The restriction method in circuit and proof complexity

Paul Beame

University of Washington

PCMI 2000 Friday July 28

Circuit lower bound for parity

- Theorem [Hastad] The n-bit parity function $x_1 A x_2 A ... A x_n$ cannot be computed by unbounded fan-in circuits in size S and depth d unless
 S $\geq 2^{cn^{1/d}}$
- Corollary: Polynomial-size circuits for parity require W(log n/loglog n) depth
 ParityÏ AC⁰

Original proof used restriction argument

Restrictions

- Defn: Given a set X of Boolean variables, a restriction r is a partial assignment of values to the variables of X
 - formally r :X® {0,1,*} where r(x_i) = * indicates
 that the variable x_i is not assigned a value
- If F is a function, formula, or circuit, write F|_r for the result of substituting r(x_i) for each x_i s.t. r(x_i) *

Unbounded fan-in circuits

Restrict to connectives Ú, Ø
 results for other connective is easily defined
 Defn: The depth of a formula F (circuit C) is max # of Ú on any path from an input to an output

Unbounded fan-in circuits

📕 Restrict to connectives 🖞, 💋 results for other connective is easily defined Defn: The depth of a formula F (circuit C) is max # of \mathbf{U} on any path from an input to an output e.g. CNF/DNF have depth 2 W 7 Ϋ́

Why restrictions might be useful for circuit lower bounds

Restrictions simplify functions, circuits, formulas

Given $F = (V_i x_i \hat{U} V_j \emptyset x_j)$

- assigning a single r(x_i)=1 or a r(x_j)=0 makes F|_r a constant; i.e. wiping out F but only setting one variable
- Simplification is substantially more than # of variables assigned
- Basic idea: To prove that small circuit C cannot compute function f, choose a restriction r such that
 - **fr** is still complicated but
 - C|r is extremely simple so that it obviously cannot compute f|r

Boolean decision trees

- **Defn:** A Boolean decision tree **T** is a binary rooted tree s.t.
 - each internal node is labelled by some x_i
 - leaf nodes are labelled 0 or 1
 - edges out of each internal node are labelled
 0 or 1
 - no two nodes on a path have the same variable label

A Boolean Decision Tree

Paths in decision trees

- Every root-leaf path (branch) corresponds to a restriction r of the input variables
 - For b∈ {0,1}, x_i←b is in r iff on that branch the out-edge labelled b is taken from node labelled x_i
- The tree T computes f iff for every branch B of T
 - the restriction \mathbf{r} corresponding to branch B has the property that $f|_{\mathbf{r}}$ equals the leaf label of B

Tree for $f(x) = x_1 + x_2 + x_3 \ge 2'$

Property of Decision Trees

- Decision trees ⇒DNF:Every function computed by a decision tree of height t can be represented
 - in CNF with clause size at most t
 - I clauses correspond to branches with leaf label 0
 - in DNF with term size at most t
 - terms correspond to branches with leaf label 1
- DNF⇒decision tree
 - Canonical conversion

$$\mathbf{F} = \mathbf{X}_1 \overline{\mathbf{X}_3} \vee \mathbf{X}_3 \mathbf{X}_4 \vee \overline{\mathbf{X}_4} \mathbf{X}_6$$

 $\mathbf{F} = \mathbf{X}_1 \overline{\mathbf{X}_3} \vee \mathbf{X}_3 \mathbf{X}_4 \vee \overline{\mathbf{X}_4} \mathbf{X}_6$

 $F = x_1 \overline{x_3} \vee x_3 x_4 \vee \overline{x_4} x_6$

 $\mathbf{F} = \mathbf{X}_1 \overline{\mathbf{X}_3} \vee \mathbf{X}_3 \mathbf{X}_4 \vee \overline{\mathbf{X}_4} \mathbf{X}_6$

 $\mathbf{F} = \mathbf{X}_1 \overline{\mathbf{X}_3} \vee \mathbf{X}_3 \mathbf{X}_4 \vee \overline{\mathbf{X}_4} \mathbf{X}_6$

$$\mathbf{F} = \mathbf{X}_1 \overline{\mathbf{X}_3} \vee \mathbf{X}_3 \mathbf{X}_4 \vee \overline{\mathbf{X}_4} \mathbf{X}_6$$

 $F = x_1 \overline{x_3} \lor x_3 x_4 \lor \overline{x_4} x_6$

$\triangleleft \triangleright$

Parity properties

- For any restriction **r**, Parity, is either parity or its negation on the variables that are still not assigned values
- Parity or its negation requires a decision tree of height n
 - Compare with $x_1 \vee ... \vee x_n$
 - l any decision tree also requires height n
 - but most restrictions of it are constant and so only require height 0

Restriction for constant-depth circuits

- An (S,d)-circuit will be an unbounded fan-in circuit of size £S and depth £d
- To show that no (S,d)-circuit C computes function f, find a set R_{S,d}(f) of restrictions s.t.
 - For any (S,d)-circuit C, there is a r Î R_{S,d}(f) s.t. we can associate a short* Boolean decision tree T(g) to each gate g of C, s.t. T(g) computes g|_r
 - For any rÎ R_{s,d}(f), f|_r is not computed by any short* decision tree

*relative to the number of variables unset by ${\bf r}$

Restriction for constant-depth circuits

- An (S,d)-circuit will be an unbounded fan-in circuit of size £S and depth £d
- To show that no (S,d)-circuit C computes function f, find a set R_{S,d}(f) of restrictions s.t.
 - For any (S,d)-circuit C, there is a r Î R_{S,d}(f) s.t. we can associate a short* Boolean decision tree T(g) to each gate g of C, s.t. T(g) computes g r
 - For any rÎ R_{s,d}(f), f|_r is not computed by any short* decision tree

