
CS 2429 - Propositional Proof Complexity Leture #9: 7 November 2002

CS 2429 - Propositional Proof Complexity

Leture #9: 7 November 2002

Leturer: Toniann Pitassi

Sribe Notes by: Sheikh M. N. Alam

1 Introdution

In this leture we will begin to prove exponential lower bounds for bounded-depth Frege proofs

(also alled AC

0

-Frege proofs) of the propositional pigeonhole priniple. That is, we will prove the

following theorem.

Theorem 1. Any AC

0

-Frege proof of PHP

n+1

n

requires exponential size.

There are many equivalent de�nitions of a depth-k Frege system. We will fous on one partiular

one for the purposes of this lower bound, although the lower bound applies to a general lass of

depth-k Frege systems over the standard DeMorgan basis (AND, OR and NOT). In our Frege

system, formulas will be restrited to the onnetives _ and :. The _ onnetive is fan-in two,

but the depth is de�ned so that the depth does not inrease unless we swith onnetive type. In

partiular, the depth of a formula (or iruit) f is de�ned as follows:

De�nition If f has no onnetives then its depth is 0, otherwise depth of f is the maximum

number of alternation of onnetives along any path from root to leaf plus 1.

Formulas or iruits in standard CNF or DNF form, for instane, have depth 2. Our Frege

system will be Shoen�elds system. There is one axiom, :A _A for any formula A, and four rules:

(1) Expansion rule: from p, the formula q _ p an be derived; (2) Contration rule: from p _ p,

the formula p an be derived; (3) Assoiative rule: from p _ (q _ r), the formula (p _ q) _ r an be

derived; and (4) The Cut rule: from p _ q and :p _ r, the formula q _ r an be derived.

If � is a sequene of formulas, then the size of � is the number of distint subformulas in �.

The depth of a proof in our Frege system is the maximum depth of a line in the proof.

2 Overview

An overview of the proof is as follows. Assume for sake of ontradition that P is a small Frege

proof of the pigeonhole priniple of depth d. We will apply a sequene of restritions to all of

the subformulas in the proof, and an assoiated interpretation of eah of the subformulas under

the restrition, so as to obtain an evaluation of eah formula in the proof. The evaluation of eah

subformula will be a mathing deision tree of small height. A key property of these deision trees

1

CS 2429 - Propositional Proof Complexity Leture #9: 7 November 2002

will be that they are all 1-trees. But on the other hand, the deision tree that will be assoiated

with the pigeonhole priniple will always be a 0-tree, and hene we obtain a ontradition.

The above very brief overview ombines ideas from iruit omplexity and model/proof theory.

From iruit omplexity, we use the idea of applying a restrition and an assoiated swithing lemma

in order to simplify the formula. From model/proof theory, we apply the idea of interpreting eah

formula in a loal fashion that is onsistent with the negation of the pigeonhole priniple.

In order to explain the swithing lemma part of the argument, we will begin by introduing

the restrition method, and �rst see how to apply it in the muh simpler ontext of proving lower

bounds for bounded-depth iruits. In the subsequent leture, we will takle the proof theory part

of the argument.

3 The Restrition Method

The restrition method is used in both iruit omplexity and proof omplexity for proving lower

bounds.

De�nition A restrition � is a partial assignment of values to a set of boolean variables fx

1

; x

2

; :::; x

n

g,

i.e. � : fx

1

; x

2

; :::; x

n

g ! f0; 1; �g where �(x

i

) = � indiates that the variable x

i

is not assigned

any value by this restrition.

When we apply a restrition � to a boolean funtion f we get a boolean funtion f�

�

whih is

the result of substituting �(x

i

) for x

i

for all plaes where �(x

i

) 6= �. We say that all variables x

i

suh that �(x

i

) = � are unset and obviously the resulting funtion beomes a funtion of the unset

variables.

Restritions simplify formulas, iruits, or funtions that we have. The simpli�ation we obtain

by restriting a small set of variables is typially substantially more than the number of variables

we set. For example, given f = (

W

i

x

i

_

W

j

:x

j

), a single assignment �(x

i

) = 1 or �(x

j

) = 0 makes

f �

�

a onstant. To prove small iruits C annot ompute a omplex funtion f , we show that

there is a restrition � suh that f �

�

is still ompliated but C �

�

is so simple that it obviously

annot ompute f�

�

. In this way we an prove a lower bound.

