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Abstract

In this paper, we show how to extend the argument

proof system there is a class of tautologies that requires
superpolynomial proof length is equivalent to NP Co-
NP. This fact started a program that consists in trying to

due to Bonet, Pitassi and Raz to show that bounded-depthprove superpolynomial lower bounds for increasingly more

Frege proofs do not have feasible interpolation, assuming
that factoring of Blum integers or computing the Diffie-
Hellman function is sufficiently hard. It follows as a
corollary that bounded-depth Frege is not automatizable;
in other words, there is no deterministic polynomial-time
algorithm that will output a short proof if one exists. A
notable feature of our argument is its simplicity.

1. Introduction

In the last years there has been a lot of interest in
studying the complexity of propositional proof systems.
The motivation comes from two ends. On one side, Cook
and Reckhow [5] showed that whether for every possible
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powerful proof systems. The other motivation for studying
the complexity of proof systems comes from issues related
to automated theorem provers. The question is: given a
particular propositional proof system, are there efficient
algorithms for finding the shortest proofs of a tautology in
that system? Our results have to do with both motivations,
and in what follows we will explain these relationships in
more detail.

Consider first the issue of proving superpolynomial
lower bounds for propositional proof systems. The
interpolation method has been one of the most used and
promising approaches. It is inspired by Craig’s interpo-
lation theorem for propositional logic which states that if
A(Z,Z) — B(y,Z7) is a tautology where? is a vector
of shared variables, and and § are vectors of separate
variables forA and B respectively, then there is a formula
C(2) such thatA(Z,2) — C(2) and C(2) — B(¢,2)
are tautologies. We will give a different formulation of
this theorem in order to use it to prove lower bounds
for unsatisfiable formulas as follows. Take an unsatisfiable
formula Ao (%, 2) A A1 (¥, Z) , whereZ' is a vector of shared
variables, and? andy are vectors of separate variables for



Ao and A, respectively. Since the formula is unsatisfiable,
it follows that for any truth assignmen¥ to Z, either
Ao(#,d) is unsatisfiable ord, (7, @) is unsatisfiable. An
interpolation function associated with the formula is a
Boolean function that takes such an assignméntas
input, and outputs 0 only if4,(#,&) is unsatisfiable,
and outputsl only if A4,(7,&) is unsatisfiable. We
say that a proof systen$ has thefeasible interpolation
propertyif whenever an unsatisfiable formula of the form
Ao(#,2) N A1 (7, Z) has a polynomial-size refutation ifi,

cryptographic assumptions: Extended Frege, Frege and
even TC -Frege systems. These negative results are
important not only as a guide for searching for lower
bound techniques, but also because they imply that the
proof system in question cannot be automatized. This
connection was first made explicit by [3] and takes us
back to the second motivation for studying propositional
proof systems.

A proof systemS is automatizable if there exists a
deterministic proceduré that takes as input a formula

then that formula has an interpolation function that can be f and returns anS-refutation of f (if one exists) in

computed by a polynomial-size Boolean circuit. Therefore,

in a proof system with the feasible interpolation property,

time polynomial in the size of the shortest-refutation
of f. Automatizability is a crucial concept for automated

pl’OViI’lg a superpolynomial lower bound on refutation size theorem proving: in proof Comp|exity we are mosﬂy
reduces to constructing a unsatisfiable formula of the forminterested in the length of the shortest proof, whereas

Ao(Z,2) N A1(¥,Z) with interpolation functionF and
proving that F' cannot be computed by polynomial-size
circuits.

Unconditional lower bounds for proof systems have
been obtained by consideringnaonotonevariant of the
feasible interpolation property. The main feature of this
type of interpolation is that the interpolation function has

in theorem proving it is also essential to be able to
find the proof. Bonet, Pitassi and Raz [3] show that
if S does not have feasible interpolation, théhis not

automatizable. Thus, feasible interpolation is a simple
measure that formalizes the complexity/search tradeoff: the
existence of feasible interpolation implies superpolynomial
lower bounds (sometimes modulo complexity assump-

polynomial-size monotone circuits. So, for example, take tions), whereas the nonexistence of feasible interpolation
a function that cannot be computed by polynomial-size implies that the proof system cannot be automatized.

monotone circuits like the clique function. Defing (z, z)
to say “the graphz has a cliquez of size k" and
Ai(y,2) to say “the graphz has ak — 1-coloring y”.

