Lower Bounds in Proof Complexity

Paul Beame

University of Washington

PCMI 2000 Tues-Wed July 24-25

Recall: Frege Systems

Finite, implicationally complete set R of axioms/inference rules

- Refutation version:
 - Proof of unsatisfiability of F sequence F₁,..., F_r of formulas (called lines) s.t.
 - $|\mathbf{F}_1 = \mathbf{F}$
 - each F_j follows from an axiom in R or follows from previous ones via an inference rule in R
 - $| \mathbf{F}_{\mathbf{r}} = \mathbf{L}$ trivial falsehood, e.g. (x $\mathbf{\hat{U}}\mathbf{\emptyset}$ x)
- Positive version:
 - Start with nothing, end with tautology **F**

Resolution

- Frege-like system using CNF clauses only
- Start with original input clauses of CNF F
- Resolution rule
 - I (A Ú x), (B Ú Øx) | (A Ú B)
- Goal: derive empty clause L
- Most-popular systems for practical theoremproving

C-Frege proof systems

- Many circuit complexity classes C are defined as follows:
 - C={f: f is computed by polynomial-size circuits with structural property P_c}
 - e.g. non-uniform classes NC¹, AC⁰, AC⁰[p], ACC, TC⁰, P/poly
- Define C-Frege to be the p-equivalence class of Frege-style proof systems s.t.
 - each line has structural property P_c
 - finite number of axioms/inference rules
 - complete for circuits with property P_c

Circuit Complexity

- P/poly polysize circuits
- **NC¹** polysize formulas = O(log n) depth fan-in 2
- **CNF** polysize CNF formulas
- AC⁰ constant-depth unbounded fan-in polysize circuits using and/or/not gates
- **AC^o[m]** also = 0 mod m tests
- **TC⁰** threshold instead

What we know in circuit complexity

CNFÌACºÌACº[p]ÌTCº for p prime
TCºÍNC¹ÍP/polyÍNP/poly
ACº[m]Ì # P

Intuition for hard examples

- A tautology seems likely to be hard to prove in C-Frege if the 'natural' proof of it requires concepts that are not computable in circuit complexity class C
 - e.g. Majority is not computable in AC⁰[p] so one might guess something counting-related might be hard for AC⁰[p]-Frege
- Randomly chosen tautologies/unsatisfiable formulas might be hard to prove because there is no simple good reason to show it.

Pigeonhole principle PHP^{m®n}

No 1-1 function from **m** to **n** for **m>n**

Counting

onto-Pigeonhole principle ontoPHP^{m®n} No 1-1, onto function from m to n for m>n

Pigeonhole propositional formulas

 $\frac{Variables}{Complete bipartite graph of} variables P_{ii} representing f(i)=j$

<u>Clauses</u>

f is total: $(P_{i1} \vee P_{i2} \vee ... \vee P_{in})$ for i=1,...,mf is 1-1: $(\mathcal{O}P_{ij} \ \mathbf{U} \mathcal{O}P_{kj})$ for $1 \le i < k \le m, j=1,...,n$ f is onto: $(P_{1j} \ \mathbf{U} P_{2j} \ \mathbf{U}... \ \mathbf{U} P_{mj})$ for j=1,...,nf is a function: $(\mathcal{O}P_{ij} \ \mathbf{U} \mathcal{O}P_{ik})$ for $i=1,...,m, 1 \le j < k \le n$

Note: we usually leave out the **function** clauses. One can derive the relational form from the functional form by setting $P'_{ij}=P_{ij}$ **UOP**_{i1} **U** ... **UOP**_{i(j-1)}

Usual Proof of PHP^{$n+1 \rightarrow n$}

The usual inductive proof of PHP^{n+1®n} Base: PHP^{2→1} is trivially false Inductive Step: n+1 if f(n+1)=n then f on {1,...,n} also violates PHP^{n→n-1} else define g:{1,...,n} →{1,..., n-1} by $g(i) = \begin{cases} f(i) & \text{if } f(i) \neq n \\ f(n+1) & \text{if } f(i) = n \end{cases}$ g is 1-1/onto iff f is

