p ;

�!

r ). We will then modify the pro
edure slightly to to deal

with the monotone 
ase.

Let F be an arbitrary formula of the form A(

�!

p ;

�!

q ) ^B(

�!

p ;

�!

r ).

Let P be an arbitrary DAG resolution proof of F . Use the topology of P to 
onstru
t the


ir
uit 
orresponding to P , ie. ea
h node in the DAG 
orresponds to a node in the 
ir
uit.

The 
ir
uit examines ea
h 
lause starting with the intial 
lauses and works towards �. The

value at a node of the 
ir
uit re
e
ts whether the 
lause resolved at that node was derived from

the

�!

q side or the

�!

r side of F . The value is 0 if the 
lause at the node was derived from the

�!

q

side and 1 if the 
lause was derived from the

�!

r side under the restri
tion of an assignment � to

�!

p .

We will say that a 
lause is a q-
lause if it 
ontains only variables from

�!

q or

�!

p . If a 
lause


ontains only variables from

�!

p then it is a q � 
lause only if its an
estors are q-
lauses.

Similarly, we will say that a 
lause is a r-
lause if it 
ontains only variables from

�!

r or

�!

r . If a


lause 
ontains only variables from

�!

r then it is a r � 
lause only if its an
estors are r-
lauses.

Repla
e ea
h 
lause by a sub
lause whi
h is either a q-
lause or an r-
lause using the following

rules:

� Ea
h initial 
lause is already either a q-
lause or an r-
lause so it remains un
hanged.

2



CS 2429 - Propositional Proof Complexity Le
ture #7: 24 O
tober 2002

� Case 1: Clauses within the proof of the form � _ � derived from previous 
lauses of the

form � _ p

k

and � _ :p

k

.

(� _ p

k

) (� _ :p

k

)

(� _�)

Indu
tively �_ p

k

is repla
ed by �

0

and �_ :p

k

is repla
ed by �

0

, and we repla
e �_� by

�

0

if p

k

= 0 and �

0

if p

k

= 1.

� Case 2: Clauses within the proof of the form � _ � derived from previous 
lauses of the

form � _ q

k

and � _ :q

k

.

(� _ q

k

) (� _ :q

k

)

(� _�)

Indu
tively � _ q

k

is repla
ed by �

0

and � _ :q

k

is repla
ed by �

0

. We then repla
e � _�

with the result of resolving �

0

and �

0

on q

k

unless either �

0

or �

0

does not 
ontain q

k

, for

example if one of them is an r-
lause. If one does not 
ontain q

k

then we repla
e �_� with

it.

� Case 3: Clauses within the proof of the form � _ � derived from previous 
lauses of the

form � _ r

k

and � _ :r

k

.

(� _ r

k

) (� _ :r

k

)

(� _�)

This 
ase is the dual of 
ase 2.

Now if we apply a restri
tion � to

�!

p and remove every 
lause whi
h 
ontains a variable from

�!

p that is assigned 1 and delete all the remaining members of

�!

p from the other 
lauses, we will

have a valid derivation of �. Furthermore, if � is a q-
lause, then P; � has a subproof using only

the restri
ted 
lauses from A(

�!

p ;

�!

q ) and if � is an r-
lause then P; � has a subproof using only the

restri
ted 
lauses from B(

�!

p ;

�!

r ). In e�e
t, this pro
edure has split P .

We 
an now 
onstru
t the 
ir
uit as follows.

De�ne the sel fun
tion as:

sel(p

k

; x; y) =

(

x if p

k

= 0

y if p

k

= 1

This fun
tion 
orresponds to the formula (p

k

^ x) _ (�p

k

^ y). A sel gate 
an therefore be

implemented in a 
ir
uit as a 
ombination of two AND-gates, a NOT-gate, and an OR-gate.

Put 
onstant 0 gates on every initial q-
lause and 
onstant 1 gates on every initial r-
lause.

The only other 
ases to 
onsider are the three des
ribed above. They 
an be implemented in the

following manner:

3



CS 2429 - Propositional Proof Complexity Le
ture #7: 24 O
tober 2002

� Case 1: If the output of the gate 
orresponding to � _ p

k

gets the value x and the gate


orresponding to �_:p

k

gets the value y then the gate 
orresponding to �_� should have

the output sel(p

k

; x; y). We therefore put a sel gate on � _�.

