
Non-automatizability of bounded-depth Frege proofs

Maria Luisa Bonet�

Department of Software (LSI)
Universitat Politècnica de Catalunya

Barcelona, Spain
bonet@lsi.upc.es

Carlos Domingoy

Department of Software (LSI)
Universitat Politècnica de Catalunya

Barcelona, Spain
carlos@lsi.upc.es

Ricard Gavald`ay

Department of Software (LSI)
Universitat Politècnica de Catalunya

Barcelona, Spain
gavalda@lsi.upc.es

Alexis Maciel
Dept. of Math. and Computer Science

Clarkson University
Potsdam, NY 13699-5815, U.S.A.

alexis@clarkson.edu

Toniann Pitassiz

Department of Computer Science
University of Arizona

Tucson, AZ 85721, U.S.A.
toni@cs.arizona.edu

Abstract

In this paper, we show how to extend the argument
due to Bonet, Pitassi and Raz to show that bounded-depth
Frege proofs do not have feasible interpolation, assuming
that factoring of Blum integers or computing the Diffie-
Hellman function is sufficiently hard. It follows as a
corollary that bounded-depth Frege is not automatizable;
in other words, there is no deterministic polynomial-time
algorithm that will output a short proof if one exists. A
notable feature of our argument is its simplicity.

1. Introduction

In the last years there has been a lot of interest in
studying the complexity of propositional proof systems.
The motivation comes from two ends. On one side, Cook
and Reckhow [5] showed that whether for every possible

�Partially supported by projects ESPRIT 20244 ALCOM-IT, TIC
97-1475-CE and CICYT TIC98-0410-C02-01.

yPartially supported by projects ESPRIT 20244 ALCOM-IT, TIC
97-1475-CE, KOALA DGES PB95-0787 and SGR CIRIT 1997SGR-
00366.

zResearch supported by NSF Grant CCR-9457782, US-Israel BSF
Grant 95-00238, and Grant INT-9600919/ME-103 from NSF and MŠMT
(Czech Republic)

proof system there is a class of tautologies that requires
superpolynomial proof length is equivalent to NP= Co-
NP. This fact started a program that consists in trying to
prove superpolynomial lower bounds for increasingly more
powerful proof systems. The other motivation for studying
the complexity of proof systems comes from issues related
to automated theorem provers. The question is: given a
particular propositional proof system, are there efficient
algorithms for finding the shortest proofs of a tautology in
that system? Our results have to do with both motivations,
and in what follows we will explain these relationships in
more detail.

Consider first the issue of proving superpolynomial
lower bounds for propositional proof systems. The
interpolation method has been one of the most used and
promising approaches. It is inspired by Craig’s interpo-
lation theorem for propositional logic which states that if
A(~x; ~z) ! B(~y; ~z) is a tautology where~z is a vector
of shared variables, and~x and ~y are vectors of separate
variables forA andB respectively, then there is a formula
C(~z) such thatA(~x; ~z) ! C(~z) and C(~z) ! B(~y; ~z)
are tautologies. We will give a different formulation of
this theorem in order to use it to prove lower bounds
for unsatisfiable formulas as follows. Take an unsatisfiable
formulaA0(~x; ~z)^A1(~y; ~z) , where~z is a vector of shared
variables, and~x and~y are vectors of separate variables for



A0 andA1 respectively. Since the formula is unsatisfiable,
it follows that for any truth assignment~� to ~z , either
A0(~x; ~�) is unsatisfiable orA1(~y; ~�) is unsatisfiable. An
interpolation function associated with the formula is a
Boolean function that takes such an assignment~� as
input, and outputs 0 only ifA0(~x; ~�) is unsatisfiable,
and outputs1 only if A1(~y; ~�) is unsatisfiable. We
say that a proof systemS has thefeasible interpolation
property if whenever an unsatisfiable formula of the form
A0(~x; ~z)^A1(~y; ~z) has a polynomial-size refutation inS ,
then that formula has an interpolation function that can be
computed by a polynomial-size Boolean circuit. Therefore,
in a proof system with the feasible interpolation property,
proving a superpolynomial lower bound on refutation size
reduces to constructing a unsatisfiable formula of the form
A0(~x; ~z) ^ A1(~y; ~z) with interpolation functionF and
proving that F cannot be computed by polynomial-size
circuits.

Unconditional lower bounds for proof systems have
been obtained by considering amonotonevariant of the
feasible interpolation property. The main feature of this
type of interpolation is that the interpolation function has
polynomial-size monotone circuits. So, for example, take
a function that cannot be computed by polynomial-size
monotone circuits like the clique function. DefineA0(x; z)
to say “the graphz has a cliquex of size k ” and
A1(y; z) to say “the graphz has ak � 1-coloring y ”.
The conjunction of both formulas is unsatisfiable and thus
does not have polynomial-size refutations in any proof
system that has the monotone interpolation property.

In the last few years, the interpolation method has been
used to prove many lower bounds. In particular, lower
bounds have been shown for all of the following systems:
Resolution [2], Cutting Planes [6, 2, 13, 4], generalizations
of Cutting Planes [2, 8, 7], relativized bounded arithmetic
[15], Hilbert’s Nullstellensatz [14], the polynomial calculus
[14], and the Lovasz-Schriver proof system [12].