Extended Frege Proof of PHP^{$n+1 \rightarrow n$}

The usual inductive proof of PHP^{n+1®n} Base: PHP^{2→1} is trivially false Inductive Step: if f(n+1)=n then f on {1,...,n} also violates PHP^{n→n-1} else define g:{1,...,n} →{1,..., n-1} by $g(i) = \begin{cases} f(i) & \text{if } f(i) \neq n \\ f(n+1) & \text{if } f(i) = n \\ g & \text{is } 1-1/\text{onto } \text{iff } f & \text{is} \end{cases}$

Extended Frege translation: Define new variables $Q_{ij} = P_{ij} \lor (\mathcal{O}P_{(n+1)n} \tilde{\mathbf{U}} P_{in} \tilde{\mathbf{U}} P_{(n+1)j})$ for i=1,...,n, j=1,...,n-1 Derive PHP^{n\ton-1} clauses in the Q_{ii} in O(n²) steps

Cutting Planes Proof of PHP^{m→n} Given

- $\begin{array}{lll} P_{i1} + P_{i2} + ... + P_{in} & 1 \text{ for } i=1,...,m \\ P_{ij} + P_{kj} & 1 & \text{for } 1 \le i < k \le m, \ j=1,...,n \end{array}$
- I P_{ij} ³ 0; P_{ij} £ 1 for i=1,...,m, i=1,...,n
- Derive $P_{1j} + P_{2j} + ... + P_{mj}$ **£** 1 as follows

For k=3 to m do

Add (k-2) copies of $P_{1j} + P_{2j} + ... + P_{(k-1)j} \pounds 1$ and one each of $P_{1j} + P_{kj} \pounds 1, ..., P_{(k-1)j} + P_{kj} \pounds 1$ to get (k-1) $P_{1j} + (k-1)P_{2j} + ... + (k-1)P_{kj} \pounds 2k-3$ Apply division rule to get $P_{1i} + P_{2i} + ... + P_{ki} \pounds 1$

Compute sum of all P_{ij} in two ways to get m≤n

Resolution and PHP^{n→n-1}

- Theorem [Haken 84, Beame-Pitassi 96] Any resolution proof of PHPn®n-1 requires size at least 2^{n/20}
 - Applies also to **ontoPHP**^{n®n-1}
- Original proof idea: Bottleneck counting
 - View truth assignments flowing through the proof
 - Assignments start at **L**, flow out towards input clauses
 - A clause in the proof lets only those assignments it **falsifies** flow through it
 - At a 'middle' level in the proof, clauses must talk about lots of pigeons
 - such a clause falsifies few assignments so need lots of them to let all the assignments flow through

Revised proof outline

PHP^{n→n-1} lower bound:

- Show that
 - a partial assignment to the variables, called a restriction can be applied to every small proof so that
 - every large clause disappears and
 - the result is still a $PHP^{n' \rightarrow n'-1}$ proof for an good size n'
 - every proof of PHP^{n'→n'-1} contains a medium complexity clause
 - every medium complexity clause is large

Critical truth assignments for PHP^{n®n-1}

CTAs match all n-1 holes to all but one of the pigeons

1-1, onto clauses (and function clauses) always satisfied
 only input clauses that may not be are clauses
 C_i=(P_{i1} Ú... Ú P_{in})

saying that pigeon i is mapped somewhere

Modify each of the clauses in the proof

- Replace each $\mathcal{O}P_{ij}$ by $(P_{1j} \stackrel{\circ}{\mathbf{U}} \dots \stackrel{\circ}{\mathbf{U}} P_{(i-1)j} \stackrel{\circ}{\mathbf{U}} P_{(i+1)j} \stackrel{\circ}{\mathbf{U}} \dots \stackrel{\circ}{\mathbf{U}} P_{nj})$ so all literals are positive
- Lets precisely the same CTAs through

Any PHP proof has a medium complexity clause

Given modified clause C and $\subseteq \{1, ..., n\}$ we say

- I implies C iff whenever "ill. C_i is true under some CTA then so is C
- complexity comp(C)=min{||: | implies C}
- Every proof contains a clause of complexity m between n/3 and 2n/3
 - L has complexity n
 - input clauses have complexity £ 1
 - I if clauses A and B imply C then comp(C) £comp(A)+comp(B)
 - walk backwards in proof from L, clause complexities decrease but both can't jump over (n/3,2n/3] region

