
CSC 2429 – Approaches to the P versus NP Question Lecture #8: 12 March 2014

CSC 2429 – Approaches to the P versus NP Question

Lecture #8: 12 March 2014

Lecturer: Joshua A. Grochow

Scribe Notes by: Joshua A. Grochow

Copyright Joshua A. Grochow, March 2014, all rights reserved. Reproduced

with permission of the author.

Continuing from last time, our goal is to sketch a proof of:

Theorem 1 (Mulmuley [Mul99]). In the parallel RAM model without bit operations, “P 6= NC.”

Last time we discussed the model and gave a proof that extracting the low-order bits cannot
be done in “NC” in the PRAM model without bit operations. Toni asked a great question: if we
have a strong lower bound for such a simple problem (extracting bits), aren’t we done—why do
we need to go on to prove separately lower bounds for problems that are seemingly much harder
(like max flow)? The intuitive answer is that it’s not clear how to reduce extracting bits to
combinatorial optimization problems like max flow. If you consider the current best algorithms
for these optimization problems, they all fall into the model of (sequential) RAM without bit
operations—that is, nowhere do they need to extract bits. More concretely, by the techniques
in the previous lecture and this one, it may be possible to prove unconditionally that there is no
efficient parallel reduction from extracting bits to, say, max flow (in the PRAM model without
bit operations), but I don’t think this is known.

3.2 Dimension reduction via parametric complexity

The parametric complexity of a combinatorial optimization problem is a measure of how many
times the optimum value can change when some integer parameters of the input are changed.
A simple but useful formalization of this idea is to consider 1-parameter families of inputs. For
example, for maximum flow, we might consider a 1-parameter family of inputs on a fixed graph,
whose weights are linear functions of the one parameter λ. Then the optimum value for this
particular one-parameter family is a function of λ alone; if the optimum value is piecewise-
linear as a function of λ, then the complexity of this particular parametrization is the number
of breakpoints. The parametric complexity of a problem such as maximum flow is then the
maximum complexity of any parametrization.

To make this precise, recall that we consider combinatorial optimization problems that have
a boolean part (e. g., for maximum flow, this would be the underlying graph) and a numeric
part (e. g., the weights).

Definition 1 (see Definitions 3.1 and 3.2 of Mulmuley [Mul99]). A linear parametrization for
cardinality n for a given combinatorial maximization problem is a map I from some interval
[αmin, αmax] ⊂ R to instances with n numeric parameters such that 0) the boolean part of

1

CSC 2429 – Approaches to the P versus NP Question Lecture #8: 12 March 2014

I(λ) is independent of λ; 1) each numeric parameter of I(λ) is a Q-linear function of λ; and 2)
the optimum value of the instance I(λ), denoted OPT (I(λ)) is a piecewise-linear and convex
function of λ.

The complexity of a linear parametrization I as above is the number of bounded linear
segments of the graph Γ of OPT (I(λ)). The bit-size of a linear parametrization is the maximum
of the bit-sizes of the vertices of Γ and the bit-sizes of the coefficients in the linear functions of
λ appearing in the numeric parameters of I(λ).

The parametric complexity ρ(n) of the optimization problem is a function of n, which is
the maximum of the complexity of all linear parametrizations for cardinality n. Similarly, the
parametric complexity ρ(n, β(n)) for cardinality n and bit-size β(n) is the maximum complexity
of all linear parametrizations of cardinality n and bit-size at most β(n).

For a graph optimization problem such as maximum flow, the use of parametric complexity
allows us to reduce the space of inputs we consider drastically, while still maintaining much
of the complexity of the original problem. Naively, we have to consider all ∼ 2n

2
/n! n-vertex

graphs, and for each graph with e edges, the e-dimensional space Qe of possible weights. Instead,
we may consider a single fixed graph on n vertices and a 1-dimensional space of inputs. This
dimension reduction is quite crucial—without it, it seems quite difficult to bound the number
of indistinguishability classes, as polynomials of even moderate degree in n variables can cut up
Rn into too many pieces.

To state the lower bound for general optimization problems, we need one additional assump-
tion, which is a property shared by many natural optimization problems: namely, that if we
scale all the numeric parameters by α, then the optimum value should also be scaled by α. Such
optimization problems are called homogeneous.

The next result is the key theorem that connects parametric complexity to computational
complexity; we will spend the rest of this lecture discussing its proof.

Theorem 2 (Theorem 3.3 of Mulmuley [Mul99]). The decision version of any homogeneous op-
timization problem cannot be solved in the PRAM model without bit operations in time t(n,N) =√

log(ρ(n, β(n)))/c using 2t(n) processors for any sufficiently large constant c, where ρ(n, β(n))
is the parametric complexity of the problem as in Definition 1. This holds even if the bit-length
of the input is restricted to be at most c′β(n) for some sufficiently large constant c′.

Theorem 1 then follows from Theorem 2 together with previously known lower bounds on the
parametric complexity of various P-complete optimization problems: the parametric complexity
of combinatorial linear programming [Mur80], minimum-cost flow [Zad73], and maximum flow
[Car83a, Car83b, Mul99] are all 2Ω(n). These lower bounds hold even for parametrizations of
bit-length O(n) for combinatorial linear programming and minimum-cost flow, and O(n2) for
maximum flow.

