
CS 2429 - Propositional Proof Complexity Le
ture #9: 7 November 2002

CS 2429 - Propositional Proof Complexity

Le
ture #9: 7 November 2002

Le
turer: Toniann Pitassi

S
ribe Notes by: Sheikh M. N. Alam

1 Introdu
tion

In this le
ture we will begin to prove exponential lower bounds for bounded-depth Frege proofs

(also
alled AC

0

-Frege proofs) of the propositional pigeonhole prin
iple. That is, we will prove the

following theorem.

Theorem 1. Any AC

0

-Frege proof of PHP

n+1

n

requires exponential size.

There are many equivalent de�nitions of a depth-k Frege system. We will fo
us on one parti
ular

one for the purposes of this lower bound, although the lower bound applies to a general
lass of

depth-k Frege systems over the standard DeMorgan basis (AND, OR and NOT). In our Frege

system, formulas will be restri
ted to the
onne
tives _ and :. The _
onne
tive is fan-in two,

but the depth is de�ned so that the depth does not in
rease unless we swit
h
onne
tive type. In

parti
ular, the depth of a formula (or
ir
uit) f is de�ned as follows:

De�nition If f has no
onne
tives then its depth is 0, otherwise depth of f is the maximum

number of alternation of
onne
tives along any path from root to leaf plus 1.

Formulas or
ir
uits in standard CNF or DNF form, for instan
e, have depth 2. Our Frege

system will be Shoen�elds system. There is one axiom, :A _A for any formula A, and four rules:

(1) Expansion rule: from p, the formula q _ p
an be derived; (2) Contra
tion rule: from p _ p,

the formula p
an be derived; (3) Asso
iative rule: from p _ (q _ r), the formula (p _ q) _ r
an be

derived; and (4) The Cut rule: from p _ q and :p _ r, the formula q _ r
an be derived.

If � is a sequen
e of formulas, then the size of � is the number of distin
t subformulas in �.

The depth of a proof in our Frege system is the maximum depth of a line in the proof.

2 Overview

An overview of the proof is as follows. Assume for sake of
ontradi
tion that P is a small Frege

proof of the pigeonhole prin
iple of depth d. We will apply a sequen
e of restri
tions to all of

the subformulas in the proof, and an asso
iated interpretation of ea
h of the subformulas under

the restri
tion, so as to obtain an evaluation of ea
h formula in the proof. The evaluation of ea
h

subformula will be a mat
hing de
ision tree of small height. A key property of these de
ision trees

1

CS 2429 - Propositional Proof Complexity Le
ture #9: 7 November 2002

will be that they are all 1-trees. But on the other hand, the de
ision tree that will be asso
iated

with the pigeonhole prin
iple will always be a 0-tree, and hen
e we obtain a
ontradi
tion.

The above very brief overview
ombines ideas from
ir
uit
omplexity and model/proof theory.

From
ir
uit
omplexity, we use the idea of applying a restri
tion and an asso
iated swit
hing lemma

in order to simplify the formula. From model/proof theory, we apply the idea of interpreting ea
h

formula in a lo
al fashion that is
onsistent with the negation of the pigeonhole prin
iple.

In order to explain the swit
hing lemma part of the argument, we will begin by introdu
ing

the restri
tion method, and �rst see how to apply it in the mu
h simpler
ontext of proving lower

bounds for bounded-depth
ir
uits. In the subsequent le
ture, we will ta
kle the proof theory part

of the argument.

3 The Restri
tion Method

The restri
tion method is used in both
ir
uit
omplexity and proof
omplexity for proving lower

bounds.

De�nition A restri
tion � is a partial assignment of values to a set of boolean variables fx

1

; x

2

; :::; x

n

g,

i.e. � : fx

1

; x

2

; :::; x

n

g ! f0; 1; �g where �(x

i

) = � indi
ates that the variable x

i

is not assigned

any value by this restri
tion.