Medium complexity clauses are big

- Suppose | implies C and || =m=comp(C), n/3£m£2n/3
 Since | is minimal, "iÎ | there is a CTA a_i s.t. C_i(a_i)=C(a_i)=false
- For each jil toggle

 a_i to yield a_{ij}

 Since C_i(a_{ij})=true, C(a_{ij})=true thus P_{ik}î C since it is only new true var since a_i
- At least m(n-m) ³ 2n²/9 total vars in C

Restrictions

- Partial assignments that map certain pigeons to certain holes
 - P_{ij} is set to true and all other P_{ik} or P_{kj} are set to false
 - Reduces PHP^{n®n-1} to PHP^{n-1®n-2}
 - More generally, partial matchings

Restrictions shrink some clauses, satisfy others

Final proof argument

- Call a modified clause **large** iff it has ³ n²/10 vars.
- Assume proof has at most S<2^{n/20} large clauses.
- On average, restricting a P_{ij} to 1 will satisfy S/10 large clauses since large clauses each have 1/10 of all variables.
- Choose a P_{ii} that satisfies the most large clauses
- Repeat until all large clauses removed:
 - Each time, # of large clauses decreases by a factor of 9/10
 - Total size of restriction = log_{10/9} S < 0.329 n
 - Remaining proof proves PHP for some n' s.t. 2(n')²/9 > n²/10
 - **Contradiction**

Width of resolution proofs

 If F is a set of clauses let w(F) = length of longest clause in F
 If P is a resolution proof width(P) = length of longest clause in P

Theorem [BW]: Every Davis-Putnam (DLL)/tree-like resolution proof of F of size S can be converted to one of width élog₂Sù + w(F)

Width of Tree-like Resolution

Proof: By induction on the size of the proof

Induction Step:

Assume that for all sets F' of clauses with a tree resolution refutation of size S' < S, there is a tree-like resolution proof P' of F' with width(P') $\pounds dog_2 S' h w(F')$

- Consider a tree resolution refutation of size S of a set of clauses F and let x be the last variable resolved on to derive L
- One of the two subtrees has size at most S/2 and the other has size strictly smaller than S.

Width of Tree-like Resolution

at most $elog_2Su+w(F)$

Width of Tree-like Resolution

Width and Resolution

- Theorem [BW] Every resolution proof of F of size S can be converted to one of width $O(\sqrt{n \log S}) + w(F)$
- Proof idea [CEI] Repeatedly find the most popular literals appearing in large clauses in the proof (like PHP proof)
 - Say a clause is **large** iff it has width ${}^{3}W = \sqrt{2n \ln S}$
 - There are at most **2n** literals and **³ W** of them per large clause
 - An average literal occurs in ³ W/2n fraction of large clauses

By induction on n and k: if $(1-W/2n)^k S \pounds 1$ then any F with at most S large clauses has a proof of width $\pounds k+w(F)$

Note: W was chosen to be large enough that (1-W/2n)^W S £ 1

By induction on n and k: if (1-W/2n)^k S £ 1 then any F with at most S large clauses has a proof of width £ k+w(F)

I Note: W was chosen to be large enough that (1-W/2n)^W S £ 1

- I nitially at most **S** large clauses
- Choose literal x most frequently occurring in large clauses and set it to 1, satisfying \geq (W/2n) fraction of large clauses
- Result is a proof of F_{x-1} with $\pounds S(1-W/2n)$ large clauses

By induction on n and k: if (1-W/2n)^k S £ 1 then any F with at most S large clauses has a proof of width £ k+w(F)

I Note: W was chosen to be large enough that (1−W/2n)^W S £ 1

- I nitially at most **S** large clauses
- Choose literal x most frequently occurring in large clauses and set it to 1, satisfying \geq (W/2n) fraction of large clauses
- Result is a proof of F_{x-1} with f (1-W/2n) large clauses
- By induction F_{x-1} has a proof of width at most k-1 +w(F)

By induction on n and k: if (1-W/2n)^k S £ 1 then any F with at most S large clauses has a proof of width £ k+w(F)

I Note: W was chosen to be large enough that (1−W/2n)^W S £ 1

- I nitially at most **S** large clauses
- Choose literal x most frequently occurring in large clauses and set it to 1, satisfying \geq (W/2n) fraction of large clauses
- Result is a proof of F_{x-1} with f (1-W/2n) large clauses
- By induction F_{x-1} has a proof of width at most k-1 +w(F)
 - So there is a derivation of Øx from F of width k+w(F)

