
The restriction method in
circuit and proof complexity

Paul Beame

University of Washington

PCMI 2000 Friday July 28

Circuit lower bound for parity

z Theorem [Hastad] The n-bit parity function
x1⊕x2⊕... ⊕xn cannot be computed by
unbounded fan-in circuits in size S and depth
d unless

z Corollary: Polynomial-size circuits for parity
require Ω(log n/loglog n) depth
y Parity∉AC0

z Original proof used restriction argument

1/dcn2S ≥

Restrictions

z Defn: Given a set X of Boolean variables, a
restriction ρ is a partial assignment of values
to the variables of X
y formally ρ :X→ {0,1,∗} where ρ(xi)= ∗ indicates

that the variable xi is not assigned a value

z If F is a function, formula, or circuit, write
F|ρ for the result of substituting ρ(xi) for
each xi s.t. ρ(xi) ≠ ∗

Unbounded fan-in circuits

z Restrict to connectives ∨, ¬
y results for other connective is easily defined

z Defn: The depth of a formula F (circuit C) is max #
of ∨ on any path from an input to an output

z e.g. CNF/DNF have depth 2

∨∨

x ¬y z ¬x z w ¬z w y

∨

∧

Unbounded fan-in circuits

z Restrict to connectives ∨, ¬
y results for other connective is easily defined

z Defn: The depth of a formula F (circuit C) is max #
of ∨ on any path from an input to an output

z e.g. CNF/DNF have depth 2

∨∨

x ¬y z ¬x z w ¬z w y

∨

¬¬ ¬
∨
¬

Why restrictions might be useful for
circuit lower bounds

z Restrictions simplify functions, circuits,formulas
y Given F=(Vixi∨Vj¬xj)

x assigning a single ρ(xi)=1 or a ρ(xj)=0 makes F|ρ a
constant; i.e. wiping out F but only setting one variable

y Simplification is substantially more than # of
variables assigned

z Basic idea: To prove that small circuit C cannot
compute function f, choose a restriction ρ such that
y f|ρ is still complicated but
y C|ρ is extremely simple so that it obviously cannot

compute f|ρ

Boolean decision trees

z Defn: A Boolean decision tree T is a
binary rooted tree s.t.
y each internal node is labelled by some xi

y leaf nodes are labelled 0 or 1
y edges out of each internal node are labelled

0 or 1

y no two nodes on a path have the same
variable label

A Boolean Decision Tree

0 1

0 1

01

x3 x2

x3x2

x10

0 0

0

0 1

1

1 1

1

Paths in decision trees

z Every root-leaf path (branch) corresponds to
a restriction ρ of the input variables
y For b∈ {0,1}, xi←b is in ρ iff on that branch the

out-edge labelled b is taken from node labelled xi

z The tree T computes f iff for every branch B
of T
y the restriction ρ corresponding to branch B has

the property that f|ρ equals the leaf label of B

Tree for f(x)=‘x1+x2+x3≥2’

0 1

0 1

01

x3 x2

x3x2

x10

0 0

0

0 1

1

1 1

1

Property of Decision Trees

z Decision trees ⇒DNF:Every function
computed by a decision tree of height t can
be represented
y in CNF with clause size at most t

x clauses correspond to branches with leaf label 0
y in DNF with term size at most t