When we apply a restri
tion � to a boolean fun
tion f we get a boolean fun
tion f�

�

whi
h is

the result of substituting �(x

i

) for x

i

for all pla
es where �(x

i

) 6= �. We say that all variables x

i

su
h that �(x

i

) = � are unset and obviously the resulting fun
tion be
omes a fun
tion of the unset

variables.

Restri
tions simplify formulas,
ir
uits, or fun
tions that we have. The simpli�
ation we obtain

by restri
ting a small set of variables is typi
ally substantially more than the number of variables

we set. For example, given f = (

W

i

x

i

_

W

j

:x

j

), a single assignment �(x

i

) = 1 or �(x

j

) = 0 makes

f �

�

a
onstant. To prove small
ir
uits C
annot
ompute a
omplex fun
tion f , we show that

there is a restri
tion � su
h that f �

�

is still
ompli
ated but C �

�

is so simple that it obviously

annot
ompute f�

�

. In this way we
an prove a lower bound.

3.1 De
ision Trees

When using restri
tion method, we will asso
iate a de
ision tree with ea
h gate of a
ir
uit or ea
h

formula appearing in a proof.

De�nition A de
ision tree T over x

1

; :::x

n

is a binary tree su
h that

1. ea
h internal node of T is labelled with some variable x

i

,

2. edges out of a node x

i

are labelled by x

i

= 0 or x

i

= 1,

3. no two nodes on a path have the same variable label, and

4. leaf nodes are labelled 0 or 1.

2

CS 2429 - Propositional Proof Complexity Le
ture #9: 7 November 2002

 X2

X4 X5

X10 1 1

0 0

x2=0 x2=1

x5=1

x1=1

x4=1x4=0 x5=0

x1=0

Figure 1: De
ision tree for fun
tion f .

Ea
h root to leaf path of a de
ision tree de�nes a partial restri
tion � to fx

1

; :::; x

n

g. More

pre
isely, for v 2 f0; 1g, x

i

 v is in � i� on that root to leaf path, the out edge labelled x

i

= v is

taken.

De�nition Depth of a de
ision tree is the height of the tree.

De�nition A de
ision tree T over fx

1

; :::; x

n

g
omputes a boolean fun
tion f of fx

1

; :::; x

n

g i�

for every root to leaf path (or bran
h) B of T , the restri
tion �
orresponding to bran
h B has the

property that f�

�

equals the leaf label of B.

De�nition A t-DNF formula is the disjun
tion of terms having maximum term size t (number of

literals in the term is at most t). A t-CNF formula is the
onjun
tion of
lauses having maximum

size t.

De
ision trees give a natural way of des
ribing the fun
tion they
ompute as a CNF or DNF

formula. If a boolean fun
tion f
an be represented/
omputed by a height h de
ision tree, then f

an be represented by an h-DNF by asso
iating a term with ea
h bran
h with leaf label 1 and also

by an h-CNF formula by asso
iating a
lause with ea
h bran
h with leaf label 0.

Example The fun
tion f in Figure 1
an be represented in DNF as f = �x

2

x

4

_ x

2

�x

5

and in CNF

as f = (x

2

_ x

4

) ^ (�x

2

_ �x

5

_ x

1

) ^ (�x

2

_ �x

5

_ �x

1

).

3.2 Lower Bound for Parity

The parity fun
tion
an be de�ned as follows:

Parity(x

1

; :::; x

n

) = 1 if (x

1

; :::; x

n

) mod 2 = 1

To prove the lower bound for Parity, we will pro
eed in the following way. We want to show

that no
ir
uit having size at most s and depth at most d
omputes Parity. Here, our
ir
uits

3

CS 2429 - Propositional Proof Complexity Le
ture #9: 7 November 2002

are assumed to be over the
onne
tives _ and : although now _ as having unbounded fanin, and

depth will be de�ned in the usual way. We will prove that by
ontradi
tion. Fix a
ir
uit S of size

s and depth d.