3.1 Deision Trees

When using restrition method, we will assoiate a deision tree with eah gate of a iruit or eah

formula appearing in a proof.

De�nition A deision tree T over x

1

; :::x

n

is a binary tree suh that

1. eah internal node of T is labelled with some variable x

i

,

2. edges out of a node x

i

are labelled by x

i

= 0 or x

i

= 1,

3. no two nodes on a path have the same variable label, and

4. leaf nodes are labelled 0 or 1.

2

CS 2429 - Propositional Proof Complexity Leture #9: 7 November 2002

 X2

X4 X5

X10 1 1

0 0

x2=0 x2=1

x5=1

x1=1

x4=1x4=0 x5=0

x1=0

Figure 1: Deision tree for funtion f .

Eah root to leaf path of a deision tree de�nes a partial restrition � to fx

1

; :::; x

n

g. More

preisely, for v 2 f0; 1g, x

i

 v is in � i� on that root to leaf path, the out edge labelled x

i

= v is

taken.

De�nition Depth of a deision tree is the height of the tree.

De�nition A deision tree T over fx

1

; :::; x

n

g omputes a boolean funtion f of fx

1

; :::; x

n

g i�

for every root to leaf path (or branh) B of T , the restrition � orresponding to branh B has the

property that f�

�

equals the leaf label of B.

De�nition A t-DNF formula is the disjuntion of terms having maximum term size t (number of

literals in the term is at most t). A t-CNF formula is the onjuntion of lauses having maximum

size t.

Deision trees give a natural way of desribing the funtion they ompute as a CNF or DNF

formula. If a boolean funtion f an be represented/omputed by a height h deision tree, then f

an be represented by an h-DNF by assoiating a term with eah branh with leaf label 1 and also

by an h-CNF formula by assoiating a lause with eah branh with leaf label 0.

Example The funtion f in Figure 1 an be represented in DNF as f = �x

2

x

4

_ x

2

�x

5

and in CNF

as f = (x

2

_ x

4

) ^ (�x

2

_ �x

5

_ x

1

) ^ (�x

2

_ �x

5

_ �x

1

).

3.2 Lower Bound for Parity

The parity funtion an be de�ned as follows:

Parity(x

1

; :::; x

n

) = 1 if (x

1

; :::; x

n

) mod 2 = 1

To prove the lower bound for Parity, we will proeed in the following way. We want to show

that no iruit having size at most s and depth at most d omputes Parity. Here, our iruits

3

CS 2429 - Propositional Proof Complexity Leture #9: 7 November 2002

are assumed to be over the onnetives _ and : although now _ as having unbounded fanin, and

depth will be de�ned in the usual way. We will prove that by ontradition. Fix a iruit S of size

s and depth d.

1. At �rst note the following important property of Parity, for any restrition �, Parity�

�

is

either parity or its negation on the variables that are still not assigned a value, i.e.,

[Parity(x

1

; :::; x

n

)℄�

�

= Parity(x

i

1

; :::; x

i

n

�

) or :Parity(x

i

1

; :::; x

i

n

�

)

where x

i

1

; :::; x

i

n

�

are variables left unset by �.

2. Then show there exists a restrition � = �

1

�

2

� � � �

d�1

suh that the number of variables left

unset by � is at least n

�

for some �.

3. By Swithing Lemma, whih we will disuss shortly, S�

�

an be represented by a simple iruit,

i.e., by a t-DNF formula where t << n

�

. This ontradits the fat that any DNF formula

omputing parity (or the negation of parity) of n bits has to have terms of size > n� 1.

Therefore, no suh small iruit S exists.

To �nd restritions for parity, we start at the inputs of the iruit and work upwards one layer

at a time. As we go along, we maintain a urrent restrition �

i

and a deision tree T

i

(g) for eah

gate g in the �rst i layers suh that T

i

(g) omputes g�

�

i

.

For layer 0, the gates are input variables, �

0

is empty and all deision trees have height 1. As

we move up from layer i � 1 to layer i, any new gate h is either a negation or an OR. If h = :g,

we let T

i

(h) be T

i

(g) with the labels on its leaves ipped from 0 to 1 and vie versa. The ase

when h = (g

1

_ ::: _ g

l

) is more omplex. It might happen that h�

�

i

requires tall deision trees

even if T

i

(g

j

) are short. We therefore look for a further small restrition � to the inputs in the

hope of simplifying h�

�

i

so that we might get a shorter tree. We would like to hoose one � that

simultaneosly does this for all unbounded fan-in OR's in the i-th layer (or whih there are at most

S).