On the other hand, in a separate sequence of pa-
pers beginning with a key idea due to Kraj´ıček and
Pudlák [9, 3], it has been shown that under sufficiently
strong cryptographic assumptions, many stronger proof
systems do not have feasible interpolation. The main ideas
are as follows. Suppose thatH is a permutation that
is generally believed to be one-way. FormulateA0(~x; ~z)
as saying “H(x) = z and the last bit ofx is 0” and
A1(y; z) as saying “H(y) = z and the last bit ofy is 1”.
SinceH is injective, A0 ^ A1 is a contradiction. If the
proof system can have a short refutation ofA0 ^A1 , then
the proof system does not have the feasible interpolation
property, unlessH is not a one-way permutation. Using
a more general reformulation of the ideas just sketched,
it has been proved that the following proof systems do
not have feasible interpolation, under commonly accepted

cryptographic assumptions: Extended Frege, Frege and
even TC0 -Frege systems. These negative results are
important not only as a guide for searching for lower
bound techniques, but also because they imply that the
proof system in question cannot be automatized. This
connection was first made explicit by [3] and takes us
back to the second motivation for studying propositional
proof systems.

A proof systemS is automatizable if there exists a
deterministic procedureD that takes as input a formula
f and returns anS -refutation of f (if one exists) in
time polynomial in the size of the shortestS -refutation
of f . Automatizability is a crucial concept for automated
theorem proving: in proof complexity we are mostly
interested in the length of the shortest proof, whereas
in theorem proving it is also essential to be able to
find the proof. Bonet, Pitassi and Raz [3] show that
if S does not have feasible interpolation, thenS is not
automatizable. Thus, feasible interpolation is a simple
measure that formalizes the complexity/search tradeoff: the
existence of feasible interpolation implies superpolynomial
lower bounds (sometimes modulo complexity assump-
tions), whereas the nonexistence of feasible interpolation
implies that the proof system cannot be automatized.

In this paper, we use and extend the ideas in [3] to show
that bounded-depth Frege systems do not have feasible
interpolation unless the Diffie-Hellman function can be
computed by circuits of size2n

�

for arbitrarily small
� > 0 . Note that our assumption is stronger than that of
[3] who only needed to assume that the Diffie-Hellman
function cannot be computed by polynomial-size circuits.
Also note that computing the Diffie-Hellman function is
at least as hard as factoring Blum integers [1] . (See also
[16, 11].)

The basic idea behind the result of [3] is as follows.
They construct a TC0 -Frege formulaDHn based on the
Diffie-Hellman function. The size of the formula is polyno-
mial in n , the length of the numbers involved. The bulk of
the argument is to show that there exists a polynomial-size
TC0 -Frege refutation ofDHn . On the other hand, an
interpolation function forDHn computes one bit of the
secret key exchanged by the Diffie-Hellman procedure.
Thus, if TC0 -Frege admits feasible interpolation, then the
secret key exchanged by the Diffie-Hellman procedure can
be broken using polynomial-size circuits and hence the
Diffie-Hellman cryptographic scheme is not secure.

In the present paper, we will scale down the above
idea from n to polylogn . ConsiderDHm wherem =
polylog n . By directly applying the main theorem of [3],
DHm has a TC0 -Frege refutation of size polynomial in
m . We will show how to simulate this refutation with
an AC0 -Frege refutation of size polynomial inn . More
generally, we will show that any TC0 -Frege proof of size



polynomial in n in which all the threshold and parity
connectives have fan-in polylogn can be simulated by
an AC0 -Frege proof of size polynomial inn . Now if
AC0 -Frege admits feasible interpolation, then the secret
key exchanged by the Diffie-Hellman procedure can be
broken using circuits of subexponential size and hence the
Diffie-Hellman cryptographic scheme is not secure.

The paper is organized as follows. In Section 2, we
define the AC0 and TC0 -Frege systems. In Section 3,
we define some AC0 formulas used in the simulation. In
Section 4, we prove some preliminary lemmas. In Section
5, we show how to simulate the restricted TC0 -Frege
proofs mentioned in the previous paragraph. In Section 6,
we prove our main result.

2. AC0 and TC0 -Frege systems

We will work with the specific bounded-depth threshold
logic system TC0 -Frege defined in [10] and also used in
[3]. This system is a sequent-calculus logical system where
formulas are built up using the connectives_ , ^ , Thk ,
: , and�b . Thk(x) is true if and only if the number of
1’s in x is at leastk , and�b(x) is true if and only if the
number of 1’s inx is equal tob mod 2 .

Definition 1 Formulas are built up using the connectives
^ , _ , Thk , �1 , �0 , : . All connectives are assumed to
have unbounded fan-in.Thk(A1; : : : ; An) is interpreted
to be true if and only if the number of trueAi ’s is at least
k ; �b(A1; : : : ; An) is interpreted to be true if and only if
the number of trueAi ’s is equal tob mod 2 .

The formula^(A1; : : : ; An) denotes the logical AND
of the multi-set consisting ofA1; : : : An , and similarly for
_ , �b andThk . Thus commutativity of the connectives is
implicit. Our proof system operates on sequents which are
sets of formulas of the formA1; : : : ; Ap ! B1; : : : ; Bq .
The intended meaning is that the conjunction of theAi ’s
implies the disjunction of theBj ’s. A proof of a sequentS
in our logic system is a sequence of sequents,S1; : : : ; Sr ,
such that each sequentSi is either an initial sequent, or
follows from previous sequents by one of the rules of
inference, and the final sequent,Sr , is S .

