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Separating P and NP

z NP is characterized by a simple property -
having short proofs of membership

z To prove NP ≠ coNP show that coNP doesn’t 
have this property [Cook 70’s]

y would separate P from NP so probably 
quite hard

y Lots of nice, very useful smaller steps 
towards answering this question
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Proving language membership
z Proof of satisfiability

y Satisfying truth assignment

y Always short,  SAT∈NP

z Proof of unsatisfiability
y ?????
y transcript of failed search for satisfying truth 

assignment
y Truth tables, Frege-Hilbert proofs, resolution
y Can they always be short?   If so then NP=co-NP.
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Proof systems

z A proof system for a language L is a 
polynomial time algorithm V s.t.

y for all inputs x
x x∈L iff there exists a string P s.t.   

V accepts input (x,P)
x

y think of P as a proof that x is in L and       
V as a proof verifier



5

Complexity of proof systems

z Defn:  The complexity a proof system V is a     
function f:N→N defined by

y i.e. how large P has to be as a function of  |x|
y V is polynomially-bounded iff its complexity is a 

polynomial function of n

z NP = {L: L has a polynomially-bounded proof    
system}

||
accepts:

Pf(n)
P)(x,VPn|x|L,x

minmax
=∈

=



6

Propositional proof systems

z A propositional proof system is a proof 
system for the set TAUT of propositional 
logic tautologies
y i.e. polynomial time algorithm V s.t.         

for all formulas F
x F is a tautology                                       

⇔ there exists a string P s.t.                      
V accepts input (P,F)

x Note:
• ⇐ direction is usually called soundness
• ⇒ direction is usually called completeness
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Propositional proof systems

z A propositional proof system is a proof 
system for the set UNSAT of unsatisfiable 
propositional logic formulas
y i.e. polynomial time algorithm V s.t.         

for all formulas F
x F is a unsatisfiable

⇔ there exists a string P s.t.                    
V accepts input (P,F)
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Polynomially-bounded proofs

z Thm: There is a polynomially-bounded 
propositional proof system iff NP=coNP

z Proof:
y SAT is NP-complete
y F∈TAUT iff ¬F∈UNSAT iff ¬F∉SAT

x so TAUT, UNSAT are coNP-complete
x so TAUT, UNSAT∈NP iff NP=coNP

y ∃p-bounded proof system for L iff L∈NP
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Sample propositional proof systems
z Truth tables

y proof is a fully filled out truth table 
x easy to verify that it is filled out correctly and all truth 

assignments yield T

z Axiom/Inference systems
y inference rules: e.g. modus ponens A, (A → B)  | B
y axioms: e.g. excluded middle | (A ∨ ¬A)
y axioms & inference rules are schemas

x can make consistent substitution of arbitrary formulas 
for variables in schema

x e.g.  excluded middle yields  ((x∧¬y) ∨ ¬(x∧¬y))
y more precisely...
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Frege Systems

z Finite, implicationally complete set R of 
axioms/inference rules

z Refutation version:
y Proof of unsatisfiability of F - sequence F1,…,Fr

of formulas (called lines) s.t.
x F1 = F
x each Fj follows from an axiom in R or follows 

from previous ones via an inference rule in R
x Fr = Λ trivial falsehood, e.g. (x ∧¬x)

z Positive version:
y Start with nothing,  end with tautology F
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Sample Frege Refutation
Subset of rules
a.  A, (A → B) | B
b.  (A ∧ B) | A
c.  (A ∧ B) | B
d.  A, B | (A ∧ B) 1.  ((x∧(x→ y))∧((x ∧ y)→¬x)) Given 

2.  (x ∧(x → y)) From 1 by b 
3.  ((x ∧ y) → ¬x) From 1 by c
4.  x From 2 by b
5. (x → y) From 2 by c
6.  y From 4,5 by a
7. (x ∧ y) From 4,6 by d
8. ¬x From 6,3 by a
9.  (x ∧ ¬x) = Λ From 4,8 by d
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The graph of a proof Axioms/inputs 
are sources

F1

F11

F3

F4

F8

F9 F12

F2 F7

F10

F5
F6

F13

Inference rule
associated with 
each node

Sink labelled by tautology 
(or Λ for refutation)
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p-simulation
z Defn: Proof system U polynomially simulates proof 

system V iff
y they prove the same language L                         

∃P. V accepts (x,P) ⇔ ∃P’. U accepts (x,P’)

y proofs in V can be efficiently converted into 
proofs in U

x i.e. there is a polynomial-time computable 
function f such that                                     

V accepts (x,P) ⇔ U accepts (x,f(P))

z Defn: U and V are polynomially equivalent iff they  
polynomially simulate each other
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All Frege systems are p-equivalent
z Two Frege systems given by axiom/inference rule 

sets R1, R2
y The general form of an axiom/inference rule is                  

G1, G2,..., Gk |  H                       
i.e. given G1,...,Gk conclude H (if k=0 then rule is an axiom)

y since R1 is complete and R2 is sound & finite, 
x for every schema σ in R2 as above there is a constant sized 

proof in R1 of the tautology (G1 ∧ G2 ∧ ... ∧ Gk) → H
y For every deduction of F from F1,...,Fk in R2 using σ