In this paper, we use and extend the ideas in [3] to show
that bounded-depth Frege systems do not have feasible
interpolation unless the Diffie-Hellman function can be

The conjunction of both formulas is unsatisfiable and thus computed by circuits of size2™" for arbitrarily small
does not have polynomial-size refutations in any proof ¢ > 0. Note that our assumption is stronger than that of

system that has the monotone interpolation property.

[3] who only needed to assume that the Diffie-Hellman

In the last few years, the interpolation method has beenfunction cannot be computed by polynomial-size circuits.
used to prove many lower bounds. In particular, lower Also note that computing the Diffie-Hellman function is

bounds have been shown for all of the following systems:

at least as hard as factoring Blum integers [1] . (See also

Resolution [2], Cutting Planes [6, 2, 13, 4], generalizations [16, 11].)

of Cutting Planes [2, 8, 7], relativized bounded arithmetic

[15], Hilbert's Nullstellensatz [14], the polynomial calculus
[14], and the Lovasz-Schriver proof system [12].

The basic idea behind the result of [3] is as follows.
They construct a T€-Frege formulaDH,, based on the
Diffie-Hellman function. The size of the formulais polyno-

On the other hand, in a separate sequence of pamia| in n, the length of the numbers involved. The bulk of

pers beginning with a key idea due to Ktak and
PudBk [9, 3], it has been shown that under sufficiently

the argument is to show that there exists a polynomial-size
TCO -Frege refutation ofDH,,. On the other hand, an

strong Cryptographic assumptionsy many stronger proofil’lterp0|ati0n function forDH,, computes one bit of the
systems do not have feasible interpolation. The main ideassecret key exchanged by the Diffie-Hellman procedure.

are as follows. Suppose thdf is a permutation that
is generally believed to be one-way. Formulaig(Z, )
as saying ‘H(z) = z and the last bit ofz is 0” and
Ai(y, z) as saying ‘H (y) = z and the last bit ofy is 1.
Since H is injective, Ag A A; is a contradiction. If the
proof system can have a short refutationaf A A, , then

Thus, if TC? -Frege admits feasible interpolation, then the
secret key exchanged by the Diffie-Hellman procedure can
be broken using polynomial-size circuits and hence the
Diffie-Hellman cryptographic scheme is not secure.

In the present paper, we will scale down the above
idea fromn to polylogn. ConsiderDH,, wherem =

the proof system does not have the feasible interpolationpolylog n. By directly applying the main theorem of [3],

property, unlessH is not a one-way permutation. Using

DH,, has a TC -Frege refutation of size polynomial in

a more general reformulation of the ideas just sketched,m. We will show how to simulate this refutation with
it has been proved that the following proof systems do an AC®-Frege refutation of size polynomial in. More
not have feasible interpolation, under commonly acceptedgenerally, we will show that any TGFrege proof of size



polynomial in n in which all the threshold and parity which allow us to introduce each connective on both

connectives have fan-in polylog can be simulated by the left side and the right side. The cut rule allows

an AC’-Frege proof of size polynomial im. Now if the derivation of ', " — A A’ from I’ A — A, and

AC? -Frege admits feasible interpolation, then the secretl’ — A4, A’

key exchanged by the Diffie-Hellman procedure can be The logical rules are as follows.

broken using circuits of subexponential size and hence the

Diffie-Hellman cryptographic scheme is not secure. 1. (Negation-left) FromI’' — A, A, we can derive
The paper is organized as follows. In Section 2, we -A,T = A.

define the AC and TC -Frege systems. In Section 3,

we define some AE formulas used in the simulation. In 2. (Negation-right) FromA,I' — A, derive ' —

Section 4, we prove some preliminary lemmas. In Section -4, A,
5, we show how to simulate the restricted T€rege 3. (And-left) From Ay, A(As, ..., A,),I — A derive
proofs mentioned in the previous paragraph. In Section 6, A(A A4,),T = A

we prove our main result.
4. (And-righty From I' —» A4;,A and ' —
2. AC° and TC" -Frege systems AN(Az, ..., Ap), A derivel’ » A(Ay,..., Ap), A

. ) B 5. (Or-left) FromA;,I’ - A andV(4,,...,4,),[ =
We will work with the specific bounded-depth threshold A derive V(4,...,4,), = A

logic system TC -Frege defined in [10] and also used in

[3]. This system is a sequent-calculus logical system where 6. (Or-right) FromT — A;,V(4,,...,A4,),A derive
formulas are built up using the connectives A, Thy, = V(4,...,4,),A.

