
CSC 2429 – Approaches to the P vs. NP Question and
Related Complexity Questions

Lecture 2: Switching Lemma, AC0 Circuit Lower Bounds

Lecturer: Toniann Pitassi
Scribe: Robert Robere

Winter 2014

1 Switching Lemmas
In this lecture we discussed a further application of random restrictions: namely, the switching lemma and
strong lower bounds for bounded-depth circuits. The switching lemma is a tool (introduced in it’s modern
form by Håstad [5]) for transforming CNFs into DNFs and vice versa, possibly after applying a random
restriction. We will state the switching lemma in terms of decision trees:

Definition 1.1. Let X be a set of variables. A decision tree T on X is a model of computation defined as
follows. There is an underlying full binary tree T , in which each internal vertex v is labeled with variable
xv ∈ X and each leaf is labeled with 0 or 1. Given an input x (equivalently, an assignment to each of
the variables in X) we take a walk on the tree as follows: we start at the root, and if at any point we are
standing at a vertex v, we step to the left child of v if xv = 0 and to the right child of v if xv = 1. The
output of T on x is label of the leaf reached on this walk, which we denote as T (x). We say that the
decision tree T computes a boolean function f if T (x) = f(x) for all inputs x. The depth of a decision
tree is the length of the longest path from the root to a leaf.

Decision tree depth is an important measure of the complexity of a function. Recall that a k-DNF on
a set of variables X is a “disjunction of conjunctions” of positive or negated literals in X in which each
conjunct has at most k literals. We call the conjuncts in a DNF terms. A k-CNF is defined similarly as a
conjunction of disjunctions where each disjunct has at most k literals. For the sake of distinguishing them
from DNFs, we call the disjuncts clauses. It turns out that the decision tree depth and CNF/DNF size are
closely related.

Proposition 1.2. If a function f has a decision tree of depth t then it is representable as both a t-DNF and
a t-CNF.

Proof. We construct the DNFs and CNFs from the decision tree by constructing the clauses out of the
paths in the decision tree which reach the 0s and the 1s of the functions, respectively. We show how
to construct a t-DNF, and the construction for the t-CNF is analogous. Each clause in the t-DNF will
correspond to a 1-path in the decision tree, and so the t-DNF will be true if and only if a 1-path can be
followed in the decision tree. Let T be a depth-t decision tree computing f , and let P be any path from
the root of T to a leaf labelled with 1. Let x1, x2, . . . , x` be the literals appearing on the path P , where
the literal xi is negated if we moved left at the vertex and it is positive otherwise. For each such path P ,

1

we add a term x1 ∧ x2 ∧ . . . x` to our t-DNF. If an input x is accepted by our decision tree, then the term
corresponding to the accepting path in the tree will be accepted by the DNF, and the converse direction
holds as well. Clearly ` ≤ t for each path P in the tree, and so the resulting DNF has at most t literals per
term.

The construction for t-CNFs proceeds analogously, except we instead consider the paths to the 0s of
the decision tree, and add a clause with the negations of the literals followed on the paths. Intuitively, this
t-CNF is true if and only if none of the 0 paths are followed in the decision tree.

Conversely, given a t-DNF (or t-CNF) F we can construct a decision tree computing the same boolean
function as F called the canonical decision tree of F , which we denote by T (F). Suppose that F is
an r-DNF defined on a variable set X . A restriction of F is a function ρ : X → {0, 1, ∗} which is
interpreted as partial assignment to the variables in F , i.e. if a variable x ∈ X has ρ(x) = ∗ then that
variable is considered to be unset. For a restriction ρ we denote by F |ρ the DNF obtained by simplifying
the DNF F using the assignment to variables in ρ. To construct T (F) choose a term in our DNF F and let
y1, y2, . . . , yr be an ordered list of literals appearing in the term. Create a complete binary tree of depth r,
where each node at depth i is labeled with yi, and note that each path in the tree leading from the root to a
leaf ` corresponds to a restriction ρ` on X where we set all of the variables according to the path. If this
restriction sets the term to 1, label the leaf with a 1. Otherwise, choose another term and simplify it using
ρ`, and apply the same reasoning again.

In the switching lemma, we will be interested in converting DNFs to CNFs (and vice-versa) of roughly
the same size, possibly after restricting the values of some variables. To this end, we will introduce some
more notation. If we have a fixed set of n variables X , we let R` denote the set of all restrictions of X
which leave exactly ` variables unset. It’s not hard to see that

|R`| =
(
n

`

)
2n−`,

since we must choose the ` variables to leave unset and then choose a boolean assignment for the rest of
them.

