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1 Automatizability and Feasible Interpolation

We have seen in the last le
ture that Resolution and Cutting Plane have feasible interpolation.

Note that the same result holds for the Cut{free Sequent Cal
ulus proof system.

A natural question is if this result also holds for stronger proof systems. For example do Frege,

and Extended Frege systems have feasible interpolation? We will show that under 
ryptographi


assumptions, the answer is no.

We will �rst show that for any proof system P whi
h is 
losed under restri
tions, that there is

a relationship between feasible interpolation for P and automatizability for P . It 
an be seen from

this relationship that there is an expli
it tradeo� between proof theoreti
 strength and proof sear
h.

In strong proof systems, there is no feasible interpolation, and it is hard to �nd short proofs. On

the other hand, weaker proof systems have feasible interpolation, and hen
e lower bounds apply.

De�nition A proof system P is said to be 
losed under restri
tions if for all formulas f and for

all restri
tions �, from a P -proof S of f , one 
an get a P -proof of fd

�

in time polynomial in jSj,

where � is a setting of some of the underlying variables to 0 and 1.

Note that although all of the proof systems we 
onsider in this 
ourse are 
losed under restri
tion,

there are proof systems (e.g., linear resolution) whi
h are not.

Theorem 1 Let a proof system P be 
losed under restri
tion. If P is automatizable then P has

feasible interpolation.

Proof Suppose that S is a P{proof for the unsatis�able formula A(p; q) ^B(p; r). We will give a

polynomial-time algorithm C(�; S) su
h that

�

C(�; S) = 0 =) A(�; q) is unsatis�able

C(�; S) = 1 =) B(�; r) is unsatis�able

C(�; S) is obtained as follows. First, we run the automatizability algorithm on A(p; q)^B(p; r) to

get a P{proof S

0

of A(p; q)^B(p; r). Here jS

0

j = s(jSj) for some polynomial s (by automatizibility).

Now suppose that B(�; r) is satis�able, then let 
 be su
h that B(�; 
) = 1. Sin
e P is 
losed

under restri
tion, S

0

�

�;


will be a proof of A(�; q). Also, the size of S

0

�

�;


is s(jSj). Therefore, we

run the automatizibility algorithm on A(�; q) for s(jS

0

j) steps. If the algorithm terminates with a

proof of A(�; q) we output 0 (i.e., A(�; q) is unsatis�able). Otherwise B(�; r) is guaranteed to be

unsatis�able, and we output 1.
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Note that the above proof gives a uniform algorithm, but both � and S are part of the input. It

is not hard to 
onvert this algorithm into a polynomial-size 
ir
uit with just � as input.

2 No Feasible Interpolation for Frege Systems

In this se
tion, we will sket
h the argument showing that under some assumption, strong proof

systems like Frege, Extended Frege do not have feasible interpolation. First, we introdu
e some

notations.

The �rst negativer result for interpolation was given by Kraji
ek and Pudlak who showed that

Extended Frege does not have feasible interpolation, under the assumption that RSA is se
ure. We

will not give the details of the proof here, but will sket
h the basi
 idea.

Assume that there exists a one-to-one fun
tion f from n bit strings to n bit strings, and su
h

that f is one-way. (This is a 
ompli
ated te
hni
al de�nition, but intuitively it means that f(x)


an be 
omputed in polynomial-time but for any string y, it is hard to 
ompute the inverse,

f

�1

(y). Now let A(p; q) be a propositional formula expressing that f(q) = p and the i

th

bit of

q is 0. Similarly, let B(p; r) be a propositional formula expressing that f(r) = p and the i

th

bit

of r is 1. For an expli
it one-to-one one-way fun
tion f it is possible to give an Extended Frege

refutation of A(p; q) ^ B(p; r) sin
e f is one-to-one. On the other hand, if Extended Frege has

feasible interpolation, then this implies the existen
e of a polynomial-size 
ir
uit C(�) su
h that

C(�) = 0 whenever the i

th

bit of f

�1

(�) is zero, and C(�) = 1 whenever the i

th

bit of f

�1

(�) is

one.

This shows that we 
an �nd any bit of f

�1

(�) with a polynomial-size 
ir
uit. Thus feasible

interpolation for Extended Frege implies that f is not one-way. For a spe
i�
 f , su
h as RSA, the

proof shows that EF does not have feasible interpolation unless RSA is se
ure.

The next theorem shows the similar result for Frege proof systems.

De�nition An integer n is 
alled a Blum integer if n = pq for prime numbers p and q su
h that

p and q are equivalent to 3 mod 4.

Theorem 2 (Bonet, Pitassi, Raz) If fa
toring Blum integers is hard, then Frege proof systems

do not have feasible interpolation

Proof [Sket
h℄ We will use the idea of a bit 
ommitment s
heme that is behind the DiÆe Hellman

se
ret key ex
hange s
heme. Let

DH

n

= A(P; g;X; Y; a; b) ^B(P; g;X; Y; 
; d)

be a propositional formula where X;Y are integers, P is a prime number with length jP j = n, and

g is a string in Z

�

p

. Here P; g;X; Y represent the publi
 part of the key, while a; b and 
; d are the

private part of the key. The propositional formula A(P; g;X; Y; a; b) 
odes the senten
e

\g

a

mod P = X; g

b

mod P = Y and g

ab

mod P is even".

and similarly B(P; g;X; Y; 
; d) is a propositional formula 
oding the senten
e

\g




mod P = X; g

d

mod P = Y and g


d

mod P is odd".
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It is not too hard to see that DH

n

is unsatis�able, sin
e

g

ab

mod P = (g

a

mod P )

b

mod P = X

b

mod P = (g




mod P )

b

mod P

= (g

b


) mod P = (g

b

mod P )




mod P = Y




mod P = (g

d

mod P )




mod P = g


d

mod P

It 
an be shown that there exists a polynomial-size Frege refutation for DH

n

as well. This is a

lot of work, and involves showing how to 
arry out integer multipli
ation, powering (using the

Chinese remainder theorem), and modular arithmeti
 via Frege proofs, and to show that the usual

properties of these arithmeti
 operations hold, thereby allowing Frege to give a feasible proof along

the lines of the above informal argument.

On the other hand, if Frege systems have feasible interpolation, then an interpolant fun
tion


omputes one bit of the se
ret key ex
hanged by the DiÆe-Hellman proto
ol. Thus if Frege has

feasible interpolation, then all bits of the se
ret key ex
hanged by the DiÆe-Hellman pro
edure


an be broken using polynomial-size 
ir
uits and hen
e the DiÆe-Hellman 
ryptographi
 s
heme

is not se
ure. It was proved that breaking the DiÆe-Hellman 
ryptographi
 s
heme is harder than

fa
toring Blum integers. Thus, it follows that Frege does not have feasible interpolation, if Blum

integers are hard to fa
tor. (We have left the de�nitions of "hard" unde�ned, but the formal

de�nitions 
an be found in the paper by Bonet, Pitassi and Raz.)
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