
Information Processing Letters 34 (1990) 81-85
North-Holland

16 March 1990

A FEASIBLY CONSTRUCTIVE LOWER BOUND FOR RESOLUTION PROOFS *

Stephen COOK and Toniann PITASSI

Department of Computer Science, University of Toronto, Sandford Fleming Bldg 2303 C, Toronto, Canada MSSIA4

Communicated by T. Lengauer
Received 2 May 1989

Revised 2 October 1989

Keywords: Constructive proof, resolution, lower bound, polynomial time

1. Introduction

Haken [4] first proved the intractability of reso-
lution by showing that a family of propositional
formulas encoding the pigeon-hole principle re-
quire superpolynomial-sized resolution proofs.
Later, several authors [6,1,2] extended Haken’s
techniques to obtain exponential lower bounds on
the size of resolution proofs. All of these results
are based on the counting method used by Haken
and later reformulated as a probabilistic method
by Urquhart 161.

In this paper we describe a simpler and more
direct method which can replace the counting and
probabilistic methods. Our method is feasibly con-
structive in the sense discussed in [3]. Informally,
this means that all concepts in the proof are
polynomial time. We present a polynomial time
greedy algorithm which, when presented with a
candidate resolution proof that is too short, pro-
duces a mistake in the proof. Further, we present
a feasibly constructive correctness proof for the
algorithm. In contrast, the counting arguments
show the existence of the mistake indirectly by
bounding the sizes of exponentially large sets.

In [3] it is shown (Theorem 10.16) that an
“extended Frege system” (a kind of propositional
proof system stronger than resolution) cannot

* Research supported by the Natural Sciences and Engineer-
ing Research Council of Canada.

feasibly constructively be proved not polynomially
bounded, in the precise sense that a certain for-
mula ,PB(EF) is not a theorem of the system
IPV”. In contrast, the present paper shows in
outline that the formula ,PB(RES) is indeed a
theorem of IPV”, where ,PB(RES) is a formula
similar to ,PB(EF), but stating that resolution
(instead of an extended Frege system) is not poly-
nomially bounded. This shows that proving intrac-
tability of extended Frege systems requires new
techniques.

In this paper, we first review how the counting
and probabilistic methods are used to obtain su-
perpolynomial lower bounds on resolution proofs.
Second, we present a similar lower bound using
the greedy method. Third, by extending the analy-
sis of this new method to weaker forms of the
pigeon-hole principle formulas, we obtain lower
bounds similar to those obtained by Buss and
Turan [l]. Finally, we briefly discuss how the
greedy method can be extended and shown to
apply to the results of Urquhart [6] and Chvatal
and Szemeredi [2].

2. Background

The negation of the pigeon-hole principle can
be encoded by a family of unsatisfiable proposi-
tional formulas { PHP, 1 n E N } in conjunctive nor-
mal form. PHP, has n(n + 1) variables { X, j / 1 < i

0020-0190/90/$3.50 0 1990, Elsevier Science Publishers B.V. (North-Holland)
81

Volume 34, Number 2 INFORMATION PROCESSING LETTERS 16 March 1990

< n, 1 <j < n + l} where variable xjj represents
the condition that pigeon j is sitting in hole i.
PHP, is defined to be

A (1)
i=l 1 <j, <j2<n+l

Note that the size of the above formula is
O(n3). By completeness of resolution, there must
be a resolution refutation (henceforth called a
resolution proof) of PHP,. A resolution proof is a
rooted, directed acyclic graph where the root vertex
represents the empty clause, leaf vertices represent
input clauses, and all other clauses are represented
by vertices of indegree two. The size of a resolu-
tion proof is defined to be equal to the number of
clauses (vertices) in the proof tree as a function of
n.

