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1. Introduction 

Haken [4] first proved the intractability of reso- 
lution by showing that a family of propositional 
formulas encoding the pigeon-hole principle re- 
quire superpolynomial-sized resolution proofs. 
Later, several authors [6,1,2] extended Haken’s 
techniques to obtain exponential lower bounds on 
the size of resolution proofs. All of these results 
are based on the counting method used by Haken 
and later reformulated as a probabilistic method 
by Urquhart 161. 

In this paper we describe a simpler and more 
direct method which can replace the counting and 
probabilistic methods. Our method is feasibly con- 
structive in the sense discussed in [3]. Informally, 
this means that all concepts in the proof are 
polynomial time. We present a polynomial time 
greedy algorithm which, when presented with a 
candidate resolution proof that is too short, pro- 
duces a mistake in the proof. Further, we present 
a feasibly constructive correctness proof for the 
algorithm. In contrast, the counting arguments 
show the existence of the mistake indirectly by 
bounding the sizes of exponentially large sets. 

In [3] it is shown (Theorem 10.16) that an 
“extended Frege system” (a kind of propositional 
proof system stronger than resolution) cannot 
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feasibly constructively be proved not polynomially 
bounded, in the precise sense that a certain for- 
mula ,PB(EF) is not a theorem of the system 
IPV”. In contrast, the present paper shows in 
outline that the formula ,PB(RES) is indeed a 
theorem of IPV”, where ,PB(RES) is a formula 
similar to ,PB(EF), but stating that resolution 
(instead of an extended Frege system) is not poly- 
nomially bounded. This shows that proving intrac- 
tability of extended Frege systems requires new 
techniques. 

In this paper, we first review how the counting 
and probabilistic methods are used to obtain su- 
perpolynomial lower bounds on resolution proofs. 
Second, we present a similar lower bound using 
the greedy method. Third, by extending the analy- 
sis of this new method to weaker forms of the 
pigeon-hole principle formulas, we obtain lower 
bounds similar to those obtained by Buss and 
Turan [l]. Finally, we briefly discuss how the 
greedy method can be extended and shown to 
apply to the results of Urquhart [6] and Chvatal 
and Szemeredi [2]. 

2. Background 

The negation of the pigeon-hole principle can 
be encoded by a family of unsatisfiable proposi- 
tional formulas { PHP, 1 n E N } in conjunctive nor- 
mal form. PHP, has n( n + 1) variables { X, j / 1 < i 
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< n, 1 <j < n + l} where variable xjj represents 
the condition that pigeon j is sitting in hole i. 
PHP, is defined to be 

A (1) 
i=l 1 <j, <j2<n+l 

Note that the size of the above formula is 
O(n3). By completeness of resolution, there must 
be a resolution refutation (henceforth called a 
resolution proof) of PHP,. A resolution proof is a 
rooted, directed acyclic graph where the root vertex 
represents the empty clause, leaf vertices represent 
input clauses, and all other clauses are represented 
by vertices of indegree two. The size of a resolu- 
tion proof is defined to be equal to the number of 
clauses (vertices) in the proof tree as a function of 
n. 

We visualize truth assignments and clauses re- 
lating to PHP,, by an n X (n + 1) matrix. A clause 
is represented by a matrix of @ ‘s, 8’s and blanks 
where a 8 in a matrix position xij corresponds to 
Xi/; a @ in position xij corresponds to x,~; and a 
blank in xiJ corresponds to no appearance of xiJ 
in the clause. A truth assignment is represented by 
the same matrix filled with O’s and l’s; a partial 
truth assignment is represented by a matrix filled 
with O’s, l’s and blanks. (Here 1 represents true 

and 0 represents false.) 
Assume for simplicity that n is divisible by 4. 

Let PTA be the set of those partial truth assign- 
ments with exactly an l’s, no two of which are in 
the same row or column; each row or column with 
a 1 has all remaining positions filled with O’s, and 
all positions are blank which are not in the same 
row or column with a 1. Let a critical truth ussign- 

ment be a total truth assignment with exactly n 
l’s, no two in the same row or column. Thus each 
pta in PTA can be extended to a critical truth 
assignment by selecting any positions for the re- 
maining in l’s, provided the new l’s do not 
conflict with each other or with the l’s in pta. 

Let P be a resolution proof of PHP,,. A clause 
in P is said to be complex if (1) every column has 
at most one 8 and (2) it has at least an + 1 “good 

columns”: columns containing exactly one 0 or 
at least in @ ‘s. We say that a partial truth 
assignment pta verifies a complex clause cc iff 
either some 1 in pta is in the same position as a @ 
in cc or some 0 in pta is in the same position as a 
8 in cc. Thus pta verifies cc iff every total exten- 
sion of pta makes cc true. 

Haken defined a map y from PTA to the 
complex clauses in P which satisfies the following 
condition: 

No pta in PTA verifies its image y(pta). (2) 

(In fact, Haken showed the stronger condition 
that some critical truth assignment extending pta 
makes y(pta) false, but (2) suffices for our pur- 
poses.) 