—, and ®,. Thg(z) is true if and only if the number of

I'sin z is at leastk, and @, () is true if and only if the 7. (Mod-left) From A, , &y 1 (A4s, ..., 4,), ' = A and

number of 1's inz is equal tob mod 2. ©Op(Az,...,An),T = Ay, A derive @y (Ay, ..., Ay),
r—A.

Definition 1 Formulas are built up using the connectives 8. (Mod-right) From Ay, T = @y 1(As,... An), A

A, V, Thy, ®1, &9, —. All connectives are assumed to :
have unbounded fan-inThy (A4, ..., A,) is interpreted andAI‘ %AAl’ib(Az’”"A")’A derive I' —
to be true if and only if the number of trué;’s is at least Dy(A1, .-, 4n), A

k; ®p(Ag,...,A,) isinterpreted to be true if and only if 9. (Threshold-left)y FromThy(As, ..., 4,),T — A
the number of true4;’s is equal tob mod 2. and  A;, Thy 1 (As A) N derive

Thi(As,..., A,),T — A.
The formulaA(A, ..., A,) denotes the logical AND k(A1 An)

of the multi-set consisting ofi,, ... A,,, and similarly for 10. (Threshold-right) FronT' — A;, Thy(As,...,A,),
r

V, @, andTh; . Thus commutativity of the connectives is A and T — Thy ((4,...,A,),A derive I' —
implicit. Our proof system operates on sequents which are Thy (AL, ..., A4,),A.

sets of formulas of the form¥,,..., 4, = By,...,B,.

The intended meaning is that the conjunction of thgs The sizeof a proof is the total size of all the formulas
implies the disjunction of the3;’s. A proof of a sequent that occur in the proof. Thalepth of a proof is the
in our logic system is a sequence of sequeAfss.. .., S,, maximum depth of all the formulas that occur in the

such that each sequesst is either an initial sequent, or  proof.
follows from previous sequents by one of the rules of A family of sequents(I'; — A;), (T[> — As), (T3 —

inference, and the final sequetst,, is S. A3z),... has TC-Frege proofs if each sequent has a
Theinitial sequentsare of the form: (1)4 — A where bounded-depth proof of size polynomial in the size of the
A is any formula; (2)— A(); V() —; ) @1() —; — sequent. More precisely,

®o(); and (4) Thy() — for k > 1; — Tho(A1,...,4,)

for n > 0. The rules of inference are as follows. Note that Definition 2 Let F = {(T',, = A,,) : n € N} be a family
the logical rules are defined far > 1 andk > 1. First we of sequents. ThefiR,, : n € N} is a family of TC® -Frege
have simple structural rules such as weakening (formulasproofs for F' if there exist constants and d such that the
can always be added to the left or to the right), contraction following conditions hold: (1) EachR?,, is a valid proof
(two copies of the same formula can be replaced by one),of (I',, = A;,) in our system; (2) For alli, the depth of
and permutation (formulas in a sequent can be reordered)R,, is at mostd; and (3) For all n, the size ofR,, is at
The remaining rules are the cut rule, and logical rules most (sizgT',, — A,))°.



We say that a formulg can bearranged intod levels 1. TT/: this will be a depth 2 circuit that takes

if the connectives off can be arranged intd groups as input (logn)'/? numbers, each of lengthj
Ly, ..., Ly called levels such that all the inputs of every and outputs their sum. We will only us&T’
connective at some level are either propositional variables for 7 = O(loglogn), thus these circuits take less
or connectives from the previous levels. Note thfatan than logn inputs, and can therefore be defined by
be arranged intal levels if and only if f has depth at the obvious DNF formulas. (TT thus stands for
mostd. Moreover, if f has depth less thaa, then some truth-table definition.) Note that ifi = kloglogn,
of the levels may be empty. then the number of output bits oTTj will be
(k + 1/2)loglogn. The formula TT; represents
Definition 3 The AC? -Frege system is a restriction of the the I*" output bit of TT”.
TCO -Frege system, where we omit the parity and threshold ,
connectives and the associated rules. 2. +7: This circuit takes two numbers, eachbits
long, and outputs their sum. Since we will use this
In the following sections, we will use the symbals circuit only for j = O(loglogn), again the total
and 1 in our formulas. These will simply stand for the number of bits is much less thaogn, so we will
formulas z A -z and z V -z, respective|y_ Thus the use the obvious depth-2 truth'ta.ble circuit. Note that
sequents) — and — 1 have constant-size AGFrege the number of output bits ot/ will be j +1.
proofs.

