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This lecture is about communication complexity approaches to proving complexity theoretic
separations.

We will start with the connection between proving lower bounds for ACC and proving lower
bounds for the ”number-on-forehead” (NOF) model of communication complexity.

1 ACC0 Lower Bounds and NOF Communication Complexity

In the k-player NOF communication complexity model, there are k players, trying to compute a
Boolean function on nk boolean inputs. The nk boolean inputs are partitioned into k pieces each
of size n, x1, . . . , xk. For each i ∈ [k], the ith player can see all inputs except for input xi. As
in the two-party case, they communicate via an agreed-upon protocol, sending bits to a shared
blackboard that are seen by all players. When it is player i’s turn to speak, his/her message is a
function of the inputs that he/she sees, and the contents of the blackboard so far. The cost of the
protocol is the maximum number of bits that are sent, over all inputs of size nk.

For p a prime, an AC0[p] circuit of depth d is an AC circuit of depth d where besides AND, OR
and negation, the mod p gate can be used, where Modp(x1, . . . , xn) is 1 if and only if x1+. . . ,+xn =
1(modp). The class ACC0 is the union of classes AC0[p] for p = 2, 3, 4, . . ..

An important characterization of ACC0 proven by Yao [1990], and with a full proof provided
by Beigel-Tarui [1994] is the following.

Theorem 1 Any function computed by an ACC0 circuit can also be represented by a polylog degree
symmetric circuit. That is, by a depth 2 circuit in x1, . . . , xn where the top gate is a symmetric
function, and the inputs to the top gate are r-conjunctions (of literals), where r is polylogarithmic
in n.

Using the above characterization it is easy to see that lower bounds on the NOF communication
complexity of a Boolean function over n inputs, over some partition of the variables into k pieces,
each piece of size n/k where k is polylogarithmic in n, would imply that this function is not in
ACC0. To see this, notice that if f ∈ ACC0, then f can be written as a depth-2 polylog degree
symmetric circuit, where the bottom gates are r-conjunctions of literals. Now fix any partition
of the inputs into k = r + 1 pieces. By the pigeonhole principle, for each conjunction, there is
at least one of the k players who can see all of the underlying literals of the conjunction. Thus
we can partition the set of all r-conjunctions into k sets, S1, . . . , Sk where the ith set consists of
conjunctions that the ith player can evaluate by herself with no communcation. The protocol then
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proceeds as follows. Player 1 first evaluates all of the conjunctions in S1 and sends the number
of these conjunctions that evaluate to true; then player 1 does the same thing for S2 and so on.
After all players have spoken (and notice that they can even speak in parallel), all players know
the number of 1’s feeding into the SYM gate, so they can all evalute the top gate, and therefore
evaluate the function.

The best known lower bounds in the NOF model of communication complexity are due to
Babai, Nisan and Szegedy. Unfortunately the lower bounds become trivial as soon as the number
of players exceeds log n. It is an important open problem to obtain lower bounds for more than
log n players, even in the case where all players talk simultaneously, and after speaking the answer
is known to all players. We note that using entirely different techniques, Ryan Williams recently
proved a major result, that there is a function in NEXP that is not in ACC0. Still, proving the
NOF lower bound for polylog n players is very important since it has the potential to separate
ACC0 from smaller complexity classes such as P , or NC.

1.1 Other Applications of NOF Communication Complexity

An important problem in data structures is to prove strong lower bounds for dynamic data struc-
tures. Mihai Patrascu formulated the following problem, whose resolution would yield a break-
through polynomial time/space lower bound for many important dynamic data structures prob-
lems.

In this game there are three players, Alice, Bob and Charlie. Initially Bob holds m vectors
x1, . . . , xm, each of length n, and an index i ∈ m. Charlie holds one vector y, of length n, and the
same index i ∈ m. They want to compute the set disjointness function on (xi, y). At the start
of the game, Alice sees x1, . . . , xm and y but not i, and is allowed to send one message privately
to Alice. The length of Alice’s message is n1+ε. The problem is to prove that for m = poly(n)
(say, m = n10), that Bob and Charlie must communicate nε many bits in order to determine
DISJ(xi, y).

