
CSC 2429 – Approaches to the P versus NP Question Lecture #7: 5 March 2014

CSC 2429 – Approaches to the P versus NP Question

Lecture #7: 5 March 2014

Lecturer: Joshua Grochow

Scribe Notes by: Mika Göös

1 Algebraic complexity theory

This week we begin the study of computational complexity from the perspective of algebraic
computation. That is, instead of boolean logic (∨, ∧, ¬, etc.) our model of computation uses
the usual algebraic operations (+, −, ×, /,

√
·, etc.) to manipulate elements in some field F.

Here we focus on the case F = R, the field of real numbers.
The study of algebraic computation is motivated, among other things, by the fact that the

algebraic models typically have more structure than their boolean counterparts. In particlar,
in many cases lower-bound results for boolean models imply lower bounds in the analogous
algebraic models, so we might as well start by understanding the algebraic setting first.

The purpose of these scribe notes is to present a lower bound result due to Ben-Or [BO83].

2 Model: Algebraic computation trees

An algebraic computation tree over R is a binary tree T where each node v is assigned one of
the following three roles:

1. Computation node: Here v has exactly one child. The node computes a value fv using
one of the following operations:

fv := fv1 ◦ fv2 , fv := c ◦ fv1 , fv :=
√

fv1 ,

where vi is an ancestor of v in T or fvi ∈ {x1, . . . , xn}, and ◦ ∈ {+,−,×, /}, and c ∈ R.
2. Comparison node: Here v has exactly two children (labelled true and false). The node

performs one of the following tests:

fv1 > 0, fv1 ≥ 0, fv1 = 0,

where v1 is an ancestor of v.
3. Output node: v is a leaf labelled with either accept or reject.

An algebraic computation tree T computes a boolean valued function Rn → {0, 1} as follows.
On input x = (x1, . . . , xn) ∈ Rn we start traversing the tree from the root and take steps towards
the leaves. When we reach a computation node, we perform the computation associated with it
and proceed to its unique child. When we reach a comparison node, we perform the associated

1

CSC 2429 – Approaches to the P versus NP Question Lecture #7: 5 March 2014

comparison and depending on its outcome (true/false) we proceed to the appropriately labelled
child. When we reach a leaf we accept or reject according to its label.

Thus, an algebraic computation tree naturally solves the membership problem associated
with the set D ⊆ Rn of points that it accepts.

3 Lower bounds for linear decision trees

An often studied problem is the element distinctness problem.

Definition 1. In the Element Distinctness problem we are given (x1, . . . , xn) ∈ Rn as input
and we need to decide if xi 6= xj for all i 6= j.

The set ED ⊆ Rn corresponding to the element distinctness problem is

ED =
⋃
π∈Sn

Aπ

where Sn is the set of all permutations [n]→ [n] and

Aπ = {x ∈ Rn : xπ(1) < xπ(2) < · · · < xπ(n)}.

In fact, the Aπ’s are precisely the connected components of ED. Thus, if we let #ED denote the
number of connected components of ED, then

#ED = |Sn| = n!.

More generally, for any decision problem D ⊆ Rn, the quantity #D is a measure of the
complexity of D. Dobkin and Lipton [DL75] made this intuition formal.

Definition 2 (Linear computation trees). An algebraic computation tree is linear if all the
values fv computed at the nodes are degree-1 polynomials of x1, . . . , xn.

Theorem 1 ([DL75]). Let D ⊆ Rn. Any linear computation tree for D requires height log #D.

Proof sketch. Let ` be a leaf of a linear decision tree. The set of inputs X` ⊆ R that reach ` is
defined by some set of linear inequalities in the variables xi determined by the comparison nodes
along the path from the root to `. Thus X` is convex, and in particular connected. The set
computed by a linear decision tree is a union over all X` where ` is accepting. But this implies
that we need at least one leaf for each component of D. This proves the theorem.

Corollary 2. Any linear computation tree for ED requires height Ω(n log n).

4 Lower bounds for non-linear decision trees

The proof of Theorem 1 relied on the property that the sets X` are connected, that is #X` ≤ 1.
However, if we do not restrict the degree of the polynomials fv used by the algebraic computation
tree, then this property no longer holds. For example, the quadratic inequality

x2 − 1 ≥ 0

has a solution set in the reals with two connected components.
Fortunately, there is a known upper bound on the number of components of X in case X is

defined as the set of common zeroes of a family of polynomials.