x terms correspond to branches with leaf label 1

z DNF⇒decision tree
y Canonical conversion

DNF⇒decision tree

F=x1x3 ∨ xx3x4 ∨ x4x6

DNF⇒decision tree

F=x1x3 ∨ xx3x4 ∨ x4x6

DNF⇒decision tree

x3x3

x10

0 0

1

1 1F=x1x3 ∨ xx3x4 ∨ x4x6

DNF⇒decision tree

1

x3x3

x10

0 0

1

1 1F=x1x3 ∨ xx3x4 ∨ x4x6

DNF⇒decision tree

1

x3x3

x10

0 0

1

1 1F=x1x3 ∨ xx3x4 ∨ x4x6

♦

DNF⇒decision tree

1

x3x3

x10

0 0

1

1 1F=x1x3 ∨ xx3x4 ∨ x4x6

♦

DNF⇒decision tree

1

x3x3

x10

0 0

1

1 1F=x1x3 ∨ xx3x4 ∨ x4x6

♦

DNF⇒decision tree

1

x3x3

x10

0 0

1

1 1

x6x6

x4

0 1

0 01 1

F=x1x3 ∨ xx3x4 ∨ x4x6

DNF⇒decision tree

1

x3x3

x10

0 0

1

1 1

x6x6

x4

0 1

1

0 01 1

F=x1x3 ∨ xx3x4 ∨ x4x6

DNF⇒decision tree

1

x3x3

x10

0 0

1

1 1

x6x6

x4

0 1

10

0 0

00

1 1

F=x1x3 ∨ xx3x4 ∨ x4x6

DNF⇒decision tree

1

x3x3

x10

0 0

1

1 1

x6x6

x4

0 1

10

0 0

00

1 1

F=x1x3 ∨ xx3x4 ∨ x4x6

♦

DNF⇒decision tree

1

x3x3

x10

0 0

1

1 1

x6x6

x4

0 1

10

0 0

00

1 1

F=x1x3 ∨ xx3x4 ∨ x4x6

♦

DNF⇒decision tree

1

x3x3

x10

0 0

1

1 1

x6x6

x4

0 1

10

0 0

00

1 1

F=x1x3 ∨ xx3x4 ∨ x4x6

♦

DNF⇒decision tree

1

x3x3

x10

0 0

1

1 1

x6x6

x4

0 1

10

0 0

00

x4

0

1 1

1

F=x1x3 ∨ xx3x4 ∨ x4x6

DNF⇒decision tree

1

x3x3

x10

0 0

1

1 1

x6x6

x4

0 1

1

1

0

0 0

00

x4

0

1 1

1

F=x1x3 ∨ xx3x4 ∨ x4x6

DNF⇒decision tree

1

x3x3

x10

0 0

1

1 1

x6x6

x4

0 1

1

1

0

0 0

00

x4

0

1 1

1

F=x1x3 ∨ xx3x4 ∨ x4x6

♦

DNF⇒decision tree

1

x3x3

x10

0 0

1

1 1

x6x6

x4

0 1

1

1

0

0 0

00

x4

0

1 1

1

F=x1x3 ∨ xx3x4 ∨ x4x6

♦

DNF⇒decision tree

1

x3x3

x10

0 0

1

1 1

x6x6

x4

0 1

1

1

0

0 0

00

x4

0

1 1

1

F=x1x3 ∨ xx3x4 ∨ x4x6

♦

DNF⇒decision tree

1

x3x3

x10

0 0

1

1 1

x6x6

x4

0 1

1

1

0

0 0

00

x6

x4

0

01 1

1

1

F=x1x3 ∨ xx3x4 ∨ x4x6

DNF⇒decision tree

1

x3x3

x10

0 0

1

1 1

1

x6x6

x4

0 1

1

1

0

0 0

00

x6

x4

0

01 1

1

1

F=x1x3 ∨ xx3x4 ∨ x4x6

DNF⇒decision tree

1

x3x3

x10

0 0

1

1 1

1

x6x6

x4

0 1

1

1

0

0 0

000

x6

x4

0

01 1

1

1

F=x1x3 ∨ xx3x4 ∨ x4x6

DNF⇒decision tree

1

x3x3

x10

0 0

1

1 1

1

x6x6

x4

0 1

1

1

0

0 0

000

x6

x4

0

01 1

1

1

F=x1x3 ∨ xx3x4 ∨ x4x6

DNF⇒decision tree

1

x3x3

x10

0 0

1

1 1

1

x6x6

x4

0 1

1

1

1

1

0

0 0

0000

x6

x4

x6

x4

0

0

0

0

1 1

1

1

1

1

F=x1x3 ∨ xx3x4 ∨ x4x6

DNF⇒decision tree

1

x3x3

x10

0 0

1

1 1

1

x6x6

x4

0 1

1

1

1

1

0

0 0

0000

x6

x4

x6

x4

0

0

0

0

1 1

1

1

1

1

F=x1x3 ∨ x3x4 ∨ x4x6

Parity properties

z For any restriction ρ, Parity|ρ is either parity
or its negation on the variables that are still
not assigned values