Finally, we present Håstad’s Switching Lemma.

Lemma 1.3 (Håstad’s Switching Lemma). Let s be a positive integer, let F be an r-DNF and let ρ ∼ R`

denote a restriction chosen uniformly at random fromR`, with ` < n/2. Then

Pr
ρ∼R`

[T (F |ρ) has height at least s] ≤
(
8`r

n

)s

.

Proof. We prove the lemma using the combinatorial argument originally due to Razborov [6]. Let B be
the set of bad restrictions in R`. We will give a one-to-one map f from each restriction ρ ∈ B to a tuple
(ρπ, x) where ρπ is a restriction on ` − s variables and x is a bitstring containing s(log r + 1) bits. First
we show that if such a map f exists then the lemma holds. There are |R`| =

(
n
`

)
2n−` restrictions on `

variables, and so (using our assumed injection f) the probability of choosing a bad restriction uniformly
at random will be

α =
|B|
|R`|

≤ |R
`−s|2s(log r+1)

|R|`
=

(
n
`−s

)
2n−(`−s)(2r)s(
n
`

)
2n−`

.

We can upper bound the fraction of binomial coefficients like so. Expanding and cancelling the n! term
leaves (

n
`−s

)(
n
`

) =
`!(n− `)!

(`− s)!(n− (`− s)!)
,

2

and using the inequalities `!/(`− s)! ≤ `s and (n− `)!/(n− (`− s)!) ≤ 1/(n− `)s yields an upper bound
of (`/(n− `))s. Substituting this back in to α and using ` ≤ n/2 to simplify we get

α ≤
(

4`r

n− `

)s

=

(
8`r

n

)s

.

Now, we will construct the injection f . The canonical decision tree for F |ρ has depth at least s, so
choose an assignment π to the remaining literals of F |ρ so that F |ρπ is the constant 0 function. The
assignment π induces a path from root to a 0 leaf in F |ρ of length at least s. If necessary, trim some of the
last assignments so that π assigns values to exactly s variables.

Let t1, t2, . . . , tk, . . . be the terms remaining in F |ρ, and we will break π up into k sub-restrictions
π1π2 · · · πk (we define k in a moment). For i < k, the restriction πi will be obtained by following the path
π from the root of the decision tree to the beginning of the subtree where we assign all of the variables in
the term ti. We then define πi to be the assignment obtained from following the path π through the portion
of the subtree that assigns values to all of the variables remaining in ti. In other words, πi assigns values
to all of the variables in the term ti|π1π2···πi−1

, leaving the term with value 0. Note that there is a unique
assignment σi which assigns values to exactly the same variables as πi, except the term ti|π1π2···πi−1σi will
have value 1. For i = k, which will be the last term assigned variables by π, we will obtain the restriction
πk in the same way, except now it may not set all of the remaining variables in the term tk. This will not
bother us – we define σk to assign values to the same variables as πk, except that σk will agree with the
unique 1 assignment to tk.

Now, we define the map f : ρ → (ρσ1σ2 · · · σk, x), where x will be a bitstring that will help to make
the function one-to-one. To see how to define x, first suppose we were given the restriction ρσ1σ2 · · ·σk.
We will define a process which takes x and replaces the partial restriction σi with πi one by one. After the
process we will have the restriction ρπ1 · · · πk, along with the name and assignment of every variable in π.
We can then use this information to remove the restriction π = π1π2 · · · πk, leaving us with ρ.

Given ρσ1σ2 · · ·σk, it is easy to determine which term t in F is associated with σ1: it is simply the first
term that is not assigned the value 0, since all of the earlier terms must be assigned 0 by ρ. Using this fact,
we will add to the bitstring x the indices of variables in t which are assigned to by σ1 (and π1), as well as
the bit that π1 assigns to that variable. This requires at most |π1|(log r + 1) bits, where |π1| is the number
of variables assigned by π1. Once we determine the term t in F which is assigned to by σ1, we can use
these auxiliary bits to determine the partial assignment π1 from σ1. This means that we can “remove” the
assignment σ1 and instead consider the assignment ρπ1σ2 · · ·σk, and continue in the same fashion. That is,
in the ith step we do the following: we will have the partial assignment ρπ1π2 · · · πi−1σi · · ·σk, we assume
that the bitstring x contains the indices of variables in the term ti assigned to by σi, as well as the value
of the assignment πi to those variables, and we use this information to replace σi with πi in the partial
assignment ρπ1π2 · · · πi−1σi · · · σk.

