
The Tree Evaluation Problem: Towards Separating P from NL

Lecture #6: 26 February 2014

Lecturer: Stephen A. Cook

Scribe Notes by: Venkatesh Medabalimi

1. Introduction

Consider the sequence of complexity classes :

AC0(6) ⊆ NC1 ⊆ L ⊆ NL ⊆ LogCFL ⊆ AC1 ⊆ NC2 ⊆ P ⊆ NP ⊆ PH

As of today, we do not know if even one among the above sequence of containments is strict. In fact,

it is open if AC0(6)=PH ! In this lecture by Steve we learn about an attempt aimed at separating P

from NL using a specific problem called the Tree Evaluation Problem. Most of the contents of the

talk are derived from the work “Pebbles and Branching Programs for tree evaluation” [1] by Steve

Cook, Pierre McKenzie, Dustin Wehr, Mark Braverman and Rahul Santhanam. The problem chosen

in this program is inspired by Michael Taitslin’s FOCS 2005 submission, an attempt to separate NL

and P.

2. Definitions

Let Th be the balanced rooted binary tree of height h, i.e having h levels.Let [k] = {0, 1, ..., k−1}.
We number the nodes of Th using heap numbering. The root is numbered one and in general the

children of node i are numbered 2i and 2i+ 1.

Definition 1. In the Tree Evaluation Problem(TEP) on Th the input is a table defining a function

fi : [k] × [k] → [k] for each internal node in Th and a number in [k] for each leaf in Th. The two

versions of TEP which are of interest to us are

• FTh(k): For a given input, find the value of the root of Th.

• BTh(k): In this boolean problem for a given input we need to determine whether the value

of the root is 1.

One can easily see that TEP is in P. We wish to show that TEP /∈ L (and TEP /∈ NL).

Natural ways to solve the tree evaluation problem can be described using what we call pebbling

algorithms. We use them to get our upper bounds for the tree evaluation problem.

Definition 2 (Black Pebbling). The legal moves in a black pebbling game are as follows.

• Place a pebble on any leaf.

• If both children of node i are pebbled, slide one of these pebbles to node i.

• Remove a pebble at any time.

1

CS 2429 - Approaches to the P versus NP Question Lecture #6: 26 February 2014

Figure 1. This figure illustrates a black pebbling of T 3 using 3 pebbles.

The goal in a black pebbling game is to place a pebble on the root. Figure 1 gives an example of

a black pebbling scheme to pebble T 3 using 3 pebbles.

Theorem 3. h pebbles are necessary and sufficient to black pebble Th

Proof. This is easily proved by induction on h. Another argument for the lower bound is to observe

that the first time when the paths from root to all leaves are blocked forms a bottleneck pebbling

configuration with at least h pebbles. �

So black pebbling can be implemented by a turing machine with O(kh) states. So FTh(k) ∈
DSPACE(h log k). The input size of a TEP instance is n ≈ (2h−1)k2 log k =⇒ log n ≈ h+log k.(So

black pebbling isn’t a log space algorithm.)

3. Branching Programs

Definition 4 (k-way Branching Programs). A k-way branching program solving FTh(k) is a directed

acyclic multigraph B with one source node γ0 (the start state) and k sink nodes (the output states)

labeled {0, 1, ..., k − 1}. Each non-output state γ has a label < i, a, b >, where i is a node in Th and

a, b ∈ [k] (if i is a leaf in Th, then a,b, are missing). (The intention is that state gamma queries

the function fi(a, b).) The state γ has k out edges labeled 0, 1, ..., k − 1) (multiple edges can go to

the same node). The computation of B on input I (describing an instance of FTh(k)) is a path in

B, starting with the start state γ0, and ending in an output state, where for each non-output state γ

querying fi(a, b) = c, the next edge in the path is the one labeled c.

Theorem 5. For every k, h, there is a BP solving FTh(k) with O(kh) states. (Here the constant

depends on h and is about 2h).