Another application of NOF communication complexity is in proof complexity. For any proof
system where the lines in the proof are expressible as degree d polyomials (over variables x1, . . . , xn),
NOF lower bounds for d+ 1 players implies tree-size lower bounds for the proof system.

2 An Approach toward Circuit Depth and Formula Size Lower
Bounds via Communication Complexity

In this section we discuss Karchmer-Wigderson’s approach to proving circuit depth lower bounds
via communication complexity lower bounds. Because formulas can be balanced, circuit depth
lower bounds implies formula size lower bounds.

Lemma 2 Let F be a formula over the deMorgan basis of size s. Then there is another formula
F ′ computing the same function as F and of depth O(log s).

Proof Assume that our formulas have negations pushed to the leaves, and let the size of a formula
be the number of leaves. Since F has size s, it is possible to show that F will contain a subformula
F ′ of size t where such that s/3 ≤ t ≤ 2s/3. To see this, start at the top and think of a tree
with two subtrees: left and right. If either left or right subtree is of size between 1/3 and 2/3
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of the size of the whole tree, then we are done. Otherwise, pick the subtree that is bigger than
2/3 of the size of the original tree, and continue with that subtree. Sooner or later, we will come
across a first subtree whose size is in the required range, since the parent which was passed up
had size more than 2s/3, so the larger of the two subtrees has size at least s/3. Let F ′ be this
subformula, and let F ′′ denote the formula F but with a new variable z in place of F ′. Now notice
that F = (F ′′|z=0 ∧ ¬F ′) ∨ (F ′′z=1 ∧ F ′). This formula computes the same function as F . Now we
recursively re-balance the subformulas F |z=0, F |z=1, and F ′′. Then we plug the resulting balanced
formulas into the right-hand side of the expression for F given above. Each recurisve call adds at
most 3 to the depth of the formula. On the other hand, since after each recursive call the size of
the formula shrinks by a factor 2/3, there can be at most log3/2 |F | nested recursive calls (i.e., the
depth of the recursion is at most O(log n)). Thus in total the depth of the formula obtained at the
end of this recursive re-balancing will be O(log |F |).

Let g(x, y) be a boolean function, x, y ∈ {0, 1}n. In a communication protocol for g, there are
two players, Alice and Bob. Alice receives x and Bob receives y and they communicate via an
agreed-upon protocol in order to compute the function g(x, y). (The protocol proceeds in rounds,
alternating who speaks. In each round, Alice’s message sent is a function of her input x and the
communication history thus far, and similarly Bob’s next message is a function of his input y and
the communication history so far.) We assume without loss of generality that the last bit of the
communication history is the value of g(x, y). The communication complexity of a protocol for
f is the maximum number of bits exchanged by the protocol, over all inputs x, y, |x| = |y| = n.
The communication complexity of f , CC(f), is the minimum over all protcols Π for f , of the
communication complexity of Π.

Similarly, we can define the communication complexity of a search problem S(x, y). For each
x, y, the players communicate via an agreed-upon protocol, and the last message sent is some z
such that z ∈ S(x, y). Again the communication complexity of a protocol is the maximum number
of bits exchanged over all x, y, |x| = |y| = n, and the communication complexity of S, CC(S), is
the minimum over all protocols Π for S.

Karchmer and Wigderson proved that there is a tight relationship between the depth of a circuit
for computing a boolean function, and the communication complexity of a related search problem.

Let f(x) be a Boolean function, |x| = n. The search problem associated with f , Sf (x, y) is
defined as follows. If f(x) 6= f(y) then Sf (x, y) is equal to all indices i ∈ [n] such that xi 6= yi.
Otherwise, if f(x) = f(y), then Sf (x, y) contains all i ∈ [n].

We can also define a more restricted search problem in the case where f is monotone. (A
Boolean function is monotone if flipping any of the coordinates from 0 to 1 does not decrease
the value of the function.) For monotone f , the monotone search problem associated with f ,
Smonof (x, y) is defined as follows. If f(x) = 1 and f(y) = 0 then Smonof (x, y) contains all i ∈ [n]
such that xi = 1 and yi = 0. Otherwise Smonof (x, y) contains all i ∈ [n].