It’s easy to see that the length of the bitstring xmust be (|π1|+|π2|+· · ·+|πk|)(log r+1)) = s(log r+1).
Once we perform this process and replace every partial assignment σi with the corresponding assignment
πi, we will know the name and assignment of every variable assigned by π1π2 · · · πk. Removing these
assignments from the partial restriction ρπ1π2 · · · πk will give us ρ, and so the map f must be one-to-
one.

2 AC0 Circuit Lower Bounds
Now we will move on to one of the primary applications of the switching lemma, which is very strong
lower bounds on the size of AC0 circuits computing the parity function. The complexity class AC0 is

3

defined to be the set of all decision problems computable by families of constant depth, polynomial size
circuit with unbounded fan-in over the basis {∧,∨,¬} (we will refer to such circuits as “AC0” circuits).

The parity function ⊕n : {0, 1}n → {0, 1} takes n bits as input and outputs a 1 iff an odd number of
the bits in the input are 1. Equivalently,

⊕n(x1, x2, · · · , xn) := (x1 + x2 + · · ·+ xn) mod 2.

The next proposition standardizes the form of AC0 circuits.

Proposition 2.1. Let C be a depth d circuit with M gates computing some function f . Then there exists a
depth 2d circuit C ′ with (4M)2d gates computing f such that the following holds:

1. All of the ¬ gates are at the input layer

2. The ∧ and ∨ gates are alternating from layer to layer, and

3. The circuit C ′ is a tree – each gate (except for the input gates) have fanout 1.

We will use the switching lemma to prove that any constant depth circuit computing parity must have
exponentially many gates, thus showing parity is not in AC0. Our strategy is simple: we will take the AC0

circuit C and apply the last proposition to turn it into a tree. The bottom two layers of this new circuit are
a collection of CNFs (or DNFs) on the input variables. The switching lemma says that after applying a
random restriction to a k-CNF we can, with high probability, write it as an equivalent k-DNF. A simple
union bound shows that we can find a random restriction which works simultaneously for all of the CNFs
in the collection, so we can ”switch” the bottom two layers of the circuit from a CNF representation to
a DNF representation after applying a restriction without blowing up the bottom fanout. Since the AC0

circuit is alternating, this allows us to reduce the depth of the tree by 1, since we can then merge the ∨
gates together. If the circuit has depth d, then applying this switching argument d times will reduce the
circuit to computing a constant function, but in doing so we will not restrict all of the variables. Since the
parity function is only constant if we restrict all of the variables, we get a contradiction.

Theorem 2.2. Parity is not computable in AC0.

Proof. LetC be a depth d AC0 circuit computing parity on n variables, and letM be the number of gates in
C (assume that C has the form in Proposition 2.1). If the gates at depth 1 in C are ∨ gates, add “dummy”
fan-in ∧ gates with fan-in 1 between the variables and the depth 1 gates (or add dummy ∨ gates if the
depth 1 gates in C are ∧ gates). This increases the depth of C by 1, but now all of the depth 2 gates in C
compute bounded-fanin DNFs or CNFs.

First, suppose w.l.o.g. that the depth-2 gates in C are ∨ gates, which now compute “1-DNFs” on the
input variables. Let s = n1/d. Apply a random restriction on ` = n/16 variables to C; by the switching
lemma, the probability that we cannot re-write any DNF rooted at some depth-2 gate g with an s-CNF is at
most 2−s. If there are m1 gates at the second level in C, then the probability that any of the corresponding
DNFs cannot be re-written as an s-CNF is at most m12

−s by a union bound. Otherwise, we can switch the
DNF with an s-CNF and reduce the depth of the circuit by 1 by merging all of the depth-2 gates into the
layer above.

Continue in this way d − 1 times — at each step we have an s-CNF (or s-DNF) at the bottom of
the circuit and we apply a random restriction on ` = n/16s variables. If this is the ith application of
the switching lemma and there are mi gates at depth 2 in the circuit C, then after applying the random
restriction we will be able to switch all of the CNFs with DNFs with probability at most mi2

−s.

4

After we have chosen and applied the d−1 random restrictions, by another union bound the probability
that at any point we are unable to convert an s-DNF into an s-CNF or vice versa is at most

(m1 +m2 + · · ·+md−1)2
−s ≤M2−s.

Suppose by way of contradiction that M < 2s, so that M2−s < 1 and so we can find such a sequence of
restrictions described above by the probabilistic method. What remains after applying these restrictions is
a single conjunct or disjunct F with s literals. There are

n/16 + (d− 2)n/16s = n/16 + (d− 2)n/16n1/d = n/16 + (d− 2)n1−1/d/16

variables unrestricted, which is less than n−1 for any constant d and sufficiently large n. Note that we can
make F constant by choosing any literal appearing in F and fixing it appropriately (to 0 if F is a conjunct
and 1 if F is a disjunct). However, there are other variables left unset, and since the parity function is not
constant under any restriction of less than n variables we have arrived at a contradiction. It follows that
M > 2s = 2n

1/d , which is clearly superpolynomial even when accounting for the growth from applying
Proposition 2.1.