Proof. We can derive such a BP from an efficient pebbling algorithm. Think of B as layered, moving

from left to right. Each level i is associated with a node in Th – the next node to be pebbled in

the pebbling algorithm. Thus there are N + 1 levels, where N = 2h − 1 is the number of nodes

in the tree Th. At each level the states in the branching program correspond to different pebbling
2

CS 2429 - Approaches to the P versus NP Question Lecture #6: 26 February 2014

f1

fr,r′

r r′

gr,r′

r r′

Figure 2. This figure depicts the sets of inputs Er,r′ we consider to obtain k3

lower bound for FT 3(k).

configurations of Th that arise when the node corresponding to that level is pebbled. Since the

maximum number of pebbles used in any configuration for an efficient pebbling algorithm on Th is

h the number of states in each level is O(kh). Since N = 2h − 1, the number of states in the BP is

O(kh). �

CONJECTURE: Every deterministic k-way BP solving FTh(k) has at least kh states, for

k, h ≥ 2.

There’s a $100 prize for the first person to disprove this conjecture– see “Barriers Workshop

Slides” on Steve’s website for more on this.Instead, if you prove it you will be famous for the

following reason.

Theorem 6. To show L 6= P it suffices to show that any k-way BP solving FTh(k) requires Ω(kch)

states for some unbounded sequence ch. (The constant in Ω depends on h.)

Proof. Observe that a general TEP problem instance has input size n = (2hk2 log k) bits, so log n =

(h+log k).Let {ch} be any unbounded sequence, indexed by h. Suppose we can show that any k-way

BP solving FTh(k) requires at least Ω(kch) states as a function of k. Then the space required is

ch log k = ω(log n) if we take h = O log k, as k →∞. �

Theorem 7. Conjecture 3 holds for h = 2, 3. (It’s wide open for h = 4).

Proof. The proof is obvious for h = 2 since there must be a state which queries each of the k2 inputs

f1(a, b) for a, b ∈ [k].

(Proof for h = 3): Assume that f1(a, b) = (a + b) mod k. Let B be a deterministic BP solving

TEP for T 3
2 . Let C(I) = C be a complete computation of B on input I. For r, r′ ∈ [k], let Er,r′ be

the set of all inputs in which the leaves v4, v5, v6, v7 are assigned r, r′, r, r′ respectively(so an input

in Er,r′ is specified by the functions f, g assigned to nodes 2 and 3). Figure 2 describes these inputs.

Let Qr,r′ be the set of all states q which query either f(r, r′) or g(r, r′). The theorem follows if we

prove the following claim.
3

http://www.cs.toronto.edu/~sacook/

CS 2429 - Approaches to the P versus NP Question Lecture #6: 26 February 2014

Claim 1: |Qr,r′ | ≥ k.(So B has at least k3 states, since this is true for all pairs k2 pairs (r, r′))

Fix r, r′. For every pair a, b ∈ [k] define input Ia,b as follows.Let Ia,b be the input in Er,r′ such that

f(r, r′) = a and g(r, r′) = b, and f(x, y) = g(x, y) = 0 if (x, y) 6= (r, r′).(Note that for input Ia,b we

have v2 = a and v3 = b. Now claim 1 follows from the next claim:

Claim 2: For each state γ in Qr,r′ there are at most k pairs (a, b) such that γ is the last state in

C(Ia,b) which is in Qr,r′ .

Note that claim 1 and so the theorem would follow if we prove claim 2.

Proof. (of claim 2) Suppose otherwise, so some γ in Qr,r′ is the last such state in C(Ia,b) for more

than k pairs (a, b). Then there exist a, a′, b ∈ [k] such that a 6= a′ and γ is the last such state in both

C(Ia,b) and C(Ia′,b). Then the output of both computations is the same, but a+ b mod k 6= a′ + b

mod k. �

This proves that the number of states needed in a k−way BP solving FT 3 is at least k3, resolving

the conjecture for h = 3. �

What about the boolean problem BT 3(k)?

Theorem 8. An optimal k-way BP solving BT 3(k) has Θ(k3/ log k) states.

Proof. (Outline for the Upper bound) Learn node 2, but partition possible values into k/m blocks

of size m = log k − log log k, and remember block number. Now query node 3, and use v3 to make

m queries to node 1 using the the m possible values of v2, and remember the list of possible values

of v1. Now query node two again, to obtain the correct value of the root.

To get the lower bound, we cannot use the above method we used for FT 3 because of the following

reason.

Claim: BT 3 can be solved in O(k2 log k) states when the root function is + mod k.

Proof. For each setting of the four leaves put in O(log k) states which, for each j, query v2 and v3

in order to determine the jth bits in the binary notation for v2, v3.This allows us, for example to

determine whether v2 + v3 = k+ 1. Note that if v2 + v3 = 1 mod k, then v2 + v3 is either 1 or k+ 1.

