An Introduction to Proof Complexity

Paul Beame

University of Washington

Separating P and NP

NP is characterized by a simple property having short proofs of membership

- To prove NP ≠ coNP show that coNP doesn't have this property [Cook 70's]
 - would separate P from NP so probably
 quite hard
 - Lots of nice, very useful smaller steps towards answering this question

Proving language membership

Proof of satisfiability

- Satisfying truth assignment
- Always short, SAT∈ NP

Proof of unsatisfiability

- ?????
- transcript of failed search for satisfying truth assignment
- Truth tables, Frege-Hilbert proofs, resolution
- Can they always be short? If so then NP=co-NP.

Proof systems

- A proof system for a language L is a polynomial time algorithm V s.t.

 - think of P as a proof that x is in L and V as a proof verifier

Complexity of proof systems

Defn: The complexity a proof system V is a function $f:N \rightarrow N$ defined by $f(n) = \max_{x \in L, |x|=n} \min_{P: V \text{ accepts } (x, P)} |P|$

- i.e. how large P has to be as a function of |x|
 V is polynomially-bounded iff its complexity is a polynomial function of n
- NP = {L: L has a polynomially-bounded proof system}

Propositional proof systems

- A propositional proof system is a proof system for the set TAUT of propositional logic tautologies
 - I.e. polynomial time algorithm ∨ s.t. for all formulas F
 - F is a tautology
 - $\mathbf{\hat{U}}$ there exists a string P s.t.
 - V accepts input (P,F)
 - Note:
 - **Ü** direction is usually called soundness
 - **D** direction is usually called completeness

Propositional proof systems

- A propositional proof system is a proof system for the set **UNSAT** of unsatisfiable propositional logic formulas
 - I.e. polynomial time algorithm ∨ s.t. for all formulas F
 - **F** is a unsatisfiable
 - U there exists a string P s.t.
 V accepts input (P,F)

Polynomially-bounded proofs

Thm: There is a polynomially-bounded propositional proof system iff NP=coNP

Proof:
 SAT is NP-complete
 F∈TAUT iff ØF∈UNSAT iff ØF∉SAT

 so TAUT, UNSAT are coNP-complete
 so TAUT, UNSAT∈NP iff NP=coNP
 ∃p-bounded proof system for L iff L∈NP

Sample propositional proof systems

Truth tables

- proof is a fully filled out truth table
 - easy to verify that it is filled out correctly and all truth assignments yield T
- Axiom/Inference systems
 - inference rules: e.g. modus ponens A, $(A \rightarrow B)$ | B
 - axioms: e.g. excluded middle | (A Ú 🗹 A)
 - axioms & inference rules are schemas
 - can make consistent substitution of arbitrary formulas for variables in schema
 - e.g. excluded middle yields ((xÙØy) Ú Ø(xÙØy))
 - more precisely...

Frege Systems

Finite, implicationally complete set R of axioms/inference rules

- Refutation version:
 - Proof of unsatisfiability of F sequence F₁,..., F_r of formulas (called lines) s.t.
 - $|\mathbf{F}_1 = \mathbf{F}$
 - each F_j follows from an axiom in R or follows from previous ones via an inference rule in R
 - $| \mathbf{F}_{\mathbf{r}} = \mathbf{L}$ trivial falsehood, e.g. (x **ÙØ**x)
- Positive version:
 - Start with nothing, end with tautology **F**