In contrast, Mulmuley shows [Mul99, Theorem 3.10] that the parametric complexity of global
minimum cuts in weighted undirected graphs is at most polynomial (that is, minimum weight
cut over all cuts in the graph, not just over s-t cuts for some fixed s and t). This is in accord
with the fact that this problem has fast parallel algorithms in the PRAM model without bit
operations [Kar93, KM97]. Although a general theorem stating that low parametric complexity
implies low computational complexity is not known, this last result and Theorem 2 together
provide fairly strong evidence that parametric complexity closely tracks parallel computational
complexity.

2

CSC 2429 – Approaches to the P versus NP Question Lecture #8: 12 March 2014

3.3 Lower bound in the linear model

We begin with the arithmetic linear PRAM model over Q, which is a truly algebraic (and
standard) model, in which the PRAM program is only allowed to depend on the number of
rational inputs, but not their bit-length. This will exhibit in a very simple setting how a lower
bound on parametric complexity yields a lower bound on computational complexity. Extending
this to the PRAM model over Z without bit operations (program can depend on the bit-length)
will then give us occasion to introduce the next two key ideas in the proof of Theorem 1.

Proposition 3 (implicit in Section 4 of Mulmuley [Mul99]). If a homogeneous combinatorial
optimization problem of parametric complexity ρ(n) can be solved on an arithmetic linear PRAM
in time t(n) with p(n) processors, then t(n)(2p(n))t(n)+1 > ρ(n).

In particular, minimum-cost flow can’t be solved on an arithmetic linear PRAM in
√
n/c

time on 2
√
n/c processors for any large enough constant c.

Note that for the arithmetic linear PRAM we get a fairly strong time-processor trade-off,
which we’ll also get in the linear PRAM without bit operations, but not in general. Just for
safety, we emphasize again that this proposition is purely algebraic, unlike Theorem 1—no bits
here!

Proof idea. Let I(λ) be a linear parametrization for cardinality n of maximum complexity ρ
(=2Ω(n) for minimum-cost flow [Zad73]). Instances of the decision version of any combinatorial
maximization problem consists of an instance of the combinatorial optimization problem together
with a threshold τ , and the problem is to decide whether the optimum value is at least τ . We
denote the threshold of I(λ) by τ(λ). We change our arithmetic linear PRAM into an arithmetic
linear PRAM with a single input λ that first computes I(λ) and then runs the original PRAM
on I(λ). Let [αmin, αmax] ⊂ R denote the domain of definition of the parametrization, and let
αmin < α1 < . . . < αρ(n) < αmax denote the λ-coordinates of the breakpoints of the graph of
OPT (I(λ)) (recall that it’s piecewise-linear, by Definition 1). Intuitively, all a linear PRAM can
do is determine which interval [αi, αi+1] the input λ is in and then check whether the threshold
τ(λ) is less than the optimum value OPT (I(λ)). Note that within any given interval [αi, αi+1],
OPT (I(λ)) is linear, so a linear PRAM can indeed check this condition. Furthermore, as the
graph of the optimum value is convex (by Definition 1), the slopes of the lines of the optimum
value over the interval [αi, αi+1] are all distinct, so we can’t exclude from consideration any αi.

To make this idea precise, we return to the same type of reasoning as in the lower bound
on extracting bits from the previous lecture. The first branch instructions are all fixed linear
functions of λ, and there are at most p(n) of these: one per processor. These branch instructions
partition the input into at most 2p(n) + 1 classes: p(n) + 1 intervals between the roots of these
linear functions plus the p(n) roots themselves. We define two inputs to be t-indistinguishable
if they are indistinguishable by the branches executed at or before time t. For any fixed t-
indistinguishability class, the branches at time t+1 are fixed linear functions of λ, and there are
most p(n) of these. These can subdivide a given t-indistinguishability class into 2p(n)+1 (t+1)-
indistinguishability classes. By induction, we find that the total number of indistinguishability
classes at the end of the program is at most ≈ (2p(n))t(n). Each indistinguishability class is a
union of connected intervals that is determined by at most p(n)t(n) linear inequalities, as this
is the total number of inequalities that may be checked during a single execution. The total
number of inequalities checked over all indistinguishability classes—t(n)(2p(n))t(n)+1—must be
at least the number of breakpoints in the graph of OPT (I(λ)).

3

CSC 2429 – Approaches to the P versus NP Question Lecture #8: 12 March 2014

Remark 1. Because only linear functions can be considered by linear PRAMs, in the counting in
the second paragraph of the above proof outline we don’t get the extra factor of 2t(n)2 that ap-
pears in the proofs of the lower bound on extracting bits and Theorem 1. More specifically, when
multiplications are allowed, the value (2p(n))t(n) in the above proof is replaced by (2p(n)2t(n))t(n)

because in general the branch polynomials may have degree up to 2t(n). This is why we get the
time-processor trade-off for linear PRAMs but not for PRAMs allowing multiplication.

Now we extend this result from the arithmetic linear PRAM model to the linear PRAM
model without bit operations. Since we’re now keeping track of bits, we must keep in mind that
rational numbers are represented by pairs of integers.

In the preceding proof, we were essentially considering a two-dimensional linear configuration
over Q, namely the graph Γ ⊂ R2 of OPT (I(λ)). In that simple setting, we very quickly reduced
the issue to just the values of λ at which Γ changes slope, a configuration of points in R (see the
last sentence of the first paragraph of the proof outline above). In our next setting, however, we’ll
consider the graph of the optimum value as a function of two integer parameters—the numerator
and denominator of λ—so we’ll be dealing with a configuration of planes in R3, which we cannot
so easily reduce to a configuration of lines in R2, let alone a configuration of points in R. This
will naturally lead us to use a simple form of cylindrical decomposition.