Theorem 3 The circuit depth of f is equal to the communication complexity of Sf . That is,
depth(f) = Θ(CC(Sf )). Furthermore, if f is monotone, then the monotone circuit depth of f is
equal to the communicatiaon complexity of Smonof . That is, monotone−depth(f) = Θ(CC(Smonof )).

Proof We will first show that CC(Sf ) ≤ depth(f) by constructing a protocol for Sf . Let C be a
depth d circuit computing f , and assume without loss of generality that the top gate of the circuit
is an AND gate. (The argument is very similar if the top gate is an OR gate.) Assume that Alice
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has x and Bob has y, where f(x) = 1 and f(y) = 0, and they want to find an input i such that
xi 6= yi. Because f(x) = 1 both inputs to the top AND gate must have value 1 on input x, and
because f(y) = 0, at least one input to the top AND gate has value 0 on input y. Bob speaks first,
and sends a 0 to Alice if the left input to the AND gate evaluates to 0 on y, and otherwise sends
a 1 if the right input to the AND gate evaluates to 0 in y. In the next round, we have recursed
to subcircuit of the original circuit, of depth one less than the original depth, and they begin this
round again knowing that the subcircuit on x evaluates to 1, and the subcircuit on y evaluates to
0. Since the next gate is an OR gate, this time Alice speaks, sending a 0 if the left subcircuit of
the current subcircuit evaluates to 1 on x, and otherwise sending a 0 to Bob, indicating that the
right subcircuit evaluates to 1 on x. Alice and Bob continue in this manner until eventually they
reach an input. By induction, it is clear that they will reach an input and on this bit, xi and yi
will be different. The number of bits communicated by Alice and Bob is equal to the depth of the
circuit.

In the case where f is monotone, and the circuit for f of depth d is also monotone, they follow
the same protocol, but because there are no negations, we are guaranteed that when they arrive
at a leaf node, that xi = 1 and yi = 0, as desired.

To show the other direction we want to convert a protocol for Sf (x, y) into a Boolean circuit
for f . To prove this, we define a more general communication game. For any two disjoint sets
A,B ⊆ {0, 1}n, denote by GA,B the following game. Alice gets x ∈ A, Bob gets y ∈ B and the goal
is to find a coordinate i such that xi 6= yi. We prove the following claim:

Claim: If CC(GA,B) = d, then there is a Boolean function f such that: (i) f(x) = 1 for all
x ∈ A; (ii) f(y) = 0 for all y ∈ B; (iii) Depth(f) ≤ d.

That is, the function f is 1 on any input from A, 0 on any input from B and the circuit depth
of f is at most d. The proof of the claim is by induction on d = CC(GA,B). The base case is d = 0.
That is, the two players know the answer without any communication, and therefore there is some
coordinate i such that for every x ∈ A, and every y ∈ B, xi 6= yi. Thus the function f(z) = zi or
f(z) = ¬zi satisfies the requirements of the game.

For the induction step, assume that we have a protocol of communication complexity d for
the game GA,B. Assume without loss of generality that Alice sends the first bit in the protocol.
This bit partitions A into two disjoint sets A = A0 ∪ A1. If the first bit is 0, the rest of the
protocol is a protocol for the game GA0,B. If the first bit is 1, the rest of the protocol is a protocol
for the game GA1,B. Hence, for both games, we have protocols with communication complexity
at most d − 1. By the inductive hypothesis, we have two functions f0 and f1 that satisfy: (i)
f0(x) = 1 for all x ∈ A0; (ii) f1(x) = 1 for all x ∈ A1; (iii) f0(y) = f1(y) = 0 for every y ∈ B;
(iv) Depth(f0), Depth(f1) ≤ d − 1. Define f = f0 ∨ f1. Then it is clear that for every x ∈ A,
f(x) = f0(x) ∨ f1(x) = 1, and for every y ∈ B, f(y) = f0(y) ∨ f1(y) = 0, and the depth of f is d.