Sample Frege Refutation

```
Subset of rules
a. A, (A ® B) | B
b. (A Ŭ B) | A
c. (A Ŭ B) | B
d. A, B | (A Ŭ B)
```

```
1. ((x\hat{U}(x \otimes y))\hat{U}((x \hat{U} y) \otimes \emptyset x))

2. (x \hat{U}(x \otimes y))

3. ((x \hat{U} y) \otimes \emptyset x)

4. x

5. (x \otimes y)

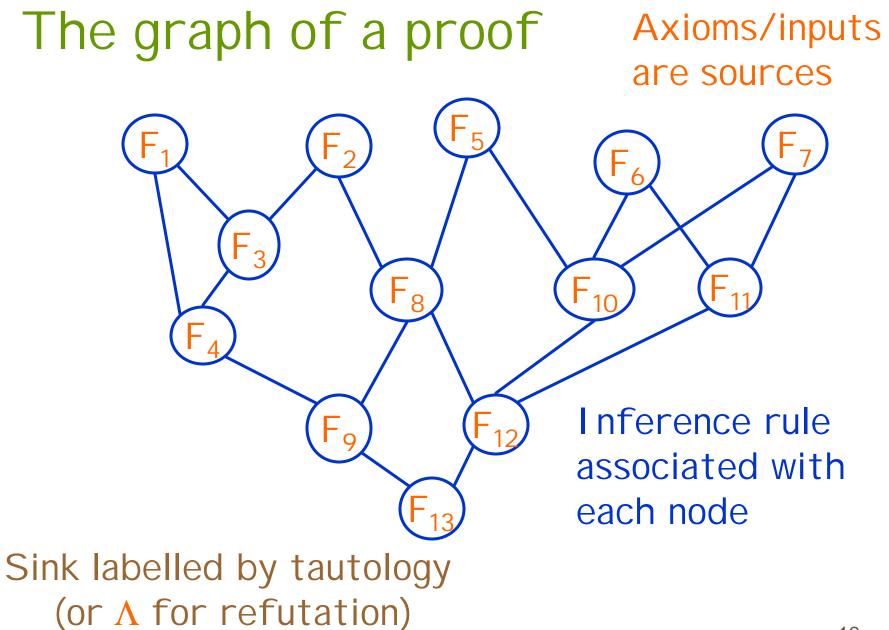
6. y

7. (x \hat{U} y)

8. \emptyset x

9. (x \hat{U} \emptyset x) = L
```

Given From 1 by b From 1 by c From 2 by b From 2 by c From 4,5 by a From 4,6 by d From 6,3 by a From 4,8 by d



p-simulation

- Defn: Proof system U polynomially simulates proof system V iff
 - they prove the same language L

\$P. V accepts (x, P) \hat{U} **\$P'**. U accepts (x, P')

proofs in V can be efficiently converted into proofs in U

i.e. there is a polynomial-time computable function **f** such that

V accepts (x,P) \hat{U} U accepts (x,f(P))

Defn: U and V are polynomially equivalent iff they polynomially simulate each other

All Frege systems are p-equivalent

- Two Frege systems given by axiom/inference rule sets R₁, R₂
 - The general form of an axiom/inference rule is

 $G_1, G_2, \dots, G_k \mid H$ i.e. given G_1, \dots, G_k conclude H (if k=0 then rule is an axiom)

- since R_1 is complete and R_2 is sound & finite,
 - for every schema s in \mathbb{R}_2 as above there is a constant sized proof in \mathbb{R}_1 of the tautology $(\mathbb{G}_1 \ \hat{\mathbb{U}} \ \mathbb{G}_2 \ \hat{\mathbb{U}} \ \dots \ \hat{\mathbb{U}} \ \mathbb{G}_k) \to \mathbb{H}$
- For every deduction of F from F₁,..., F_k in R₂ using s (i.e. F_i=G_i[x:y], F=H[x:y] for some substitution [x:y])
 - derive $(F_1 \ \tilde{U} \ F_2 \ \tilde{U} \ \dots \ \tilde{U} \ F_k)$ which has a constant size proof from F_1, \dots, F_k in R_1
 - | copy the R₁ proof of s but use the substitution [x:y] at the start to prove (F₁ **Ů** F₂ **Ů** ... **Ů** F_k) → F
 - derive **F** from $(\mathbf{F}_1 \ \mathbf{\check{U}} \ \mathbf{F}_2 \ \mathbf{\check{U}} \ \dots \ \mathbf{\check{U}} \ \mathbf{F}_k)$ and $(\mathbf{F}_1 \ \mathbf{\check{U}} \ \mathbf{F}_2 \ \mathbf{\check{U}} \ \dots \ \mathbf{\check{U}} \ \mathbf{F}_k) \rightarrow \mathbf{F}$ again constant size

Gentzen/Sequent Calculus

Statements of the form $F_1, ..., F_k \otimes G_1, ..., G_l$

- I meaning is $(F_1 \ \tilde{U}...\tilde{U} \ F_k) \otimes (G_1 \ \tilde{U} \ ... \ \tilde{U} \ G_l)$
- axioms F ® F
- derive **® F** to prove it
- derive **F**® to refute it
- two rules for each connective, one for each side