Haken proved a lower bound on the number of 
complex clauses in the proof P by deriving a 
lower bound 1 on the cardinality of PTA, and an 
upper bound u on the number of elements pta in 
PTA which fail to verify any fixed complex clause 
cc. By (2), the proof P must contain at least 1/u 
complex clauses. Haken concluded that any reso- 
lution proof for PHP, must have size at least c”, 
with c = 1.49O.O’ for n > 200. 

Urquhart [6] showed how to give the argument 
a probabilistic cast. If p is an upper bound on the 
probability that a random element pta in PT’A 
fails to verify any given complex clause cc, then by 
(2) the proof P must have at least l/p complex 
clauses. To obtain the estimate p, we may assume 
as the worst case that the given complex clause 
has exactly an + 1 good columns each containing 
exactly in @I’S and no 8. A random member of 
PTA can be selected by first randomly selecting 
$n columns and then, for each column, selecting a 
distinct row. Let X be the number of selected 
columns that are good columns of our complex 
clause. Then X has a hypergeometric distribution 
with mean approximately &n, and known bounds 
on the tails of the hypergeometric distribution 
show that Pr[ X < An] decays exponentially in n. 
On the other hand, a simple calculation shows 
that the conditional probability that a random 
member of PTA fails to verify the complex clause 
given X > &n also decays exponentially. This two 
facts combine to give an exponentially small up- 
per bound p. 
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3. The greedy method 

Neither Haken’s nor Urquhart’s argument is 
feasible as it stands, since both involve estimating 
cardinalities of sets of exponential size. Our feasi- 
ble proof proceeds as follows. Suppose B -C cn for 
suitable c > 1. We will give a greedy (see for 
example [5]) algorithm G which does the follow- 
ing: 

Given a candidate proof P for PHP, with 
at most B complex clauses, return pta* in 
PTA which verifies every complex clause 

,. 
in P. (3) 

The algorithm G runs in time polynomial in n and 
the length of p, and has a feasible correctness 
proof. Further the map y is computable in poly- 
nomial time in the length of i, and the property 
(2) has a feasible proof, under the assumption that 
B is a resolution proof. Since pta* verifies its 
image y(pta*), (2) is violated and the computa- 
tion of y(pta*) leads to a point in @ which 
violates the definition of a resolution of PHP,. 

We note that the existence of pta* satisfying 
(3) can be inferred from both Haken’s counting 
argument and Urquhart’s probabilistic argument, 
but neither of these yields a polynomial time 
algorithm for finding pta*. 

It remains to describe and analyze the greedy 
algorithm G. First we put the complex clauses in a 
standard form. 

For each complex clause cc we construct a 
complex clause cc+ as follows. First, select the 
first !n + 1 good columns of cc and delete all 
entries in all other columns. Next, for each col- 
umn containing a 8, delete the 8 in that column 
and place a CB in all positions of that column 
except the one that contained the deleted 8. Now 
each column is either empty or contains no 8’s 
and at least $n CD ‘s. The final step is to delete all 
but the first $n @‘s from each of these nonempty 
columns. The resulting clause cc + is a complex 
clause with exactly fn + 1 nonempty columns each 
with exactly in e’s and no 8’s. The following 
fact is easy to check: 

For each pta in PTA and each complex 
clause cc, if pta verifies cc+ then pta 
verifies cc. (4) 

The input to the algorithm G is the set S, of all 
cc+ such that cc is a complex clause in the candi- 
date proof i. Assuming ) So 1 G B (B is specified 
below), the output is a partial truth assignment 
pta* which verifies each clause in S, (and hence 
each complex clause in P). The algorithm pro- 
ceeds by successively choosing l’s in pta* so as to 
verify as many remaining members of S, as possi- 
ble. After i steps, S, c S, is the set of clauses left 
to be satisfied and E, is the set of all blank 
positions in pta*. 

Greedy algorithm G 
(Input is a set S, of complex clauses cc+.) 

pta* is initially the empty partial truth assignment 
(all blanks). 

E, is the set of all positions (in the truth assign- 
ment matrix). 

fori=lto+, .. 
Find a position p in E,_, which maximizes 

the number of clauses in S,_, with a CD in 
position p. 

Augment pta* by placing a 1 in position p 
and O’s elsewhere in the row and column 
of p. 

( * ) Si is S,_ 1 with all clauses verified by (the 
augmented) pta* deleted. 

E, is Ei_I with all positions in the row and 
column of p deleted. 

end for 

The algorithm clearly runs in time bounded by 
a polynomial in 1 So ) and n, and by line ( * ) the 
final value of pta* clearly verifies all members of 

&I - %,4. Hence in view of (4), it suffices to prove 
that Sn,4 is empty in order to verify (3). 