Similarly if Bob sends the first bit, then B is partitioned into two disjoint sets B = B0∪B1. The
argument is very similar to as before, except that now we have two functions g0, g1 corresponding
to the two games GA,B0 , GA,B1 , and we take g = g0 ∧ g1.

This completes the proof by taking A to be f−1(1) and B to be f−1(0).
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3 Monotone Depth Bounds

It was a major milestone to prove depth lower bounds for monotone circuits for functions in
monotone P . We note that depth lower bounds were previously known via Razborov’s monotone
circuit size lower bounds, but his function (clique) is not believed to be in P . Karchmer and
Wigderson used the communication complexity framework to prove O(log2 n) depth lower bounds
for monotone circuits computing st-connectivity. Later, Raz and McKenzie separated all levels of
the monotone circuit hierarchy, proving that mNCi 6= mNCi+1 for all i.

Here we give a new proof of a strengthening of these results due to Goos and Pitassi, via a
randomized reduction to the communication complexity of set disjointness!

We exhibit a monotone function on n variables whose monotone circuits require depth Ω(n/ log n);
previously, a bound of Ω(

√
n) was known (Raz and Wigderson, JACM 1992). Moreover, we prove

a tight Θ(
√
n) monotone depth bound for a function in monotone P .

We obtain new randomised lower bounds on the communication complexity of search problems.
Our proofs are relatively simple reductions from the set-disjointness function, the canonical NP -
complete problem in communication complexity. These results allow us to derive, almost for free,
new lower bounds for monotone depth. We construct a monotone function on n variables whose
monotone circuits require depth Ω(n/ log n). Previously, the best bound for an explicit monotone
function (perfect matchings) was Ω(

√
n) due to Raz and Wigderson. Moreover, we prove a tight

Θ(
√
n) monotone depth bound for a function in monotone P .

3.1 Starting point: Critical block sensitivity

We build on the techniques recently introduced by Huynh and Nordström [?]. They defined a new
complexity measure for search problems called critical block sensitivity, which is a generalisation
of the usual notion of block sensitivity for functions.

A search problem on n variables is a relation S ⊆ {0, 1}n ×Q where Q is some set of possible
solutions. On input α ∈ {0, 1}n the search problem is to find a solution q ∈ Q that is feasible for
α, that is, (α, q) ∈ S. We assume that S is such that all inputs have at least one feasible solution.
An input is called critical if it has a unique feasible solution.

Definition [Critical block sensitivity] Fix a search problem S ⊆ {0, 1}n×Q. Let f ⊆ S be a total
function, i.e., for each input α ∈ {0, 1}n the function picks out some feasible solution f(α) for α.
We denote by bs(f, α) the usual block sensitivity of f at α. That is, bs(f, α) is the maximal number
bs such that there are disjoint blocks of coordinates B1, . . . , Bbs ⊆ [n] satisfying f(α) 6= f(αBi) for
all i; here, αBi is the same as α except the input bits in coordinates Bi are flipped. The critical
block sensitivity of S is defined as:

bscrit(S) = minf⊆Smaxcriticalαbs(f, α).

3.2 Composed search problems

In order to study a search problem S ⊆ {0, 1}n × Q in the setting of two-party communication
complexity, we need to specify how the n input variables of S are divided between the two players,
Alice and Bob.
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Unfortunately, for many search problems (and functions) there is often no partition of the
variables that would carry the “intrinsic” complexity of S over to communication complexity.

In order to make the function hard for communication complexity, one usually studies composed
(or lifted) variants S ◦ gn of the original problem. In a composed problem, each of the n input bits
of S are encoded using a small two-party function g:X × Y → {0, 1}, sometimes called a gadget.
As input to S ◦ gn Alice gets an x ∈ X n and Bob gets a y ∈ Yn. We think of the pair (x, y) as
encoding the input

α = gn(x, y) = ( g(x1, y1), . . . , g(xn, yn) )

of the original problem S. The objective is to find a q ∈ Q such that (gn(x, y), q) ∈ S.