The initial sequentsare of the form: (1)A! A where
A is any formula; (2)! ^() ; _() ! ; (3) �1() ! ; !
�0() ; and (4)Thk()! for k � 1 ; ! Th0(A1; : : : ; An)
for n � 0 . The rules of inference are as follows. Note that
the logical rules are defined forn � 1 andk � 1 . First we
have simple structural rules such as weakening (formulas
can always be added to the left or to the right), contraction
(two copies of the same formula can be replaced by one),
and permutation (formulas in a sequent can be reordered).
The remaining rules are the cut rule, and logical rules

which allow us to introduce each connective on both
the left side and the right side. The cut rule allows
the derivation of�;�0 ! �;�0 from �; A ! � , and
�0 ! A;�0 .

The logical rules are as follows.

1. (Negation-left) From� ! A;� , we can derive
:A;�! � .

2. (Negation-right) FromA;� ! � , derive � !
:A;� .

3. (And-left) From A1;^(A2; : : : ; An);� ! � derive
^(A1; : : : ; An);�! � .

4. (And-right) From � ! A1;� and � !
^(A2; : : : ; An);� derive�! ^(A1; : : : ; An);�

5. (Or-left) FromA1;�! � and_(A2; : : : ; An);�!
� derive_(A1; : : : ; An);�! �

6. (Or-right) From � ! A1;_(A2; : : : ; An);� derive
�! _(A1; : : : ; An);� .

7. (Mod-left) FromA1;�b�1(A2; : : : ; An);�! � and
�b(A2; : : : ; An);�! A1;� derive�b(A1; : : : ; An);
�! � .

8. (Mod-right) From A1;� ! �b�1(A2; : : : ; An);�
and � ! A1;�b(A2; : : : ; An);� derive � !
�b(A1; : : : ; An);� .

9. (Threshold-left) FromThk(A2; : : : ; An);� ! �
and A1;Thk�1(A2; : : : ; An);� ! � derive
Thk(A1; : : : ; An);�! � .

10. (Threshold-right) From� ! A1;Thk(A2; : : : ; An);
� and � ! Thk�1(A2; : : : ; An);� derive � !
Thk(A1; : : : ; An);� .

The sizeof a proof is the total size of all the formulas
that occur in the proof. Thedepth of a proof is the
maximum depth of all the formulas that occur in the
proof.

A family of sequents(�1 ! �1); (�2 ! �2); (�3 !
�3); : : : has TC0 -Frege proofs if each sequent has a
bounded-depth proof of size polynomial in the size of the
sequent. More precisely,

Definition 2 Let F = f(�n ! �n) : n 2 Ng be a family
of sequents. ThenfRn : n 2 Ng is a family ofTC0 -Frege
proofs forF if there exist constantsc and d such that the
following conditions hold: (1) EachRn is a valid proof
of (�n ! �n) in our system; (2) For alli , the depth of
Rn is at mostd ; and (3) For all n , the size ofRn is at
most (size(�n ! �n))

c .



We say that a formulaf can bearranged intod levels
if the connectives off can be arranged intod groups
L1; : : : ; Ld called levels such that all the inputs of every
connective at some level are either propositional variables
or connectives from the previous levels. Note thatf can
be arranged intod levels if and only if f has depth at
most d . Moreover, if f has depth less thand , then some
of the levels may be empty.

Definition 3 TheAC0 -Frege system is a restriction of the
TC0 -Frege system, where we omit the parity and threshold
connectives and the associated rules.

In the following sections, we will use the symbols0
and 1 in our formulas. These will simply stand for the
formulas x ^ :x and x _ :x , respectively. Thus the
sequents0! and ! 1 have constant-size AC0 -Frege
proofs.

3. Notation and AC0 counting formulas

In this section we will describe some of the AC0

formulas that we will be using. Recall that our goal is to
show that TC0 -Frege proofs of size polynomial inn in
which all the threshold and parity connectives have fan-in
polylog n can be simulated by AC0 -Frege proofs of size
polynomial inn . To this end, we will define AC0 circuits
of size polynomial inn that can simulate threshold and
parity gates of fan-in polylogn .

We will first show how to add polylogn many bits
using AC0 circuits of size polynomial inn . The
general idea is as follows. Suppose that the original
input bits are x1; : : : ; xm , where m = (logn)k for
some k . We will sum these numbers in a divide and
conquer fashion, by dividing these inputs into(logn)1=2

consecutive groups, where each group will have size
(logn)k�1=2 . After adding the numbers in each group
(recursively), we will have(log n)1=2 numbers, each of
length (k � 1=2) log logn . For the final step, we notice
that the total number of bits is less thanlogn , and thus
these (logn)1=2 numbers can be added using a DNF
formula of size at mostn . To summarize, the AC0

circuit to add (logn)k 1-bit numbers will be composed
of 2k levels. The input level (level2k ) will consist of
(logn)k�1=2 “truth table” subcircuits,TT1 , where each
truth-table subcircuit will take(logn)1=2 numbers, each
of length 1, and output their sum. Finally the output level
(level one), will consist of a single truth-table subcircuit,
TT(k�1=2) log logn , which will again take(log n)1=2 num-
bers, each of length(k � 1=2) log logn and output their
sum.

We proceed more carefully below. We define five types
of AC0 circuits as follows.