We visualize truth assignments and clauses re-
lating to PHP,, by an n X (n + 1) matrix. A clause
is represented by a matrix of @ ‘s, 8’s and blanks
where a 8 in a matrix position xij corresponds to
Xi/; a @ in position xij corresponds to x,~; and a
blank in xiJ corresponds to no appearance of xiJ
in the clause. A truth assignment is represented by
the same matrix filled with O’s and l’s; a partial
truth assignment is represented by a matrix filled
with O’s, l’s and blanks. (Here 1 represents true

and 0 represents false.)
Assume for simplicity that n is divisible by 4.

Let PTA be the set of those partial truth assign-
ments with exactly an l’s, no two of which are in
the same row or column; each row or column with
a 1 has all remaining positions filled with O’s, and
all positions are blank which are not in the same
row or column with a 1. Let a critical truth ussign-

ment be a total truth assignment with exactly n
l’s, no two in the same row or column. Thus each
pta in PTA can be extended to a critical truth
assignment by selecting any positions for the re-
maining in l’s, provided the new l’s do not
conflict with each other or with the l’s in pta.

Let P be a resolution proof of PHP,,. A clause
in P is said to be complex if (1) every column has
at most one 8 and (2) it has at least an + 1 “good

columns”: columns containing exactly one 0 or
at least in @ ‘s. We say that a partial truth
assignment pta verifies a complex clause cc iff
either some 1 in pta is in the same position as a @
in cc or some 0 in pta is in the same position as a
8 in cc. Thus pta verifies cc iff every total exten-
sion of pta makes cc true.

Haken defined a map y from PTA to the
complex clauses in P which satisfies the following
condition:

No pta in PTA verifies its image y(pta). (2)

(In fact, Haken showed the stronger condition
that some critical truth assignment extending pta
makes y(pta) false, but (2) suffices for our pur-
poses.)

Haken proved a lower bound on the number of
complex clauses in the proof P by deriving a
lower bound 1 on the cardinality of PTA, and an
upper bound u on the number of elements pta in
PTA which fail to verify any fixed complex clause
cc. By (2), the proof P must contain at least 1/u
complex clauses. Haken concluded that any reso-
lution proof for PHP, must have size at least c”,
with c = 1.49O.O’ for n > 200.

Urquhart [6] showed how to give the argument
a probabilistic cast. If p is an upper bound on the
probability that a random element pta in PT’A
fails to verify any given complex clause cc, then by
(2) the proof P must have at least l/p complex
clauses. To obtain the estimate p, we may assume
as the worst case that the given complex clause
has exactly an + 1 good columns each containing
exactly in @I’S and no 8. A random member of
PTA can be selected by first randomly selecting
$n columns and then, for each column, selecting a
distinct row. Let X be the number of selected
columns that are good columns of our complex
clause. Then X has a hypergeometric distribution
with mean approximately &n, and known bounds
on the tails of the hypergeometric distribution
show that Pr[X < An] decays exponentially in n.
On the other hand, a simple calculation shows
that the conditional probability that a random
member of PTA fails to verify the complex clause
given X > &n also decays exponentially. This two
facts combine to give an exponentially small up-
per bound p.

82

Volume 34, Number 2 INFORMATION PROCESSING LETTERS 16 March 1990

3. The greedy method

Neither Haken’s nor Urquhart’s argument is
feasible as it stands, since both involve estimating
cardinalities of sets of exponential size. Our feasi-
ble proof proceeds as follows. Suppose B -C cn for
suitable c > 1. We will give a greedy (see for
example [5]) algorithm G which does the follow-
ing:

Given a candidate proof P for PHP, with
at most B complex clauses, return pta* in
PTA which verifies every complex clause

,.
in P. (3)

The algorithm G runs in time polynomial in n and
the length of p, and has a feasible correctness
proof. Further the map y is computable in poly-
nomial time in the length of i, and the property
(2) has a feasible proof, under the assumption that
B is a resolution proof. Since pta* verifies its
image y(pta*), (2) is violated and the computa-
tion of y(pta*) leads to a point in @ which
violates the definition of a resolution of PHP,.

We note that the existence of pta* satisfying
(3) can be inferred from both Haken’s counting
argument and Urquhart’s probabilistic argument,
but neither of these yields a polynomial time
algorithm for finding pta*.