If s0 is the number of positions of any cc+ 
which have @, then the average over all positions 
p of E. of the number of clauses in S, with a CB in 
position p is 

IS0 Is0 IS, &z(fn + 1) ao =_L_= 
I Eo I n(n+l) . 

Since some position p hits at least u. clauses, 
I&I G ISol-00. 
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In general, if we prune each clause in S, by 
deleting all CB’S not in E,, then the number of e’s 
deleted is at most $n + (an + 1) - 1 = +n. Thus 
each pruned clause has at least si e’s remaining, 
where 

The average over positions p of E, of the number 
of clauses in S, with a @ in position p is 

I so I si 
‘i2ma 

I s; I ‘i 
IEol . 

For any E, 0 -C E -C 1, if we run the algorithm for 
t = I&n] steps (so i < t) we have 

a,_l > 
Is,-, Is,-1 

I Eo I 
n ( !!,I 1 -- 3nen 

a2 4 
n(n + 1) 4*6 IS,-,I 

i(l-e)+f 
= 

n+1 I si-l I 

+I%,l ( assuming S, _ 1 f 0). 

Thus 

IS,] < ISj-ll-aj_, < +,-,I 

so 

Setting B = (S/(7 + E))~“~, if I S,, I < B then 
I S,,,4 I < 1 so S,,,4 = 0, as required. 

We note that if E = 4, then our bound B is 
slightly better than Haken’s bound. 

4. Generalization to weaker forms of PHP,, 

A more general form of the pigeon-hole princi- 
ple, PHP,“, states that there cannot be a one-to-one 
mapping from 111 pigeons to n holes, for m 2 n + 1. 
The formulation of this principle as a family of 
propositional formulas is identical to equation (1) 

but with m replacing n + 1. As m increases, the 
statement becomes weaker and therefore may have 
shorter resolution proofs. By extending Haken’s 
argument, Buss and Turin [l] showed that if 
m = o(n2/log n), then the technique still yields 
superpolynomial lower bounds. More precisely, 
they proved that every resolution proof of PHP,” 
has length at least 

We will show a similar result using the greedy 
method. 

Let P be a resolution proof of PHP;. The 
definition of the set PTA of partial truth assign- 
ments and the definition of complex clause are 
exactly the same as before. Buss and Turan show 
the existence of a mapping y from PTA to the 
complex clause in P satisfying the condition (2), 
just as in the previous case. We can apply the 
same greedy algorithm to a candidate proof P and 
analyze it as follows. The only difference is that 
now I E, I is nm instead of n(n + l), which leads 
to the estimate 

l--E n 
ai_l 2 - . - 

8 m IS,-, I =x1%, I 

where x = (1 - ~)/8. (n/m). Thus 

1 sn,,,$ 1 < (1 - X)<@ I so I = (1 - x)(“X)+“X’6) ( so I 

tnx 
17 < - 

( 1 e I so I 

=e -(f(1-r)n2/48m) I so 1. 

Setting c = % we obtain a bound 

B = ew192).(nz/m), 
, 

a little worse than the Buss-Turan bound. 

5. Other applications 

Urquhart [6] obtained an exponential lower 
bound on the size of resolution proofs for a family 
of graph-based clauses. A straightforward applica- 
tion of the greedy method can also yield this 
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result, and the resulting proof can be made feasi- 
bly constructive, assuming that the necessary ex- 
pander graphs can be constructed and verified in 
polynomial time. Chvatal and Szemeredi [2] ob- 
tain an exponential lower bound with probability 
approaching 1 as n approaches infinity for certain 
sets of randomly chosen clauses. We must gener- 
alize the greedy algorithm to apply our method to 
obtain this lower bound. (In this case the whole 
proof is still not feasibly constructive because even 
the statement involves probabilities.) 

For the pigeon-hole formulas, we exploit the 
uniform structure of each pta E PTA to select a 
covering set which is also a valid pta. At each step, 
an element e * is chosen that covers a constant 
fraction of the remaining sets according to the 
selection strategy. All elements in the same row or 
column as e* are then eliminated to ensure that 
we obtain a valid partial truth assignment. 

The set PTA defined by Chvatal and Szemertdi 
is not structurally defined but instead is based on 
a combinatorial property. We therefore need a 
new mechanism to obtain a valid partial truth 
assignment. In brief, we use a double averaging 
argument where the selection strategy maintains 
two conditions at each step: 

(1) As before, the chosen element must cover at 
least a constant fraction of the remaining sets. 

(2) The second condition concerns the size of 
the valid PTA set at each step. At step i, the 
covering set pta* contains i elements. The valid 
partial truth assignments in PTA at step i, PTA,, 
are those which contain pta*. We must ensure 
that the size of PTA, remains large, i.e., that it is 
at least a constant fraction of the size of PTA,_,. 

It can be shown that each of the two conditions 
is satisfied on average; they can then be combined 
to guarantee the existence of an element satisfying 
both conditions at each step. 
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