1. TTj : this will be a depth 2 circuit that takes
as input (logn)1=2 numbers, each of lengthj
and outputs their sum. We will only useTTj

for j = O(log logn) , thus these circuits take less
than logn inputs, and can therefore be defined by
the obvious DNF formulas. (TT thus stands for
truth-table definition.) Note that ifj = k log logn ,
then the number of output bits ofTTj will be
(k + 1=2) log logn . The formula TTj

l represents
the lth output bit ofTTj .

2. +j : This circuit takes two numbers, eachj -bits
long, and outputs their sum. Since we will use this
circuit only for j = O(log logn) , again the total
number of bits is much less thanlogn , so we will
use the obvious depth-2 truth-table circuit. Note that
the number of output bits of+j will be j + 1 .

3. GEj : This is a depth-2 formula that takes twoj -bit
numbersx and y as input and outputs 1 if and only
if x is greater than or equal toy . We will be using
GEj only for j = O(log logn) , so again this circuit
will be the obvious depth-2 truth-table formula.

4. EQUIVj : This is a depth-2 formula that takes two
j -bit numbersx and y as input and outputs 1 if and
only if x is congruent toy modulo 2 . We will be
using EQUIVj only for j = O(log logn) , so again
this circuit will be the obvious depth-2 truth-table
formula.

5. SUMj;i : This circuit takes as inputi numbers, each
j bits long and outputs their sum. The circuit will be
defined inductively using theTT subcircuits repeat-
edly. First, SUMj;0() = 0 and SUMj;1(x1) = x1 .
Next, considerSUMj;i(x1; : : : ; xi) for i > 1 . There
are two cases, depending on whether or noti is
a power of (logn)1=2 . First, if i is not a power
of (logn)1=2 , then SUMj;i(x1; : : : ; xi) is equal to
SUMj;i(x1; : : : ; xi; 0; : : : ; 0) , where we pad with the
minimum number of zeroes such that the total number
of inputs is a power of(logn)1=2 . In the second
case, assume thati is a power of (logn)1=2 , and
specifically let i = (logn)k . The idea is that
SUMj;i(x1; : : : ; xi) will be a full tree consisting of
2k levels ofTT ’s. We defineSUMj;i as follows:

SUMj;(logn)k(x1; : : : ; x(logn)k )

= TTj+(k�1=2) log logn(A1; : : : ; A(log n)1=2)

where Ar = SUMj;(logn)k�1=2(xmr�1+1; : : : ; xmr )

andmt = t(logn)k�1=2 .

6. THi
k(x1; : : : ; xi) : This is a constant-depth formula

that takesi one-bit inputs, and outputs 1 if and only



if the number of 1’s isk or greater. It is defined
to be equal toGElog i(SUM1;i(x1; : : : ; xi); k) . It
is important to note that in simulating the original
threshold gate,Thk , we are going from an unordered
list of the variables to an ordered list of the variables.
That is, in our formula forTHi

k , the order of the
variables matters. Even though commutativity of
the underlying variables was implicit inThk , we
will need to show that permutation ofTHk can be
simulated by our formulas.

7. PARITYi
b(x1; : : : ; xi) : This is a constant-depth for-

mula that takesi one-bit inputs, and outputs 1
if and only if the number of 1’s is congruent
to b modulo 2 . It is defined to be equal to
EQUIVlog i(SUM1;i(x1; : : : ; xi); b) . Again, we will
need to show that permutation of PARITYb can be
simulated by our formulas.

To simplify notation, we will usually omit the super-
scripts on the above AC0 formulas. (They can be figured
out from context.) It will be helpful to keep in mind that
the length of all intermediate numbers will be at most
O(log logn) (i.e., j = O(log logn) .)

Also, sometimes we will use the notationf = g , where
f and g are circuits, each withj outputs. For example,
SUM(A1; A2; : : : ; Am) = SUM(A2; A1; : : : ; Am) . This
notation is shorthand for the sequent!

Vj
i=1((:fi_gi)^

(:gi _ fi)) . However, whenf = g occurs in a sequent,
then it represents theformula

Vj
i=1((:fi_gi)^(:gi_fi)) .

Lastly, in general, we will write the above formulas in
prefix notation (i.e.,GE(x; y)), but for the+ formulas
we will usually use infix notation (i.e.,x+ y ).

4. Preliminaries

The lemmas of this section will greatly simplify the
arguments in the rest of the article. LetF (x) be a
formula depending on propositional variablex . F may
also depend on other variables; the notationF (x) means
that only x is relevant in the context. Given another
formula A , F (A) will denote the formula obtained by
replacing every occurrence ofx by A . A derivation of a
sequentS from S1; : : : ; Sp is a proof ofS that uses the
sequentsS1; : : : ; Sp as additional initial sequents.

Lemma 4 can be proved by induction on the structure
of the formulaF . Lemma 5 then follows from Lemma 4,
and Lemma 6, from Lemma 5.

Lemma 4 In AC0 -Frege, for every formulaA , B and
F (x) , and for every sequence of formulas� and � , the
following sequents can be derived in size polynomial in
the size ofA , B , F (x) , � and � :

1. (�! F (A);�) from (�! F (B);�) , (�; B !
A;�) and (�; A! B;�) .

2. (�; F (A)! �) from (�; F (B)! �) , (�; B !
A;�) and (�; A! B;�) .