*in case of parity this just means < number of variables

How to find restrictions for Parity circuits

- Start at the inputs of the circuit and work upwards a layer at a time,
 - maintaining a current restriction \mathbf{r}_i and a tree $\mathbf{T}_i(\mathbf{g})$ for each gate \mathbf{g} in the first \mathbf{i} layers s.t. $\mathbf{T}_i(\mathbf{g})$ computes $\mathbf{g}|_{\mathbf{r}_i}$
 - For layer **0**, gates are input variables, \mathbf{r}_0 is empty and decision trees have height 1

How to find restrictions for Parity circuits

• Working up the layers of the circuit

- If h=∅g then let T_i(h) be T_i(g) with its leaf labels toggled between 0 and 1.
- If $h=(g_1 \acute{U} ... \acute{U}g_t)$ then the function $h|_{r_i}$ may require tall decision trees even if all $T_i(g_j)$ are short
 - so we look for a further small restriction π to the inputs in the hopes of simplifying $h|_{\mathbf{r}_i}$ so that the tree will be short
 - We'd like to choose **one p** that simultaneously does this for **all** the unbounded fan-in V's in this layer (up to S of them!)

What will we do once we have π

- Once we have such a restriction π a tall order it seems
 - **Set** $r_{i+1} = r_i p$
 - Short T_{i+1}(h) for h in this layer exist by our assumed properties of p
 - For all gates g below this layer, set $T_{i+1}(g) = T_i(g)$
 - continue upward...
 - We end by letting r=r_d and we will have chosen the various p so that the trees will be shorter than the number of inputs that r leaves unset
 - circuit cannot compute parity

Finding π

- Probabilistic method
 - Show that a randomly chosen small **p** fails to shorten the decision tree for any single V-gate h in this layer with probability < 1/S
 - There are at most S V-gates in this layer, so Pr[\$an V-gate in this layer not shortened by p] < 1</p>
 - ...so there must exist a small p that does the job
 choose it

Hastad's Switching Lemma

Let R_{k,n} be the set of all restrictions to variables x₁,..., x_n that leave precisely k variables unset

Lemma: Given a DNF formula F in variables x₁,...,x_n with terms of size at most t, for p chosen uniformly at random from R_{k,n}, if n>12tk then

Pr[canonical decision tree for

 $F|_{p}$ has height ³ t] < 2^{-t}.

Final analysis

Maintain trees of height t=log₂S
 Number of variables decreases by a factor of 13t=13log₂S per layer

Height will be less than # of variables if log₂S < n/(13log₂S)^d i.e. log₂S < n^{1/(d+1)}/13
 can't compute parity if this holds

Can save one power of log₂S by being careful

Restriction method in proof complexity

Theorem [Ajtai,PBI,KPW]: **ontoPHP**^{n+1®n} requires exponential size **AC**⁰**-Frege** proofs

Theorem [Ajtai,BP] Count^{2n+1|2} requires exponential size AC⁰-Frege proofs even given PHP^{m+1®m} as extra axiom schemas

Theorem [BIKPP] Count^{pn+1|p} requires exponential size proofs even given Count^{qm+1|q} as axiom schemas

Restrictions in Proof Complexity

In circuit complexity,

- for each gate g we defined decision trees T(g) that precisely compute each g in the circuit
- Obvious analogue in proof complexity, e.g. in proof of a tautology
 - do the same
- But this can't work
 - every formula in the proof computes the constant function 1 since it is a tautology!

What we do instead

- Come up with a different notion of decision trees that **approximates** each formula so that
 - bigger proof needed for a tautology implies worse approximation of it
 - decision trees are well-behaved under restrictions
 - approximation is particularly bad for the goal formula F you want to prove
 - Any short approximating decision tree for
 - F looks like false
 - an axiom looks like **true**
 - any formula with a short proof looks like **true**
 - like circuit case define decision trees for each subformula in the proof and tailor decision trees & restrictions to F

Restrictions for PHP^{$n+1 \rightarrow n$}

- Don't want restrictions to force PHP^{n+1→n} to true so...
- Restrictions pare partial matchings as before

Let R^{k,n} be the set of all partial matching restrictions that leave exactly k holes unset

Bipartite matching decision trees

Queries are either

- the name of a pigeon, or
 - answer is the mapping edge for that pigeon
- the name of a hole, or
 - answer is the mapping edge for that hole
- Every path corresponds to a partial matching between pigeons and holes
 - No repetition of a node name that was already used higher in the tree

Leaves are labelled 0 or 1

Associating matching trees with formulas

- T(P_{ij}) queries i & has height 1
- T(Øg) is T(g) with leaf labels toggled
- To get tree for $h=(g_1 \acute{U} \dots \acute{U}g_t)$
 - take DNF formula $F_h = T(g_1)U$... $UT(g_t)$
 - do canonical conversion of F_h into a matching decision tree
 - like conversion for ordinary decision trees
 - go term by term left-to-right simplifying future terms based on partial assignments
 - query both endpoints of every variable in each term

I deas for PHP^{$n+1 \rightarrow n$} lower bound

- Restrictions are kind to matching decision trees
 - Analog of Hastad switching lemma for canonical conversion of DNF to matching decision trees
 - If proof is small trees can be made short
- Matching decision trees of height < n</p>
 - for PHP^{$n+1 \rightarrow n$} has all O's on its leaves
 - for an axiom has all 1's on it leaves
 - preserve this property of all 1's on the leaves under inference rules

Extensions to extra axioms

Same sorts of restrictions and decision trees

- Must also prove that extra axioms convert to trees with all 1's on their leaves
 - Surprisingly, this follows in each case from Nullstellensatz degree lower bounds for the extra axioms!