� Case 2: If the output of the gate 
orresponding to � _ q

k

gets the value x and the gate


orresponding to � _ :q

k

gets the value y then the gate 
orresponding to � _ � should

output 0 only if both �

0

and �

0

are q-
lauses and 1 if either of the two are r-
lauses. We

therefore put a OR-gate 
orresponding to x _ y on � _�.

� Case 3: If the output of the gate 
orresponding to � _ r

k

gets the value x and the gate


orresponding to � _ :r

k

gets the value y then the gate 
orresponding to � _ � should

output 1 only if both �

0

and �

0

are r-
lauses and 0 if either of the two are q-
lauses. We

therefore put a AND-gate 
orresponding to x ^ y on � _�.

Note that in 
ases 2 & 3 the number of gates used is the same as the number of 
lauses in the

proof P and 
ase 1 only adds a linear number more, so the size of the 
ir
uit is linear in the size

of P .

Example:

Let F be the unsatis�able formula (:q

1

) ^ (:p

1

_ p

2

_ q

1

) ^ (p

1

_ r

1

) ^ (:p

2

_ :r

2

) ^ (r

2

_

p

3

) ^ (:p

3

)^ (:r

1

). Noti
e that F has the form A(

�!

p ;

�!

q )^B(

�!

p ;

�!

r ). The �gure below shows the

Resolution proof of F whi
h will be used to 
onstru
t a 
ir
uit.

4



CS 2429 - Propositional Proof Complexity Le
ture #7: 24 O
tober 2002

(q

1

_ r

1

)

6. Resolving on a r

k

variable

3. Resolving on a p

k

variable

5. Resolving on a q

k

variable

4. Resolving on an r

k

variable

2. Resolving on a p

k

variable

1. Resolving on a p

k

variable

(�p

3

)

(�r

1

)

(p

2

_ q

1

_ r

1

) (r

2

)

(q

1

_ r

1

_ �r

2

)

(r

1

)

�

(r

2

_ p

3

)(�p

2

_ �r

2

)(�q

1

) (�p

1

_ p

2

_ q

1

) (p

1

_ r

1

)

To 
onstru
t the 
ir
uit we repla
e ea
h initial q-
lause with a 
onstant 0 and ea
h initial r-


lause with a 
onstant 1. Then we repla
e ea
h 
lause where we resolved on a variable from

�!

p

with a sel gate, ea
h 
lause where we resolved on a variable from

�!

q with an OR-gate, and ea
h


lause where we resolved on a variable from

�!

r with an AND-gate.

4.

3. sel

5.

6.

2. sel1. sel

1

^

_

^^

_

^

_

_

^^

^ ^

p

2

p

3

�p

2

�p

3

p

1

�p

1

0

111

1

0

Theorem 3 Resolution has monotone feasible interpolation.

5



CS 2429 - Propositional Proof Complexity Le
ture #7: 24 O
tober 2002

Proof The proof of this theorem is very similar to the proof above. The 
onstru
tion of the 
ir
uit

di�ers only in 
ase 1. In the monotone 
ase variables of

�!

p o

ur only positively in A(

�!

p ;

�!

q ) or

negatively in B(

�!

p ;

�!

r ). Without loss of generality let us assume that they o

ur only positively in

A(

�!

p ;

�!

q ). Any derived q-
lause will therefore retain this property. We 
an therefore repla
e �_�

with �

0

in 
ase 1 whenever �

0

is a q-
lause, regardless of the assignment to p

k

, sin
e :p

k

will not

o

ur due to the monotoni
ity.

The sel gate 
an therefore be repla
ed by a new monotone gate equivalent to (p

k

_x)^ y. This

new gate is monotone and di�ers from sel only on the input p

k

= 1, x = 1, y = 0 whi
h 
orresponds

to the situation ruled out above.

4 Interpolation for Cutting Planes

The idea behind the proof of the interpolation theorem for 
utting planes proof is similar to that

of resolution. We want to split the proof into q-inequalities and r-inequalities by restri
ting the

variables

�!

p whi
h are 
ommon to both parts and by doing so we want to derive a refutation of

either the q-side or the r-side.

The only 
utting planes rule whi
h allows q-
lauses and r-
lauses to mix is the addition rule.

We will therefore not do additions when the result would be a mixed 
lause, but rather keep two

separate inequalities. This would pose problems in an unrestri
ted 
utting planes proof due to

division. But given an assignment � to

�!

p this problem disappears sin
e we 
an treat �(

�!

p ) as part

of the 
onstant term.

