The restriction method In
circuit and proof complexity

Paul Beame

University of Washington

PCMI 2000 Friday July 28

Circuit lower bound for parity

Theorem [Hastad] The n-bit parity function
X AX,A ... Ax cannot be computed by
unbounded fan-in circuits In size S and depth
d unless g 3 pon™”

Corollary: Polynomial-size circuits for parity
require W(log n/loglog n) depth
Parityl ACO

Original proof used restriction argument

<>

Restrictions

Defn: Given a set X of Boolean variables, a
restriction r iIs a partial assignment of values
to the variables of X

formally r :X® {0,1,"} where r (x;)= * Indicates
that the variable x; is not assigned a value

IT - Is a function, formula, or circuit, write
~|, for the result of substituting r (x;) for
each x;s.t.r(x)* *

Unbounded fan-in circuits

<>

Restrict to connectives U, @
results for other connective is easily defined

Defn: The depth of a formula F (circuit C) is max #
of U on any path from an input to an output

e.g. CNF/DNF have depth 2

Unbounded fan-in circuits

<>

Restrict to connectives U, @
results for other connective is easily defined

Defn: The depth of a formula F (circuit C) is max #
of U on any path from an input to an output

e.g. CNF/DNF have depth 2

Why restrictions might be useful for
circuit lower bounds

Restrictions simplify functions, circuits,formulas
Given F=(V,UV,@x;)

assigning a single r (x;)=1 or ar (x;)=0 makes F|, a
constant; i.e. wiping out F but only setting one variable

Simplification is substantially more than # of
variables assigned
Basic idea: To prove that small circuit C cannot
compute function T, choose a restriction r such that
T|, i1s still complicated but

C|. 1s extremely simple so that it obviously cannot
compute T},

Boolean decision trees

Defn: A Boolean decision tree T Is a
binary rooted tree s.t.
each internal node is labelled by some x;
leaf nodes are labelled O or 1

edges out of each internal node are labelled
Oorl

no two nodes on a path have the same
variable label

A Boolean Decision Tree

<>

Paths In decision trees

Every root-leaf path (branch) corresponds to
a restriction r of the Input variables

For bl {0,1}, x~ b is inr iff on that branch the
out-edge labelled b is taken from node labelled x,

The tree T computes T Iff for every branch B

of T

the restriction r corresponding to branch B has
the property that f|, equals the leaf label of B

Tree for T(X)="X;+X,+X33 2’

<>

Property of Decision Trees

Decision trees P DNF:Every function
computed by a decision tree of height t can
be represented

In CNF with clause size at most t
clauses correspond to branches with leaf label O

In DNF with term size at most t
terms correspond to branches with leaf label 1

DNFP decision tree
Canonical conversion

DNFP decision tree

F=X,X5 U X3X, UX, X

<>

DNFP decision tree

F=x,35 U XX, UX X

<>

DNFP decision tree

F=x,35 U XX, UX X

<>

DNFP decision tree

F=x,35 U XX, UX X

<>

DNFP decision tree

F=x,35 U XX, UX X

<>

DNFP decision tree

P d

F=x X5 U

<>

UX Xg

DNFP decision tree

F=x X5 U ., UX,Xg

<>

DNFP decision tree

P d

F=x X5 U

<>

UX X

DNFP decision tree

P d

F=x X5 U

<>

UX X

DNFP decision tree

F=x,35 U XX, UX X

<>

DNFP decision tree

F=x,35 U XX, UX X

<>

DNFP decision tree

F=x,35 U X, UX X

<>

DNFP decision tree

F=x,%; U %, UX, X

<>

DNFP decision tree

F=x,%; U %, UX, X

<>

DNFP decision tree

F=x,%; U %, UX, X

<>

DNFP decision tree

F=x,%; U %, UX, X

<>

DNFP decision tree

F=x, %5 U %, U < X

<>

DNFP decision tree

F=x X5 U x, U X,

<>

DNFP decision tree

F=x X5 U x, U X,

<>

DNFP decision tree

F=x X5 U x, U X,

<>

DNFP decision tree

F=x X5 U x, U X,

<>

DNFP decision tree

F=x,35 U XX, UX X

<>

DNFP decision tree

F=x X5 U X, U X,

<>

DNFP decision tree

F=XX5 U X3X, U X, Xg

<>

Parity properties

For any restriction r, Parity|, is either parity
or Its negation on the variables that are still
not assigned values