It remains to describe and analyze the greedy
algorithm G. First we put the complex clauses in a
standard form.

For each complex clause cc we construct a
complex clause cc+ as follows. First, select the
first !n + 1 good columns of cc and delete all
entries in all other columns. Next, for each col-
umn containing a 8, delete the 8 in that column
and place a CB in all positions of that column
except the one that contained the deleted 8. Now
each column is either empty or contains no 8’s
and at least $n CD ‘s. The final step is to delete all
but the first $n @‘s from each of these nonempty
columns. The resulting clause cc + is a complex
clause with exactly fn + 1 nonempty columns each
with exactly in e’s and no 8’s. The following
fact is easy to check:

For each pta in PTA and each complex
clause cc, if pta verifies cc+ then pta
verifies cc. (4)

The input to the algorithm G is the set S, of all
cc+ such that cc is a complex clause in the candi-
date proof i. Assuming) So 1 G B (B is specified
below), the output is a partial truth assignment
pta* which verifies each clause in S, (and hence
each complex clause in P). The algorithm pro-
ceeds by successively choosing l’s in pta* so as to
verify as many remaining members of S, as possi-
ble. After i steps, S, c S, is the set of clauses left
to be satisfied and E, is the set of all blank
positions in pta*.

Greedy algorithm G
(Input is a set S, of complex clauses cc+.)

pta* is initially the empty partial truth assignment
(all blanks).

E, is the set of all positions (in the truth assign-
ment matrix).

fori=lto+, ..
Find a position p in E,_, which maximizes

the number of clauses in S,_, with a CD in
position p.

Augment pta* by placing a 1 in position p
and O’s elsewhere in the row and column
of p.

(*) Si is S,_ 1 with all clauses verified by (the
augmented) pta* deleted.

E, is Ei_I with all positions in the row and
column of p deleted.

end for

The algorithm clearly runs in time bounded by
a polynomial in 1 So) and n, and by line (*) the
final value of pta* clearly verifies all members of

&I - %,4. Hence in view of (4), it suffices to prove
that Sn,4 is empty in order to verify (3).

If s0 is the number of positions of any cc+
which have @, then the average over all positions
p of E. of the number of clauses in S, with a CB in
position p is

IS0 Is0 IS, &z(fn + 1) ao =_L_=
I Eo I n(n+l) .

Since some position p hits at least u. clauses,
I&I G ISol-00.

83

Volume 34, Number 2 INFORMATION PROCESSING LETTERS 16 March 1990

In general, if we prune each clause in S, by
deleting all CB’S not in E,, then the number of e’s
deleted is at most $n + (an + 1) - 1 = +n. Thus
each pruned clause has at least si e’s remaining,
where

The average over positions p of E, of the number
of clauses in S, with a @ in position p is

I so I si
‘i2ma

I s; I ‘i
IEol .

For any E, 0 -C E -C 1, if we run the algorithm for
t = I&n] steps (so i < t) we have

a,_l >
Is,-, Is,-1

I Eo I
n (!!,I 1 -- 3nen

a2 4
n(n + 1) 4*6 IS,-,I

i(l-e)+f
=

n+1 I si-l I

+I%,l (assuming S, _ 1 f 0).

Thus

IS,] < ISj-ll-aj_, < +,-,I

so

Setting B = (S/(7 + E))~“~, if I S,, I < B then
I S,,,4 I < 1 so S,,,4 = 0, as required.

We note that if E = 4, then our bound B is
slightly better than Haken’s bound.

4. Generalization to weaker forms of PHP,,

A more general form of the pigeon-hole princi-
ple, PHP,“, states that there cannot be a one-to-one
mapping from 111 pigeons to n holes, for m 2 n + 1.
The formulation of this principle as a family of
propositional formulas is identical to equation (1)

but with m replacing n + 1. As m increases, the
statement becomes weaker and therefore may have
shorter resolution proofs. By extending Haken’s
argument, Buss and Turin [l] showed that if
m = o(n2/log n), then the technique still yields
superpolynomial lower bounds. More precisely,
they proved that every resolution proof of PHP,”
has length at least

We will show a similar result using the greedy
method.