1. At �rst note the following important property of Parity, for any restri
tion �, Parity�

�

is

either parity or its negation on the variables that are still not assigned a value, i.e.,

[Parity(x

1

; :::; x

n

)℄�

�

= Parity(x

i

1

; :::; x

i

n

�

) or :Parity(x

i

1

; :::; x

i

n

�

)

where x

i

1

; :::; x

i

n

�

are variables left unset by �.

2. Then show there exists a restri
tion � = �

1

�

2

� � � �

d�1

su
h that the number of variables left

unset by � is at least n

�

for some �.

3. By Swit
hing Lemma, whi
h we will dis
uss shortly, S�

�

an be represented by a simple
ir
uit,

i.e., by a t-DNF formula where t << n

�

. This
ontradi
ts the fa
t that any DNF formula

omputing parity (or the negation of parity) of n bits has to have terms of size > n� 1.

Therefore, no su
h small
ir
uit S exists.

To �nd restri
tions for parity, we start at the inputs of the
ir
uit and work upwards one layer

at a time. As we go along, we maintain a
urrent restri
tion �

i

and a de
ision tree T

i

(g) for ea
h

gate g in the �rst i layers su
h that T

i

(g)
omputes g�

�

i

.

For layer 0, the gates are input variables, �

0

is empty and all de
ision trees have height 1. As

we move up from layer i � 1 to layer i, any new gate h is either a negation or an OR. If h = :g,

we let T

i

(h) be T

i

(g) with the labels on its leaves
ipped from 0 to 1 and vi
e versa. The
ase

when h = (g

1

_ ::: _ g

l

) is more
omplex. It might happen that h�

�

i

requires tall de
ision trees

even if T

i

(g

j

) are short. We therefore look for a further small restri
tion � to the inputs in the

hope of simplifying h�

�

i

so that we might get a shorter tree. We would like to
hoose one � that

simultaneosly does this for all unbounded fan-in OR's in the i-th layer (or whi
h there are at most

S).

We will set �

i+1

= �

i

� and by our assumed properties of �, short T

i+1

(h) exist for all gates

h in this layer. For all gates g below this layer, we will set T

i+1

(g) = T

i

(g)�

�

. We now
ontinue

upward in the normal fashion and end by setting � = �

d

for the depth d
ir
uit. Sin
e we have

been
hoosing �'s whi
h gurantee short trees, if the
ir
uit is small, the tree we end up with will be

shorter than the number of inputs that � leaves unset. By our earlier observation about restri
tions

of parity, su
h a de
ision tree must be in
orre
t. This yields the lower bound.

Now we need to show how to get that restri
tion �. By Hastad Swit
hing lemma su
h a

restri
tion
an be found if the depth is limited. Using standard probabilisti
 method we
an show

the existen
e of one su
h �. The idea is to
hoose a random small � and prove that the probability

that it fails to shorten the de
ision tree for any single OR gate h is less than 1=S. Now, There

are at most S OR gates in any layer. So the probability that there exists an OR gate in this layer

whi
h is not shortened by � is stri
tly less than 1. So we
on
lude that there must exist a small �

that works.

Thus it was shown by Hastad, that any depth-d
ir
uit for parity has exponential size. Using

the same argument with di�erent parameter settings, the following theorem was also proven.

Theorem 2. Polynomial-size
ir
uits for Parity require
(log n=log log n) depth.

So if the depth is greater than log depth, then it is ne
essary to blow up the size of the
ir
uit.

4

CS 2429 - Propositional Proof Complexity Le
ture #9: 7 November 2002

4 Swit
hing Lemma

In this se
tion we will state and prove the Hastad Swit
hing Lemma, the key ingredient in the

proof outlined above, for showing that the Parity fun
tion
annot be
omputed with polynomial-

size bounded-depth
ir
uits.

Let R

l

n

to be the set of all restri
tions � on a domain of n variables that have exa
tly l unset

variables.