(i.e. Fi=Gi[x:y], F=H[x:y] for some substitution [x:y])
x derive (F1 ∧ F2 ∧ ... ∧ Fk) which has a constant size proof 

from F1,...,Fk in R1
x copy the R1 proof of σ but use the substitution [x:y] at the 

start to prove (F1 ∧ F2 ∧ ... ∧ Fk) → F
x derive F from (F1 ∧ F2 ∧ ... ∧ Fk) and (F1 ∧ F2 ∧ ... ∧ Fk)→F 

again constant size
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Gentzen/Sequent Calculus
z Statements of the form   F1,…,Fk →G1,…,Gl

y meaning is (F1 ∧…∧ Fk)→(G1∨ … ∨ Gl)
y axioms F →F
y derive →F to prove it
y derive F→ to refute it

z two rules for each connective, one for each side

z cut rule

Γ,F→∆   Γ, G→ ∆
Γ,(F∨G) → ∆

Γ→∆ ,F
Γ → ∆ ,(F∨G)

Γ→∆ ,F
Γ ,¬F → ∆

Γ,F→∆
Γ → ∆ ,¬F

Γ→∆ ,F  Π, F→ Σ
Γ,Π → ∆, Σ
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Sequent Calculus & Frege

z Sequent calculus is p-equivalent to Frege
y is still a proof system without the cut rule but is 

much weaker without it

z Can parametrize Sequent Calculus cleanly based on 
what kinds of formulas F used in the cut rule so it is 
often used in proof complexity but proofs are often 
cumbersome to write down so we don’t use it here
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Proof systems using CNF input
z By the same trick [Tseitin 68] that reduces SAT to 

CNFSAT, we can assume w.l.o.g. that propositional
proof systems are for the languages CNF-UNSAT or 
DNF-TAUT
y Add an extra variable yG corresponding to each 

sub-formula G of propositional formula F
y CF includes clauses (or terms in the DNF case) 

expressing the fact that yG takes on the value G
determined by the inputs to the formula

y Add clause yF to express the truth value of F

y CLAIM: ∃β s.t.(α,β) satisfies CF iff α satisfies F
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Clauses
z if G = H ∨ J include clauses

y (¬yH ∨ yG)
y (¬yJ ∨ yG)
y (¬yG ∨ yH ∨ yJ)

z if G = H ∧ J include clauses
y (¬yG ∨ yH)
y (¬yG ∨ yJ)
y (¬yH ∨ ¬yJ ∨ yG)

z if G = ¬H include clauses
y (¬yG ∨ ¬yH)
y (yG ∨ yH)
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Resolution

z Frege-like system using CNF clauses only
z Start with original input clauses of CNF  F
z Resolution rule

y (A ∨ x), (B ∨ ¬x) | (A ∨ B)
z Goal: derive empty clause  Λ

y equivalent to sequent calculus with cuts on 
literals

z Most-popular systems for practical theorem-
proving
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C-Frege proof systems

z Many circuit complexity classes C are defined as 
follows:
y C={f: f is computed by polynomial-size circuits    

with structural property PC}
y e.g.  non-uniform classes NC1, AC0, AC0[p], ACC, 

TC0, P/poly

z Define C-Frege to be the p-equivalence class of 
Frege-style proof systems s.t.
y each line has structural property PC

y finite number of axioms/inference rules
y complete for circuits with property PC
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Circuit Complexity

z P/poly - polysize circuits
z NC1 - polysize formulas = O(log n) depth fan-in 2
z CNF - polysize CNF formulas
z AC0 - constant-depth unbounded fan-in polysize 

circuits using and/or/not gates

z AC0[m] - also = 0 mod m tests 

z TC0 - threshold instead
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What we know in circuit complexity

z CNF ⊂ AC0 ⊂ AC0[p] ⊂ TC0 for p prime

z TC0 ⊆ NC1 ⊆ P/poly ⊆ NP/poly

z AC0[m] ⊂ # P
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Examples

z Frege = NC1-Frege
y NC1 (logarithmic depth fan-in 2) circuits can be 

expanded into trees (formulas) of polynomial size
y Formulas can always be re-balanced so they have 

logarithmic depth with only polynomial size 
increase

z Resolution is a special case of ‘CNF-Frege’
y CNF is not strong enough to express the               

p-simulation among Frege systems
y Semantic Tableau arbitrary sound CNF 

inferences of constant size
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Extended Frege Proofs

z Like Frege proofs plus extra extension steps 
y that define new propositional variables to stand 

for arbitrary formulas on current set of variables 
(like the variables yG in the conversion to CNF but 
for more than just the input formula)

y after extension may write formulas more 
succinctly using newly-defined variables

z Each extension variable describes a circuit in 
the input variables
y Extended-Frege = P/poly-Frege
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Davis-Putnam (DLL) Procedure

z Both 
y a proof system
y a collection of algorithms for finding 

proofs
z As a proof system

y a special case of resolution where the 
proof graph forms a tree.