Let P be a resolution proof of PHP;. The
definition of the set PTA of partial truth assign-
ments and the definition of complex clause are
exactly the same as before. Buss and Turan show
the existence of a mapping y from PTA to the
complex clause in P satisfying the condition (2),
just as in the previous case. We can apply the
same greedy algorithm to a candidate proof P and
analyze it as follows. The only difference is that
now I E, I is nm instead of n(n + l), which leads
to the estimate

l--E n
ai_l 2 - . -

8 m IS,-, I =x1%, I

where x = (1 - ~)/8. (n/m). Thus

1 sn,,,$ 1 < (1 - X)<@ I so I = (1 - x)(“X)+“X’6) (so I

tnx
17 < -

(1 e I so I

=e -(f(1-r)n2/48m) I so 1.

Setting c = % we obtain a bound

B = ew192).(nz/m),
,

a little worse than the Buss-Turan bound.

5. Other applications

Urquhart [6] obtained an exponential lower
bound on the size of resolution proofs for a family
of graph-based clauses. A straightforward applica-
tion of the greedy method can also yield this

84

Volume 34, Number 2 INFORMATION PROCESSING LETTERS 16 March 1990

result, and the resulting proof can be made feasi-
bly constructive, assuming that the necessary ex-
pander graphs can be constructed and verified in
polynomial time. Chvatal and Szemeredi [2] ob-
tain an exponential lower bound with probability
approaching 1 as n approaches infinity for certain
sets of randomly chosen clauses. We must gener-
alize the greedy algorithm to apply our method to
obtain this lower bound. (In this case the whole
proof is still not feasibly constructive because even
the statement involves probabilities.)

For the pigeon-hole formulas, we exploit the
uniform structure of each pta E PTA to select a
covering set which is also a valid pta. At each step,
an element e * is chosen that covers a constant
fraction of the remaining sets according to the
selection strategy. All elements in the same row or
column as e* are then eliminated to ensure that
we obtain a valid partial truth assignment.

The set PTA defined by Chvatal and Szemertdi
is not structurally defined but instead is based on
a combinatorial property. We therefore need a
new mechanism to obtain a valid partial truth
assignment. In brief, we use a double averaging
argument where the selection strategy maintains
two conditions at each step:

(1) As before, the chosen element must cover at
least a constant fraction of the remaining sets.

(2) The second condition concerns the size of
the valid PTA set at each step. At step i, the
covering set pta* contains i elements. The valid
partial truth assignments in PTA at step i, PTA,,
are those which contain pta*. We must ensure
that the size of PTA, remains large, i.e., that it is
at least a constant fraction of the size of PTA,_,.

It can be shown that each of the two conditions
is satisfied on average; they can then be combined
to guarantee the existence of an element satisfying
both conditions at each step.

References

[I] S. Buss and G. Turan, Resolution proofs of generalized
pigeonhole principles, Theoret. Comput. Sci. 62 (3) (1988)
311-317.

[2] V. Chvatal and E. SzemerMi, Many hard examples for
resolution, J. ACM 35 (4) (1988) 759-768.

[3] S. Cook and A. Urquhart, Functional interpretations of

feasibly constructive arithmetic, Tech. Rep. 210/88, Uni-
versity of Toronto, Toronto (1988); also Extended Ab-

stract, in: Proc. 2Ist ACM Symposium on Theory of Com-
puting (1989) 107-112.

[4] A. Haken, The intractability of resolution, Theoret. Com-

put. Sci. 39 (1985) 297-308.
[S] C. Papadimitriou and K. Steiglitz, Combinatorial Optimira-

fion (Prentice-Hall, Englewood Cliffs, NJ, 1982).
[6] A. Urquhart, Hard examples for resolution, J. ACM 34 (1)

(1987) 209-219.

85