Theorem 4 (Theorems 4.1 and 4.2 of Mulmuley [Mul99]). If a homogeneous combinatorial
optimization problem of parametric complexity ρ(n, β(n)) can be solved for integer parameters
of bit-length at most bβ(n) on a linear PRAM without bit operations in time t(n, bβ(n)) with
p(n, bβ(n)) processors, then (t(n, bβ(n))(2p(n, bβ(n)))t(n,bβ(n))+1)3 > ρ(n, β(n)), for any large
enough constant b.

In particular, such a problem cannot be solved on a linear PRAM without bit operations in
time t(n, bβ(n)) =

√
log(ρ(n, β(n)))/c on 2t(n,bβ(n)) processors, even if each numeric parameter

in the input is restricted have at most bβ(n) bits, for any large enough constants b, c. It follows
that minimum-cost flow on n-node graphs with every cost and capacity of bit-length at most bn
can’t be solved on a linear PRAM without bit operations in

√
n/c time on 2

√
n/c processors, for

any large enough constants b, c.

We will outline the proof of the above theorem with the exponent 3 replaced by 12, as we
use a very naive argument at one point; Mulmuley shows that 3 is in fact achievable.

Proof idea. We begin as in the proof of Proposition 3, and maintain the notation from that proof.
In particular, I(λ) is a linear parametrization of maximum complexity ρ(n, β(n)), defined on
the interval [αmin, αmax] ⊂ R, and αmin < α1 < · · · < αρ(n,β(n)) < αmax are the λ-coordinates
of the breakpoints of the graph Γ ⊂ R2 of the optimum value OPT (I(λ)).

The basic idea is this: in the arithmetic model, we considered all rational inputs, which are
dense in the plane R2. In order to decide whether a point was in the set {(λ, t) : OPT (I(λ)) ≥ t},
the density of the rational points in R2 essentially implied that an arithmetic linear PRAM had
to be able to compute the entire graph Γ of OPT (I(λ)), which had ρ breakpoints; thus over
all possible inputs the PRAM had to make at least ρ distinct branches. In the model without
bit operations, we do not get to consider all rational inputs, but only rational inputs whose
numerator and denominator both have bit-size bounded by bβ(n). This set of inputs is no longer
dense in the plane, so it is a priori conceivable that a linear PRAM without bit operations could
decide whether such a bit-bounded point was a yes-instance without having to compute enough
branches to determine the entire graph Γ, especially since the PRAM can depend on the bit-size
of the input. The basic idea is that if we allow the constant b to be large enough, then because

4

CSC 2429 – Approaches to the P versus NP Question Lecture #8: 12 March 2014

of the integer nature of the inputs, the inputs of bit-size at most bβ(n) are “dense enough” to
make the preceding argument work. In order to make this idea precise, we separate the input
parameter λ into its integer numererator and denominator and then consider a set of integer
points in R3. Actually, we have to do this anyways because the model of computation forces it
on us, but it also turns out to be useful in making this idea work.

Proof outline. As mentioned above, the input to the modified “one-input” PRAM is no longer
the single rational value λ, but consists of the integer numerator n and denominator d of λ,
that is, λ = n/d. We also need to change our parametrization from being Q-linear to being
Z-linear, which we do as follows. As I(λ) is a linear parametrization, each numeric parameter is
a function of the form uλ+v, where u, v ∈ Q. To make the u’s and v’s integers, we can multiply
all of them by the least common multiple of their denominators; since the optimization problem
is homogeneous, this multiplies the optimum value by the same factor, but otherwise leaves the
structure of the problem—including the corresponding geometry—unchanged. Next, to replace
the input parameter λ by the pair (n, d), we multiply every numeric parameter by d; again, since
the problem is homogeneous this also multiplies the optimum value by d. The resulting numeric
parameters now look like un + vd with u, v ∈ Z; we denote the resulting parametrization by
Ĩ(n, d), which is just a scaled version of I(n/d). We will now also need to consider not just the
graph Γ ⊆ R2 of OPT (I(λ)), but also the graph Γ̃ ⊆ R3 of OPT (Ĩ(n, d)); for the definition of
this graph, n and d may take any real values.

We identify the R2 in which Γ sits with the d = 1 plane in R3 via (λ,OPT)↔ (λ, 1, OPT).
This follows the general idea that λ = n/d: in fact, for any d, we can identify any d = d plane
with the d = 1 plane, and hence the (λ,OPT)-plane, via (n, d, OPT) ↔ (n/d, 1, OPT/d) ↔
(n/d, OPT/d). Under these identifications, the intersection of Γ̃ with the d = 1 plane is exactly
Γ, and the intersection of Γ̃ with the d = d plane is the d-scaled version of Γ (the image of Γ
under the map (λ,OPT) 7→ (dλ, d, dOPT)).

To simplify the ensuing discussion, we introduce the relevant geometric term: for any point
x ∈ R3, we define the fan over or through x as the line in R3 passing through the origin and
x. The fan of a set S of points is then the union of the fans of the points in S. The above
paragraph can then be rephrased succinctly as Γ̃ = fan(Γ) (at least this is true away from the
d = 0 plane, but we don’t ever need to consider that plane; Γ̃ is well-defined even when d = 0,
because the numeric inputs are un + vd).