Given an assignment � to

�!

p , we then repla
e ea
h inequality in P by two inequalities and su
h

that the following property holds:

P

e

i

p

i

+

P

b

i

q

i

+

P




i

r

i

� D is repla
ed by:

P

b

i

q

i

� D

0

and

P




i

r

i

� D

1

where D

0

+D

1

� D �

P

e

i

�(p

i

)

This is done indu
tively, starting at the leaves of the Cutting Planes proof. An initial inequality

from the A side of the form

P

e

i

p

i

+

P

b

i

q

i

� D is transformed into the two inequalities

P

b

i

q

i

�

D�

P

e

i

�

i

and 0 � 0. Similarly an initial inequality from the B side of the form

P

e

i

p

i

+

P




i

r

i

� D

is repla
ed by the two inequalities 0 � 0 and

P




i

r

i

� D�

P

e

i

�

i

. If some inequality L

3

is derived by

addition from L

1

and L

2

, where L

1

and L

2

are transformed into (L

1

1

; L

2

1

) and (L

1

2

; L

2

2

) respe
tively,

then the two inequalities asso
iated with L

3

are obtained by summing ea
h separately. That is,

(L

1

3

; L

2

3

) is (L

1

1

+L

1

2

; L

2

1

+L

2

2

). Similarly, if L

3

is derived from L

2

by multipli
ation (division), then

the pair (L

1

3

; L

2

3

) is obtained by multiplying (dividing) by ea
h separately.

This transformation will break the proof into two disjoint se
tions so that the last line no

longer looks like 0 � 1, but instead it is repla
ed by two sums,

P

0q

i

� D

0

and

P

0r

i

� D

1

. Sin
e

D

0

+D

1

� 1 and D

0

and D

1

are integer valued, it follows that at least one of D

0

or D

1

is greater

than or equal to 1. If D

0

is 1, then we 
an 
on
lude that A(�;

�!

q ) is unsatis�able, and otherwise

we 
an 
on
lude that B(�;

�!

r ) is unsatis�able.

We have to 
he
k that the above transformation pro
ess satisies the property mentioned above.

This involves 
he
king that ea
h of the rules preserves the inequality D

0

+ D

1

� D �

P

e

i

�(p

i

).

6



CS 2429 - Propositional Proof Complexity Le
ture #7: 24 O
tober 2002

The only slightly tri
ky 
ase is division. But if D

0

+ D

1

� D �

P

e

i

�(p

i

), then d

D

0

2

e + d

D

1

2

e �

d

D

2

e �

P

e

i

2

�(p

i

) sin
e rounding up makes numbers larger.

Sin
e +, �, �, and � 
an all be 
omputed with polynomial time algorithms, they 
an also be


omputed with polynomial 
ir
uits. We 
an therefore build a polynomial 
ir
uit to 
ompute the

interpolant of 
utting planes refutations. We also know that D

i

s have polynomial upper-bounds

from a theorem by Buss and Clote whi
h states that a 
utting planes proof P 
an be transformed

into another proof P

0

su
h that P

0

is at most polynomially larger than P and all the 
oeÆ
ients

in P

0

have polynomially bounded binary length.

The monotone version of the above requires the use of monotone real 
ir
uits. We only sket
h

the argument here. For details and proofs, 
onsult Pudlak's paper.

De�nition A monotone real 
ir
uit is a 
ir
uit whi
h 
omputes with real numbers and uses

arbitrary non-de
reasing real unary and binary fun
tions as gate. We say that a monotone real


ir
uit 
omputes a boolean fun
tion if for all 0/1 inputs the 
ir
uit outputs 0 or 1.

Let P be a Cutting Planes refutation of A(

�!

p ;

�!

q ) ^B(

�!

p ;

�!

r ); where

�!

p o

urs only positively

in A. Then it is possible to obtain a monotone real 
ir
uit that 
omputes an interpolant for this

formula of size polynomial in the size of P , and the number of variables. The idea is as follows.

The 
ir
uit only needs to 
ompute the 
onstant �D

0


orresponding to the �nal inequality. This


an be done by 
omputing su

essively �D

0

from ea
h pair. Again this 
an be done by using the

graph of the proof to obtain the monotone real 
ir
uit. The gate produ
es the new �D

0

value from

the previous ones. The input to the monotone real 
ir
uit is 0, 1, and the variables of

�!

p . The

gates need to be able to add two integers, and divide by 2 with downwards rounding. It 
an be

shown that these operations are both monotone, and thus the entire 
ir
uit 
an be 
omputed by a

monotone real 
ir
uit.

7