3.3 Our communication complexity results

Theorem 4 There is a two-party gadget g:X × Y → {0, 1} such that if S ⊆ {0, 1}n × Q is any
search problem, then S ◦gn has randomised bounded-error communication complexity Ω(bscrit(S)).

Our key idea is to choose g to be random-self-reducible. Random-self-reducibility is a notion
often studied in cryptography and classical complexity theory, but less often in communication
complexity.

3.4 CSPs and their canonical search problems

Definition [d-CSPs] A CSP F consists of a set of (boolean) variables vars(F ) and a set of
constraints cons(F ). Each constraint C ∈ cons(F ) is a function that maps a truth assignment
α: vars(F ) → {0, 1} to either 0 or 1. If C(α) = 1, we say that C is satisfied by α, otherwise C
is violated by α. Let vars(C) denote the smallest subset of vars(F ) such that C depends only on
the truth values of the variables in vars(C). We say that F is of degree d, or F is a d-CSP, if
|vars(C)| ≤ d for all C. Note that d-CNF formulas are a special case of d-CSPs, and conversely,
each d-CSP can be written as an equivalent d-CNF with a factor 2d blow-up in the number of
constraints.

An unsatisfiable CSP F has no assignment that satisfies all the constraints. Each such F comes
with an associated canonical search problem S(F ).

Definition [Canonical search problems] Let F be an unsatisfiable CSP. In the search problem S(F )
we are given an assignment α: vars(F ) → {0, 1} and the goal is to find a constraint C ∈ cons(F )
that is violated by α.

We give new critical block sensitivity lower bounds for the canonical search problems associated
with Tseitin and Pebbling formulas.

3.5 Sensitivity of Tseitin formulas

Tseitin formulas are well-studied examples of unsatisfiable CSPs that are hard to refute in many
proof systems.

6



CS 2429 - Foundations of Communication Complexity Lecture #5: 12 February 2014

Definition [Tseitin formulas] Let G = (V,E, `) be a connected labelled graph of maximum degree
d where the labelling `:V → {0, 1} has odd Hamming weight. The Tseitin formula TseG associated
with G is the d-CSP that has the edges e ∈ E as variables and for each node v ∈ V there is a
constraint Cv defined by

Cv(α) = 1↔
∑
e:v∈e

α(e) ≡ `(v) (mod 2).

It follows from a simple parity argument that TseG is unsatisfiable.

Theorem 5 If G is a sufficiently strong constant degree expander (e.g., a Ramanujan graph [?]),
then the critical block sensitivity of S(TseG) is Ω(n/ log n).

3.6 Applications: Monotone depth

Raz and McKenzie [?] developed a general framework to prove monotone depth lower bounds for
many monotone functions. We borrow the following piece from their machinery. Here we denote
by depth(f) the minimum depth of a monotone circuit computing f .

Theorem 6 (Raz–McKenzie transformation) Let g:X×Y → {0, 1} be a two-party gadget and
let F be an unsatisfiable d-CSP on n variables and m constraints. There is an explicit construction
of a monotone function f : {0, 1}N → {0, 1} on N = m|X |d inputs such that depth(f) is lower
bounded by the (deterministic) communication complexity of S(F ) ◦ gn.

Monotone depth from Tseitin. First, let G be a sufficiently strong constant degree d expander
graph. Then S(TseG) is the canonical search problem associated with a d-CSP on O(n) variables
and n constraints. Theorems 4 and 5 tell us that S(TseG) ◦ gn has two-party communication
complexity Ω(n/ log n).

Corollary 7 (Monotone depth from Tseitin) There is an explicit monotone function f on N
inputs such that depth(f) = Ω(N/ logN).

4 Versatile Gadgets

In this section we introduce versatile two-party functions.

4.1 Self-reductions and versatility

The simplest reductions between communication problems are those that can be computed without
communication. Let fi:Xi × Yi → {0, 1} for i = 1, 2, be two-party functions. We say that f1
reduces to f2, written f1 ≤ f2, if the communication matrix of f1 appears as a submatrix of the
communication matrix of f2. Equivalently, f1 ≤ f2 iff there exist one-to-one mappings πA and πB
such that

f1(x, y) = f2(πA(x), πB(y))

for all (x, y) ∈ X1 × Y1.
Our restriction to one-to-one reductions above is merely a technical convenience.