By induction on n and k: if $(1-W/2n)^k S \pounds 1$ then any F with at most S large clauses has a proof of width $\pounds k+w(F)$

■ Note: W was chosen to be large enough that (1-W/2n)^W S £ 1

- I nitially at most **S** large clauses
- Choose literal x most frequently occurring in large clauses and set it to 1, satisfying \geq (W/2n) fraction of large clauses
- Result is a proof of F_{x-1} with f (1-W/2n) large clauses
- By induction F_{x-1} has a proof of width at most k-1 +w(F)
 - So there is a derivation of Øx from F of width k+w(F)
- By induction there is a proof of $F_{x 0}$ of width $\pounds k + w(F)$
 - restrict proof of F which has at most S large clauses
 - $| F_{x \neg 0}$ has fewer variables
Proof

By induction on n and k: if $(1-W/2n)^k S \pounds 1$ then any F with at most S large clauses has a proof of width $\pounds k+w(F)$

I Note: W was chosen to be large enough that (1-W/2n)^W S £ 1

- I nitially at most S large clauses
- Choose literal x most frequently occurring in large clauses and set it to 1, satisfying \geq (W/2n) fraction of large clauses
- Result is a proof of F_{x-1} with f (1-W/2n) large clauses
- By induction F_{x-1} has a proof of width at most k-1 +w(F)
 - So there is a derivation of Øx from F of width k+w(F)
- By induction there is a proof of $F_{x \to 0}$ of width $\pounds k+w(F)$
 - restrict proof of F which has at most S large clauses
 - $| F_{x \neg 0}$ has fewer variables
- New proof:1) Derive Øx from F in width k+w(F)
 - 2) Resolve Øx with F to get $F_{x\neg 0}$ in width w(F) 3) Refute $F_{x\neg 0}$ in width k+w(F)

Notes

- Relationship between width and size is roughly optimal for general resolution
 - [Bonet, et al 99] There are tautologies with constant input size and polynomial-size proofs that require width W(0n)
- Davis-Putnam/DLL/tree-like resolution can require exponentially larger proofs than general resolution [BEGJ 98],[BW 98].
 - Polynomial versus 2^{W(n/log n)} size
 - Uses graph pebbling and width-based lower bound

Width-size relationships

Let width(F) = the minimal width of any resolution proof of F

Corollary: Any Davis-Putnam/DLL/tree resolution proof of **F** requires size at least 2**W**(width(F)-w(F))

Corollary: Any resolution proof of F requires size at least
W(width(F)-w(F))²/n
2

Resolution lower bound arguments

PHP^{$n\to n-1$} lower bound:

- Show that
 - a restriction can be applied to every small proof so that
 - every large clause disappears and
 - the result is still a $PHP^{n' \rightarrow n'-1}$ proof for an good size n'
 - every proof of PHP^{n'→n'-1} contains a medium complexity clause
 - every medium complexity clause is large
- Width-size relationships:
 - Simply need to show
 - every proof of F must contain a large clause relative to # of variables and size of F's input clauses

Minimum unsatisfiable subformula

- **F** a set of clauses
- s(F) size of minimum subset of F that is unsatisfiable

Boundary

- **F** a set of clauses
- s(F) size of minimum subset of F that is unsatisfiable
- d F boundary of F set of variables appearing in exactly one clause of F

Sub-critical Expansion

- F a set of clauses
- s(F) size of minimum subset of F that is unsatisfiable
- d F boundary of F set of variables appearing in exactly one clause of F
- e(F) sub-critical expansion of F =
 - $\max_{s \leq s(F)} \min\{|\delta \boldsymbol{\theta}| : \boldsymbol{\theta} \subseteq F, s/2 \leq |\boldsymbol{\theta}| < s\}$

Width and expansion

Consequences

Corollaries:

- Any Davis-Putnam (DLL) proof of F requires size at least 2^{e(F)}
- Any resolution proof of F requires size at least $W_{2}(F)/n$

Random k-CNF formulas

- Make **m** independent choices of one of the $2^k \binom{n}{k}$ clauses of length **k**
- **D** = m/n is the clause-density of the formula

