Some Open Problems in Proof Complexity

Paul Beame

University of Washington

Random Formulas

Show that random formulas are hard for

- cutting planes
- depth 2 Frege
 - Problem: for AC^o-Frege all we know is the restriction method but restriction families seem to almost certainly falsify random formulas

Conjecture: Random formulas are hard for Frege

Weak Pigeonhole Principle

Prove hard: PHP^{$m\to n$} for **m>>n**, e.g. **m=2^{n^{e}}**

- Has quasi-polynomial size depth 2 Frege proofs for m ³ (1+e)n
- Lower bounds for resolution only non-trivial when m<n²/log n</p>
- applications to bounded arithmetic (existence of infinitly many primes) and provability of NP Ë P/poly

Lovasz-Schrijver Proof Systems

- Like cutting planes but based on 01programming:
 - Initial inequalities and goal like cutting planes
 - Plus x²=x substitution
 - No division rule
 - Can create non-negative degree two polynomials by
 - I multiplying two non-negative linear quantities or
 - squaring any linear quantity
 - Polynomially simulates resolution; proves PHP
- Has feasible interpolation so given NPËP/poly not polynomially bounded but no known hard tautology
 - Is **Count**^{2n+1|2} hard for them?

The bigger questions

Prove lower bounds for AC⁰[p]-Frege
Show Count^{qn+1|q} hard?

Prove lower bounds for TC⁰-Frege/Frege
 Several candidates, e.g. AB=IPBA=I for Boolean matrix multiplication

Proof search for PCR

Can we build better algorithms to beat the Davis-Putnam/DLL algorithms in practice by using some PCR ideas?

http://www.cs.washington.edu/homes/beame/papers/ eatcs-survey.ps