z Parity or its negation requires a decision tree
of height n

y Compare with x1∨...∨ xn
x any decision tree also requires height n
x but most restrictions of it are constant and so only

require height 0

Restriction for constant-depth circuits

z An (S,d)-circuit will be an unbounded fan-in circuit of
size ≤S and depth ≤d

z To show that no (S,d)-circuit C computes function f,
find a set RS,d(f) of restrictions s.t.
y For any (S,d)-circuit C, there is a ρ ∈ RS,d(f) s.t. we can

associate a short* Boolean decision tree T(g) to each gate g
of C, s.t. T(g) computes g|ρ

y For any ρ∈RS,d(f), f|ρ is not computed by any short* decision
tree

*relative to the number of variables unset by ρ

Restriction for constant-depth circuits

z An (S,d)-circuit will be an unbounded fan-in circuit of
size ≤S and depth ≤d

z To show that no (S,d)-circuit C computes function f,
find a set RS,d(f) of restrictions s.t.
y For any (S,d)-circuit C, there is a ρ ∈ RS,d(f) s.t. we can

associate a short* Boolean decision tree T(g) to each gate g
of C, s.t. T(g) computes g|ρ

y For any ρ∈RS,d(f), f|ρ is not computed by any short* decision
tree

*in case of parity this just means < number of variables

How to find restrictions for Parity
circuits

z Start at the inputs of the circuit and work
upwards a layer at a time,
y maintaining a current restriction ρi and a tree Ti(g)

for each gate g in the first i layers s.t. Ti(g)
computes g|ρ i

y For layer 0, gates are input variables, ρ0 is empty
and decision trees have height 1

10

xk0

1

How to find restrictions for Parity
circuits

z Working up the layers of the circuit
y If h=¬g then let Ti(h) be Ti(g) with its leaf labels

toggled between 0 and 1.

y If h=(g1∨ ... ∨gt) then the function h|ρi
may

require tall decision trees even if all Ti(gj) are
short

x so we look for a further small restriction π to the inputs
in the hopes of simplifying h|ρi

so that the tree will be short

x We’d like to choose one π that simultaneously does this for all
the unbounded fan-in V’s in this layer (up to S of them!)

What will we do once we have π

z Once we have such a restriction π - a tall
order it seems
y Set ρi+1 = ρi π
y Short Ti+1(h) for h in this layer exist by our

assumed properties of π
y For all gates g below this layer, set Ti+1(g)=Ti(g)|π

y continue upward...

y We end by letting ρ=ρd and we will have chosen the
various π so that the trees will be shorter than the
number of inputs that ρ leaves unset

x circuit cannot compute parity

Finding π

z Probabilistic method
y Show that a randomly chosen small π fails to

shorten the decision tree for any single V-gate h
in this layer with probability < 1/S

y There are at most S V-gates in this layer, so
Pr[∃an V-gate in this layer not shortened by π] < 1

y ...so there must exist a small π that does the job
x choose it

Hastad’s Switching Lemma

z Let Rk,n be the set of all restrictions to
variables x1,...,xn that leave precisely k
variables unset

z Lemma: Given a DNF formula F in variables
x1,...,xn with terms of size at most t, for π
chosen uniformly at random from Rk,n, if
n>12tk then

Pr[canonical decision tree for
F|π has height ≥ t] < 2-t.

Final analysis

z Maintain trees of height t=log2S
z Number of variables decreases by a factor of

13t=13log2S per layer

z Height will be less than # of variables if
log2S < n/(13log2S)d i.e. log2S < n1/(d+1)/13
y can’t compute parity if this holds

z Can save one power of log2S by being careful

Restriction method in proof
complexity

z Theorem [Ajtai,PBI,KPW]: ontoPHPn+1→n

requires exponential size AC0-Frege proofs

z Theorem [Ajtai,BP] Count2n+1|2 requires
exponential size AC0-Frege proofs even given
PHPm+1→m as extra axiom schemas

z Theorem [BIKPP] Countpn+1|p requires
exponential size proofs even given Countqm+1|q

as axiom schemas

Restrictions in Proof Complexity

z In circuit complexity,
y for each gate g we defined decision trees T(g)

that precisely compute each g|ρ in the circuit
z Obvious analogue in proof complexity, e.g. in

proof of a tautology
y do the same

z But this can’t work
y every formula in the proof computes the constant

function 1 since it is a tautology!