G ® D , F
G ® D,(FÚG)
G, F®D
G®D,ØF

cut rule

<u>G®D,F P,F®S</u> <u>G,P ® D,S</u>

Sequent Calculus & Frege

Sequent calculus is p-equivalent to Frege
 is still a proof system without the cut rule but is much weaker without it

Can parametrize Sequent Calculus cleanly based on what kinds of formulas F used in the cut rule so it is often used in proof complexity but proofs are often cumbersome to write down so we don't use it here

Proof systems using CNF input

- By the same trick [Tseitin 68] that reduces SAT to CNFSAT, we can assume w.l.o.g. that propositional proof systems are for the languages CNF-UNSAT or DNF-TAUT
 - Add an extra variable y_G corresponding to each sub-formula G of propositional formula F
 - C_F includes clauses (or terms in the DNF case) expressing the fact that y_G takes on the value G determined by the inputs to the formula
 - Add clause y_F to express the truth value of F

CLAIM: \$b s.t.**(a,b)** satisfies **C**_F **iff a** satisfies **F**

```
Clauses
if G = H \mathbf{U} J include clauses
     I (Øy<sub>н</sub> Úy<sub>G</sub>)
      I (\emptyset y_{1} \acute{U} y_{c})
     I (\emptyset y_G \acute{U} y_H \acute{U} y_I)
\mathbf{I} if \mathbf{G} = \mathbf{H} \mathbf{\hat{U}} \mathbf{J} include clauses
     Ι (Øy<sub>G</sub> Úy<sub>H</sub>)
      Ι (Øy<sub>G</sub> Úy<sub>J</sub>)
      I (\emptyset y_H \hat{U} \emptyset y_I \hat{U} y_G)
I if G = \emptyset H include clauses
     Ι (Øy<sub>G</sub> Ú Øy<sub>H</sub>)
     I (y_G \acute{U} y_H)
```

Resolution

- Frege-like system using CNF clauses only
- Start with original input clauses of CNF F
- Resolution rule
 - Ⅰ (A Ú x), (B Ú Øx) | (A Ú B)
- Goal: derive empty clause L
 - equivalent to sequent calculus with cuts on literals
- Most-popular systems for practical theoremproving

C-Frege proof systems

- Many circuit complexity classes C are defined as follows:
 - C={f: f is computed by polynomial-size circuits with structural property P_c}
 - e.g. non-uniform classes NC¹, AC⁰, AC⁰[p], ACC, TC⁰, P/poly
- Define C-Frege to be the p-equivalence class of Frege-style proof systems s.t.
 - each line has structural property P_c
 - finite number of axioms/inference rules
 - complete for circuits with property P_c

Circuit Complexity

- P/poly polysize circuits
- **NC¹** polysize formulas = O(log n) depth fan-in 2
- **CNF** polysize CNF formulas
- AC⁰ constant-depth unbounded fan-in polysize circuits using and/or/not gates
- **AC⁰[m]** also = 0 mod m tests
- **TC⁰** threshold instead

What we know in circuit complexity

CNFÌACºÌACº[p]ÌTCº for p prime
TCºÍNC¹ÍP/polyÍNP/poly
ACº[m]Ì # P

Examples

Frege = NC¹-Frege

- **NC1** (logarithmic depth fan-in 2) circuits can be expanded into trees (formulas) of polynomial size
- Formulas can always be re-balanced so they have logarithmic depth with only polynomial size increase

Resolution is a special case of 'CNF-Frege'

- CNF is not strong enough to express the p-simulation among Frege systems
- Semantic Tableau arbitrary sound CNF inferences of constant size

Extended Frege Proofs

Like Frege proofs plus extra extension steps

- I that define new propositional variables to stand for arbitrary formulas on current set of variables (like the variables y_G in the conversion to CNF but for more than just the input formula)
- after extension may write formulas more succinctly using newly-defined variables
- Each extension variable describes a circuit in the input variables

Extended-Frege = P/poly-Frege

Davis-Putnam (DLL) Procedure

Both

- a proof system
- a collection of algorithms for finding proofs

As a proof system

- a special case of **resolution** where the proof graph forms a **tree**.
- The most widely used family of complete algorithms for satisfiability