Because we only care about integer values of n, d of bit-length at most bβ(n), we need only
consider the situation with a certain box in R3. We’re happy to exclude the possibility of d = 0,
and we may assume without loss of generality that d is always positive. We thus consider the
bounding box defined by 1 ≤ d ≤ 2bβ(n) and −2bβ(n) ≤ n ≤ 2bβ(n).

At this point—before we’ve actually proved anything—it’s already worth remarking on how
this geometric picture will help implement the proof idea discussed above. Integer points in R3

with higher values of d correspond to rational points in R2 with larger denominators. The idea
is that if we take the constant multiplier b of the bit-size bound to be large enough, then there
are enough integer points within the bounding box that are sufficiently close to fan(Γ) = Γ̃ to
force the linear PRAM without bit operations to have to compute at least a significant fraction
of the bounded linear segments of Γ. Here, “sufficiently close” means that, if the point is in the
d = d plane, then within the d = d plane the distance from the point to Γ̃ ∩ {d = d} in the
OPT -direction is at most 1. If we translate this back to the d = 1 plane, this means the point is
closer than 1/d to Γ, capturing the idea that the points are “sufficiently dense” suggested above.

To implement this idea, we start from the other direction and assume that there is a linear

5

CSC 2429 – Approaches to the P versus NP Question Lecture #8: 12 March 2014

PRAM that solves the problem for bβ(n)-bit-bounded inputs in time t(n) on p(n) processors.
(In fact, t(n) and p(n) could also depend on bβ(n), but the lower bound is strong enough not
to need this.) We define t-indistinguishability classes as in the proof of Proposition 3. Within
each t-indistinguishability class, the branch instructions at time (t + 1) introduce additional
planes into R3. The counting is the same as in the previous proposition: there are at most
t(n)(2p(n))t(n)+1 planes defined by all branch instructions over all inputs.

Let δ denote the number of planes. The bounding box is sliced up by these δ planes into
at most O(δ3) cells. A standard result from computational geometry (see, e. g., [Mul93]) lets us
refine this decomposition further to get cells with a particular shape. In particular, we want each
cell in the resulting to decomposition to be a “cylinder:” it should have six sides, a well-defined
floor—a unique facet that is hit first by any ray from the origin—and similarly a well-defined
ceiling. The procedure for this is as follows: consider the projection of every intersection of
planes to the d = 1 plane. This gives an arrangement lines in the plane. Add a line parallel
to the OPT -axis through every intersection point of this line arrangement. Then add to the
original δ planes the fans through the resulting line arrangement in the plane. Even a very
naive argument shows that the resulting arrangement has at most O(δ4) planes: there are at
most O(δ2) pairs of planes to intersect, and then after projection these intersections to the
plane there are at most O(δ4) pairs of lines to intersect. The resulting arrangement of planes
carves the bounding box into at most O(δ12) cells. In fact, one can do much better than this,
but any constant exponent would have sufficed. This implements the standard technique from
computational geometry, so the resulting cells are all cylinders, as desired. Let ∆ denote the
number of cells in the resulting arrangement.

Finally, we use a counting argument to show that the average number of bounded linear
segments of Γ that are “close” to a given cell of the resulting arrangement is sufficiently large.
Comparing the total number of sides of cells (6∆) to the number of linear segments these sides
must be close to (a nontrivial fraction of ρ(n, β(n))), gives the desired result.

Suppose a cell contains an integer point of Γ̃. Note that points on Γ̃ are yes-instances of the
optimization problem; also, if (n, d, opt) is a point of Γ̃ then (n, d, opt − 1) is a no-instance. As
our original PRAM program correctly solves the optimization problem, the cells of the original
partition cannot contain both a point (n, d, opt) ∈ Γ̃ and (n, d, opt − 1). As the new partition
refines the original partition, the same is true of the cylindrical cells in our new partition. This
suggests the following definition: given a point p ∈ Γ ⊂ {d = 1}, say that a cell is good for p if
it contains some integer point on the ray through p (which is necessarily a point of Γ̃). If ` is
a bounded linear segment of Γ, say that a cell C is good for ` if C is good for a 1/∆ fraction
of δ13 points on ` whose n-coordinates are equally spaced (recall that ∆ is the total number of
cells). Note that if C is good for `, then some bounding hyperplane of C must be close to fan(`),
as otherwise C would contain both yes- and no-instances. By choosing the constant b in the
bit-bound bβ(n) sufficienty large, a simple counting argument, using the fact that the vertices
of Γ have bounded bit-length, shows that there is a cell of the arrangement which is not only
good for a single linear segment `, but good for a 1/∆ fraction of such linear segments of Γ.
This is only possible if the number of bounding hyperplanes of C—namely six—is greater than
the number of such linear segments. In other words, we need that 6∆ ≥ ρ(n, β(n)). As ∆ is at
most (t(n)(2p(n))t(n)+1)12, this completes the proof.

6

CSC 2429 – Approaches to the P versus NP Question Lecture #8: 12 March 2014

3.4 Lower bound in the general model: from linear geometry to algebraic
geometry

Finally, we give the idea of how to extend the proof from linear PRAMs without bit operations to
general PRAMs without bit operations. The basic idea and outline is the same as in Theorem 4.
The catch is that the branching functions will no longer be linear, but may be higher-degree
polynomials.