7



CS 2429 - Foundations of Communication Complexity Lecture #5: 12 February 2014

We will be interested in special kinds of reductions that reduce a function to itself. Our first
flavour of self-reducibility relates a function f and its negation ¬f : A function f is called flippable
if ¬f ≤ f . Note that since the associated reduction maps z-inputs to (1−z)-inputs in a one-to-one
fashion, a flippable function must be balanced: exactly half of the inputs satisfy f(x, y) = 1.

A function f is called random-self-reducible if there are mappings πA and πB together with a
random variable r such that for every z-input (x, y) ∈ f−1(z) the random pair (πA(x, r), πB(y, r))
is uniformly distributed among all the z-inputs of f .

Definition [Versatility] A two-party function g is called versatile if (1) g ≥ AND, (2) g is flippable,
and (3) g is random-self-reducible.

Consider the function VER:Z4 × Z4 → {0, 1} defined by

VER(x, y) = 1↔ x+ y ∈ {2, 3},

for all x, y ∈ Z4, where the arithmetic is that of Z4.

Lemma 8 VER is versatile.

Proof The reduction from AND is simply given by AND(x, y) = VER(x, y). Moreover, VER is
flippable because ¬VER(x, y) = VER(x+2, y). To see that VER is random-self-reducible, start with
(x, y) and compute as follows. First, choose (x, y) uniformly at random from the set {(x, y), (1 −
x,−y)} so that x+ y is uniformly distributed either in the set {0, 1} if (x, y) was a 0-input, or in
the set {2, 3} if (x, y) was a 1-input. Finally, choose a random a ∈ Z4 and output (x+ a, y − a).

5 Communication Lower Bound

In this section we prove the communication lower bound (Theorem 4) assuming that g is a versatile
gadget.

Setup. Fix any versatile gadget g:X × Y → {0, 1}. Let Π be a randomised ε-error protocol
for a composed search problem S ◦ gn. Recall that an input (x, y) for the problem S ◦ gn is critical
if there is exactly one solution q with ((x, y), q) ∈ S ◦ gn. In particular, if gn(x, y) is critical for
S, then (x, y) is critical for S ◦ gn. The behaviour of the protocol Π on a critical input (x, y) is
predictable: the protocol’s output Π(x, y) is the unique solution with probability at least 1− ε.

However, noncritical inputs (x, y) are much trickier: not only can the distribution of the output
Π(x, y) be complex, but the distributions of Π(x, y) and Π(x′, y′) can differ even if (x, y) and
(x′, y′) encode the same input gn(x, y) = gn(x′, y′) of S. The latter difficulty is the main technical
challenge, and we address it by using random-self-reducible gadgets.

Defining a function f ⊆ S. First, we record for each α ∈ {0, 1}n the most likely feasible
output of Π on inputs (x, y) that encode α. More formally, for each α we define µα to be the
uniform distribution on the set of preimages of α, i.e., µα is uniform on {(x, y) : gn(x, y) = α}.
Alternatively, this can be viewed as a product distribution µα = µα1 × µα2 × · · · × µαn , where µz,
z ∈ {0, 1}, is the uniform distribution on g−1(z).

The most likely feasible solution output by Π on inputs (x, y) ∼ µα is now captured by a total
function f ⊆ S defined by

f(α) = argmaxq:(α,q)∈S Pr
(x,y)∼µα

[ Π(x, y) = q ].
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Here, ties are broken arbitrarily and the randomness is taken over both (x, y) ∼ µα and the
random coins of the protocol Π. (Note that, in general, the most likely output of Π(x, y) may not
be feasible. However, above, we explicitly pick out the most likely feasible solution. Thus, f is
indeed a subfunction of S.)