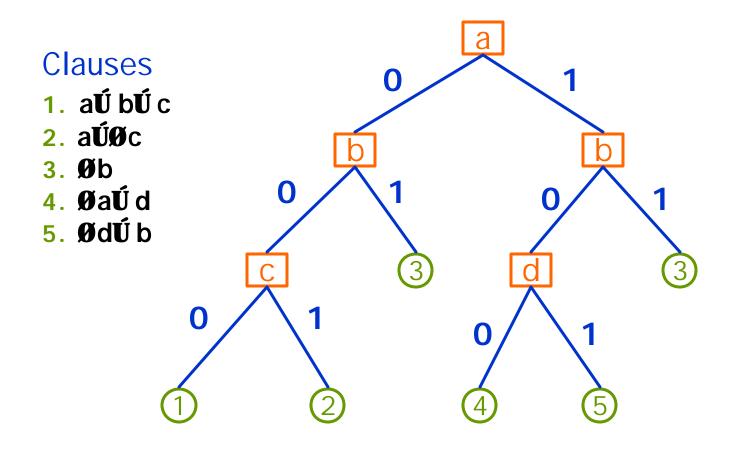
Simple Davis-Putnam Algorithm

Refute(F)

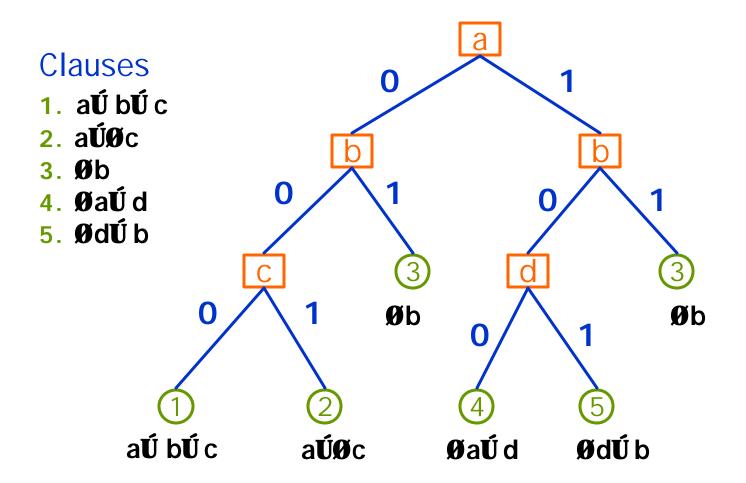
- While (F contains a clause of size 1)
 - I set variable to make that clause true
 - I simplify all clauses using this assignment
- If **F** has no clauses then
 - I output "F is satisfiable" and HALT
- If F does not contain an empty clause then
 - Choose smallest-numbered unset variable **x**
 - Run Refute(**F_{x¬ o}**)
 - Run Refute(**F**_{x¬1})