Lemma 5 In AC0 -Frege, for every formulaA and F (x) ,
the following sequents can be proved in size polynomial
in the size ofA and F (x) :

1. F (0)! A;F (A)

2. F (1); A! F (A)

3. F (A); A! F (1)

4. F (A)! A;F (0)

Lemma 6 In AC0 -Frege, for every formulaA and F (x) ,
the following sequents can be derived in size polynomial
in the size ofA and F (x) :

1. ! F (A) from ! F (0) and ! F (1) .

2. F (A)! from F (0)! and F (1)! .

Lemma 7 In AC0 -Frege, for every formulaF (x1; : : : ; xn)
and for every sequence of formulasA1; : : : ; An , if
! F (A1; : : : ; An) is a tautology, then! F (A1; : : : ; An)
can be derived from sequents of the formF (B1; : : : ; Bn)
! F (B�(1); : : : ; B�(n)) where � is a permutation. The
size of the derivation is polynomial in the size of
F (x1; : : : ; xn) and of theAi ’s.

Proof By induction onm , we show how to derive the
sequents! F (A1; : : : ; Am; 0

i; 1n�m�i) , 0 � i � n �
m . The base case,m = 0 , is easy since the sequents
! F (0i; 1n�i) , 0 � i � n , contain no variables.

Suppose that the casem holds. Let i
be arbitrary. We want to derive the sequent
! F (A1; : : : ; Am+1; 0

i; 1n�(m+1)�i) . By Lemma 6, it is
sufficient to derive! F (A1; : : : ; Am; 0; 0

i; 1n�(m+1)�i)
and! F (A1; : : : ; Am; 1; 0

i; 1n�(m+1)�i) . These two se-
quents follow from the inductive hypothesis by permuting
the arguments ofF .

The bound on the size of the derivation is easy to
verify. In particular, the total number of permutation
sequents used is bounded byn2 . ut

Lemma 8 In AC0 -Frege, if � ! � is a tautology with
at mostO(logn) variables, then� ! � can be proved
in size polynomial inn and in the size of�! � .

Proof Since the total number of variables is only
O(logn) , the total number of truth assignments to the
variables isnO(1) . The proof proceeds by giving linear
size proofs (in the size of the sequent) of�;�! � , where



� is a set of literals, corresponding to a particular truth
assignment to allO(log n) variables. Then these proofs
are combined using repeated applications of the cut rule
to remove the literals in� , one-by-one. ut

Lemma 9 Let � ! � be anAC0 -Frege tautology with
underlying variablesx1; : : : ; xm . Let f1; : : : ; fq be dis-
joint subformulas occurring in� ! � . Let �0 ! �0 be
the result of replacing every occurrence of each subformula
fi by the variableAi . Suppose that theAi ’s are now the
only variables in�0 ! �0 . If �0 ! �0 is also a tautology
and q = O(logn) , then�! � has anAC0 -Frege proof
of size polynomial inn and in the size of�! � .

Proof The proof is very similar to the one above, except
that now we obtain linear size proofs (in the size of the
sequent) of�;�! � , but where now� corresponds to a
particular truth assignment to all of theO(logn) formulas
A1; : : : ; Aq . Since�0 ! �0 is a tautology, each of these
nO(1) sequents is true and has a simple linear sized proof.
Now again, we use repeated applications of the cut rule
(now applied to constant-depth formulas) to remove all of
the formulas in� , one-by-one. ut

5. Simulating the restricted TC0 -Frege proofs

Let P denote a TC0 -Frege proof of a sequent�! � .
Suppose thatP has size polynomial inn and that all
the threshold and parity connectives inP have fan-in
polylog n . Our goal in this section is to show that
P can be simulated by an AC0 -Frege proof of size
polynomial inn . This will be done bytranslatingthe lines
L1; : : : ; LjP j of P into equivalent AC0 -Frege sequents
that will constitute the skeleton of an AC0 -Frege proof.
More precisely, each lineLi will be translated intoL0

i

and L0
1; : : : ; L

0
jP j�1 will become intermediate lines in an

AC0 -Frege proof ofL0
jP j .

An AC0 formula A0 is an AC0 translation of a TC0

formula A if A0 can be obtained by replacing every
threshold and parity connective inA by the TH and
PARITY formulas defined in Section 3. Note that ifA
has size polynomial inn and if the threshold and parity
connectives inA all have fan-in polylogn , thenA0 has
size polynomial inn . Also note thatA0 is not unique
since the arguments of the connectives are multi-sets while
the inputs to the TH and PARITY formulas are ordered.
The notion of an AC0 translation extends in the obvious
way to sequents.

The main result of this section can now be stated
precisely.

Theorem 10 If � ! � has a TC0 -Frege proof of
size polynomial inn in which all the threshold and

parity connectives have fan-inpolylog n , then theAC0

translation of � ! � has anAC0 -Frege proof of size
polynomial inn .

The proof will be by induction on the number of steps
in P . For i = 1; : : : ; jP j , we will show that there is an
AC0 -Frege proof ofL0

i , of size polynomial inn , with
intermediate linesL0

1; : : : ; L
0
i�1 .

For the inductive basis, we need to give polynomial-size
AC0 -Frege proofs of the initial sequents of the TC0 -Frege
system. The first of these sequents isA! A which
translates toA0 ! A00 where A0 and A00 are two—
possibly different—AC0 translations ofA . Our first task
is therefore to give a polynomial-size AC0 -Frege proof of
A0 ! A00 . We start with the following lemma.