The sensitive critical input. We can now use the critical block sensitivity of S: there is a
critical input α such that bs(f, α) ≥ bscrit(S). Let B1, . . . , Bbs ⊆ [n] be the sensitive blocks with
f(αBi) 6= f(α).

Lemma 9 The protocol Π can distinguish between µα and µαBi in the sense that

(x, y) ∼ µα → Pr[ Π(x, y) = f(α) ] ≥ 1− ε,

(x, y) ∼ µαBi → Pr[ Π(x, y) = f(α) ] ≤ 1/2.

Proof The consequent in the first property (9) is true even for each individual (x, y) in the support
of µα since α is critical. To see that the second property (9) is true, suppose for a contradiction
that we had Pr[ Π(x, y) = f(α) ] > 1/2 for (x, y) ∼ µαBi . By averaging, there is a fixed input
(x, y) in the support of µαBi such that Pr[ Π(x, y) = f(α) ] > 1/2. By the correctness of Π (i.e.,
1−ε > 1/2) this implies that f(α) is feasible for αBi . Thus, f(α) is the most likely feasible solution
output by Π(x, y), that is, f(αBi) = f(α) by the definition of f . But this contradicts the fact that
f is sensitive to Bi at α.

The reduction. Given an input (a, b) for UDISJbs our goal is to describe a randomised reduction
(a, b) 7→ (x, y) such that

(P1) 0-inputs: If UDISJbs(a, b) = 0, then (x, y) ∼ µα.

(P2) 1-inputs: If UDISJbs(a, b) = 1 with ai = bi = 1, then (x, y) ∼ µαBi .

Suppose for a moment that we had a reduction with properties (P1–P2). Let Π′ be the protocol
that on input (a, b) first applies the reduction (a, b) 7→ (x, y) with properties (P1–P2), then runs
Π on (x, y), and finally outputs 0 if Π(x, y) = f(α) and 1 otherwise. Lemma (distinguish) tells us
that

• If UDISJbs(a, b) = 0, then Π′(a, b) = 0 with probability at least 1− ε.

• If UDISJbs(a, b) = 1, then Π′(a, b) = 1 with probability at least 1/2.

The error probability of Π′ can be bounded away from 1/2 by repeating Π′ twice and outputting 0
iff both runs of Π′ output 0. (Here we are assuming that ε is small enough, say at most 1/4. If
not, we can use some other standard success probability boosting tricks.) This gives a randomised
protocol for UDISJbs with the same communication cost (up to constants) as that of Π. Our main
theorem follows.

Indeed, it remains to implement a reduction (a, b) 7→ (x, y) satisfying (P1–P2). We do it in
three steps.

9
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Step 1. On input (a, b) = (a1 . . . abs, b1 . . . bbs) to UDISJbs we first take each pair (ai, bi) through
the reduction AND ≤ g to obtain instances (a′1, b

′
1), . . . , (a

′
bs, b

′
bs) of g. Note that

• if UDISJbs(a, b) = 0, then g(a′i, b
′
i) = 0 for all i;

• if UDISJbs(a, b) = 1, then there is a unique i with g(a′i, b
′
i) = 1.

Step 2. Next, the instances (a′i, b
′
i) are used to populate a vector (x, y) = (x1 . . . xn, y1 . . . yn)

carrying n instances of g, as follows. The instance (a′i, b
′
i) is plugged in for the coordinates j ∈ Bi

with the copies corresponding to αj = 1 flipped. That is, we define for j ∈ Bi:

• if αj = 0, then (xj , yj) := (a′i, b
′
i);

• if αj = 1, then (xj , yj) := (πA(a′i), πB(b′i)), where (πA, πB) is the reduction ¬g ≤ g.

For j /∈ ∪iBi we simply fix an arbitrary (xj , yj) ∈ g−1(αj). We now have that

• if UDISJbs(a, b) = 0, then gn(x, y) = α;

• if UDISJbs(a, b) = 1 with ai = bi = 1, then gn(x, y) = αBi .