splitting rule

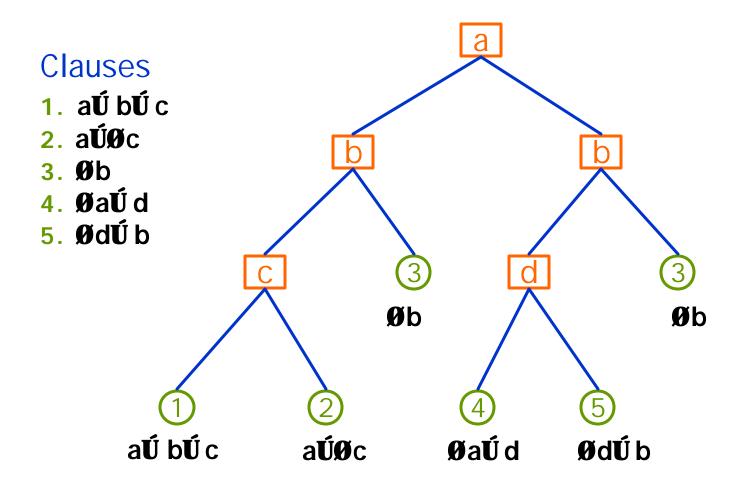
DLL Refutation

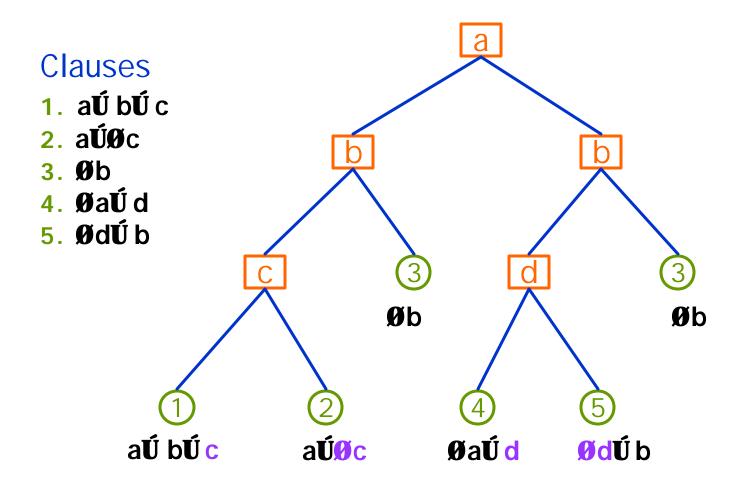


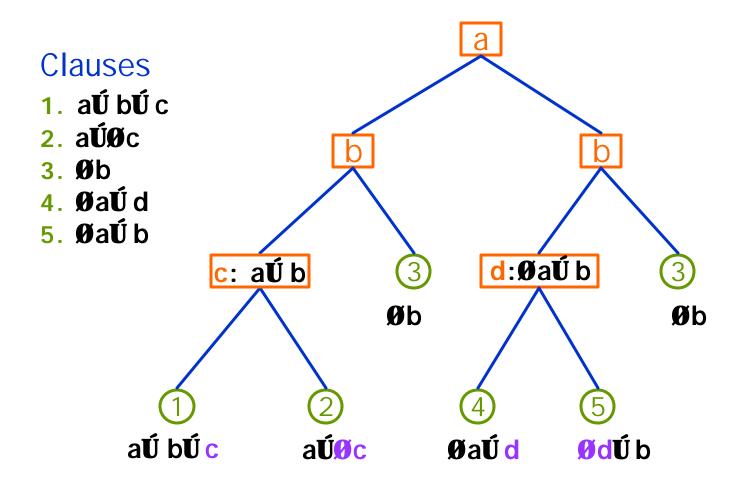
DLL Refutation

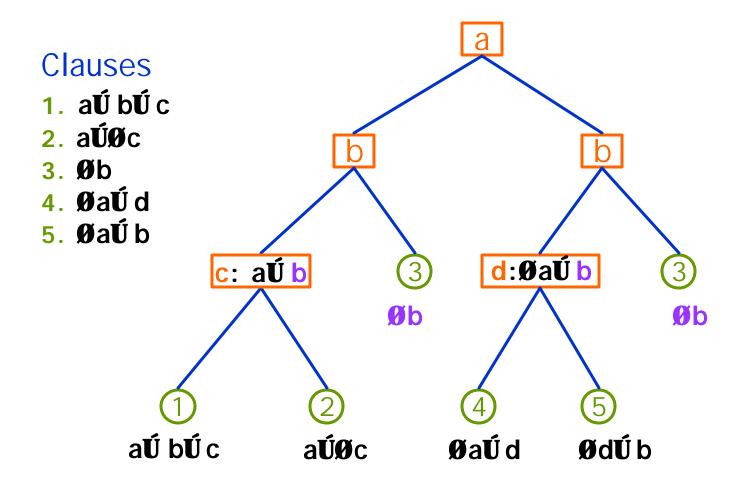


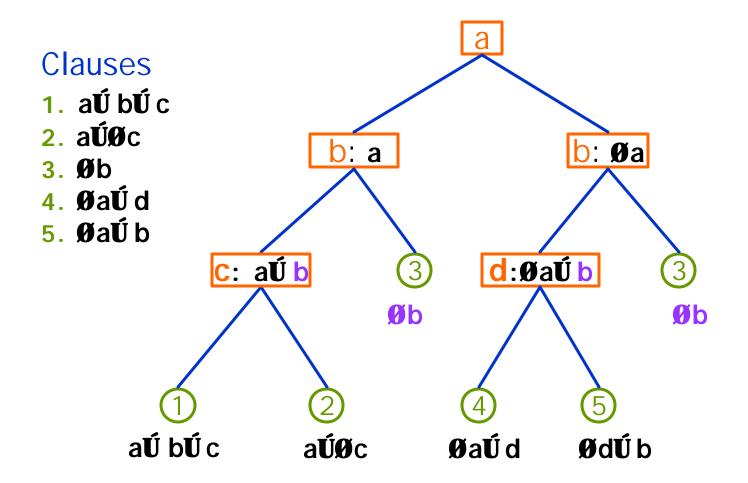
28

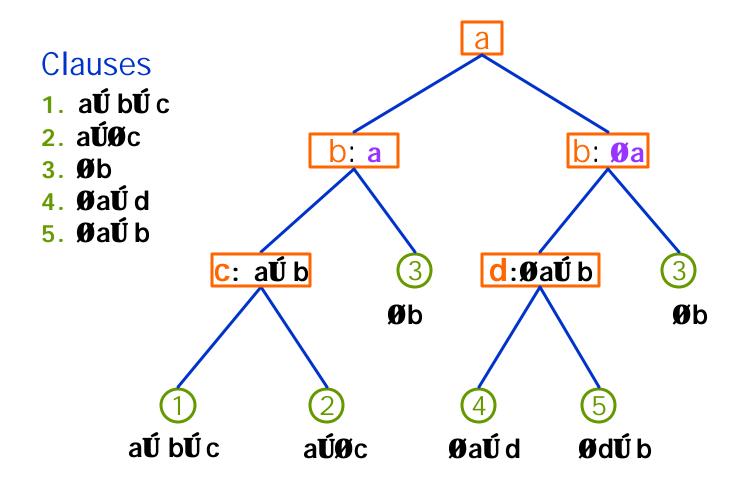




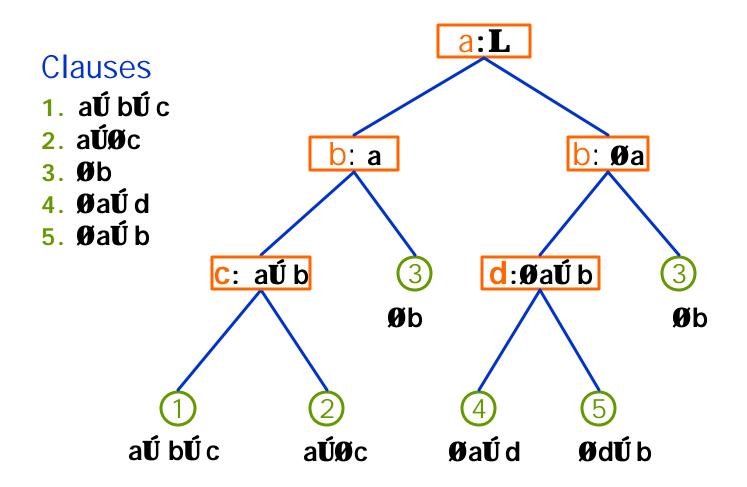








Tree Resolution Proof



Hilbert's Nullstellensatz

System of polynomials $Q_1(x_1,...,x_n)=0,...,Q_m(x_1,...,x_n)=0$ over field K has **no** solution in any extension field of K Û there exist polynomials $P_1(x_1,...,x_n),...,P_m(x_1,...,x_n)$ in $K[x_1,...,x_n]$ s.t. $\sum_{i=1}^{n} \mathbf{P}_{i} \mathbf{Q}_{i} \equiv 1$

Nullstellensatz proof system Clause $(x_1 \underbrace{v} \underbrace{0} x_2 \underbrace{v} x_3)$ becomes equation $(1-x_1)x_2(1-x_3)=0$ Q_c

- Add equations x_i²-x_i =0 for each variable
 Guarantees only 0-1 solutions
- A proof is polynomials P₁,..., P_{m+n} proving unsatisfiability: i.e. such that

$$\sum_{j=1}^{m} \mathbf{P}_{j} \mathbf{Q}_{C_{j}} + \sum_{i=1}^{n} \mathbf{P}_{m+i} (\mathbf{x}^{2} - \mathbf{x}) \equiv 1$$

Polynomial Calculus

- Similar to Nullstellensatz except:
 - Begin with Q₁,...,Q_{m+n} as before
 - Given polynomials **R** and **S** can infer
 - a R + b S for any a, b in K

| x_i∙R

- Derive constant polynomial 1
- Degree = maximum degree of polynomial appearing in the proof
- Can find proof of **degree d** in time **n**^{O(d)} using Groebner basis-like algorithm (linear algebra)