Extending the proof from the linear to the general PRAM model without bit operations is
where all of the deep results from real algebraic geometry get used. In particular:

1. The O(m3) upper bound on the number of faces in an arrangement of planes in R3 gets
replaced by the Milnor–Thom bound on the number of connected components of a (hy-
per)surface arrangement [Mil64, Tho65], where the surfaces may be defined by polynomials
of a given degree;

2. The easy cylindrical decomposition for hyperplane arrangements gets replaced by the
Collins cylindrical decomposition [Col75] for real semi-algebraic varieties, with similar
properties of the resulting decomposition. The process of constructing this decomposition—
projecting onto the plane, adding additional lines, and then taking fans—is similar in out-
line but a bit more complicated in detail than in the linear case, so we discuss it further
below;

3. In order to make all of this work—especially the way in which the cylindrical decomposition
is used—we have to be careful about any singularities the hypersurfaces may have and how
such hypersurfaces may intersect. In the linear case, hyperplanes are always smooth, and
the intersection of any two distinct but intersecting hyperplanes is always a transverse
intersection.1 To ensure this, classical results of differential geometry (see, e. g., [GG73,
Chapter 2]) imply that it is enough for the hypersurfaces to be in “general position,” which
can be achieved by an arbitrarily small perturbation of their coefficients. For technical
reasons, we’ll also want to ensure that no point of interest actually lands squarely on a
hypersurface; this can be achieved by adding ±ε to the constant term of every polynomial,
and at most doubling the number of branch instructions, as in the proof of the lower bound
on extracting bits from last lecture.

Note how the use of multiplication in the computation naturally leads to the use of algebraic
geometry in the lower bound.

To get a cylindrical decomposition in the general case, we first project onto the d = 1 plane.
In the linear case, we could project the intersection of any two planes. In the general case, we
not only project all the pairwise intersections of surfaces—which will be 1-dimensional curves
of potentially high degreee—but also the silhouette of every surface: essentially the outline of
the intersection of the fan of the surface with the d = 1 plane. We then add new OPT -axis-
parallel lines in the d = 1 plane through every intersection point of the resulting set of curves
and through any point at which the curve becomes tangent to a OPT -axis-parallel line. As

1An intersection of two surfaces is transverse if it locally looks like an intersection of two planes. More formally,
the intersectionf two surfaces S, S′ is transverse at the point x ∈ S ∩ S′ if the only vectors based at x that are
tangent to S and S′ are those which are tangent to S ∩S′. An example of a non-transverse intersection of curves
in R2 is the intersection of the sets S = {(x, y) : y = x3} and S′ = {(x, y) : y = −x3}. The intersection is the
origin, which has no tangent vectors, as it is zero-dimensional. However, because of the inflection point at the
origin in the graphs of x3 and −x3, the vector (1, 0) is tangent to both S and S′ at the origin.

7

CSC 2429 – Approaches to the P versus NP Question Lecture #8: 12 March 2014

before, we take the fan of the resulting arrangement of curves in the δ = 1 plane. We then take
the additional step of adding horizontal planes parallel to the δ = 1 plane at sufficiently many
equally spaced intervals in the bounding box.

The proof then proceeds essentially as before, with one more ingredient. Rather than merely
bounding the number of bounding hyperplanes of each cell, the boundary components of a cell
may be surfaces defined by higher-degree equations. Counting the number of sides is replaced by
a more complicated argument using the degree of the equations defining the bounding surfaces.
This is then used to get a bound on the number of inflection points of these bounding surfaces,
which can be seen as a rough measure of how many planes would be needed to approximate
the surface. Then essentially the same idea as before is used: a counting argument shows that
some cell must be good for many segments of Γ, which is impossible because there aren’t enough
inflection points in its bounding hypersurfaces.

4 Towards P 6= NC and Geometric Complexity Theory

To put this result in a larger context and relate it to P versus NC and the Permanent ver-
sus Determinant Conjecture, we rephrase it in terms of a variant of determinantal complexity.
The determinantal complexity of a polynomial f(~x) is the smallest m such that f is an affine
projection of detm.

Recall that in the boolean world, NC is the same as the set of those languages whose char-
acteristic functions have quasi-polynomial-size (i. e., 2poly(logn)) boolean formulas. In the al-
gebraic world, a function has a quasi-polynomial-size algebraic formula if and only if it has
quasi-polynomial determinantal complexity (equivalently, the determinant is complete under
qp-projections for VQP = VQPe). The definition and conjecture below can be seen as bridging
the formal gap between these analogous facts.

The second half of the following definition is implicit in Mulmuley [Mul99, Definition 7.2].
Let B(β) denote the set of sequences of arbitrarily many integers in which each integer has
bit-length at most β; thus for any n, Zn ∩ B(β) consists of all n-tuples of integers each with
bit-length at most β.

Definition 2 (compare Definition 7.2 of Mulmuley [Mul99]). Let L be a subset Zn. The bit-
bounded determinantal complexity of L over C, denoted bdcC,β(L) or just bdcβ(L), is the least
m such that the characteristic function of L, 1L, agrees with a projection of of detm on inputs
each of whose parameters has bit-length at most β. More verbosely, bdcβ(L) is the least m such
that there is an m×m matrix M(x1, . . . , xn) whose entries are affine C-linear combinations of
the xi such that 1L(~x) = detm(M(~x)) for all ~x ∈ Zn ∩B(β).