z The most widely used family of 
complete algorithms for satisfiability
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Simple Davis-Putnam Algorithm

z Refute(F)
y While (F contains a clause of size 1)

x set variable to make that clause true
x simplify all clauses using this assignment

y If F has no clauses then
x output “F is satisfiable” and HALT

y If F does not contain an empty clause then
x Choose smallest-numbered unset variable x   
x Run Refute( Fx←0)
x Run Refute( Fx←1 ) splitting rule
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DLL Refutation

Clauses
1. a∨ b∨ c
2. a∨¬c
3. ¬b
4. ¬a∨ d
5. ¬d∨ b

a

b b

c d3 3

21 4 5

0 1

0

0

0

0

1

1

1

1
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DLL Refutation

Clauses
1. a∨ b∨ c
2. a∨¬c
3. ¬b
4. ¬a∨ d
5. ¬d∨ b

a

b b

c d3 3

21 4 5

0 1

0

0

01

1

1

a∨ b∨ c a∨¬c

¬b ¬b

¬a∨ d ¬d∨ b

0 1
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Tree Resolution

Clauses
1. a∨ b∨ c
2. a∨¬c
3. ¬b
4. ¬a∨ d
5. ¬d∨ b

a

b b

c d3 3

21 4 5
a∨ b∨ c a∨¬c

¬b ¬b

¬a∨ d ¬d∨ b
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Tree Resolution

Clauses
1. a∨ b∨ c
2. a∨¬c
3. ¬b
4. ¬a∨ d
5. ¬d∨ b

a

b b

c d3 3

21 4 5
a∨ b∨ c a∨¬c

¬b ¬b

¬a∨ d ¬d∨ b
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Tree Resolution

Clauses
1. a∨ b∨ c
2. a∨¬c
3. ¬b
4. ¬a∨ d
5. ¬a∨ b

a

b b

d:¬a∨ b3 3

21 4 5
a∨ b∨ c a∨¬c

¬b ¬b

¬a∨ d ¬d∨ b

c: a∨ b
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Tree Resolution

Clauses
1. a∨ b∨ c
2. a∨¬c
3. ¬b
4. ¬a∨ d
5. ¬a∨ b

a

b b

d:¬a∨ b3 3

21 4 5
a∨ b∨ c a∨¬c

¬b ¬b

¬a∨ d ¬d∨ b

c: a∨ b
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Tree Resolution

Clauses
1. a∨ b∨ c
2. a∨¬c
3. ¬b
4. ¬a∨ d
5. ¬a∨ b

a

b: a b: ¬a

d:¬a∨ b3 3

21 4 5
a∨ b∨ c a∨¬c

¬b ¬b

¬a∨ d ¬d∨ b

c: a∨ b
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Tree Resolution

Clauses
1. a∨ b∨ c
2. a∨¬c
3. ¬b
4. ¬a∨ d
5. ¬a∨ b

a

b: a b: ¬a

d:¬a∨ b3 3

21 4 5
a∨ b∨ c a∨¬c

¬b ¬b

¬a∨ d ¬d∨ b

c: a∨ b
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Tree Resolution Proof

Clauses
1. a∨ b∨ c
2. a∨¬c
3. ¬b
4. ¬a∨ d
5. ¬a∨ b

a:Λ

b: a b: ¬a

d:¬a∨ b3 3

21 4 5
a∨ b∨ c a∨¬c

¬b ¬b

¬a∨ d ¬d∨ b

c: a∨ b
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Hilbert’s Nullstellensatz

z System of polynomials  
Q1(x1,…,xn)=0,…,Qm(x1,…,xn)=0

over field K has no solution in any extension 
field of K
⇔
there exist polynomials
P1(x1,…,xn),…,Pm(x1,…,xn) in K[x1,…,xn] s.t.