In fact, a similar argument will prove strong lower bounds for AC0 circuits computing parity only
approximately. For k ≤ 1/2, say that a circuit C computes a boolean function f with advantage k if

Pr
x∼{0,1}n

[C(x) = f(x)] = 1/2 + k.

In other words, the circuit C beats randomly guessing the output of the function f on a k-fraction of the
inputs. A more careful argument than will establish the following:

Theorem 2.3 (See [5]). Let d > 0 be some positive integer constant and M ≤ 2s/2. Any circuit C with M
gates and depth d with unbounded fan-in computes parity with advantage at most 2Ω(−n/sk−1).

3 Applications
There are several other major applications of the switching lemma (and the strong AC0 lower bounds) in
complexity theory.

Pseudorandom generators for AC0 Pseudorandom number generators are objects central to the question
of derandomization. The area of derandomization studies the cases in which we can remove a
randomized algorithm’s reliance on random bits while still maintaining efficiency and correctness.
Using the average-case parity lower bound above (Theorem 2.3), Nisan and Wigderson [4] showed
that the randomized analogue of AC0 can be derandomized in polylogarithmic space. That is, there
is a deterministic algorithm using polylogarithmic space which can “supply” pseudorandom bits to
a randomized AC0 circuit.

Fourier Concentration In a fascinating work, Linial, Mansour and Nisan [3] studied functions com-
putable by AC0 circuits by using Fourier Analysis. The Fourier expansion of a Boolean function is
the representation of the function as a low-degree polynomial. In their paper, Linial et al. showed
that for any function in AC0, the large coefficients in the functions Fourier expansion appear almost
entirely on the lower-order coefficients. Among other things, this allows the derivation of a learning
algorithm for functions in AC0 running in quasipolynomial time.

5

AC0-SAT and #AC0-SAT While the work presented in the lecture here focused on lower bounds, one
can also naturally ask about upper bounds. One such problem is the following: given an AC0 circuit
C, find an input x on which the circuit C outputs a 1. There is a simple brute-force poly(|C|)2n
algorithm for solving this problem, but one can also attempt to use the restricted structure of the
circuit to try and get a more efficient algorithm. In [2], Impagliazzo et al. used the switching lemma
to give such an algorithm for depth d, size cn AC0 circuits which achieves a run time of |C|2(1−µ)n,
where µ ≥ 1/O(log c+ d log d)d−1. Their technique also gives an improved algorithm for the much
harder question of counting the number of satisfying assignments to an AC0 circuit.

Bounded-Depth Frege proof lower bounds Proof Complexity is an area of research in computational
complexity theory studying the lengths of proofs for propositional tautologies. A proof is formally
phrased in terms of a “proof system”, which is a prescription for what the lines of the proof look like,
and what rules of inference are allowed. Proof complexity was originally introduced as an attack
on the NP vs coNP question, which can be rephrased as asking whether there exists a proof system
in which every tautology has a proof of polynomial length in the description of the tautology. A
modified version of the switching lemma was used by Pitassi, Beame and Impagliazzo [1] to give
exponential lower bounds on the size of proofs for the pigeonhole principle in a proof system called
Bounded-Depth Frege.

References
[1] Toniann Pitassi, Paul Beame, Russell Impagliazzo. Exponential Lower Bounds for the Pigeonhole

Principle. Computational Complexity 3:97-140 (1993)

[2] Russell Impagliazzo, William Matthews, Ramamohan Paturi. A satisfiability algorithm for AC0. In
the proceedings of SODA 2012.

[3] Nathan Linial, Yishay Mansour, Noam Nisan. Constant depth circuits, Fourier transform, and learn-
ability. J. ACM 40(3):607-620 (1993)

[4] Noam Nisan and Avi Wigderson. Hardness vs Randomness. Journal of Computer and System Sci-
ences 49(2):149-167 (1994)

[5] Johan Håstad. Computational limits of small depth circuits. Ph.D. Thesis, Massachusetts Institute of
Technology, 1987.

[6] A.A. Razborov. An equivalence between second order bounded domain bounded arithmetic and first
order bounded arithmetic. In Arithmetic, Proof Theory and Computational Complexity, pp. 247-277.
Oxford University Press, 1993.

[7] Paul Beame. A switching lemma primer. Manuscript.

6