Hastad's swit
hing lemma states that for any �xed r-DNF f , the probability that for a restri
i-

ton � 2 R

l

n

, f�

�

does not have a height s de
ision tree representing it is small.

�

small �

�

lr

n

�

s

<

1

s

; s � n

o(1)

�

Fix some r-DNF f and �x restri
tion � 2 R

l

n

. A restri
tion � is applied to f in order, so that

f�

�

is the DNF formula whose terms
onsist of those terms of f that are not falsi�ed by �, ea
h

shortened by removing any variables that are satis�ed by �, and taken in the order of o

urren
e

of the original terms on whi
h they are based.

A
anoni
al de
ision tree for f�

�

, T (f�

�

) is as follows:

1. if f�

�

is the
onstant fun
tion 0 or 1 (
ontains no term or has an empty �rst term, respe
tively)

then the
orresponding de
ision tree
onsists of a single leaf mode labelled by the appropriate

onstant value.

2. If the �rst term C

1

of f �

�

is not empty then let f

0

�

�

be the remainder of f �

�

so that f �

�

= C

1

_ f

0

�

�

. Let K be the set of variables appearing in C

1

. The de
ision tree starts with

a
omplete binary tree for K, whi
h queries the variables in K in the order indu
ed by the

order of the indi
es. Ea
h leaf i in the tree is asso
iated with a restri
tion ��

i

whi
h sets

the variables of K a

ording to the path from the root to i. For ea
h ��

i

we repla
e the leaf

node , i, by the subtree
orresponding to f�

��

i

. (Note that for the unique ��

i

whi
h satis�es

C

1

the leaf i will remain a leaf and be labelled 1. For all other
hoi
es of ��

i

, the tree that

repla
es i is the tree
orresponding to f�

��

i

whi
h is same as the tree
orresponding to f

0

�

��

i

.

Example Let f = x

1

x

2

_ x

5

x

7

_ x

3

x

4

_ x

6

x

5

and the restri
tion � is x

1

= 0; x

3

= 1. Then

f�

�

= x

5

x

7

_ x

4

_ x

6

x

5

. The
orresponding
anoni
al de
ision tree for f�

�

is shown in Figure 2.

We'll show that for any DNF formula f , for an appropriately
hosen restri
tion �, the height of

T (f�

�

), jT (f�

�

)j, is small with high probability. This lemma is a swit
hing lemma due to Hastad

be
ause it will allow us to obtain a DNF formula with short terms for :f�

�

by taking the terms

orresponding to the paths in T (f�

�

) that have leaf labels 0.

Lemma 3 (Hastad's Swit
hing Lemma). Let f be a DNF formula in n variables with terms

of length at most r (r-DNF). For s � 0, l = pn, and p � 1=7,

j

�

� 2 R

l

n

: jT (f�

�

)j � s

	

j

jR

l

n

j

< (7pr)

s

:

Before giving the proof of the swit
hing lemma we give the following de�nition.

5

CS 2429 - Propositional Proof Complexity Le
ture #9: 7 November 2002

x5

x7

x4

x7

x4 x4

x60 1 0 1

0 1

1

1

x5=0 x5=1

x7=1

x4=1

x6=1

x4=1x4=1x4=0

x7=0 x7=1

x4=0

x6=0

x =0

x4=0

7

Figure 2: Canoni
al de
ision tree for f�

�

= x

5

x

7

_ x

4

_ x

6

x

5

.

De�nition stars(r,s) is the set of all sequen
es � = (�

1

; :::; �

k

) su
h that for ea
h j; �

j

2

f�;�g

r

nf�g

r

and su
h that the total number of �'s in all the �

j

is s.

Lemma 4. jstars(r; s)j < (r=ln 2)

s

.