Distribution $F_{n,\Delta}^k$

Threshold behavior of random k-SAT

Hypergraph Expansion

- **F** hypergraph
- d F boundary of F set of degree 1
 vertices of F
- S_H(F) size of minimum subset of F that does not have a System of Distinct Representatives
- e_H(F) sub-critical expansion of F
 - max min{|δ**6|:** G ⊆ F, s/2 ≤ | G |< s}

System of Distinct Representatives

variables/nodes O

$s_H(F) \leq s(F)$ so $e_H(F) \leq e(F)$

Density and SDR's

The density of a hypergraph is #(edges)/#(vertices)

Hall's Theorem: A hypergraph F has a system of distinct representatives iff every subgraph has density at most 1.

s(F) and e(F) for random formulas

- If **F** is a random formula from $F_{n,\Delta}^k$ then
 - **s(F)** is **W(n/D**^{1/(k-2)}) almost certainly
 - e(F) is W(n/D^{2/(k-2)+e}) almost certainly

Proved for Hypergraph expansion

Density and Boundary

- A k-uniform hypergraph of density bounded below 2/k, say 2/k-e, has average degree bounded below 2
 Constant fraction of nodes are in
 - the boundary

Density of random formulas

- Fix set **S** of vertices/variables of size **r**
 - Probability p that a single edge/clause lands in S is at most (r/n)^k
 - Probability that **S** contains at least **q** edges is at most

$$\Pr\left[\mathsf{B}(\Delta n, p) \ge q\right] \le \left(\frac{e\Delta np}{q}\right)^{q} \le \left(\frac{e\Delta r^{k-1}}{n^{k-1}}\right)^{q}$$

s(F) for random formulas

Apply for q=r+1 for all r up to s using union bound:

$$\begin{split} \sum_{r=k}^{s} \binom{n}{r} \left(\frac{e\Delta r^{k-1}}{n^{k-1}} \right)^{r+1} &\leq \sum_{r=k}^{s} \left(\frac{ne}{r} \right)^{r} \left(\frac{e\Delta r^{k-1}}{n^{k-1}} \right)^{r+1} \\ &\leq \sum_{r=k}^{s} \frac{r}{en} \left(\frac{e^{2}\Delta r^{k-2}}{n^{k-2}} \right)^{r+1} = o(1) \\ \end{split}$$
for s = O(n/D^{1/(k-2)})

e(F) for random formulas

Apply for q=2r/k for all r between s/2 and s using union bound:

$$\sum_{r=s/2}^{s} {\binom{n}{r}} \left(\frac{e\Delta r^{k-1}}{n^{k-1}}\right)^{2r/k} \leq \sum_{r=s/2}^{s} {\binom{ne}{r}}^{r} \left(\frac{e\Delta r^{k-1}}{n^{k-1}}\right)^{2r/k}$$
$$\leq \sum_{r=s/2}^{s} {\left(\frac{e^{1+k/2}\Delta r^{k-1-k/2}}{n^{k-1-k/2}}\right)^{2r/k}} = o(1)$$
If or $s = Q(n/D^{2/(k-2)})$

Lower bounds

For random k-CNF chosen from F^k_{n,A} almost certainly for any e>0:

 Any Davis-Putnam proof requires size
 2^{n/?^{2/(k-2)+e}}
 Any resolution proof requires size
 2^{n/?^{4/(k-2)+e}}

A digression: Upper Bound

Theorem [BKPS]: For F chosen from $F_{n,\Delta}^k$ and D above the threshold, the simple Davis-Putnam (DLL) algorithm almost certainly finds a refutation of size

$$2^{O(n/?^{1/(k-2)})}n^{O(1)}$$

and this is a tight bound...

Simple Davis-Putnam Algorithm

Refute(F)

- While (F contains a clause of size 1)
 - I set variable to make that clause true
 - I simplify all clauses using this assignment
- If **F** has no clauses then
 - I output "F is satisfiable" and HALT
- If F does not contain an empty clause then
 - Choose smallest-numbered unset variable **x**
 - Run Refute(F_{x¬o})
 - Run Refute($F_{x \neg 1}$)

splitting rule

I dea of proof

- Contradictory cycle: contains both **x** and **x**
- After setting O(n/D^{1/(k-2)}) variables, ≥1/2 the variables are almost certainly in contradictory cycles of the 2-clause digraph
 - a few splitting steps will pick one almost certainly
 - setting clauses of size 1 will finish things off

Implications

- Random k-CNF formulas are provably hard for the most common proof search procedures.
- This hardness extends well beyond the phase transition.
 - Even at clause ratio D=n^{1/3}, current algorithms on random 3-CNF formulas have asymptotically the same running time as the best factoring algorithms.