The positive bit-bounded determinantal complexity of L over C, denoted bdc+
C,β(L) or bdc+

β (L),
is the least m such that there is an m ×m matrix M as above such that ~x ∈ L if and only if
detm(M(~x)) = 1 for all x ∈ Zn ∩B(β).

Mulmuley introduced a conjecture on the positive bit-bounded determinantal complexity of
the decision version of minimum-cost flow, restricted to inputs with parameters of bit-size at
most β = bn. If the conjecture holds for all values of b, then P 6= NC; using the same techniques
as in Theorem 1 he shows that the conjecture holds for all sufficiently large b. This naturally
leads to an idea of the limitations of the techniques of this lower bound, and how they might be
overcome. In the remainder of this section we discuss this conjecture and related results, and
how it could lead one naturally to the current GCT Program.

8

CSC 2429 – Approaches to the P versus NP Question Lecture #8: 12 March 2014

Let Ln denote the language consisting of the yes-instances of the decision version of the

minimum-cost flow problem on n-vertex graphs. Ln is an infinite subset of Z2(n2)+2, as this is
how many integer parameters are needed, but the exact number of such parameters isn’t crucial.

Conjecture 5 (Section 7 of Mulmuley [Mul99]). The positive bit-bounded determinantal com-
plexity of minimum-cost flow with weights of bit-size ≤ bn is exponential. More precisely, with
notations as above, for all constant b > 0, for a sufficiently large constant c, and for all suffi-
ciently large n,

bdc+
C,bn(Ln) > 2n/c.

A few remarks are in order:

• Of course this conjecture could also be made for any sufficiently algebraic problem that
is not expected to be in NC; for problems in P, any problem in strongly polynomial time
is likely to be “sufficiently algebraic,” but the conjecture could also be made for problems
outside of P.

• It is natural to wonder why one should allow C-linear combinations in Conjecture 5,
when we are only concerned with integer inputs. The analogous definition with Z-linear
combinations would indeed be quite reasonable. The complex numbers are used primarily
because algebraic geometry is much nicer over C; it is plausible that this doesn’t strengthen
the conjecture much (if at all), as it seems unlikely that the conjecture would hold for Z-
linear combinations but not C-linear combinations.

• We could have written the conjecture above as (∀b > 0)bdc+
C,bn(Ln) > 2Ω(n), but, as we’ll

see in the next few results, the relationship between the bit-size bn and the constant 1/c
in the exponent of the conjectured lower bound turns out to be crucial. Furthermore,
although Mulmuley only made the conjecture for positive bit-bounded determinantal com-
plexity, we’ll see as we go along that this may not be crucial—the analogous conjecture for
usual bit-bounded determinantal complexity seems to have the same implications, both
formal and informal.

Before we get to those results, we’ll try to give some intuition for this conjecture.
There are at least two intuitive motivations for Conjecture 5. We first give our own after-

the-fact motivation for the conjecture, and then discuss the intuitive a priori explanation given
by Mulmuley.

Since NC corresponds to quasi-polynomial boolean formula size, and quasi-polynomial alge-
braic formula size corresponds to quasi-polynomial determinantal complexity, a natural conjec-
ture which one would guess is nearly equivalent to P 6= NC would be that the determinantal
complexity of some function in P is more than quasi-polynomial. To make this precise, since P is
a boolean class, the conjecture uses bit-bounded determinantal complexity instead. The bound
2Ω(n) can be seen simply as a natural choice for a super-quasi-polynomial function; indeed, one
could also make the conjecture that bdc+

C,bnε > 2n
ε/c for some ε > 0, and the remaining results

in this section would still be true (in particular, this conjecture would still imply P 6= NC).
Mulmuley [Mul99, pp. 1504–1505] motivates Conjecture 5 by noting that it’s weaker than

run-time of the currently best-known parallel method of solving minimum-cost flow under the
assumption that maximum matching lies in NCk for some k > 1 (not necessarily an integer). The
method involves “exploding” the bits from the poly(n) input parameters of bit-size β describing
a weighted graph to get poly(n)2β boolean parameters describing an unweighted graph, in such a

9

CSC 2429 – Approaches to the P versus NP Question Lecture #8: 12 March 2014

way that minimum-cost flow is reduced to maximum-cardinality matching. One may then apply
any parallel algorithm for maximum matching, whence it is called the “explode-and-match”
method. If maximum matching is in NC1, then the conjecture is false for sufficiently small
b, but it is widely-believed that maximum matching is not in NC1, which is roughly (but not
formally) equivalent to the belief that the determinant is not in NC1 (does not have polynomial-
size formulas). Even if maximum matching is in NC1+ε for any ε > 0, the run-time of the
explode-and-match method is 2O(n1+ε). The conjecture is then motivated by the possibility that
one cannot do much better than this method even for inputs of small bit-length (which would
in fact suggest a slightly stronger conjecture with a lower bound of 2Ω(n1+ε)).

Now we move onto the consequences of Conjecture 5.

Proposition 6 (Proposition 7.3 of Mulmuley [Mul99]). If Conjecture 5 holds for some positive
b < 1/(2c), then P 6= NC.

We give the proof here because it is short and illuminating, and also so we may see how
it goes through even for bdc instead of bdc+, and furthermore, even if we conjectured only
bdcZ,bnε(Ln) > 2n

ε/c.