1≡∑
=

QP ii

m

1i
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Nullstellensatz proof system

z Clause (x1∨ ¬x2 ∨ x3)
becomes equation (1-x1)x2(1-x3)=0

z Add equations xi
2-xi =0 for each variable

y Guarantees only 0-1 solutions

z A proof is polynomials P1,…, Pm+n proving 
unsatisfiability: i.e. such that

1≡−+ +
==
∑∑ x)(xPQP 2

im

n

1i
Cj

m

1j
j

C

QC
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Polynomial Calculus
z Similar to Nullstellensatz except: 

y Begin with Q1,…,Qm+n as before
y Given polynomials R and S can infer 

x a•R + b•S for any a, b in K
x xi•R

y Derive constant polynomial 1
y Degree = maximum degree of polynomial appearing 

in the proof
y Can find proof of degree d in time nO(d) using 

Groebner basis-like algorithm (linear algebra)

z Special case of AC0[p]-Frege if K=GF(p) (depth 1)
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Exercise

z Show that every unsatisfiable formula has a 
proof of degree at most n+1 for 
Nullstellensatz/Polynomial Calculus
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Cutting Planes

z Introduced to relate integer and linear programming 
[Gomory 59, Chvatal 73]: 
y Objects are linear integer inequalities
y Clause (x1∨ ¬x2 ∨ x3) becomes inequality     

x1+(1-x2)+x3 ≥ 1
y Add inequalities xi ≥ 0 and 1-xi ≥ 0

z Goal: derive 0 ≥ 1

z Special case of TC0-Frege (depth 1)
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Cutting Planes rules

z addition:

z multiplication by positive integer:

z Division by positive integer:                                            

a1x1 + ...  + anxn ≥ A
b1x1 + ...  + bnxn ≥ B

(a1+b1)x1+...+(an+bn)xn ≥ A+B

a1x1 + ...  + anxn ≥ A

ca1x1 + ... + canxn ≥ cA

ca1x + ... + canxn ≥ B

a1x1 + ... + anxn ≥ B/c



42

Why is it called cutting planes?

-x-y ≥ -2
-x+y ≥ -1
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Why is it called cutting planes?

-x-y ≥ -2
-x+y ≥ -1

-2x ≥ -3
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Why is it called cutting planes?

-x-y ≥ -2
-x+y ≥ -1

-2x ≥ -3

-x ≥ -1
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Cutting Planes p-simulates Resolution

(a∨b∨c∨¬d)  (¬a∨b∨c∨¬f)
(b∨c∨¬d∨¬f)

a + b + c + (1-d) ≥ 1
(1-a) + b + c + (1-f) ≥ 1

(1-d) ≥ 0
(1-f) ≥ 0

2b + 2c + 2(1-d) + 2(1-f) ≥ 1

b +  c + (1-d) +  (1-f) ≥ 1

Resolution

Cutting
Planes

Addition

Division
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Some Proof System Relationships

Truth Tables

Davis-Putnam Nullstellensatz

Polynomial CalculusResolution

Cutting Planes

Frege

AC0-Frege

ZFC

P/poly-Frege

PCR
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How high is the hierarchy?

z Defn: Proof system U p-dominates proof system V 
iff there is polynomial f:N→N s.t. 
∃P.V accepts (x,P) ⇔ ∃P’.|P’|≤f(|P|). U accepts (x,P’)

z Defn: U is super iff U p-dominates all other 
propositional proof systems, U is super-duper iff it  
p-simulates all such systems.

z Thm: [Krajicek-Pudlak 89] 
y EXP=NEXPimplies super-duper proof systems exist
y NEXP=coNEXP implies super proof systems exist



48

Why all these proof systems?

z Proof systems formalize different types of 
reasoning

z Why even include the weaker systems within a 
given type of reasoning?
y many weaker proof systems have better 

associated proof search strategies, e.g.               
Davis-Putnam, Nullstellensatz, Polynomial Calculus.

z Natural correspondence with circuit complexity 
classes
y analyze systems working upwards in proof strength 

to gain insight for techniques
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Sources

z [Cook, Reckhow 79]
z [Urquhart 95]
z [Beame, Impagliazzo, Krajicek, Pitassi, Pudlak 94]
z [Clegg, Edmonds, Impagliazzo 96]
z [Krajicek, Pudlak 89]
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Homework

z Show that every unsatisfiable formula has a proof of 
degree at most n+1 for Nullstellensatz/Polynomial 
Calculus

z Show that resolution may be simulated by sequent 
calculus where we start with one sequent per clause 
and all cuts are on literals

z Show that every formula may be rebalanced to an 
equivalent one of logarithmic depth
y First find a node in the formula that has constant fraction 

of the nodes in its subtree
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Tableaux/Model Elimination systems

y search through sub-formulas of input formula that 
might be true simultaneously

y e.g. if ¬(A → B) is true A must be true and B must 
be false

y build a tree of possible models based on 
subformulas

y equivalent to sequent calculus without the cut rule

y In worst case is worse than truth tables (n!)


