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This lecture consist of two parts:

(1) We introduce Valiant’s [Val77] concept of matrix rigidity and prove a theorem of Valiant
that relates rigidity to proving size lower bounds for log-depth circuits.

(2) We discuss a theorem of Razborov [Raz89] (following [Wun12]) that interprets rigidity as
a complexity measure in the field of communication complexity. In particular, the result-
ing measure is stronger than the analogue of the polynomial hierarchy in communication
complexity (for which no explicit lower bounds are known).

1 Matrix Rigidity

Fix some field F (e.g., F = GF(2), for simplicity). Informally, a matrix A ∈ Fn×n is rigid if it
is far from all low-rank matrices in Hamming distance. More formally, letting |B| denote the
number of non-zero elements in a matrix B ∈ Fn×n the rigidity of A is defined by

RigA(r) = min{|B| : rank(A+B) ≤ r}.

In words, RigA(r) = k iff k is the minimum number of entries of A that need to be modified in
order to bring the rank of A down to r.

Warm-up. It is an easy exercise to prove that for all A we have RigA(r) ≤ (n− r)2. This is
nearly tight by a direct counting argument: Valiant [Val77, Theorem 6.4] proves that RigA(r) is
at least about (n− r)2/ log n for a random A (and all fields F). This shows that rigid matrices
exist in great numbers—however, as always, the challenge is to exhibit an explicit such matrix.

Currently, the best explicit construction over finite fields is due to Friedman [Fri93] (see also
Jukna [Juk12, §13.8]) that achieves rigidity of about ≥ n2/r log(n/r). Here we restrict to giving
a simpler construction1 due to Midrijānis [Mid05] that comes close to this: Suppose n is divisible
by 2r and construct A as the block matrix having n2/(2r)2 blocks, each containing a copy of
the 2r× 2r identity matrix. Then RigA(r) ≥ n2/4r since in order to reduce the rank of A to at
most r we need to reduce the rank of each 2r × 2r identity block to at most r and this requires
modifying at least r entries in each block.

1See also some related discussion in the Computational Complexity blog at:
http://blog.computationalcomplexity.org/2005/07/matrix-rigidity.html.
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2 Lower bounds against log-depth circuits

Next, we study linear circuits that compute a linear map x 7→ Ax defined by some A ∈ Fn×n.
Here x = (x1, . . . , xn) is a vector in Fn and the inputs to the linear circuit are the n variables
xi, i ∈ [n]. The task is to compute the n outputs of the vector Ax by using only linear gates,
namely +-gates of fan-in 2 and also gates that perform multiplications by constants in F.

Which matrices A are hard to compute in this setting? We prove the following result of
Valiant stating that rigid matrices are hard for log-depth circuits.

Theorem 1 (Valiant [Val77]). Suppose that A ∈ Fn×n can be computed with a linear circuit of
size O(n) and depth O(log n). Then RigA(O(n/ log logn)) ≤ n1+ε for any constant ε > 0.

Indeed, contrapositively, if we could exhibit a matrix A such that RigA(O(n/ log logn)) ≥
n1+ε for some constant ε > 0 then Theorem 1 implies that A cannot be computed in simultaneous
size O(n) and depth O(log n). This would solve a long-standing open problem. Note in particular
that we currently lack explicit matrices with these required rigidity properties.

We need the following lemma in the proof.

Lemma 2. Given a DAG G with m edges and depth d there is a set of m/ log d edges such that
by deleting them we obtain a graph of depth at most d/2.

Proof. A proper labelling of G is a labelling of the nodes with nonnegative numbers such that
if (u, v) is an edge, then the label of u is smaller than the label of v. Since G has depth d there
exists a canonical proper labelling using labels from [0, d]. Partition the edges of G into log d
colour classes as follows: an edge (u, v) has colour i ∈ [0, log d] if the most significant bit where
the labels of u and v differ (when written in binary) is the i-th from the left. Delete the edges in
the color class that has the fewest edges; say this is the i-th class. We claim that the resulting
graph has depth at most d/2. Indeed, consider the node labelling obtained from the canonical
one by deleting the i-th bit. The resulting labelling uses labels from [0, d/2] and it is easy to
check that this labelling is proper, which proves the claim.

Proof of Theorem 1. Let C be a linear circuit for A of size O(n) and depth O(log n). By applying
Lemma 2 some O(1) many times we can find a set of wires E, |E| = O(n/ log logn), such that
their removal from C decreases the depth below ε log n. To prove the theorem it suffices to
express A as

A = B +H.

where B is sparse, |B| ≤ n1+ε, and H has low rank, rank(H) = O(n/ log logn).
Low-rank matrix H: For each wire e ∈ E we associate a rank-1 matrix He defined as

follows. The value computed by e on input x = (x1, . . . , xn) is some linear combination 〈αe,x〉
of the input variables where αe ∈ Fn. We define the j-th row of He as βjαe where βj ∈ F
is the coefficient with which the value of e appears in the j-th output node. (More precisely,
βj =

∑
p βj,p where the sum is taken over all paths p from e to the j-th output and βj,p is the

product of the constants appearing on the multiplication gates in p.) Set H =
∑

eHe so that
rank(H) = O(n/ log logn).

