
CSC 2429 – Approaches to the P versus NP Question Lecture #1: 15 January 2014

CSC 2429 – Approaches to the P versus NP Question

Lecture #1: 15 January 2014

Lecturer: Toniann Pitassi

Scribe Notes by: David Liu

1 Introduction

In this course, our primary object of study will be families of boolean functions {fn | n ≥ 1}, where
each fn : {0, 1}n → {0, 1}. In particular, we’ll be interested in how the time and space requirements
of computing these functions grow with n.

1.1 Complexity Classes

We group boolean functions into complexity classes by these computational requirements. This
course assumes basic familiarity with famous complexity classes: the uniform classes of P, NP, L,
and NL, etc. derived from the standard Turing Machine model.

There are also non-uniform (circuit) complexity classes. Here we consider circuits made from
the three boolean gates AND (∧), OR (∨), and NOT (¬); we restrict the AND and OR gates to
be fan-in 2. The class P/poly is the class of (families of) boolean functions {fn} for which there
exists a constant c such that fn can be computed by a size nc circuit. We can additionally analyse
the depth of these circuits, i.e., the length of the longest path from an input literal to the output
gate. The classes NCi capture those functions which can be computed by poly-size circuits of
depth O(logi n), and the class NC is the union of all NCi.

By allowing the AND and OR gates to have arbitrary fan-in (rather than fan-in 2), we define
the analogous complexity classes ACi: poly-size circuits with unbounded fan-in of depth O(logi n).
Note that unlike NC0, which is an extremely trivial class because it cannot hope to read all bits
of an input, the class AC0 can, making it more interesting. We can augment this class further by
allowing MOD p gates (returns 1 iff the sum of the inputs is 1 mod p); such classes are denoted
AC0[p]. Finally, we define the class ACC0 as the union of the AC0[p] over all p. The following
chain of inclusions is known:

AC0 ⊆ AC0[2] ⊆ ACC0 ⊆ NC1 ⊆ NC ⊆ P ⊆ P/poly

Finally, we remind the reader of the difference between uniform and non-uniform models of
computation. The familiar Turing Machine model is a uniform model: the same Turing machine
is expected to compute every boolean function in the family {fn} – put another way, it works on
inputs of any length. On the other hand, a single circuit can only accept inputs of a fixed size.
Thus, circuit classes are non-uniform because they require only that a family of circuits {Cn} exist
which compute {fn}. But we can also consider uniform circuit classes: for example, we can define

1

CSC 2429 – Approaches to the P versus NP Question Lecture #1: 15 January 2014

uniform NC to be the set of boolean functions for which there exists an algorithm that takes as
input a number n, and outputs a circuit Cn ∈ NC computing fn.

1.2 Goals and Progress

We’ve all heard of the famous question that gives this course its title: does P = NP? One of the
central goals of complexity theory is to show that some boolean function in NP isn’t in P. Even
better, we would like to show that some boolean function in NP isn’t in P/poly; this would imply
that P 6= NP. But we’ll also look at other, related problems in this term, including, but not limited
to, the following:

• NC1 (P/poly?

• ACC (P/poly?

• EXP,NEXP (P/poly?

• Algebraic lower bounds

As motivation (so that we don’t give up hope!), here are some results, showing the (big) progress
computer scientists have made over the years:

1. Almost every boolean function requires exponential size boolean circuits. (This is a simple
counting argument.) The main problem is we haven’t found an explicit function (informally,
a function we care about) which requires exponential size circuits.

2. On the other hand, our best known general circuit size lower bounds are linear: 4n − 4 for
fan-in 2 AND and OR gates, with negation; 7n− 7 using just AND gates and negation; and
5n− o(n) using all fan-in 2 gates except for parity.

3. We do know that AC0 (NC1. Ajtai (1983), and independently Furst, Saxe, and Sipser
(1984), proved that PARITY is not in AC0. Better size bounds were later found by Hastad
(1987), using random restrictions (which we’ll talk about today), and his famous Switching
Lemma, a structural result for functions computed by AC0. Impagliazzo, Matthews, and
Paturi (2012) later used these results to obtain nontrivial upper bounds for satisfiability on
AC0 circuits.

4. Ryan Williams (2011) showed that NEXP is not in ACC. His general technique – show-
ing that relatively good upper bounds on satisfiability on circuit classes lead to the non-
containment of NEXP within those classes – has generated much interest in finding good
satisfiability algorithms.

5. Razborov (1985) showed that monotone NP (functions in NP where flipping a bit from 1
to 0 never changes output from 1 to 0) is not contained in monotone P/poly (circuits with
no variable negations).

6. If we restrict our attention to formula size lower bounds (analogous to circuits with fan-out
1), there are known n3−o(1) bounds using AND, OR, and NOT gates (Hastad, 1998). There
is also the Neciporuk (1966) lower bound n2/ log n for general fan-in 2 formulas.

2

CSC 2429 – Approaches to the P versus NP Question Lecture #1: 15 January 2014

2 Resolution Lower Bounds via Restrictions

For the rest of this lecture, we’ll show how to use restrictions to obtain proof size lower bounds.
One main motivation for studying proof complexity is that good lower bounds for specific proof
systems can be used to rule out large classes of potential algorithms solving SAT.

We consider the Resolution proof system. Consider an unsatisfiable CNF f = C1∧C2∧· · ·∧Cm.
A resolution refutation of f is a sequence of clauses D1, D2, . . . , Dl where each clause is one of the
Ci or is obtained from two previous Di’s by the resolution inference rule

(x ∨D)(x̄ ∨ C)

D ∨ C
,

and where the final clause Dl is the empty clause. The size of a resolution refutation of f is the
number of clauses in this sequence.