2

CSC 2429 – Approaches to the P versus NP Question Lecture #7: 5 March 2014

Theorem 3 (Milnor–Thom theorem; see, e.g., [Wal96]). Any X ⊆ Rm defined as the set of
common zeroes of a set of polynomials {pi} where each pi has degree at most d satisfies

#X ≤ d(2d− 1)m−1.

Using this estimate Ben-Or [BO83] generalized the result of Dobkin and Lipton.

Theorem 4 ([BO83]). Any algebraic computation tree for ED requires height Ω(n log n).

Note that in an algebraic computation tree of height k we can build up polynomials of degree
2k by repeated squaring. Thus, a direct application of Theorem 3 would not give useful upper
bounds on #X`.

The key idea in [BO83] is to control the degree of the polynomial constraints in the algebraic
computation tree by introducing auxiliary variables. This is the take-home message:

Key idea. Increase the number of variables to keep the degree of polynomial constraints low.

Indeed, for each node v we now start regarding its associated value fv as a real variable—we
no longer think of fv as a polynomial in the original input variables xi. That is, the new variables
we consider are

{x1, . . . , xn} ∪ {fv : v is a node}.

For each operation of a computation node, we associate an accompanying degree-2 equation:

Operation Equation
fv := xi fv = xi
fv := fv1 ± fv1 fv = fv1 ± fv2
fv := fv1 × fv2 fv = fv1fv2
fv := fv1/fv2 fvfv2 = fv1
fv :=

√
fv1 f2

v = fv1

(1)

Consider some leaf ` and the associated set X` ⊆ Rn of inputs that reach it. To involve the
new variables fv we can express X` as

X` =
{
x ∈ Rn : There exists an assignment to the variables fv that satisfy (1)

and all the comparisons on the path from the root to `.
}

In other words, X` is a projection of some higher dimensional algebraic set Y` ⊆ Rm where

• the coordinates of Y` are indexed by m = n + h variables

{x1, . . . , xn} ∪ {fv : v appears on the path from the root to `},

and h is the height of the tree.

• the constraints for Y` are the degree-2 equations from (1) and the ≤ h inequalities of the
form fv > 0, fv ≥ 0, or fv = 0, that correspond to the comparison nodes on the path from
the root to `.

3

CSC 2429 – Approaches to the P versus NP Question Lecture #7: 5 March 2014

We can now apply the Milnor–Thom theorem (Theorem 3):

#Y` ≤ 2 · 3n+h−1.

(Strictly speaking, we should convert the inequality constraints of the comparison nodes to
equality constraints, which can be achieved by introducing still new variables; see [BO83] for
full details.)

Since X` is a projection of Y` we have that #X` ≤ #Y`. Thus, in order for the algebraic
computation tree to give rise to the set ED we need to have

#ED = n! ≤ (# leaves) · (max
`

#X`) ≤ 2h · 2 · 3n+h−1.

This implies h = Ω(n log n) proving Theorem 4.

References

[BO83] Michael Ben-Or. Lower bounds for algebraic computation trees. In Proceedings of
the Fifteenth Annual ACM Symposium on Theory of Computing, STOC, pages 80–86.
ACM, 1983. doi:10.1145/800061.808735.

[DL75] David P. Dobkin and Richard J. Lipton. On the complexity of computations under vary-
ing sets of primitives. In Automata Theory and Formal Languages, volume 33 of Lecture
Notes in Computer Science, pages 110–117. Springer, 1975. doi:10.1007/3-540-07407-4 14.

[Wal96] Nolan R. Wallach. On a theorem of Milnor and Thom. In Simon Gindikin, editor, Topics
in Geometry, volume 20 of Progress in Nonlinear Differential Equations and Their
Applications, pages 331–348. Birkhauser Boston, 1996. doi:10.1007/978-1-4612-2432-7 13.

4

http://dx.doi.org/10.1145/800061.808735
http://dx.doi.org/10.1007/3-540-07407-4_14
http://dx.doi.org/10.1007/978-1-4612-2432-7_13

	Algebraic complexity theory
	Model: Algebraic computation trees
	Lower bounds for linear decision trees
	Lower bounds for non-linear decision trees