Proof (Mulmuley [Mul99]). Suppose P = NC. Then there is a boolean formula of size 2poly(logn)

in the input bits such that the formula evaluates to 1 if and only if the corresponding instance of
minimum-cost flow is a yes-instance, and 0 otherwise (this is unconditionally true of any function
in NC). Treat this boolean formula as a formula over the integers via the usual translation
¬x 7→ 1− x and x∧ y 7→ xy. However, the inputs to this integer formula are still the bits of the
integer parameters in the original instance. To get an integer formula whose inputs are the input
integer parameters themselves, we must get integer formulas that extract the bits of the integer
inputs. This can be done for all inputs in Ln ∩ B(bn) by Lagrange interpolation; the resulting
formula for each bit of each input has size at most O((2bn)2). Since inputs may be used more than
once in the 2poly(logn) formula above, we may need to use 2poly(logn) copies of the bit-extraction
formulae, resulting in a Z formula in the integer inputs of size at most O(22bn+poly(logn)). By
the efficient reduction of Liu and Regan [LR06], this formula is a Z-projection of a determinant
of basically the same size (just one larger). When b < 1/(2c), this contradicts Conjecture 5.

Remark 2. There is only one small change needed for the above proof to apply to the bit-
bounded determinantal complexity analogue (instead of bdc+) of Conjecture 5. Namely, rather
than only applying Lagrange interpolation to the points of Ln ∩B(bn) (those points with value
1), apply Lagrange interpolation to every input of bit-length at most bn, some of which will
have value 1 (those in Ln) and some 0 (those not). Since the proof only used the bound
|Ln ∩B(bn)| ≤ 2bn = |B(bn)|, the rest of the proof goes through unchanged. C

The same ideas that are used to prove Theorem 1 also show:

Theorem 7 (Theorem 7.4 of Mulmuley [Mul99]). Conjecture 5 holds for all large enough b.

Remark 3. Although we didn’t give the proof here, the proof of Theorem 7 also goes through for
the bdc-analogue (rather than bdc+) of Conjecture 5 with only one minor change. The difference
is that instead of only considering the hypersurface {X : det(X) = 1}, one must also consider
the hypersurface {X : det(X) = 0}; this at most doubles the total degree of the hypersurface
arrangement, and the rest of the proof goes through verbatim. C

Thus we have a single conjectured lower bound which:

10

CSC 2429 – Approaches to the P versus NP Question Lecture #8: 12 March 2014

1. Morally seems nearly equivalent to P 6= NC;

2. Holds true for sufficiently large—but still O(n)—bit-size by the methods of Mulmuley
[Mul99]; and

3. For sufficiently small linear bit-size implies P 6= NC.

To approach P 6= NC, it is thus crucial to see what the difference is between these two settings—
large and small (linear) bit-size—and what the exact limitations of these techniques are. We’ll
also see that similar reasoning will show us the limitations of these techniques for other problems
as well, such as permanent versus determinant, and these limitations will in turn suggest a way
forward.

The limitation which stands out the most, both for P 6= NC and permanent versus deter-
minant, is the extreme reliance of this technique on degree. In particular, the proof of the
conjecture for large bit-size (Theorem 7) doesn’t depend on the determinant at all, but only on
its degree: the same proof also applies to the analogue of Conjecture 5 where projections of the
determinant are replaced by projections of any function of the same degree. Such techniques
can’t work to prove the conjecture in its full strength, because one can construct in a straight-
forward fashion, using the techniques of Proposition 6, a function g of the same degree as the
determinant, yet for which the conjecture fails when bit-bounded determinantal complexity is
replaced by bit-bounded g-complexity [Mul99, Proposition 7.5]. This may be taken in the same
spirit as the algebraic relativization or “algebraization” barrier [AW08] (see also [For94]).

When applied to the Permanent versus Determinant Conjecture, one could consider Con-
jecture 5 with the permanent in place of minimum-cost flow; the resulting conjecture is nearly
equivalent to #P 6= NC, and thus would imply the Permanent versus Determinant Conjecture
(which is essentially #P 6= NC2). Here we’ll see a different facet of the degree-limitation of these
techniques.

The decision version of computing the permanent is to decide whether or not perm(X) ≥ t
where t is an input threshold. In tracing through the proof of Theorem 1, but with the permanent
decision problem in place of minimum-cost flow, one eventually gets to a point where one needs
to know that none of the polynomials computed at the branch instructions of the PRAM can
be the permanent. But this is essentially the problem we began with: to show that a PRAM
without limited bit operations can’t compute the permanent efficiently. And indeed, we still
don’t know how to rule this out: PRAMs with limited bit operations can computed polynomials
of the same degree as the permanent in time O(log n) on even a single processor. This naive
argument may seem a bit circular, but we can lend more weight to it by delving a little further
into the geometry involved in the proof.

Whereas in the proof for minimum-cost flow the set of yes-instances was defined as the
integer points bounded by the graph of the optimum value of a hard parametrization, here
the yes-instances are defined by the graph of the permanent. So we replace an arrangement
of 2Ω(n) (bounded) hyperplanes with the single hypersurface {X : perm(X) = t}. Although
each hyperplane is of degree 1, an arrangement of 2Ω(n) hyperplanes has total degree 2Ω(n),
and it is this geometry that cannot be mimicked by the polynomials computed by an efficient
PRAM with limited bit operations. In contrast, in the case of the permanent, the hyperplane
arrangement of total degree 2Ω(n) gets replaced by the single hypersurface {X : perm(X) = t}
which has (total) degree n, since it’s defined by the vanishing of the single degree-n polynomial
perm(X)− t. Although this explanation may (or may not!) have sounded more convincing, it is

11

CSC 2429 – Approaches to the P versus NP Question Lecture #8: 12 March 2014

also not quite enough, because it doesn’t explain why the technique fails. However, I hope that
it provides a pleasing and helpful intuitive geometric picture.