What we do instead

z Come up with a different notion of decision trees
that approximates each formula so that
y bigger proof needed for a tautology implies worse

approximation of it
y decision trees are well-behaved under restrictions
y approximation is particularly bad for the goal formula F you

want to prove
x Any short approximating decision tree for

• F looks like false
• an axiom looks like true
• any formula with a short proof looks like true

y like circuit case define decision trees for each subformula in
the proof and tailor decision trees & restrictions to F

Restrictions for PHPn+1→n

z Don’t want restrictions to force PHPn+1→n to
true so...

z Restrictions π are partial matchings as before

z Let Rk,n be the set of all partial matching
restrictions that leave exactly k holes unset

Bipartite matching decision trees

z Queries are either
y the name of a pigeon, or

x answer is the mapping edge for that pigeon
y the name of a hole, or

x answer is the mapping edge for that hole

z Every path corresponds to a partial matching
between pigeons and holes

x No repetition of a node name that was already used
higher in the tree

z Leaves are labelled 0 or 1

A matching decision tree

1

0

0 1

0

1

3

42

2
{2,3}

{2,2}
{2,1}

{4,1} {4,2}{3,2}
{1,2}

{1,3} {4,3}

{4,2}

0

1 2 3 4

1 2 3

P21P32P43 ∨ P21P42 ∨ P23P42

A matching decision tree

1

0

0 1

0

1

3

42

2
{2,3}

{2,2}
{2,1}

{4,1} {4,2}{3,2}
{1,2}

{1,3} {4,3}

{4,2}

0

1 2 3 4

1 2 3

P21P32P43 ∨ P21P42 ∨ P23P42

A matching decision tree

1

0

0 1

0

1

3

42

2
{2,3}

{2,2}
{2,1}

{4,1} {4,2}{3,2}
{1,2}

{1,3} {4,3}

{4,2}

0

1 2 3 4

1 2 3

P21P32P43 ∨ P21P42 ∨ P23P42

A matching decision tree

1

0

0 1

0

1

3

42

2
{2,3}

{2,2}
{2,1}

{4,1} {4,2}{3,2}
{1,2}

{1,3} {4,3}

{4,2}

0

1 2 3 4

1 2 3

P21P32P43 ∨ P21P42 ∨ P23P42

Associating matching trees with
formulas

z T(Pij) queries i & has height 1
z T(¬g) is T(g) with leaf labels toggled
z To get tree for h=(g1∨ ... ∨gt)

y take DNF formula Fh=T(g1)∨ ... ∨T(gt)
y do canonical conversion of Fh into a matching

decision tree
x like conversion for ordinary decision trees

• go term by term left-to-right simplifying future terms
based on partial assignments

• query both endpoints of every variable in each term

Ideas for PHPn+1→n lower bound

z Restrictions are kind to matching decision
trees
y Analog of Hastad switching lemma for canonical

conversion of DNF to matching decision trees
y If proof is small trees can be made short

z Matching decision trees of height < n
y for PHPn+1→n has all 0’s on its leaves
y for an axiom has all 1’s on it leaves
y preserve this property of all 1’s on the leaves

under inference rules

Extensions to extra axioms

z Same sorts of restrictions and decision trees

z Must also prove that extra axioms convert to
trees with all 1’s on their leaves
y Surprisingly, this follows in each case from

Nullstellensatz degree lower bounds for the extra
axioms!

The Frontier

Truth Tables

Davis-Putnam Nullstellensatz

Polynomial CalculusResolution

Cutting Planes

TC0-Frege

AC0-Frege

Extended Frege

Frege

PCR

AC0[p]-Frege