Random graph k-colorability

- Random graph G(n,p) where each edge occurs independently with probability p
 - Sharp threshold for whether or not graph is k-colorable, e.g. p ~ 4.6/n for k=3

Lower Bound

- Theorem [BCM 99]: Non-k-colourability requires exponentially large resolution proofs for random graphs
- Basic proof idea:
 - same outline as before
 - I notion of **boundary** of a sub-graph
 - l set of vertices of degree < k</pre>
 - **s(G)** smallest non-k-colourable sub-graph

Nullstellensatz proof system Clause $(x_1 \underbrace{v} \underbrace{0} x_2 \underbrace{v} x_3)$ becomes equation $(1-x_1)x_2(1-x_3)=0$ Q_C

- Add equations x_i²-x_i =0 for each variable
 Guarantees only 0-1 solutions
- A proof is polynomials P₁,..., P_{m+n} proving unsatisfiability: i.e. such that

$$\sum_{j=1}^{m} \mathbf{P}_{j} \mathbf{Q}_{C_{j}} + \sum_{i=1}^{n} \mathbf{P}_{m+i} (\mathbf{X}^{2} - \mathbf{X}) \equiv 1$$

Polynomial Calculus

- Similar to Nullstellensatz except:
 - Begin with Q₁,...,Q_{m+n} as before
 - Given polynomials **R** and **S** can infer
 - a R + b S for any a, b in K

| x_i∙R

- Derive constant polynomial 1
- Degree = maximum degree of polynomial appearing in the proof
- Can find proof of **degree d** in time **n**^{O(d)} using Groebner basis-like algorithm (linear algebra)

Special case of AC⁰[p]-Frege if K=GF(p) (depth 1)

Natural polynomials for ontoPHP^{m→n}

- **f** is **total**: $P_{i1}+P_{i2}+...+P_{in}-1=0$ for i=1,...,m
- **f** is **1-1**: $P_{ij} P_{kj} = 0$ for $1 \le i \le k \le m, j = 1,...,n$
- **f** is **onto**: $P_{1j}+P_{2j}+...+P_{mj}-1=0$ for j=1,...,n
 - If m=n+1 can simply sum up the total polynomials and subtract the onto polynomials to get 0=1, degree 1 Nullstellensatz proof
- Facts:
 - [BR] If m=n+p^k and n>p^{2k}, need degree 2^k Nullstellensatz proofs over GF(p) but easy over GF(q)
 - [R] Without Onto clauses requires PC proofs of degree n/2 for any m and any field

Counting again

no perfect r-partition if r doesn't divide n

Countⁿ $n \neq 0 \mod r$

Polynomials for Count^{m|r}

- Let E=[m]^(r) be the set of all size r subsets of {1,...m}
 - i.e. complete r-uniform hypergraph
- Variables x_e such that $e \in E$
- Equations
 - Every point is **covered**:
 - $1 S_{e,iie} X_e = 0$ for i=1,...,m
 - Edges are **disjoint**:
 - $| \mathbf{X}_{e} \mathbf{X}_{f} = 0$ for all $e^{1} \mathbf{f} \mathbf{\hat{I}} \mathbf{E}$ s.t. $e\mathbf{C}\mathbf{f}^{1} \mathbf{f}$

Exercise: Count^{m|r} is easy to refute over Z_r

Tseitin tautologies - odd-charged graphs

Given a low degree graph **G(V,E)** with 0-1 **charges** on it nodes s.t. total is **odd**

- One variable x_e per edge eî E
 - Clauses saying parity of edges touching v is charge(v)

- If degree is large, add extension variables to compute parity at each vertex
- **Unsatisfiable**

Polynomials in Fourier basis (char(K) ¹ 2)

- Interpret atom x over {1,-1} instead of {0,1}; i.e., y=(-1)x
 - linear transform y=1-2x
- Variables are {1,-1}