3. GE’: This is a depth-2 formula that takes twjebit
numbersz andy as input and outputs 1 if and only

3. Notation and AC° counting formulas if 2 is greater than or equal t9. We will be using
GE’ only for j = O(loglogn), so again this circuit

In this section we will describe some of the AC will be the obvious depth-2 truth-table formula.
formulas that we will be using. Recall that our g_oall is to 4. EQUIV/: This is a depth-2 formula that takes two
shqw that TC-Frege proofs of'3|ze polynpm|al nn- j-bit numbersz andy as input and outputs 1 if and
which all the threshold and parity connectives have fan-ln only if z is congruent toy modulo 2. We will be
polylogn_ can be 5|mglated by A@:?Freg_e proofs.of size using EQUIV only for j = O(loglogn), so again
pon_nomlaI nn. .TO .th|s end, we W'." define AC circuits this circuit will be the obvious depth-2 truth-table
of size polynomial inn that can simulate threshold and formula.
parity gates of fan-in polylog .

We will first show how to add polylog many bits 5. SUM’¢: This circuit takes as input numbers, each
using AC® circuits of size polynomial inn. The j bits long and outputs their sum. The circuit will be
general idea is as follows. Suppose that the original defined inductively using th&'T subcircuits repeat-
input bits are z1,...,z,, where m = (logn)* for edly. First, SUM??() = 0 and SUM’ (z;) = x,.
some k. We will sum these numbers in a divide and Next, considerSUMj’i(xl,...,mi) for 4 > 1. There
conquer fashion, by dividing these inputs intmg n)'/? are two cases, depending on whether or nots
consecutive groups, where each group will have size a power of (logn)'/2. First, if i is not a power
(logn)k—1/2. After adding the numbers in each group of (logn)'/?, then SUM’*(z1,...,z;) is equal to
(recursively), we will have(logn)'/?> numbers, each of SUM”(zy,...,z;,0,...,0), where we pad with the
length (k — 1/2)loglogn. For the final step, we notice minimum number of zeroes such that the total number
that the total number of bits is less thawgn, and thus of inputs is a power of(logn)'/2. In the second
these (logn)'/? numbers can be added using a DNF case, assume that is a power of (logn)'/?, and
formula of size at mostn. To summarize, the AEC specifically let i = (logn)*. The idea is that
circuit to add (logn)* 1-bit numbers will be composed SUM”(zy,...,z;) will be a full tree consisting of
of 2k levels. The input level (leveRk) will consist of 2k levels of TT’s. We defineSUM? as follows:
(logn)*~1/2 “truth table” subcircuits, TT*, where each .
truth-table subcircuit will take(logn)'/2 numbers, each SUM? (8™ (21, .., (10 nyt)
of length 1, and output their sum. Finally the output level = TT/tk-1/2)loglogn g s Alog my172)
(level one), will consist of a single truth-table subcircuit,

TTk=1/2)leglogn \which will again take(log n)!/? num- where A, = SUMAUs™* ™2
:Srri each of lengtlik — 1/2)loglogn and output their and m; = t(logn)* /2
We proceed more carefully below. We define five types 6. TH};(ml, ...,x;): This is a constant-depth formula

of ACY circuits as follows. that takesi one-bit inputs, and outputs 1 if and only



if the number of 1's isk or greater. It is defined
to be equal toGE"8*(SUM " (x,...,z;),k). It

is important to note that in simulating the original
threshold gateThy , we are going from an unordered
list of the variables to an ordered list of the variables.
That is, in our formula forTH:, the order of the
variables matters. Even though commutativity of
the underlying variables was implicit iTh;, we
will need to show that permutation ofH; can be
simulated by our formulas.

7. PARITY!(z,...,2;): This is a constant-depth for-
mula that takesi one-bit inputs, and outputs 1
if and only if the number of 1's is congruent
to b modulo 2. It is defined to be equal to
EQUIV°8 (SUM"(zy,...,z;),b). Again, we will
need to show that permutation of PARIJtan be
simulated by our formulas.

To simplify notation, we will usually omit the super-
scripts on the above AC formulas. (They can be figured
out from context.) It will be helpful to keep in mind that
the length of all intermediate numbers will be at most
O(loglogn) (i.e., j = O(loglogn).)

