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1 Automatizability and Feasible Interpolation

We have seen in the last leture that Resolution and Cutting Plane have feasible interpolation.

Note that the same result holds for the Cut{free Sequent Calulus proof system.

A natural question is if this result also holds for stronger proof systems. For example do Frege,

and Extended Frege systems have feasible interpolation? We will show that under ryptographi

assumptions, the answer is no.

We will �rst show that for any proof system P whih is losed under restritions, that there is

a relationship between feasible interpolation for P and automatizability for P . It an be seen from

this relationship that there is an expliit tradeo� between proof theoreti strength and proof searh.

In strong proof systems, there is no feasible interpolation, and it is hard to �nd short proofs. On

the other hand, weaker proof systems have feasible interpolation, and hene lower bounds apply.

De�nition A proof system P is said to be losed under restritions if for all formulas f and for

all restritions �, from a P -proof S of f , one an get a P -proof of fd

�

in time polynomial in jSj,

where � is a setting of some of the underlying variables to 0 and 1.

Note that although all of the proof systems we onsider in this ourse are losed under restrition,

there are proof systems (e.g., linear resolution) whih are not.

Theorem 1 Let a proof system P be losed under restrition. If P is automatizable then P has

feasible interpolation.

Proof Suppose that S is a P{proof for the unsatis�able formula A(p; q) ^B(p; r). We will give a

polynomial-time algorithm C(�; S) suh that

�

C(�; S) = 0 =) A(�; q) is unsatis�able

C(�; S) = 1 =) B(�; r) is unsatis�able

C(�; S) is obtained as follows. First, we run the automatizability algorithm on A(p; q)^B(p; r) to

get a P{proof S

0

of A(p; q)^B(p; r). Here jS

0

j = s(jSj) for some polynomial s (by automatizibility).

Now suppose that B(�; r) is satis�able, then let  be suh that B(�; ) = 1. Sine P is losed

under restrition, S

0

�

�;

will be a proof of A(�; q). Also, the size of S

0

�

�;

is s(jSj). Therefore, we

run the automatizibility algorithm on A(�; q) for s(jS

0

j) steps. If the algorithm terminates with a

proof of A(�; q) we output 0 (i.e., A(�; q) is unsatis�able). Otherwise B(�; r) is guaranteed to be

unsatis�able, and we output 1.
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Note that the above proof gives a uniform algorithm, but both � and S are part of the input. It

is not hard to onvert this algorithm into a polynomial-size iruit with just � as input.

2 No Feasible Interpolation for Frege Systems

In this setion, we will sketh the argument showing that under some assumption, strong proof

systems like Frege, Extended Frege do not have feasible interpolation. First, we introdue some

notations.

The �rst negativer result for interpolation was given by Krajiek and Pudlak who showed that

Extended Frege does not have feasible interpolation, under the assumption that RSA is seure. We

will not give the details of the proof here, but will sketh the basi idea.

Assume that there exists a one-to-one funtion f from n bit strings to n bit strings, and suh

that f is one-way. (This is a ompliated tehnial de�nition, but intuitively it means that f(x)

an be omputed in polynomial-time but for any string y, it is hard to ompute the inverse,

f

�1

(y). Now let A(p; q) be a propositional formula expressing that f(q) = p and the i

th

bit of

q is 0. Similarly, let B(p; r) be a propositional formula expressing that f(r) = p and the i

th

bit

of r is 1. For an expliit one-to-one one-way funtion f it is possible to give an Extended Frege

refutation of A(p; q) ^ B(p; r) sine f is one-to-one. On the other hand, if Extended Frege has

feasible interpolation, then this implies the existene of a polynomial-size iruit C(�) suh that

C(�) = 0 whenever the i

th

bit of f

�1

(�) is zero, and C(�) = 1 whenever the i

th

bit of f

�1

(�) is

one.

This shows that we an �nd any bit of f

�1

(�) with a polynomial-size iruit. Thus feasible

interpolation for Extended Frege implies that f is not one-way. For a spei� f , suh as RSA, the

proof shows that EF does not have feasible interpolation unless RSA is seure.

The next theorem shows the similar result for Frege proof systems.

De�nition An integer n is alled a Blum integer if n = pq for prime numbers p and q suh that

p and q are equivalent to 3 mod 4.

Theorem 2 (Bonet, Pitassi, Raz) If fatoring Blum integers is hard, then Frege proof systems

do not have feasible interpolation

Proof [Sketh℄ We will use the idea of a bit ommitment sheme that is behind the DiÆe Hellman

seret key exhange sheme. Let

DH

n

= A(P; g;X; Y; a; b) ^B(P; g;X; Y; ; d)

be a propositional formula where X;Y are integers, P is a prime number with length jP j = n, and

g is a string in Z

�

p

. Here P; g;X; Y represent the publi part of the key, while a; b and ; d are the

private part of the key. The propositional formula A(P; g;X; Y; a; b) odes the sentene

\g

a

mod P = X; g

b

mod P = Y and g

ab

mod P is even".

and similarly B(P; g;X; Y; ; d) is a propositional formula oding the sentene

\g



mod P = X; g

d

mod P = Y and g

d

mod P is odd".
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It is not too hard to see that DH

n

is unsatis�able, sine

g

ab

mod P = (g

a

mod P )

b

mod P = X

b

mod P = (g



mod P )

b

mod P

= (g

b

) mod P = (g

b

mod P )



mod P = Y



mod P = (g

d

mod P )



mod P = g

d

mod P

It an be shown that there exists a polynomial-size Frege refutation for DH

n

as well. This is a

lot of work, and involves showing how to arry out integer multipliation, powering (using the

Chinese remainder theorem), and modular arithmeti via Frege proofs, and to show that the usual

properties of these arithmeti operations hold, thereby allowing Frege to give a feasible proof along

the lines of the above informal argument.

On the other hand, if Frege systems have feasible interpolation, then an interpolant funtion

omputes one bit of the seret key exhanged by the DiÆe-Hellman protool. Thus if Frege has

feasible interpolation, then all bits of the seret key exhanged by the DiÆe-Hellman proedure

an be broken using polynomial-size iruits and hene the DiÆe-Hellman ryptographi sheme

is not seure. It was proved that breaking the DiÆe-Hellman ryptographi sheme is harder than

fatoring Blum integers. Thus, it follows that Frege does not have feasible interpolation, if Blum

integers are hard to fator. (We have left the de�nitions of "hard" unde�ned, but the formal

de�nitions an be found in the paper by Bonet, Pitassi and Raz.)
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