 $y^{2} - 1 = 0$ instead of $x^{2} - x = 0$

- Contradiction is 1=-1
- Convenient for expressing parity
 x₁Å...Åx_k=0 becomes y₁y₂...y_k = 1
- **Exercise** Since transformation is linear and invertible it preserves degrees of proofs

Tseitin tautologies in Fourier basis

variables are in {1,-1}

 (y_e)² = 1 for every e ÎE

 parity of edges equal charge

 Π_{e,vîe} y_e = (-1)^{charge(v)} for every v ÎV

Degree of polynomials equals degree of graph

Theorem: There is a constant degree graph G s.t. a Tseitin tautology for G with all charges 1 requires
 degree W(n) to prove in Nullstellensatz [Grigoriev]
 degree W(n) to prove in Polynomial Calculus [BGIP]

Expander graphs

Defn: Let G=(V,E) be a graph. G has expansion e iff every subset S of £ |V|/2 vertices has |N(S)| ³ (1+e)|S|

- Fact: [Margulis, Gabber-Galil] Constant degree regular bipartite graphs with constant expansion e > 0 exist.
 - Many applications in complexity
 - Originally considered for regular resolution lower bounds

Let E(S) I E be those edges with one endpoint in S and one outside S. Expansion e implies E(S) ³ eS > 0 for all sets S of size at most n/2.

Degree lower bound is en/8

Proof idea: binomial equations

- Every input polynomial has two terms so can think of it as an equivalence for monomials
 - Can one rewrite 1 and -1 to equal each other?
 - Every monomial corresponds to a parity of a subset of edges (and a sign)
 - Each equivalence corresponds to the parity of the set of edges leaving a small non-empty set of vertices
 - initially just a single vertex v
 - Might as well think of summation equations mod 2 in the original variables and derive 0=1 rather than use products since they represent the same thing
Parity Reasoning

- Given S, let S_S denote the sum of the original edge variables leaving a set S. Every equation is of the form $S_S = |S| \pmod{2}$.
 - Initially S={v} and all charges are 1
 - If we add two equations $S_S = |S| \pmod{2}$ and $S_{S'} = |S'| \pmod{2}$ we get $S_{SDS'} = |SDS'| \pmod{2}$

Relation to degree

- No contradiction can be reached if always have $|S\Delta S'| \le n/2$ since $|E(S\Delta S')| > 0$
 - If sets started of size at most n/4 then this won't happen
 - By expansion, sets of size more than n/4 have at least en/4 edges leaving them so if one is working with sums of fewer than en/4 terms one won't see such sets.
 - Each binomial corresponds to a parity summation equation with some portion of the equation in each monomial
 - No contradiction if monomials have degree at most en/8

Implications for Count^{n|r}

Can reduce Tseitin to Count^{2n+1|2}

- I mplies W(n) degree lower bounds for Count^{2n+1|2} for all fields K with char(K) ≠2
- Can generalize Tseitin tautologies to arbitrary characteristics Tseitin(p)
 - encode in extension fields having pth roots of unity instead of using the Fourier basis
 - similar binomial degree lower bounds if char(K) ≠p
- Can reduce Tseitin(p) to Count^{n|p}
 - I mplies W(n) degree lower bounds for Count^{pn+1|p} for all fields K with char(K) ≠p

Polynomials in Fourier basis (char(K) ¹ 2)

- Interpret atom x over {1,-1} instead of {0,1}; i.e., y=(-1)x
 - linear transform y=1-2x
- Variables are {1,-1}

 $|y^2 - 1| = 0$ instead of $x^2 - x = 0$

- Contradiction is 1=-1
- Convenient for expressing parity $x_1 \mathring{A} \dots \mathring{A} x_k = 0$ becomes $y_1 y_2 \dots y_k = 1$
- **Exercise** Since transformation is linear and invertible it preserves degrees of proofs

Binomial equations

If every input polynomial has two terms so can think of it as an equivalence for monomials

 $| y_{i_1} \dots y_{i_k} = y_{j_1} \dots y_{j_l} \text{ or } y_{i_1} \dots y_{i_k} = -y_{j_1} \dots y_{j_l}$