Also, sometimes we will use the notatigh= ¢, where
f and g are circuits, each witly outputs. For example,
SUM(Al,AQ, . ,Am) = SUM(Az, Al, ey Am) . This
notation is shorthand for the sequent AJ_, ((—=f; Vg:) A
(—g: V fi)). However, whenf = g occurs in a sequent,
then it represents tHermula A7_, ((=f;Vgi)A(=gi V fi)).
Lastly, in general, we will write the above formulas in
prefix notation (i.e.,GE(z,y)), but for the + formulas
we will usually use infix notation (i.ex + y).

4. Preliminaries

The lemmas of this section will greatly simplify the
arguments in the rest of the article. Lét(z) be a
formula depending on propositional variable F may
also depend on other variables; the notat®fx) means
that only = is relevant in the context. Given another
formula A, F(A) will denote the formula obtained by
replacing every occurrence af by A. A derivation of a
sequentS from Si,...,S, is a proof of S that uses the
sequentsSy, ..., S, as additional initial sequents.

1. (I - F(A),A) from (I' - F(B),A), (I',B —
A/A) and (T A — B, A).

2. (I,F(A) - A) from (I'F(B) - A), (IB —
A/A) and (T A — B, A).

Lemma 5 In AC°-Frege, for every formulad and F(z),
the following sequents can be proved in size polynomial
in the size ofA and F(z):

N w N =
o
=
o
1
uj
o

Lemma 6 In AC°-Frege, for every formulad and F(z),
the following sequents can be derived in size polynomial
in the size ofA and F(z):

1. —» F(A) from — F(0) and — F(1).
2. F(A) — from F(0) — and F(1) —.

Lemma 7 In AC°-Frege, for every formuld(z1,. .., x,)
and for every sequence of formulad,,...,A,, if
— F(A4,,...,4,) is atautology, then—» F(A,,...,A,)
can be derived from sequents of the fofiB, ..., By)

— F(Br), .-, Bzn)) Wherer is a permutation. The
size of the derivation is polynomial in the size of
F(zy,...,z,) and of the 4;’s.

Proof By induction onm, we show how to derive the
sequents— F(Ay,..., Ap, 00,17~ ™m=) 0 < i <n—
m. The base casem = 0, is easy since the sequents
— F(0%,1"%), 0 < i < n, contain no variables.

Suppose that the casem holds. Let 1
be arbitrary. We want to derive the sequent
— F(Ay,..., Ay, 01 1= (m+D=i) By Lemma 6, it is
sufficient to derive— F(A,,..., Ay, 0,07, 17~ (m+h) i)
and — F(Ay,..., Ay, 1,04, 17 (m+) =) These two se-
guents follow from the inductive hypothesis by permuting
the arguments of'.

The bound on the size of the derivation is easy to
verify. In particular, the total number of permutation
sequents used is bounded hy. 0

Lemma 4 can be proved by induction on the structure | emma 8 In AC°-Frege, if ' — A is a tautology with

of the formulaF. Lemma 5 then follows from Lemma 4,
and Lemma 6, from Lemma 5.

Lemma 4 In AC°-Frege, for every formulad, B and
F(z), and for every sequence of formul&sand A, the

following sequents can be derived in size polynomial in variables isn®W) .

the size ofd, B, F(z), I" and A:

at mostO(logn) variables, then' — A can be proved
in size polynomial i and in the size of’ — A.

Proof Since the total number of variables is only
O(logn), the total number of truth assignments to the
The proof proceeds by giving linear
size proofs (in the size of the sequent)of’ — A, where



T is a set of literals, corresponding to a particular truth parity connectives have fan-ipolylog n, then theAC®°

assignment to allD(logn) variables. Then these proofs

translation of ' — A has anAC°-Frege proof of size

are combined using repeated applications of the cut rulepolynomial inn.

to remove the literals in-, one-by-one. O

Lemma 9 Let ' — A be anAC"-Frege tautology with
underlying variableszy,...,z,,. Let fi,...,f, be dis-
joint subformulas occurring il — A. LetI" — A’ be

the result of replacing every occurrence of each subformula

fi by the variableA;. Suppose that thel;’s are now the
only variables in[" — A’. If I — A’ is also a tautology
and ¢ = O(logn), thenT — A has anAC°-Frege proof
of size polynomial im and in the size of’ — A.