The ultimate reason these techniques don’t work to rule out the geometry of a low-degree
hypersurface like {X : perm(X) = t} is that all of the key geometric results—the Milnor–Thom
bound, the Collins decomposition, and the general position argument—depended at most on
the degree of the polynomials comptued at the branch instructions, and nothing else (it’s in fact
this degree, rather than the degree of the hypersurfaces considered in the previous paragraph,
that’s the key limitation). But this degree can be 2t(n) (where t(n) = O(

√
n) is the bound on

the parallel running time), larger than the degree of the permanent.
The question—both for P versus NC and permanent versus determinant—is then what other

(geometric?) properties of NC or (nearly-equivalently, as in the motivation for Conjecture 5) the
determinant can we use? In the context of permanent versus determinant, this point becomes
even finer: what (geometric?) properties of the determinant distinguish it from the permanent?

One natural property which immediately suggests itself is that the symmetries of the determi-
nant are linear-algebraic in nature, whereas the symmetries of the permanent are combinatorial
in nature. This leads to the notion of symmetry-characterization, a conjecturally crucial phe-
nomenon in GCT (the phenomenon is real, its cruciality is conjectured). Also, essentially all
known lower bounds on the permanent use some geometric property of the permanent hyper-
surface beyond just its degree. But the geometric properties used so far have their limitations:
most of them apply equally well to prove the same lower bound on the determinant, and the
only one that doesn’t (the famous n2/2 bound [MR04, LMR10]) can easily be shown to be the
optimal bound achievable using that property. Using algebraic geometry and representation the-
ory, the GCT Program suggests a more systematic and global way of understanding the possible
geometric properties of the determinant, and suggests a way of using this global understanding
to prove lower bounds.

References

[AW08] Scott Aaronson and Avi Wigderson, Algebrization: a new barrier in complexity theory,
STOC ’08: 40th Annual ACM Symposium on Theory of Computing, ACM, New York,
2008, pp. 731–740.

[Car83a] Patricia J. Carstensen, Complexity of some parametric integer and network program-
ming problems, Math. Programming 26 (1983), no. 1, 64–75.

[Car83b] Patricia June Carstensen, The complexity of some problems in parametric linear and
combinatorial programming, Ph.D. thesis, University of Michigan—Ann Arbor, Ann
Arbor, MI, 1983.

[Col75] George E. Collins, Quantifier elimination for real closed fields by cylindrical alge-
braic decomposition, Automata theory and formal languages (Second GI Conf., Kaiser-
slautern, 1975), Lecture Notes in Computer Science, vol. 33, Springer, Berlin, 1975,
pp. 134–183.

[For94] Lance Fortnow, The role of relativization in complexity theory, Bull. Eur. Assoc. The-
oret. Comp. Sci. (1994), no. 52, 229–244.

[GG73] M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Springer-
Verlag, New York, 1973, Graduate Texts in Mathematics, Vol. 14.

12

CSC 2429 – Approaches to the P versus NP Question Lecture #8: 12 March 2014

[Kar93] David R. Karger, Global min-cuts in RNC, and other ramifications of a simple min-
cut algorithm, SODA ’93: 4th ACM–SIAM Symposium on Discrete Algorithms (New
York), ACM, 1993, pp. 21–30.

[KM97] David R. Karger and Rajeev Motwani, An NC algorithm for minimum cuts, SIAM J.
Comput 26 (1997), no. 1, 255–272.

[LMR10] J. M. Landsberg, Laurent Manivel, and Nicolas Ressayre, Hypersurfaces with degener-
ate duals and the Geometric Complexity Theory Program, arXiv:1004.4802 [math.AG],
2010.

[LR06] Hong Liu and Kenneth W. Regan, Improved construction for universality of determi-
nant and permanent, Inform. Process. Lett. 100 (2006), no. 6, 233–237.

[Mil64] John Milnor, On the Betti numbers of real varieties, Proc. Amer. Math. Soc. 15 (1964),
275–280.

[MR04] Thierry Mignon and Nicolas Ressayre, A quadratic bound for the determinant and
permanent problem, Int. Math. Res. Not. (2004), no. 79, 4241–4253.

[Mul93] Ketan D. Mulmuley, Computational geometry: an introduction through randomized
algorithms, Prentice Hall, 1993.

[Mul99] Ketan Mulmuley, Lower bounds in a parallel model without bit operations, SIAM J.
Comput 28 (1999), no. 4, 1460–1509 (electronic).

[Mur80] Katta G. Murty, Computational complexity of parametric linear programming, Math.
Programming 19 (1980), no. 2, 213–219.

[Tho65] René Thom, Sur l’homologie des variétés algébriques réelles, Differential and Combi-
natorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press,
Princeton, N.J., 1965, pp. 255–265.

[Zad73] Norman Zadeh, A bad network problem for the simplex method and other minimum
cost flow algorithms, Math. Programming 5 (1973), 255–266.

13

	Dimension reduction via parametric complexity
	Lower bound in the linear model
	Lower bound in the general model: from linear geometry to algebraic geometry
	Towards P versus NC and Geometric Complexity Theory