A resolution refutation may be viewed as a DAG with fan-in 2, where the sources are the initial
Ci’s, and each resolved clause has as its two parents the clauses which were resolved to obtain it.
The sink of this DAG is the empty clause.

We note that if NP 6= coNP, then there exist a family of unsatisfiable CNF formulas {fn}
such that the size of the shortest resolution refutation of fn is ≥ poly(|fn|).

Now, we’re going to show that the CNF encoding of the Pigeonhole Principle (n pigeons can’t
be put into n − 1 holes without two pigeons sharing a hole) requires exponential size resolution
refutations. Let PHPn

n−1 be the conjunction of the following clauses over the variables Pij , 1 ≤
i ≤ n, 1 ≤ j ≤ n− 1:

1. (Pigeon clauses) Pi1 ∨ · · · ∨ Pi,n−1, for every i ≤ n

2. (Hole clauses) ¬Pik¬ ∨ Pjk for all i 6= j and k ≤ n− 1

Intuitively, the variable Pij denotes the statement that pigeon i is put into hole j. The first set of
clauses assert that each pigeon gets put into a hole, and the second set of clauses assert that no
two pigeons get put into the same hole. Clearly, PHPn

n−1 is unsatisfiable.

Theorem 1 (Haken (1985)) Any resolution refutation of PHPn
n−1 requires at least 2n/20 clauses

(when n is sufficiently large).

Before we begin the proof, here’s some intuition. Our proof will be based on that of Razborov
(and refined by Beame & Pitassi). A truth assignment to the Pij is i-critical if it maps every
pigeon except pigeon i to a unique hole, and doesn’t map pigeon i to any hole. Each i-critical
truth assignment (i-cta) satisfies every clause in PHPn

n−1 except pigeon clause i. Then for any
i-cta α and resolution refutation DAG, there is a unique “false path” between the empty clause
and pigeon clause i; that is, a unique path where each clause on the path is falsified by α.

By considering the false paths of all critical truth assignments, there must be many bottleneck
nodes – nodes that not a lot of these paths go through. These bottlenecks are “wide” clauses
containing a lot of literals. A bit more concretely, we’ll prove the following two contradictory
claims:

(1) Wide Clause Lemma: Any resolution refutation of PHPn
n−1 has a “wide” clause.

3

CSC 2429 – Approaches to the P versus NP Question Lecture #1: 15 January 2014

(2) Given a “small” resolution refutation of PHPn
n−1, we can apply a restriction to the truth as-

signments to obtain a resolution refutation of PHPn′
n′−1 with no “wide” clauses, contradicting

(1).

Now let’s begin the proof.

Proof For simplicity, we’ll consider a monotone version of PHPn
n−1 where each negated literal

¬Pij is replaced by ∨k 6=jPik. This preserves validity with respect to all critical truth assignments.
First we prove the Wide Clause Lemma: every resolution refutation of PHPn

n−1 contains a

clause of width at least 2n2

9 . Fix some resolution refutation P of PHPn
n−1. For each clause C in

P , let Pigeons(C) = {i | some i-cta falsifies C}. Note that Pigeons(pigeon clause i) = {i}, and
Pigeons(∅) = {1, . . . , n}. By soundness, we know that if we can infer a clause C3 from C1 and
C2, then Pigeons(C3) ⊆ Pigeons(C1)∪Pigeons(C2), and hence |Pigeons(C3)| ≤ |Pigeons(C1)|+
|Pigeons(C2)|; that is, the Pigeons function is sub-additive.

Then there exists some clause C∗ in P such that n
3 ≤ Pigeons(C

∗) ≤ 2n
3 . Letm = |Pigeons(C∗)|.

We claim that C∗ has at least m(n−m) ≥ 2n2

9 literals in it. Fix i ∈ Pigeons(C∗) and let α be an
i-cta falsifying C∗. Let j /∈ Pigeons(C∗), and let k ≤ n − 1 be the hole that α assigns pigeon j
to; i.e., the unique k such that α sets Pjk = 1. Consider the j-cta αj obtained from α by assigning
pigeon i to hole k rather than assigning pigeon j to it. Then αj must now satisfy C∗, because
j /∈ Pigeons(C∗). Note that setting Pjk to 0 can’t satisfy C∗ because it is monotone; therefore
setting Pik to 1 must satisfy C∗, i.e., C∗ contains the literal Pik.

We can repeat this argument for any j /∈ Pigeons(C∗) to show that C∗ contains n−m literals
of the form Pik; note that for each j, the k obtained is unique, because critical truth assignments
map each pigeon to a unique hole. Finally, repeating this argument for each i ∈ Pigeons(C∗)
shows that C∗ contains at least m(n−m) literals, and this concludes the proof of the Wide Clause
Lemma.

Now we prove claim (2), using this lemma. Fix a resolution refutation P of monotone PHPn
n−1,

and suppose the size of P is S < 2n/20. Consider the set S of clauses containing at least n
10 of

the literals. On average, setting some variable Pij = 1 will satisfy 1
10 of the clauses in S. So pick

some Pij which achieves this average and set it equal to 1 and all of the other variables Pij′ , j
′ 6= j

and Pi′j , i
′ 6= i to 0. This restricts the truth assignments to those which map pigeon i to hole j.

The resulting resolution refutation (after removing the set variables and the satisfied clauses) is a
resolution refutation of PHPn−1

n−2 with at most 9
10S clauses of width ≥ n

10 (since we started with at
most S of them).

We repeat this restriction operation log10/9 S times to obtain a resolution refutation of PHPn′
n′−1

with n′ = n−log10/9 S = n−(log10/9 2) n
20 ≥ 0.67n. On the other hand, this resolution refutation has

no clauses of width n
10 . This contradicts the Wide Clause Lemma, which says that this resolution

refutation must have a clause of width 2n′2

9 > n
10 .

4