The proof will be by induction on the number of steps
in P. Fori=1,...,|P|, we will show that there is an
AC°-Frege proof of L., of size polynomial inn, with
intermediate lines},...,L_,.

For the inductive basis, we need to give polynomial-size
ACP-Frege proofs of the initial sequents of the TErege
system. The first of these sequents is— A which
translates to A’ —+ A” where A’ and A" are two—
possibly different—AC translations ofA. Our first task

is therefore to give a polynomial-size AGFrege proof of
Proof The proof is very similar to the one above, except A’ — A" . We start with the following lemma.
that now we obtain linear size proofs (in the size of the

sequent) ofr,I' — A, but where nowr correspondstoa Lemma 1llet m = polylogn. The sequents
particular truth assignment to all of ti@(logn) formulas ~ THy(A1,...,An) — THp(Azq),---,Arm)) and
Ay, ..., A,. Sincel" — A’ is a tautology, each of these PARITY(Ay,...,4,) = PARITYy(Ar), ... Arim)),

n®1) sequents is true and has a simple linear sized proof.where 7 is any permutation, havé\C° -Frege proofs of
Now again, we use repeated applications of the cut rulesize polynomial inn.
(now applied to constant-depth formulas) to remove all of

fined as GE(SUM(4,,...,4,),k) and the circuit

. . . SUM(Ay,...,A,) has onlyO(loglogn) outputs. There-
0._
5. Simulating the restricted TC" -Frege proofs fore, by Lemma 9, the sequent
Let P denote a T€ -Frege proof of a sequeiit —+ A. THi (A1, ..., An),
Suppose thatP has size polynomial inn and that all (SUM(A1, ..., Am) = SUM(Ar (1), -+ Ar(m)))
the threshold and parity connectives iR have fan-in
= THg(Ar@), -5 Ar(m))

polylogn. Our goal in this section is to show that

P can be simulated by an AGFrege proof of size has an AC -Frege proof. This implies that to

polynomial inn. This will be done bytranslatingthe lines
Ly,...,Lp, of P into equivalent AC -Frege sequents
that will constitute the skeleton of an AGFrege proof.

prove THy (Al, ey Am) — THg (Aﬂ(l), R ,Aﬁ(m)),
it is sufficient to prove thatSUM(A4,...,A,) =

: . X i , SUM(Ax(1),---,Axmm)). The same is true for the
More precisely, each linel; will be translated intoL] PARITY, sequent.
and L’l,...,LiPH will become intermediate lines in an In order to show that SUM(Ay,...,An,) =
AC®-Frege proof ofLp, . SUM(Ar(1)s - - -5 Ar(m)), it suffices to show that
An AC’formula A’ is an AC® translation of a TC?
formula 4 if A’ can be obtained by replacing every SUM(Ay, ..., A, .. A, Ay)
threshold and parity connective isl by the TH and = SUM(A1,...,Aq, ..., Ap, L Ap).

PARITY formulas defined in Section 3. Note that if
has size polynomial im and if the threshold and parity
connectives in4 all have fan-in polylog:, then A’ has ~ when we transpose two elements, and A;. The idea
size polynomial inn. Also note thatA’ is not unique  Wwill be to rewrite SUM(A;,..., A,,..., As,..., Ap) in
since the arguments of the connectives are multi-sets whileterms of the variablesd, and A,, and O(logn) new
the inputs to the TH and PARITY formulas are ordered. (meta)variables. This will be done by replacing most of the
The notion of an AC@ translation extends in the obvious subformulas of the original formula by these new variables.
way to sequents. The formulaSUM (A4, ..., A, ..., Ay, ..., Ap) will be

The main result of this section can now be stated rewritten in a similar way. The resulting two formulas
precisely. will be truth-functionally equivalent, and since they will
involve only O(logn) variables, we will be able to apply
Lemma 9 to complete the proof. In order to see how to
do this, we will need some notation.

In other words, it suffices to show that the result holds

Theorem 101f ' — A has a TC®-Frege proof of
size polynomial inn in which all the threshold and



Recall that the SUM circuit onm = (logn)* 1-bit
inputs is divided into2k levels, where each level consists
of depth-2 TT circuits. Letj = (logn)'/?. Then the
SUM circuit on Ay,...,A,, can be viewed as a tree
with 2k levels. Letp denote a particular path in this

Lemma 12 Let A’ and A" be AC? translations of the
sameTCP-Frege formula A. Suppose thatd has size
polynomial in n and that all the threshold and parity
connectives ind have fan-inpolylog n. Then the sequent
A" — A" has anAC°-Frege proof of size polynomial in

tree. (So the nodes in the tree at level 1 have path names.