Sparse matrix B: We define B similarly to H except now we look at the input variables
instead of the edges in E. Namely, we define B by letting its j-th row be equal to the vector
of coefficients with which the input variables appear in the j-th output in the reduced circuit
C r E (where we now think of the edges E as just outputting the value 0). Because the depth
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of C r E is only ε log n each row of B will have at most nε many non-zero entries. This yields
|B| ≤ n1+ε as required.

3 Rigidity and communication complexity

Next we highlight a connection due to [Raz89, Wun12] that relates rigidity and an analogue
of the polynomial hierarchy in communication complexity. In this section we assume some
familiarity with basic two-party communication complexity; see, e.g., the textbook [KN97].

One of the most fundamental complexity classes in communication complexity is NP. This is
the the class of boolean 2n × 2n matrices A (the columns and rows of A are indexed by {0, 1}n)
whose 1-entries can be covered using 2polylog(n) many rectangles. (We just abused language: by
a matrix A ∈ NP we actually mean a sequence of matrices, one for each n.) We also define ⊕P
as the class of matrices whose rank over GF(2) is at most 2polylog(n). Equivalently, A ∈ ⊕P iff
there is a set of 2polylog(n) many rectangles Ri such that every 1-entry of A is covered by odd
many of the Ri and each 0-entry of A is covered by even many of the Ri.

We can use class operators to define new classes out of existing ones in perfect analogy to
classical (i.e., poly-time Turing machine) complexity theory. Let C be any class of matrices.

− Complements: A ∈ co · C iff the boolean complement of A is in C.

− Nondeterminism: A ∈ ∃ · C iff there are 2polylog(n) many matrices Bi ∈ C such that

A =
∨
i

Bi (entry-wise).

(Strictly speaking, here we are implicitly requiring that the complexities of the Bi are

upper bounded uniformly, i.e., they have have the same complexity, e.g., ≤ 2log
C(n).)

− Conondeterminism: ∀ · C = co · ∃ · co · C.

− The polynomial hierarchy PH is defined as the union

PH =
⋃
k≥1

Σk,

where Σ1 = NP and Σk+1 = ∃ · co · Σk.

− Bounded-error probability operator: A ∈ BP · C iff there is a probability distribution µ on
matrices B ∈ C (whose complexities are uniformly bounded) such that for all x, y ∈ {0, 1}n

Pr
B∼µ

[A(x, y) = B(x, y)] ≥ 2/3.

Proving lower bounds against NP is easy: any covering of the 1-entries of the 2n×2n identity
matrix I requires 2n rectangles so that I /∈ NP. By contrast, no explicit matrices are known
that are outside Σ2! It is a long-standing open problem to prove lower bounds against PH or
even Σ2. Razborov’s result states that such lower bounds would follow from sufficiently rigid
matrices.

Theorem 3 ([Raz89, Wun12]). Suppose A ∈ PH. Then (over GF(2))

RigA(2polylog(n)) ≤ 22n−polylog(n).
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We do not give a full proof of Theorem 3 here, but only sketch the main ideas following
Wunderlich [Wun12]. (See also [Juk12, Theorem 12.39] for an English translation of Razborov’s
orignal proof.)

First, in classical complexity theory, (the first part of) Toda’s theorem [Tod91] states that

PH ⊆ BP · ⊕P. (1)

It turns out that Toda’s proof translates rather directly to the communication complexity set-
ting so that (1) continues to hold for the classes as defined above. In fact, since two-party
communication is a non-uniform model of computation, many of the ideas in Toda’s proof can
be simplified as efficiency is not a concern.

Second, by definition, each matrix A ∈ BP · ⊕P can be approximately represented as a
probability distribution over rank-2polylog(n) matrices. By averaging, there must exist a setting
of randomness yielding a fixed matrix B ∈ ⊕P that agrees with A on at least a 2/3 fraction of
entries.2 This implies that A can be written as

A = B + C, where |C| ≤ 1/3 · 22n,

which gives
RigA(2polylog(n)) ≤ 1/3 · 22n.

If we had first amplified the success probability of the BP · ⊕P matrix to 1−2− polylog(n) (which
is doable inside BP · ⊕P), we would obtain the bound claimed in Theorem 3.
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with its randomised complexity; see http://en.wikipedia.org/wiki/Yao’s_principle for more details.
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