Lemma 11 Let m = polylog n . The sequents
THk(A1; : : : ; Am) ! THk(A�(1); : : : ; A�(m)) and
PARITYb(A1; : : : ; Am) ! PARITYb(A�(1); : : : ; A�(m)) ,
where � is any permutation, haveAC0 -Frege proofs of
size polynomial inn .

Proof The formula THk(A1; : : : ; Am) is de-
fined as GE(SUM(A1; : : : ; Am); k) and the circuit
SUM(A1; : : : ; Am) has onlyO(log logn) outputs. There-
fore, by Lemma 9, the sequent

THk(A1; : : : ; Am);

(SUM(A1; : : : ; Am) = SUM(A�(1); : : : ; A�(m)))

! THk(A�(1); : : : ; A�(m))

has an AC0 -Frege proof. This implies that to
prove THk(A1; : : : ; Am) ! THk(A�(1); : : : ; A�(m)) ,
it is sufficient to prove that SUM(A1; : : : ; Am) =
SUM(A�(1); : : : ; A�(m)) . The same is true for the
PARITYb sequent.

In order to show that SUM(A1; : : : ; Am) =
SUM(A�(1); : : : ; A�(m)) , it suffices to show that

SUM(A1; : : : ; Ar; : : : ; As; : : : ; Am)

= SUM(A1; : : : ; As; : : : ; Ar; ::Am):

In other words, it suffices to show that the result holds
when we transpose two elements,Ar and As . The idea
will be to rewrite SUM(A1; : : : ; Ar; : : : ; As; : : : ; Am) in
terms of the variablesAr and As , and O(logn) new
(meta)variables. This will be done by replacing most of the
subformulas of the original formula by these new variables.
The formulaSUM(A1; : : : ; As; : : : ; Ar; : : : ; Am) will be
rewritten in a similar way. The resulting two formulas
will be truth-functionally equivalent, and since they will
involve only O(logn) variables, we will be able to apply
Lemma 9 to complete the proof. In order to see how to
do this, we will need some notation.



Recall that the SUM circuit onm = (logn)k 1-bit
inputs is divided into2k levels, where each level consists
of depth-2TT circuits. Let j = (logn)1=2 . Then the
SUM circuit on A1; : : : ; Am can be viewed as a tree
with 2k levels. Let � denote a particular path in this
tree. (So the nodes in the tree at level 1 have path names
1; : : : ; j ; the nodes in the tree at level 2 have path names
11; 12; : : : ; 1j; 21; 22; : : : ; 2j; : : : ; j1; : : : ; jj and so on.)
Then X�

i will denote the subcircuit at leveli in the tree
obtained by following the path� . In this notation, we
have SUM(A1; : : : ; Am) = TT(X1

1 ; X
2
1 ; : : : ; X

j
1) and in

generalX�
i = TT(X�;1

i+1; X
�;2
i+1; : : : ; X

�;j
i+1) . Also, notice

that X�
2k are vectors ofj input variables.

Assume for notational simplicity thatAr 2 X11:::1
2k

and As 2 Xjj:::j
2k . That is, Ar is the very first variable

and As is the very last variable. Then we will write
SUM(A1; : : : ; Am) as follows:

SUM(A1; : : : ; Am)

= TT(X1
1 ; X

2
1 ; : : : ; X

j
1)

= TT(

TT(X11
2 ; X12

2 ; : : : ; X1j
2 );

X2
1 ; : : : ; X

j�1
1 ;

TT(Xj1
2 ; : : : ; Xjj

2 ) )

= TT(

TT(

TT(X111
3 ; : : : ; X11j

3 );

X12
2 ; : : : ; X1j

2 );

X2
1 ; : : : ; X

j�1
1 ;

TT(

Xj1
2 ; : : : ; X

j(j�1)
2 ;

TT(Xjj1
3 ; : : : ; Xjjj

3 ) ) ):

The idea of the above representation is that we are
representing most of the SUM circuit by large subformulas
that are never looked at; only the part of the circuit that
must be opened up in order to look atAr and As

will be represented. Thus, in this representation, the
number of metavariables that are represented in total is
4kj(polylog n) = O(logn) . This is because at each level,
we are adding2j new variables, each of length polylogn
and the number of levels is2k .

In the same manner, we break up the formula
SUM(A1; : : : ; As; : : : ; Ar; : : : ; Am) with Ar and As

transposed. Again, this formula will involveO(logn)
metavariables, and these metavariables will be identical to
the metavariables involved inSUM(A1; : : : ; Am) . Fur-
thermore, these two formulas (onO(logn) metavariables)
are equivalent. Thus we can apply Lemma 9 to complete
the proof. ut

Lemma 12 Let A0 and A00 be AC0 translations of the
sameTC0 -Frege formulaA . Suppose thatA has size
polynomial in n and that all the threshold and parity
connectives inA have fan-inpolylog n . Then the sequent
A0 ! A00 has anAC0 -Frege proof of size polynomial in
n .

Proof The proof is by induction on the struc-
ture of A . The inductive basis is trivial. For
the inductive step, several cases need to be consid-
ered depending on the top connective ofA . Sup-
pose, for example, thatA is a formula of the form
Thk(A1; : : : ; Am) . Then A0 = THk(A

0
�(1); : : : ; A

0
�(m))

and A00 = THk(A
00
�(1); : : : ; A

00
�(m)) , where � and � are

permutations and the primes and double primes indicate
different AC0 translations of the same formula. We want
to derive A0 ! A00 . By Lemma 11, it is sufficient to
derive THk(A

0
1; : : : ; A

0
m)! THk(A

00
1 ; : : : ; A

00
m) .