Step 3. Finally, we apply a random-self-reduction independently for each component (xi, yi) of
(x, y): this maps a z-input (xi, yi) to a uniformly random z-input (xi, yi) ∼ µz. The result is a
random vector (x, y) that has a distribution of the form µα = µα1 × µα2 × . . .× µαn and matches
our requirements (P1–P2), as desired.

This concludes the proof.

6 The Composition Conjecture

Karchmer, Raz and Wigderson suggested the following approach towards proving that NC1 is not
contained in P . Given two boolean functions f and g, the depth complexity of the composed
function gof is roughly the sum of the depth complexities of f and g.

KRW Conjecture: Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}. Then the depth of gof
is equal to the depth of f plus the depth of g.

They showed that proving this conjecture would imply P 6= NC1. The basic idea is that one
could apply O(log n) compositions of a random function f : {0, 1}logn → {0, 1} thus obtaining a
new function over n bits that is computable in polynomial time yet requires depth Ω(log2 n). The
key point is that a random function on log n bits has depth complexity log n− o(log n) and can be
described explicitly using n bits.

What does the KW relation Rgof look like? Alice and Bob each get as inputs m-by-n matrices,
X and Y respectively, such that f(X) ∈ g−1(1) and f(Y ) ∈ g−1(0) and their goal is to find an
entry (j, i) such that Xj,i 6= Yj,i. Clearly CC(Rgof ) ≤ CC(Rg) + CC(Rf ). TO see this, Alice and
Bob first use the optimal protocol of g on inputs f(X) and f(Y ) to find an index j ∈ [m] such
that f(Xj) 6= f(Yj). Then they use the optimal protocol on f on inputs f(Xj) and f(Yj) to find a
coordinate i on which the j-th rows differ, thus obtaining an entry (j, i) on which X and Y differ.
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7 Open Problems

The biggest open problem is to obtain depth lower bounds for nonmonotone circuits, which as
we saw above, is equivalent to proving communication lower bounds for a corresponding search
problem.

Another open problem is to resolve the depth complexity of monotone circuits for majority.
The complexity of monotone formulas/circuits for the majority function is a fascinating topic.
Without the monotonicity restriction, majority can be solved with simple linear-size circuits of
depth O(log n), where the best known depth is 4.95 log n + O(1). There are two fundamental
algorithms that give log depth, monotone circuits. The first is a beautiful construction by vValiant
achieving monotone formulas of depth 5.3 log n+O(1) and size O(n5.3). The second is obtained from
the celebrated AKS sorting network, giving a completely uniform construction of depth K log n
and size O(n log n). Unfortunately, K is an enormous constant – about 5000, and the proof is quite
complicated. Converting the circuit to a formula yields a monotone formula of size O(nK) which
is roughly n5000!

Getting the best depth-size tradeoffs is perhaps the most sought after goal around the classical
question, which achieving uniformity comes next.

The problem can be naturally split into two subproblems, which together solve the original
problem. Problem I takes an n-bit vector and outputs an m-bit vector such that if the original
vector contained a majority of 1’s, then the output vector contains at least 2/3 fraction of 1’s,
and similarly if the original vector contains less than a majority of 1’s, then the output vector
has at most a 1/3 fraction of 1’s. Problem II is the promise problem of solving majority on the
bounded-away-from-1/2 inputs given by the output of problem I. (Note that Problem II is an
approximate counting problem.) Subproblem II has a uniform monotone circuit of linear size, and
the same depth as Valiant’s solution. The monotone search problem associated with majority is as
follows. Alice is given a vector x, such that the number of 1’s in x is n/2 + 1 and Bob is given a
vector y with n/2 1’s and they want to find an element i ∈ [n] such that xi = 1 and yi = 0. The
monotone communication complexity for a potentially easier promise problem is similar but now
Alice is given a vector greater than 2n/3 1’s and Bob is given a vector with less than n/3 1’s and
they want to find some element in x but not in y. The promise problem can be solved in depth
2 log n. Can the non-promise problem be solved in depth 2 log n?

Another problem is to obtain explicit uniform formulas for majority of optimal or near optimal
size. Toward this goal, can we come up with a natural (top-down) communication complexity
protocol for mMaj that uses O(log n) many bits?
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