Parity or its negation requires a decision tree
of height n

Compare with x,U..U x,
any decision tree also requires height n

but most restrictions of it are constant and so only
require height O

Restriction for constant-depth circuits

An (S,d)-circuit will be an unbounded fan-in circuit of
size £S5 and depth £d

To show that no (S, d)-circuit C computes function T,
find a set R. ,(T) of restrictions s.t.

For any (S,d)-circuit C, thereisar | Re 4(T) s.t. we can
associate a short* Boolean decision tree T(g) to each gate ¢

of C, s.t. T(g) computes g,

For any r| Re 4(T), T], 1s not computed by any short™> decision
tree

*relative to the number of variables unset by r

Restriction for constant-depth circuits

An (S,d)-circuit will be an unbounded fan-in circuit of
size £S5 and depth £d

To show that no (S, d)-circuit C computes function T,
find a set R. ,(T) of restrictions s.t.

For any (S,d)-circuit C, thereisar | Re 4(T) s.t. we can
associate a short* Boolean decision tree T(g) to each gate ¢

of C, s.t. T(g) computes g,

For any r| Re 4(T), T], 1s not computed by any short™> decision
tree

*In case of parity this just means < number of variables

How to find restrictions for Parity
circuits

Start at the inputs of the circuit and work
upwards a layer at a time,

maintaining a current restriction r; and a tree T,(g)
for each gate g in the first i layers s.t. T.(g)
computes g, .

For layer O, gates are input variables, r 4 Is empty
and decision trees have height 1

o

0 1

How to find restrictions for Parity
circuits

Working up the layers of the circuit

1T =09 then let T,(h) be T,(g) with its leaf labels
toggled between O and 1.

If h=(g,U ... Ug,) then the function h|, may
require tall decision trees even if all T,(g;) are
short

so we look for a further small restriction p to the inputs
In the hopes of simplifying h|, so that the tree will be short

We'd like to choose one p that simultaneously does this for all
the unbounded fan-in V's in this layer (up to S of them!)

What will we do once we have p

Once we have such a restriction p - a tall
order It seems
Setr ., =rp
Short T, ,(h) for h in this layer exist by our
assumed properties of p
For all gates g below this layer, set T,.,(0)=T,(9)],
continue upward...

We end by letting r =r , and we will have chosen the
various p so that the trees will be shorter than the
number of inputs that r leaves unset

circuit cannot compute parity

Finding p

Probabilistic method

Show that a randomly chosen small p fails to
shorten the decision tree for any single V-gate h
In this layer with probability < 1/S

There are at most S V-gates in this layer, so
Pr[$an V-gate in this layer not shortened by p] <1

...S0 there must exist a small p that does the job
choose it

<>

Hastad's Switching Lemma

Let R, , be the set of all restrictions to
variables x,...,x, that leave precisely k
variables unset

Lemma: Given a DNF formula F In variables
Xq1,...,%, wWith terms of size at most t, for p
chosen uniformly at random from R, If
n>12tk then
Pr[canonical decision tree for
Fl, has height® 1] <2

Final analysis

Maintain trees of height t=log,S

Number of variables decreases by a factor of
131t=13log,S per layer

Height will be less than # of variables If
log,S < n/(13log,S)? i.e. log,S < nl/(d+1)/13

can't compute parity if this holds

Can save one power of log.S by being careful

Restriction method in proof
complexity

<>

Theorem [Ajtai,PBI ,KPW]: ontoPHP"+1®n
requires exponential size ACY-Frege proofs