Let F (x) = THk(A
0
1; : : : ; A

0
m�1; x) . By Lemma 4,

and by the inductive hypothesis applied toAm , we can
derive F (A0

m)! F (A00
m) , that is,

THk(A
0
1; : : : ; A

0
m�1; A

0
m)

! THk(A
0
1; : : : ; A

0
m�1; A

00
m):

Repeat this, with a different formulaF (x) , to get

THk(A
0
1; : : : ; A

0
m�2; A

0
m�1; A

00
m)

! THk(A
0
1; : : : ; A

0
m�2; A

00
m�1; A

00
m):

Continue repeating until we get

THk(A
0
1; A

00
2 ; : : : ; A

00
m)

! THk(A
00
1 ; A

00
2 ; : : : ; A

00
m):

A series of cuts will now produce the desired sequent.
The other cases are similar and the bound on the size

of the proof is easy to verify. ut

Note that the proof of Lemma 11 is the only place in
the proof of Theorem 10 where we mention the particular
definitions we are using for theTH and PARITY for-
mulas. Therefore, our proof of Theorem 10 works with
any kind of AC0 translation that is obtained by replacing
every threshold and parity connective by AC0 formulas
that satisfy the property stated in Lemma 11.

Let us now return to the inductive basis of the proof
of Theorem 10. The initial sequentA! A is taken
care of by Lemma 12. The sequents! ^() and _() !
remain unchanged under AC0 translation and are therefore
handled by the identical AC0 -Frege initial sequents. Next,
the sequents�1()! , ! �0() andThk()! , for k � 1 ,
become PARITY1()! , ! PARITY0() and THk()! ,
respectively. These are all tautologies with no variables



that can therefore be easily proven. Finally, the sequent
! Th0(A1; : : : ; Am) becomes! TH0(A1; : : : ; Am) , a
tautology that can be proven using Lemmas 7 and 11.

We now move to the inductive step. Suppose that we
have an AC0 -Frege proof ofL0

i , of size polynomial in
n , with intermediate linesL0

1; : : : ; L
0
i�1 . We want to

get an AC0 -Frege proof ofL0
i+1 , of size polynomial in

n , with intermediate linesL0
1; : : : ; L

0
i . In the original

TC0 -Frege proofP , Li+1 is either an initial sequent or
obtained from previous sequents by one of the TC0 -Frege
inference rules. IfLi+1 is an initial sequent, then we
are done by the argument used in the inductive basis. So
suppose thatLi+1 was obtained from previous sequents
by one of the TC0 -Frege inference rules. We will show
how to simulate these rules using AC0 -Frege proofs of
size polynomial inn .

All of the structural rules as well as the cut,:-left,
:-right, ^-left, ^-right, _-left and _-right rules can be
easily simulated by using Lemma 12 and the corresponding
AC0 -Frege rules. We are left with the�-left, �-right,
Th-left andTh-right rules.

Consider theTh -right rule. Suppose thatLi+1 is a
sequent of the form� ! Thk(A1; : : : ; An);� and that
Li+1 was derived from� ! A1;Thk(A2; : : : ; An);�
and � ! Thk�1(A2; : : : ; An);� . We need to show
that �0 ! THk(A

0
�(1); : : : ; A

0
�(n));�

0 can be de-
rived from �00 ! A00

1 ;THk(A
00
�(2); : : : ; A

00
�(n));� and

�000 ! THk�1(A
000
�(2); : : : ; A

000
�(n));�

000 , where � , � and
� are permutations and the primes, double primes and
triple primes indicate different AC0 translations of the
same formula or sequent. By Lemmas 11 and 12, it
is sufficient to show that�0 ! THk(A

0
1; : : : ; A

0
n);�

0

can be derived from�0 ! A0
1;THk(A

0
2; : : : ; A

0
n);� and

�0 ! THk�1(A
0
2; : : : ; A

0
n);�

0 . We will use the following
lemma:

Lemma 13 Let m = polylog n . The following sequents
haveAC0 -Frege proofs of size polynomial inn .

1. THk(A2; : : : ; Am)! THk(A1; : : : ; Am)

2. A1;THk�1(A2; : : : ; Am)! THk(A1; : : : ; Am)

3. THk(A1; : : : ; Am)! THk�1(A2; : : : ; Am)

4. THk(A1; : : : ; Am)! A1;THk(A2; : : : ; Am)

Proof Consider the first sequent. Let

G0(A2; : : : ; Am)

= THk(0; A2; : : : ; Am) _ :THk(A2; : : : ; Am)

and

G1(A2; : : : ; Am)

= THk(1; A2; : : : ; Am) _ :THk(A2; : : : ; Am):

Using Lemma 11, we can easily prove that the arguments
of G0 andG1 can be permuted. Therefore, by Lemma 7,
we get ! G0(A2; : : : ; Am) and ! G1(A2; : : : ; Am) .
Now by Lemma 6, we get

! THk(A1; A2; : : : ; Am) _ :THk(A2; : : : ; Am) :

The first sequent can be easily derived from this. The
proof of the other sequents is similar. ut

Continuing with the simulation of theTh-right
rule, let A0 = A0

1 , B0 = THk(A
0
2; : : : ; A

0
m) ,

C 0 = THk�1(A
0
2; : : : ; A

0
m) andD0 = THk(A

0
1; : : : ; A

0
m) .