Special case of AC⁰[p]-Frege if K=GF(p) (depth 1)

Exercise

Show that every unsatisfiable formula has a proof of degree at most n+1 for Nullstellensatz/Polynomial Calculus

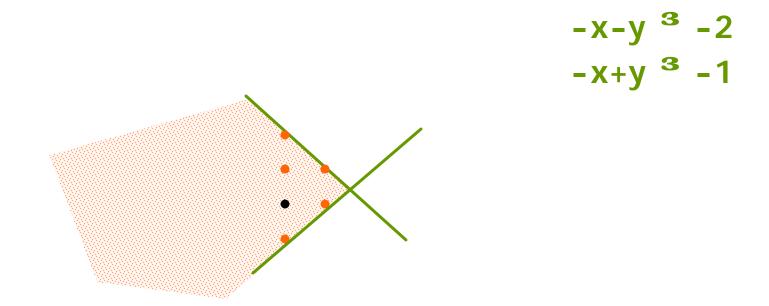
Cutting Planes

- Introduced to relate integer and linear programming [Gomory 59, Chvatal 73]:
 - Objects are linear integer inequalities
 - Clause $(x_1 \stackrel{\circ}{U} \stackrel{\circ}{D} x_2 \stackrel{\circ}{U} x_3)$ becomes inequality $x_1 + (1 x_2) + x_3 \stackrel{\circ}{}^3 1$
 - Add inequalities x_i ³ 0 and 1-x_i ³ 0
- Goal: derive 0 ³ 1
- Special case of TC⁰-Frege (depth 1)

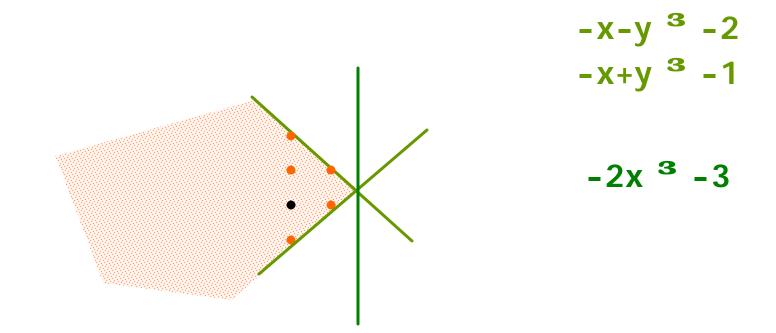
Cutting Planes rules

 $a_1 X_1 + \ldots + a_n X_n^{3} A$ addition: $b_1 X_1 + \ldots + b_n X_n^{3} B$ $(a_1+b_1)x_1+...+(a_n+b_n)x_n ^3 A+B$ multiplication by positive integer: $a_1 X_1 + \ldots + a_n X_n^{3} A$ $ca_1 X_1 + ... + ca_n X_n^{3} cA$ **Division** by positive integer: $ca_1x + ... + ca_nx_n ^{3} B$ $a_1 X_1 + ... + a_n X_n^3 eB/cu$

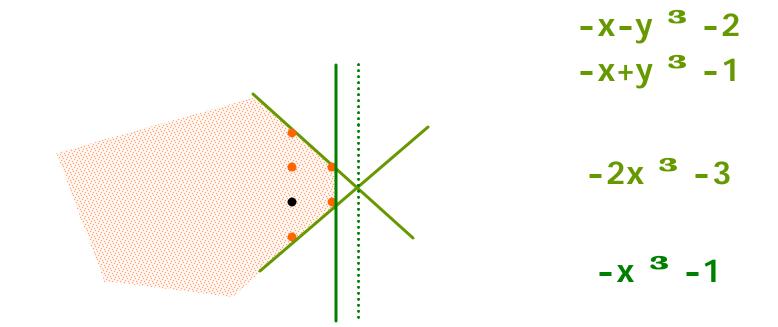
Why is it called cutting planes?



Why is it called cutting planes?