We will set �

i+1

= �

i

� and by our assumed properties of �, short T

i+1

(h) exist for all gates

h in this layer. For all gates g below this layer, we will set T

i+1

(g) = T

i

(g)�

�

. We now ontinue

upward in the normal fashion and end by setting � = �

d

for the depth d iruit. Sine we have

been hoosing �'s whih gurantee short trees, if the iruit is small, the tree we end up with will be

shorter than the number of inputs that � leaves unset. By our earlier observation about restritions

of parity, suh a deision tree must be inorret. This yields the lower bound.

Now we need to show how to get that restrition �. By Hastad Swithing lemma suh a

restrition an be found if the depth is limited. Using standard probabilisti method we an show

the existene of one suh �. The idea is to hoose a random small � and prove that the probability

that it fails to shorten the deision tree for any single OR gate h is less than 1=S. Now, There

are at most S OR gates in any layer. So the probability that there exists an OR gate in this layer

whih is not shortened by � is stritly less than 1. So we onlude that there must exist a small �

that works.

Thus it was shown by Hastad, that any depth-d iruit for parity has exponential size. Using

the same argument with di�erent parameter settings, the following theorem was also proven.

Theorem 2. Polynomial-size iruits for Parity require
(log n=log log n) depth.

So if the depth is greater than log depth, then it is neessary to blow up the size of the iruit.

4

CS 2429 - Propositional Proof Complexity Leture #9: 7 November 2002

4 Swithing Lemma

In this setion we will state and prove the Hastad Swithing Lemma, the key ingredient in the

proof outlined above, for showing that the Parity funtion annot be omputed with polynomial-

size bounded-depth iruits.

Let R

l

n

to be the set of all restritions � on a domain of n variables that have exatly l unset

variables.

Hastad's swithing lemma states that for any �xed r-DNF f , the probability that for a restrii-

ton � 2 R

l

n

, f�

�

does not have a height s deision tree representing it is small.

�

small �

�

lr

n

�

s

<

1

s

; s � n

o(1)

�

Fix some r-DNF f and �x restrition � 2 R

l

n

. A restrition � is applied to f in order, so that

f�

�

is the DNF formula whose terms onsist of those terms of f that are not falsi�ed by �, eah

shortened by removing any variables that are satis�ed by �, and taken in the order of ourrene

of the original terms on whih they are based.

A anonial deision tree for f�

�

, T (f�

�

) is as follows:

1. if f�

�

is the onstant funtion 0 or 1 (ontains no term or has an empty �rst term, respetively)

then the orresponding deision tree onsists of a single leaf mode labelled by the appropriate

onstant value.

2. If the �rst term C

1

of f �

�

is not empty then let f

0

�

�

be the remainder of f �

�

so that f �

�

= C

1

_ f

0

�

�

. Let K be the set of variables appearing in C

1

. The deision tree starts with

a omplete binary tree for K, whih queries the variables in K in the order indued by the

order of the indies. Eah leaf i in the tree is assoiated with a restrition ��

i

whih sets

the variables of K aording to the path from the root to i. For eah ��

i

we replae the leaf

node , i, by the subtree orresponding to f�

��

i

. (Note that for the unique ��

i

whih satis�es

C

1

the leaf i will remain a leaf and be labelled 1. For all other hoies of ��

i

, the tree that

replaes i is the tree orresponding to f�

��

i

whih is same as the tree orresponding to f

0

�

��

i

.

Example Let f = x

1

x

2

_ x

5

x

7

_ x

3

x

4

_ x

6

x

5

and the restrition � is x

1

= 0; x

3

= 1. Then

f�

�

= x

5

x

7

_ x

4

_ x

6

x

5

. The orresponding anonial deision tree for f�

�

is shown in Figure 2.

We'll show that for any DNF formula f , for an appropriately hosen restrition �, the height of

T (f�

�

), jT (f�

�

)j, is small with high probability. This lemma is a swithing lemma due to Hastad

beause it will allow us to obtain a DNF formula with short terms for :f�

�

by taking the terms

orresponding to the paths in T (f�

�

) that have leaf labels 0.