We want to derive�0 ! D0;�0 from �0 ! A0; B0;�0

and�0 ! C 0;�0 . From the second sequent in Lemma 13,
we have A0; C 0 ! D0 . Using this together with
�0 ! C 0;�0 we can apply weakening and cut to
derive �0; A0 ! D0;�0 . Now applying cut to this
formula together with�0 ! A0; B0;�0 yields the formula
�0 ! D0; B0;�0 . Finally, applying weakening and cut to
this formula together withB0 ! D0 , the first sequent in
Lemma 13, we derive�0 ! D0;�0 as desired.

The simulation of the threshold-left rule is similar. The
simulation of the� rules is also similar except that it uses
the following lemma instead of Lemma 13:

Lemma 14 Let m = polylog n . The following sequents
haveAC0 -Frege proofs of size polynomial inn .

1. A1;PARITYb(A1; : : : ; Am)
! PARITYb�1(A2; : : : ; Am)

2. PARITYb(A1; : : : ; Am)
! A1;PARITYb(A2; : : : ; Am)

3. A1;PARITYb�1(A2; : : : ; Am)
! PARITYb(A1; : : : ; Am)

4. PARITYb(A2; : : : ; Am)
! A1;PARITYb(A1; : : : ; Am)

The proof this lemma is similar to that of Lemma 13.

6. Our main result

We are now ready to prove our main theorem.

Theorem 15 Assuming that the Diffie-Hellman function
cannot be computed with circuits of size2n

�

for any
� > 0 , AC0 -Frege does not have feasible interpolation.

Proof DHm , as defined by [3], is a TC0 -Frege formula
with m variables and of size polynomial inm . By the
main theorem of [3],DHm has a TC0 -Frege refutation
of size polynomial inm . Setting m = polylog n , by
Theorem 10, it follows that the AC0 translation ofDHm



has an AC0 -Frege refutation of size polynomial inn .
Note that any AC0 translation ofDHm has the same
interpolation function asDHm itself. Thus, if AC0 -Frege
has feasible interpolation, then for everyk , the Diffie-
Hellman function on(logn)k many bits has circuits of
size polynomial inn . The result follows. ut

References

[1] E. Biham, D. Boneh, and O. Reingold. Generalized diffie-
hellman modulo a composite is not weaker than factoring.
Technical Report 97-14, Theory of Cryptography Library,
1997. Available at http://philby.ucsd.edu/cryptolib.html.

[2] M. Bonet, T. Pitassi, and R. Raz. Lower bounds for cutting
planes proofs with small coefficients.Journal of Symbolic
Logic, 62(3):708–728, 1997.

[3] M. L. Bonet, T. Pitassi, and R. Raz. No feasible
interpolation for TC0 -Frege proofs. InProceedings of
the 38th IEEE Symposium on Foundations of Computer
Science, pages 254–263, 1997.

[4] S. Cook and A. Haken. An exponential lower bound
for the size of monotone real circuits. InProceedings of
the 36th IEEE Symposium on Foundations of Computer
Science, 1995. To appear inJ. Comput. System Sci.

[5] S. Cook and R. Reckhow. The relative efficiency of
propositional proof systems.J. Symbolic Logic, 44:36–50,
1979.

[6] R. Impagliazzo, T. Pitassi, and A. Urquhart. Upper
and lower bounds for tree-like cutting planes proofs. In
Proceedings of the IEEE Symposium on Logic in Computer
Science, 1994.

[7] J. Krajı́ček. Discretely ordered modules as a first-order
extension of the cutting planes proof system. Submitted.

[8] J. Krajı́ček. Interpolation theorems, lower bounds for proof
systems and independence results for bounded arithmetic.
To appear in theJ. Symbolic Logic.

[9] J. Krajı́ček and P. Pudl´ak. Some consequences of cryp-
tographical conjectures forS1

2 and EF . In D. Leivant,
editor, Logic and Computational Complexity, volume 960
of Lecture Notes in Computer Science, pages 210–220.
Springer-Verlag, 1995.

[10] A. Maciel and T. Pitassi. Towards lower bounds for
bounded-depth frege proofs with modular connectives. In
P. Beame and S. Buss, editors,Proof Complexity and
Feasible Arithmetics, volume 39 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science,
pages 195–227. American Mathematical Society, 1998.

[11] K. McCurley. A key distribution system equivalent to
factoring. J. Cryptology, 1:95–105, 1988.

[12] P. Pudlák. Personal communication.
[13] P. Pudlák. Lower bounds for resolution and cutting planes

proofs and monotone computations.J. Symbolic Logic,
62(3), 1997.

[14] P. Pudlák and J. Sgall. Algebraic models of computation
and interpolation for algebraic proof systems. Submitted.

[15] A. Razborov. Unprovability of lower bounds on the circuit
size in certain fragments of bounded arithmetic.Izvestiya
of the R.A.N., 59(1):201–224, 1995.

[16] Z. Shmuely. Composite diffie-hellman public-key gener-
ating systems are hard to break. Technical Report 356,
Computer Science Department, Technion, Israel, 1985.