Since there are O(k2) settings of the values for leaves this BP has O(k2 log k) states. �

In light of the above claim we have to make some changes to the approach we took in theorem 7.

We proceed similarly except instead of fixing f1 to be addition mod k, we let a boolean function f1

be part of the input. So there are 2K
2

possibilities for f1. As before let Qr,r′ be the set of states

which query either f2(r, r′) or f3(r, r′). It suffices to show that |Qr,r′ | ≥ k/ log k. Let s = |Qr,r′ |.
For each fixed f1(and fixed values for all inputs except f2(r, r′) and f3(r, r′)) the branching program

has the same s states, but the edges and labels between them change as f1 changes. There are 2k
2

possibilities for f1, but at most (s+ 2)sk ways of putting in labeled edges between the s states. This

is because including the two binary output states there are s+ 2 choices for the destination of each

labeled edge. By taking logs of both sides and assuming s+ 2 ≤ k (since otherwise we are done) we
4

CS 2429 - Approaches to the P versus NP Question Lecture #6: 26 February 2014

obtain s ≥ k/ log k as required. Since the same is true for all pairs r, r′ any BP solving BT 3(k) has

at least k3/ log k states. �

4. Thrifty Branching Programs

Definition 9. Let B be a BP which solves BTh or FTh. Let I be an input to B, and let C(I) be

the resulting computation (sequence of states). A query to a node i during C(I) is thrifty if either

i is a leaf, or i is an internal node and the query is fi(a, b), where a,b are the values of the children

of i.We say B is a thrifty BP if every query for every input I is thrifty.

Note that if B follows the pebbling algorithm, then B is thrifty.

Theorem 10. Every thrifty BP solving BTh or FTh has at least kh states.

Proof. (David Liu’s MSc thesis [2]) Consider a computation C(I) of B on input I.

Claim: Every node is queried, and for every non-leaf node j queried in C(I), both children of j

were queried earlier.

Proof. Suppose the root node is not queried in C(I) then consider any input which is same as I

but differs from I on only the value of the thrifty query at the root. Clearly B would give a wrong

answer for I ′. So C(I) makes a query to the root node. Now assume for some node j there exists

a child i such that B does not query i in the path leading to some state γ that queries j. Then

consider the input I ′ which is same as I but different from it only in the value of the thrifty query

at node i. Observe that for I ′, B would make a non-thrifty query at j. It also follows that every

node is queried at least once. �

Lets define a critical state for the root to be the last state in C(I) which queries the root. The

critical state for a non root node i is the last state which queries i before the critical state for the

parent of i.

We now use the critical states to define a black pebbling. We make one move at each critical

state.

• At a critical state for a leaf, put a pebble on the leaf.

• At the critical state of an internal node i, slide a pebble on one of its children to i, and

remove the pebble on the other child.

This is a valid pebbling.

Define the supercritical state to be the critical state in C(I) immediately after the state which

causes h pebbles to be present.

Associate a tag U(I) = (γ, v, x) with I as follows:

• γ is the supercritical state

• v ∈ [k]N−h (N is the number of nodes in Th) is string expressing all correct node values

except the first h values learned by C(I) after γ.

• x ∈ [k]R gives all the non-thrifty values for I (i.e. the entire input except the values for the

nodes.)
5

CS 2429 - Approaches to the P versus NP Question Lecture #6: 26 February 2014

Claim: U(I) uniquely determines I.

Proof. Note that the v and x in the tag together specify I except for the values of the pebbled nodes.

We can determine the values of the pebbled nodes by following the computation path starting from

γ onwards. Note that all these pebbles will be removed in C(I) subsequently and by the way we

defined black pebbling, the parent of any pebbled node is queried immediately before the pebble is

removed. Also by the way we chose critical states no pebbled node is ever queried. Since this query

is thrifty we can deduce the value of its pebbled children. �

From the above claim it follows that there must be at least kh supercritical states γ.This is because

there are kh+(N−h)+R different inputs I, and k(N−h)+R different pairs v, x ∈ U(I). �

Moving a little further from thrifty we explored if allowing queries to be on completely wrong

values can add power to thrifty branching programs. We realized they don’t.

Definition 11 (Wrong-Wrong). A query fi(a, b) is wrong-wrong iff a 6= vI2i and b 6= vI2i.

Theorem 12 (Dustin Wehr’s MSc Thesis [3]). : For any h, k ≥ 2, if B is a deterministic BP that

solves BTh(k) and all queries are either thrifty or wrong-wrong, then B has at least kh states.