Proof For
onvenien
e in the proof we shall in
lude the empty string in stars(r; 0) whi
h would

otherwise be empty. It is suÆ
ient to show that jstars(r; s)j �

s

for (1 + 1=
)

r

= 2 be
ause we

have,

ln(1 + 1=
) =

ln 2

r

i:e; 1 + 1=
 = e

ln 2

r

< e

as 1 + x < e

x

for x 6= 0

i:e;

ln 2

r

<

Indu
tion on s. The base
ase s = 0 follows trivially. Now suppose that s > 0. It is easy to

see from the de�nition that for any � 2 starts(r; s), if �

1

has i � s *'s then � = (�

1

; �

0

) where

�

0

2 stars(r; s� i). (For i = s we have used our augmentation of stars(r; 0).) There are

�

r

i

�

hoi
es

of �

1

so

jstars(r; s)j =

min(r;s)

X

i=1

�

r

i

�

jstars(r; s� i)j

�

r

X

i=1

�

r

i

�

s�i

=

s

r

X

i=1

�

r

i

�

(1=
)

i

=

s

[(1 + 1=
)

r

� 1℄

=

s

6

CS 2429 - Propositional Proof Complexity Le
ture #9: 7 November 2002

by the indu
tive hypothesis and the de�nition of
. �

Proof: (Hastad Swit
hing Lemma) We only need to
onsider s > 0. Let S 2 R

l

n

be the set of

restri
tions � su
h that jT (f�

�

)j � s i.e., S is the set of bad restri
itons for f under whi
h the input

DNF formula f is not suÆ
iently simpli�ed. We'll show that a bad restri
tion
an be mapped to an

element of a small set in su
h a way that knowledge of the formula permits one to re
onstru
t the

original bad restri
tion from the image of this map and thus the number of su
h bad restri
tions

is small. We'll show that jSj is small (so

jSj

jR

l

n

j

) by
onstru
ting a 1-1 map from S to B � set of all

string of a �xed size where jBj << jR

l

n

j. More pre
isely we de�ne a 1-1 map

S ! R

l�s

n

� stars(r; s) � 2

s

:

Let f = C

1

_ C

2

_ C

3

:::. Suppose that � 2 S and let � be the restri
tion asso
iated with the

lexi
ographi
ally �rst path in T (f�

�

) that has length � s (any way of
anoni
ally asso
iated su
h a

long path will do.) Trim the last few varibales set in � along the path from the root so that j�j = s.

We use formula f and � to determine the image of �. The image of � is de�ned by following the

path � in the
anoni
al de
ision tree for f�

�

and using the stru
ture of that tree (see Figure 3).

Let C

i

1

be the �rst term of f that is not set to 0 by �. Then C

i

1

�

�

will be the �rst term in f�

�

.

Sin
e j�j > 0, su
h a term must exist and will not be the empty term. Let K be the set of variables

in C

i

1

�

�

and let �

1

be the unique restri
tion of the variables in K that satis�es C

i

1

�

�

. Let �

1

be

the portion of � that sets the variables in K. We have two
ases based on whether or not �

1

= �.

1. If �

1

6= � then by the
onstru
tion of �, �

1

sets the variables in K. Note also that C

i

1

�

��

1

= 1

but sin
e �

1

6= �, �

1

6= �

1

, and thus C

i

1

�

��

1

= 0:

2. if �

1

= � then it is possible that � does not set all of the variables in K. In this
ase we

shorten �

1

to the variables in K that appear in �

1

. Now all we know is that C

i

1

�

��

1

6= 0:

De�ne �

1

2 f�;�g

k

based on the �xed ordering of the variables in term C

i

1

by letting the j-th

omponent of �

1

be � if and only if the j-th variable in C

i

1

is set by �

1

. Note that sin
e C

i

1

�

�

is

not the empty term there is at least one � in �

1

. From C

i

1

and �

1

we
an re
onstru
t �

1

.

Now, by the de�nition of T (f�

�

), � n �

1

labels a path in the
anoni
al tree T (f�

��

1

). If �

1

6= �,

we repeat the above argument, with � n �

1

in pla
e of �, ��

1

in pla
e of � and �nd a term C

i

2

whi
h is the �rst term of f not set to 0 by ��

1

. Based on this we generate �

2

, �

2

, and �

2

as before.