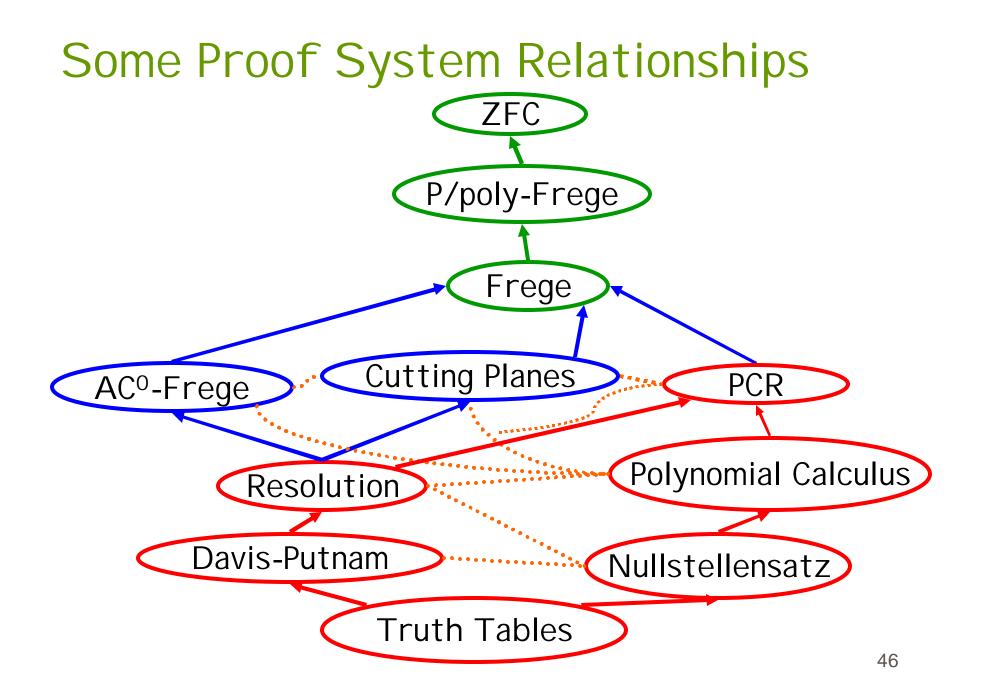


Why is it called cutting planes?



Cutting Planes p-simulates Resolution

Resolution	ON <u>(aÚbÚcÚØd) (ØaÚbÚcÚØf)</u> (bÚcÚØdÚØf)	_
Cutting Planes	$a + b + c + (1-d)^{3} 1$ (1-a) + b + c + (1-f)^{3} 1 (1-d)^{3} 0 (1-f)^{3} 0	
	2b + 2c + 2(1-d) + 2(1-f) ³ 1	Addition
	b + c + (1-d) + (1-f) ³ 1	Division



How high is the hierarchy?

Defn: Proof system U p-dominates proof system V iff there is polynomial f:N→N s.t.
 \$P.V accepts (x,P) Û \$P'.|P'|£f(|P|). U accepts (x,P')

Defn: U is super iff U p-dominates all other propositional proof systems, U is super-duper iff it p-simulates all such systems.

- **Thm:** [Krajicek-Pudlak 89]
 - **EXP=NEXPimplies** super-duper proof systems exist
 - **NEXP=coNEXP implies** super proof systems exist

Why all these proof systems?

- Proof systems formalize different types of reasoning
- Why even include the weaker systems within a given type of reasoning?
 - I many weaker proof systems have better associated proof search strategies, e.g. Davis-Putnam, Nullstellensatz, Polynomial Calculus.
- Natural correspondence with circuit complexity classes
 - analyze systems working upwards in proof strength to gain insight for techniques

Sources

- [Cook, Reckhow 79]
- [Urquhart 95]
- Beame, Impagliazzo, Krajicek, Pitassi, Pudlak 94]
- [Clegg, Edmonds, Impagliazzo 96]
- [Krajicek, Pudlak 89]

Homework

- Show that every unsatisfiable formula has a proof of degree at most n+1 for Nullstellensatz/Polynomial Calculus
- Show that resolution may be simulated by sequent calculus where we start with one sequent per clause and all cuts are on literals
- Show that every formula may be rebalanced to an equivalent one of logarithmic depth
 - First find a node in the formula that has constant fraction of the nodes in its subtree

Tableaux/Model Elimination systems

- search through sub-formulas of input formula that might be true simultaneously
- e.g. if $\mathcal{O}(A \rightarrow B)$ is true A must be true and B must be false
- build a tree of possible models based on subformulas
- equivalent to sequent calculus without the cut rule
- In worst case is worse than truth tables (n!)