Lemma 3 (Hastad's Swithing Lemma). Let f be a DNF formula in n variables with terms

of length at most r (r-DNF). For s � 0, l = pn, and p � 1=7,

j

�

� 2 R

l

n

: jT (f�

�

)j � s

	

j

jR

l

n

j

< (7pr)

s

:

Before giving the proof of the swithing lemma we give the following de�nition.

5

CS 2429 - Propositional Proof Complexity Leture #9: 7 November 2002

x5

x7

x4

x7

x4 x4

x60 1 0 1

0 1

1

1

x5=0 x5=1

x7=1

x4=1

x6=1

x4=1x4=1x4=0

x7=0 x7=1

x4=0

x6=0

x =0

x4=0

7

Figure 2: Canonial deision tree for f�

�

= x

5

x

7

_ x

4

_ x

6

x

5

.

De�nition stars(r,s) is the set of all sequenes � = (�

1

; :::; �

k

) suh that for eah j; �

j

2

f�;�g

r

nf�g

r

and suh that the total number of �'s in all the �

j

is s.

Lemma 4. jstars(r; s)j < (r=ln 2)

s

.

Proof For onveniene in the proof we shall inlude the empty string in stars(r; 0) whih would

otherwise be empty. It is suÆient to show that jstars(r; s)j �

s

for (1 + 1=)

r

= 2 beause we

have,

ln(1 + 1=) =

ln 2

r

i:e; 1 + 1= = e

ln 2

r

< e

as 1 + x < e

x

for x 6= 0

i:e;

ln 2

r

<

Indution on s. The base ase s = 0 follows trivially. Now suppose that s > 0. It is easy to

see from the de�nition that for any � 2 starts(r; s), if �

1

has i � s *'s then � = (�

1

; �

0

) where

�

0

2 stars(r; s� i). (For i = s we have used our augmentation of stars(r; 0).) There are

�

r

i

�

hoies

of �

1

so

jstars(r; s)j =

min(r;s)

X

i=1

�

r

i

�

jstars(r; s� i)j

�

r

X

i=1

�

r

i

�

s�i

=

s

r

X

i=1

�

r

i

�

(1=)

i

=

s

[(1 + 1=)

r

� 1℄

=

s

6

CS 2429 - Propositional Proof Complexity Leture #9: 7 November 2002

by the indutive hypothesis and the de�nition of . �

Proof: (Hastad Swithing Lemma) We only need to onsider s > 0. Let S 2 R

l

n

be the set of

restritions � suh that jT (f�

�

)j � s i.e., S is the set of bad restriitons for f under whih the input

DNF formula f is not suÆiently simpli�ed. We'll show that a bad restrition an be mapped to an

element of a small set in suh a way that knowledge of the formula permits one to reonstrut the

original bad restrition from the image of this map and thus the number of suh bad restritions

is small. We'll show that jSj is small (so

jSj

jR

l

n

j

) by onstruting a 1-1 map from S to B � set of all

string of a �xed size where jBj << jR

l

n

j. More preisely we de�ne a 1-1 map

S ! R

l�s

n

� stars(r; s) � 2

s

:

Let f = C

1

_ C

2

_ C

3

:::. Suppose that � 2 S and let � be the restrition assoiated with the

lexiographially �rst path in T (f�

�

) that has length � s (any way of anonially assoiated suh a

long path will do.) Trim the last few varibales set in � along the path from the root so that j�j = s.

We use formula f and � to determine the image of �. The image of � is de�ned by following the

path � in the anonial deision tree for f�

�

and using the struture of that tree (see Figure 3).

Let C

i

1

be the �rst term of f that is not set to 0 by �. Then C

i

1

�

�

will be the �rst term in f�

�

.

Sine j�j > 0, suh a term must exist and will not be the empty term. Let K be the set of variables

in C

i

1

�

�

and let �

1

be the unique restrition of the variables in K that satis�es C

i

1

�

�

. Let �

1

be

the portion of � that sets the variables in K. We have two ases based on whether or not �

1

= �.