Might as well think of summation equations mod 2 in the original variables and derive 0=1 rather than use products since they represent the same thing

$$x_{i_1} + ... + x_{i_k} + x_{j_1} + ... + x_{j_l} = 0 \pmod{2}$$
 or
 $x_{i_1} + ... + x_{i_k} + x_{j_1} + ... + x_{j_l} = 1 \pmod{2}$

PCR = PC + Resolution

- Two variables x and x' for each atomic proposition x
 - **x**' stands for **Ø**x
 - include equations x+x'-1=0, $x^2-x=0$, and $(x')^2-x'=0$
- Translate $(x_1 \vec{U} \otimes x_2 \vec{U} x_3)$ as $(1 x_1)x_2(1 x_3) = 0$ or as $x'_1 x_2 x'_3 = 0$
- Same proof rules as polynomial calculus

Exercises:

- Show how PCR simulates resolution with degree £ width and no increase in size
- Show how the resolution relationships between size and width apply to PCR using size and degree
 - Binomial equations work just as in PC if char(K)¹2

Hypergraph Expansion

- **F** hypergraph
- d F boundary of F set of degree 1
 vertices of F
- S_H(F) size of minimum subset of F that does not have a System of Distinct Representatives
- e_H(F) sub-critical expansion of F
 - max min{|δ6|:6⊆F, s/2≤|6|<s}

Hypergraph Expansion and Polynomial Calculus

Theorem [BI]: The degree of any PCR, polynomial calculus or Nullstellensatz proof of unsatisfiability of F is at least e_H(F)/2 if the characteristic is not 2.

Groebner basis algorithm bound is only n^{O(e_н(F))}

k-CNF and parity equations

- Clause $(x_1 \ U \ Q x_2 \ U \ x_3)$ is implied by $x_1 + (x_2 + 1) + x_3 = 1 \pmod{2}$ i.e. $x_1 + x_2 + x_3 = 0 \pmod{2}$
- Derive contradiction 0 = 1 (mod 2) by adding collections of equations
- # of variables in longest line is at least e_H(F)

Parity equations and polynomial calculus

Given equations of form

$$x_1 + x_2 + x_3 = 0 \pmod{2}$$

Represent in the Fourier basis

Polynomial equation y_i²-1=0 for each variable

 $y_i = 1 - 2x_i$

Polynomial equation $y_1 y_2 y_3 - 1 = 0$

I would be $y_1 y_2 y_3 + 1 = 0$ if RHS were 1

I mply the usual equations for original clauses in degree k if char(K) is not 2

Relationship of equations

We have 3 forms

- Original clause $(\mathbf{x}_1 \mathbf{\acute{U}} \mathbf{\mathscr{G}} \mathbf{x}_2 \mathbf{\acute{U}} \mathbf{x}_3)$
- Usual {0,1} polynomials $(1-x_1)x_2(1-x_3)=0$, $x_i^2-x_i=0$
- Stronger parity equation $x_1 + x_2 + x_3 = 0 \pmod{2}$
- Fourier basis polynomials $y_1 y_2 y_3 1 = 0$, $y_i^2 1 = 0$ where $y_i = 1 - 2x_i$
- **y**_i²-1=0 and **y**_i=1-2**x**_i imply $x_i^2 x_i = 0$
- Each equation only involves k variables so we use our standard degree upper bound on Nullstellensatz to get usual {0,1} polynomials since the transformed polynomials are stronger

Lower bound

- For random k-CNF chosen from F^k_{n,∆} almost certainly for any e>0:
 - Any Nullstellensatz, Polynomial Calculus or PCR refutation over a field K with char(K)¹2 requires degree at least n/?^{2/(k-2)+e}

and size at least

2^C_en/?^{4/(k-2)+e}

Sources

- [Chvatal, Szemeredi 89]
- [Mitchell, Selman, Levesque 93]
- [Clegg, Edmonds, Impagliazzo 96]
- Beame, Pitassi 97]
- [Razborov 97]
- Beame, Riis 98]
- [Beame, Karp, Pitassi, Saks 98]
- [Ben-Sasson, Wigderson 99]
- [Ben-Sasson, Impagliazzo 99]
- [Buss, Grigoriev, Impagliazzo, Pitassi 99]
- [Impagliazzo, Pudlak, Sgall 99]
- Beame, Culberson, Mitchell 00]