Theorem [Ajtai,BP] Count?"* 112 requires
exponential size ACY-Frege proofs even given
PHPM*1®mM a5 extra axiom schemas

Theorem [BIKPP] CountP* 1P requires
exponential size proofs even given Countdm**l

as axiom schemas

Restrictions in Proof Complexity

In circuit complexity,

for each gate g we defined decision trees T(0)
that precisely compute each g|, in the circuit

Obvious analogue in proof complexity, e.g. In
proof of a tautology
do the same

But this can't work

every formula in the proof computes the constant
function 1 since it is a tautology!

What we do instead

Come up with a different notion of decision trees
that approximates each formula so that

bigger proof needed for a tautology implies worse
approximation of it

decision trees are well-behaved under restrictions

approximation is particularly bad for the goal formula F you
want to prove
Any short approximating decision tree for
F looks like false
an axiom looks like true
any formula with a short proof looks like true

like circuit case define decision trees for each subformula in
the proof and tailor decision trees & restrictions to F

Restrictions for PHPM®n

Don't want restrictions to force PHP"1®n to
true so...

Restrictions p are partial matchings as before
N

Let R*" be the set of all partial matching
restrictions that leave exactly k holes unset

Bipartite matching decision trees

Queries are either

the name of a pigeon, or
answer is the mapping edge for that pigeon

the name of a hole, or
answer is the mapping edge for that hole

Every path corresponds to a partial matching

between pigeons and holes

No repetition of a node name that was already used
higher in the tree

Leaves are labelled O or 1

A matching decision tree

Y
L \V)
oW
oA

e
Ne
We

{2,2}
O

4.2}

4.1}

Vd Vd

P21P32P43 U I:)21|:)42 U I:)23|:)42

<>

A matching decision tree

Y
o)
oW
oA

e
Ne
We

{2,2}
O

4.2}

4.1}

Vd Vd

P21P32P43 U I:)21|:)42 U I:)23|:)42

<>

A matching decision tree

Y
o)
oW
oA

e
Ne
We

{2,2}
O

4.2}

4.1}

Vd Vd

P21P32P43 U I:)21|:)42 U P23P42

<>

A matching decision tree

Y
o)
oW
oA

e
Ne
We

{2,2}
O

4.2}

4.1}

Vd Vd

P21P32P43 U I:)21|:)42 U I:)23|:)42

<>

Associating matching trees with
formulas

T(P;;) queries | & has height 1
T(20) is T(g) with leaf labels toggled

To get tree for h=(g,U ... Ug,)
take DNF formula F,=T(g,)U ... UT(g,)

do canonical conversion of F, into a matching
decision tree

like conversion for ordinary decision trees

go term by term left-to-right simplifying future terms
based on partial assignments

query both endpoints of every variable in each term

<>

ldeas for PHP"®n |ower bound

Restrictions are kind to matching decision
trees

Analog of Hastad switching lemma for canonical
conversion of DNF to matching decision trees

I T proof is small trees can be made short

Matching decision trees of height <n
for PHP"®n has all O's on its leaves
for an axiom has all 1's on i1t leaves

preserve this property of all 1's on the leaves
under inference rules

Extensions to extra axioms

Same sorts of restrictions and decision trees

Must also prove that extra axioms convert to
trees with all 1's on their leaves
Surprisingly, this follows in each case from

Nullstellensatz degree lower bounds for the extra
axioms!

The Frontier stended Frege>

/
(Frege)

TCO-Frege

CACO[p]-Frege>

ACO-Frege ~_Cutting Planes >::..c pCR

<>

e
®e
.
.
eq,

.

.

® _uspuustt

L
L] ..'
.
® e

__Davis-Putnam ... Biee Nullstellensatz
R

ruth Tables)