We repeat this pro
ess until the round k in whi
h �

1

�

2

:::�

k

= �.

Let � = �

1

�

2

:::�

k

: We �nally de�ne Æ 2 f0; 1g

s

to be a ve
tor that indi
ates for ea
h variable

set by � (whi
h are the same as those set by �) whether it is set to the same value as � sets it.

The image of � under the 1-1 map we de�ne is a triple , h��

1

:::�

k

; (�

1

; :::; �

k

); Æi: Clearly

�� = ��

1

:::�

k

2 R

l�s

n

and (�

1

; :::; �

k

) 2 stars(r; s) so the map is as required.

It remains to show that the map we have just de�ned is indeed 1-1. To do this, we show how to

re
over � from its image. The re
onstru
tion is iterative. In the general stage of the re
onstru
tion

we will have re
overed �

1

; :::�

m�1

; �

1

; :::; �

m�1

; and will have
onstru
ted ��

1

:::�

m�1

�

m

:::�

k

: Re
all

that for m < k, C

i

m

�

��

1

::�

m�1

�

m

= 1 and C

j

�

��

1

::�

m�1

�

m

= 0 for all j < i

m

. This
learly also holds

when we append �

m+1

:::�

k

to the restri
tion. when m = k, something similar o

urs ex
ept the

only guarantee is that C

i

m

�

��

1

::�

k�1

�

k

6= 0. Thus we
an re
over i

m

as the index of the �rst term of

f that is not set to 0 by ��

1

:::�

m�1

�

m

::�

k

.

7

CS 2429 - Propositional Proof Complexity Le
ture #9: 7 November 2002

1

1

1

1

σk

σ3

σ2

σ1
π1

π2

π3

πκ

 s

Figure 3: Canoni
al de
ision tree T (f�

�

)

8

CS 2429 - Propositional Proof Complexity Le
ture #9: 7 November 2002

Now, based on C

i

m

and �

m

we
an determine �

m

. Sin
e we know �

1

; :::; �

m

; using the ve
tor

Æ we
an determine �

m

: We
an now
hange ��

1

:::�

m�1

�

m

::�

k

to ��

1

:::�

m�1

�

m

�

m+1

::�

k

using the

knowledge of �

m

and �

m

. Finally, given all the values of the �

m

we
an re
onstru
t �:

Now we
ompute the value jSj=jR

l

n

j:

jR

l

n

j =

�

n

l

�

2

n�l

so

jR

l�s

n

j

jR

l

n

j

=

l

(s)

(n� l + s)

(s)

� 2

s

�

(2l)

s

(n� l)

s

:

Applying the bounds we obtain

jSj

jR

l

n

j

�

jR

l�s

n

j

jR

l

n

j

� jstars(r; s)j � 2

s

�

�

4lr

(n� l) ln 2

�

s

=

�

4pr

(1� p) ln 2

�

s

for l = pn: For p < 1=7 this is at most (7pr)

s

. �

5 Lower bound for AC

0

-Frege proofs of PHP

n+1

n

.

We have dis
ussed PHP

n+1

n

problem in details in our third and fourth le
tures.

In
ir
uit
omplexity, for ea
h gate g of a given
ir
uit, we de�ne de
ision trees T (g) that

pre
isely
omputed ea
h g�

�

in the
ir
uit. But in
ase of proof
omplexity if we de�ne a de
ision

tree for ea
h formula (or subformula) that appears in the proof, this
annot possibly work be
ause

every formula in the proof is a tautology and hen
e
omputes the
onstant fun
tion 1. So we use

a di�erent notion of de
ision trees that approximate ea
h formula su
h that the bigger the proof

the worse approximation we get.

Here for proving lower bound of PHP

n+1

n

we will use mat
hing de
ision trees. We will explain

it elaborately in the next le
ture.

9