Another restricted class of branching programs that have the same lower bound are the read-once

branching programs.

Definition 13 (Read-Once Branching Programs). A deterministic read-once branching program is

one in which no input variable is queried more than once along any path in the branching program.

Theorem 14 (James Cook/Siu Man Chan and later David Liu). Any deterministic read-once

branching program solving FTh has atleast kh states.

These are two very different and interesting proofs.

5. Non Deterministic Branching Programs

Definition 15 (Nondeterministic Branching Program). A nondeterministic k-way branching pro-

gram solving FTh is a directed rooted multigraph with one source node γ0 (the start state) and k

sink nodes (the output states) labeled {0, 1, ..., k − 1}. Each non-output state gamma has a label

< i, a, b >, where i is a node in Th and a, b ∈ [k] (if i is a leaf in Th, then a,b, are missing). (The

intention is that state gamma queries the function fi(a, b).) The state γ has out edges with label in

[k] (multiple edges can go to the same node and some entries in [k] may not be used as labels). A

computation on input I (describing an instance of FTh(k)) is a path in B, starting with the start

state γ0 and proceeding such that for each non-output state γ querying fi(a, b) = c (or a leaf v = c),

the next edge in the path is any edge labeled c. A computation path on input I either ends in a final

state labeled FTh(I) or it ends in a non-final state labeled querying fi(a, b) = c (or a leaf v = c)

with no out-edge labeled c(In this case we say the computation aborts). For every input I at least

one such computation must end in a final state.
6

CS 2429 - Approaches to the P versus NP Question Lecture #6: 26 February 2014

We define what we call as Black/White pebbling to describe one of the ways to obtain the upper

bounds for tree evaluation problem in the non-deterministic setting.

Definition 16 (Black/White pebbling). The legal moves in a black/white pebbling game are as

follows

• A white pebble can be placed at any node at any time.

• A white pebble can be removed if the node is a leaf or both its children have pebbles.

• A black pebble can be placed at any leaf.

• If both children of node i are pebbled, place a black pebble at i and remove any black pebbles

at the children.

• Remove a black pebble at any time.

The goal of a black/white pebbling scheme is to start and end with no pebbles but to have a

pebble at the root at some time. The minimum number of black/white pebbles needed, the B/W

pebbling number for Th is dh/2e + 1. Figure 3 describes how T 4 can be black/white pebbled with

3 pebbles.

Corollary 17. A non-deterministic BP can solve BTh with O(kdh/2e+1) states.

We observe that for the height 3 case Neciporuk gives a k2.5 lower bound that doesn’t match the k3

upperbound obtained from Black/White pebbling. This brings us to the notion of fractional pebbling

[1] where we allow pebbles to be partly white and partly black. We show that h/2 + 1 fractional

pebbles are necessary and sufficient for Th. Hence Θ(k2.5) is the non-deterministic complexity for

BPs solving BT 3.

6. Main Open Questions

To conclude we list some of the main open questions apart from the conjectures stated earlier in

the lecture.

• Extend the deterministic kh lower bound to apply to FT 4? (This would be a minor break-

through, since Neciporuk does not apply – at least not to degree 4 trees. Refer page 6:43 in

[1] for more on this.).

• Come up with lower bounds for the Nondeterministic Semantic Read-once Branching Pro-

grams. Semantic Read-Once restriction requires that a BP query any node only once along

an accepting path.

• Come up with lower bounds for the Nondeterministic thrifty BPs solving TEP.

References

[1] S. Cook, P. McKenzie, D. Wehr, M. Braverman, and R. Santhanam, Pebbles and branching programs for

tree evaluation, ACM Transactions on Computation Theory (TOCT), 3 (2012), p. 4.

[2] D. Liu, Pebbling arguments for tree evaluation, CoRR, abs/1311.0293 (2013).

[3] D. Wehr, Pebbling and branching programs solving the tree evaluation problem, CoRR, abs/1002.4676 (2010).

7

CS 2429 - Approaches to the P versus NP Question Lecture #6: 26 February 2014

Figure 3. This figure shows a black/white pebbling of T 4 using 3 pebbles. We

start with pebbling the root of left subtree

8

	1. Introduction
	2. Definitions
	3. Branching Programs
	4. Thrifty Branching Programs
	5. Non Deterministic Branching Programs
	6. Main Open Questions
	References