1. If �

1

6= � then by the onstrution of �, �

1

sets the variables in K. Note also that C

i

1

�

��

1

= 1

but sine �

1

6= �, �

1

6= �

1

, and thus C

i

1

�

��

1

= 0:

2. if �

1

= � then it is possible that � does not set all of the variables in K. In this ase we

shorten �

1

to the variables in K that appear in �

1

. Now all we know is that C

i

1

�

��

1

6= 0:

De�ne �

1

2 f�;�g

k

based on the �xed ordering of the variables in term C

i

1

by letting the j-th

omponent of �

1

be � if and only if the j-th variable in C

i

1

is set by �

1

. Note that sine C

i

1

�

�

is

not the empty term there is at least one � in �

1

. From C

i

1

and �

1

we an reonstrut �

1

.

Now, by the de�nition of T (f�

�

), � n �

1

labels a path in the anonial tree T (f�

��

1

). If �

1

6= �,

we repeat the above argument, with � n �

1

in plae of �, ��

1

in plae of � and �nd a term C

i

2

whih is the �rst term of f not set to 0 by ��

1

. Based on this we generate �

2

, �

2

, and �

2

as before.

We repeat this proess until the round k in whih �

1

�

2

:::�

k

= �.

Let � = �

1

�

2

:::�

k

: We �nally de�ne Æ 2 f0; 1g

s

to be a vetor that indiates for eah variable

set by � (whih are the same as those set by �) whether it is set to the same value as � sets it.

The image of � under the 1-1 map we de�ne is a triple , h��

1

:::�

k

; (�

1

; :::; �

k

); Æi: Clearly

�� = ��

1

:::�

k

2 R

l�s

n

and (�

1

; :::; �

k

) 2 stars(r; s) so the map is as required.

It remains to show that the map we have just de�ned is indeed 1-1. To do this, we show how to

reover � from its image. The reonstrution is iterative. In the general stage of the reonstrution

we will have reovered �

1

; :::�

m�1

; �

1

; :::; �

m�1

; and will have onstruted ��

1

:::�

m�1

�

m

:::�

k

: Reall

that for m < k, C

i

m

�

��

1

::�

m�1

�

m

= 1 and C

j

�

��

1

::�

m�1

�

m

= 0 for all j < i

m

. This learly also holds

when we append �

m+1

:::�

k

to the restrition. when m = k, something similar ours exept the

only guarantee is that C

i

m

�

��

1

::�

k�1

�

k

6= 0. Thus we an reover i

m

as the index of the �rst term of

f that is not set to 0 by ��

1

:::�

m�1

�

m

::�

k

.

7

CS 2429 - Propositional Proof Complexity Leture #9: 7 November 2002

1

1

1

1

σk

σ3

σ2

σ1
π1

π2

π3

πκ

 s

Figure 3: Canonial deision tree T (f�

�

)

8

CS 2429 - Propositional Proof Complexity Leture #9: 7 November 2002

Now, based on C

i

m

and �

m

we an determine �

m

. Sine we know �

1

; :::; �

m

; using the vetor

Æ we an determine �

m

: We an now hange ��

1

:::�

m�1

�

m

::�

k

to ��

1

:::�

m�1

�

m

�

m+1

::�

k

using the

knowledge of �

m

and �

m

. Finally, given all the values of the �

m

we an reonstrut �:

Now we ompute the value jSj=jR

l

n

j:

jR

l

n

j =

�

n

l

�

2

n�l

so

jR

l�s

n

j

jR

l

n

j

=

l

(s)

(n� l + s)

(s)

� 2

s

�

(2l)

s

(n� l)

s

:

Applying the bounds we obtain

jSj

jR

l

n

j

�

jR

l�s

n

j

jR

l

n

j

� jstars(r; s)j � 2

s

�

�

4lr

(n� l) ln 2

�

s

=

�

4pr

(1� p) ln 2

�

s

for l = pn: For p < 1=7 this is at most (7pr)

s

. �

5 Lower bound for AC

0

-Frege proofs of PHP

n+1

n

.

We have disussed PHP

n+1

n

problem in details in our third and fourth letures.

In iruit omplexity, for eah gate g of a given iruit, we de�ne deision trees T (g) that

preisely omputed eah g�

�

in the iruit. But in ase of proof omplexity if we de�ne a deision

tree for eah formula (or subformula) that appears in the proof, this annot possibly work beause

every formula in the proof is a tautology and hene omputes the onstant funtion 1. So we use

a di�erent notion of deision trees that approximate eah formula suh that the bigger the proof

the worse approximation we get.

Here for proving lower bound of PHP

n+1

n

we will use mathing deision trees. We will explain

it elaborately in the next leture.

9