1,...,7; the nodes in the tree at level 2 have path names
11,12,...,14,21,22,...,2j4,...,41,...,jj and so on.)
Then X/ will denote the subcircuit at level in the tree
obtained by following the patlp. In this notation, we
have SUM(A4,...,A,;,) = TT(X{,X?,...,X/) and in
general X/ = TT(X/\, Xf,...,X0). Also, notice
that X/, are vectors ofj input variables.

Assume for notational simplicity thatd, € Xji-!
and A, € XJ/~7. Thatis, A, is the very first variable
and A, is the very last variable. Then we will write
SUM(A,4,...,A,,) as follows:

SUM(A,...,An)
TT(X], X7, ..
TT(
TT(X}, X42,..., X2,
X2, X1
TT(XI,...,x37))
TT(
TT(
TT(XM, ..., X"
X2, X7),
X2, xi7
TT(
X3t X3,
TT(XP', ..., X37))).

D ¢))

),

The idea of the above representation is that we areof the proof is easy to verify.

representing most of the SUM circuit by large subformulas
that are never looked at; only the part of the circuit that
must be opened up in order to look at, and A,

will be represented. Thus, in this representation, the

Proof The proof is by induction on the struc-
ture of A. The inductive basis is trivial. For
the inductive step, several cases need to be consid-
ered depending on the top connective df. Sup-
pose, for example, thatd is a formula of the form
Thy(A1,...,A4,). Then 4’ = THk(A;(l),...,A;(m))
and A" = THk(AfT’(l), . ,Ag(m)), wherer and o are
permutations and the primes and double primes indicate
different AC? translations of the same formula. We want
to derive A’ — A" . By Lemma 11, it is sufficient to
derive TH (A, ..., Al,) — TH(AY,...,A").

Let F(z) = THy(A4},...,Al,_,z). By Lemma 4,
and by the inductive hypothesis applied th,,, we can
derive F(A],) — F(Al')), that is,

!

TH(AL,... A" |,
— THk(All,,A

AL)
i
m—1»

AII )
Repeat this, with a different formul®&(z), to get

!

THk(All, .. .,Am_2,
— THk(All,,A

!
Am—l:
!
m—2»

AII )
AII

m—1»

Al).
Continue repeating until we get

THi(A}, A, ..., A7)
—  THg(AY,AY, ..., AD).

A series of cuts will now produce the desired sequent.
The other cases are similar and the bound on the size

|

Note that the proof of Lemma 11 is the only place in
the proof of Theorem 10 where we mention the particular
definitions we are using for th@H and PARITY for-

number of metavariables that are represented in total ismulas. Therefore, our proof of Theorem 10 works with

4kj(polylogn) = O(logn). This is because at each level,
we are addin@; new variables, each of length polyleg
and the number of levels i8k.

In the same manner, we break up the formula
SUM(Ay,..., Asy. . Ay A with A, and A,
transposed. Again, this formula will involvé(logn)

any kind of AC translation that is obtained by replacing
every threshold and parity connective by AGormulas
that satisfy the property stated in Lemma 11.

Let us now return to the inductive basis of the proof
of Theorem 10. The initial sequenti — A is taken
care of by Lemma 12. The sequents A() and V() —

metavariables, and these metavariables will be identical toremain unchanged under AQranslation and are therefore

the metavariables involved iSUM(A4,,...,4,,). Fur-
thermore, these two formulas (@n(logn) metavariables)

handled by the identical AG-Frege initial sequents. Next,
the sequentsy; () —, — @o() and Thy() —, for k > 1,

are equivalent. Thus we can apply Lemma 9 to completebecome PARITY() —, — PARITY,() and TH;() —,

the proof. O

respectively. These are all tautologies with no variables



that can therefore be easily proven. Finally, the sequentUsing Lemma 11, we can easily prove that the arguments
— Tho(44,...,A,,) becomes— THy(A;,...,4,), a of Gy and Gy can be permuted. Therefore, by Lemma 7,
tautology that can be proven using Lemmas 7 and 11. we get — Go(A2,...,A,) and = G1(4s, ..., Ap).

We now move to the inductive step. Suppose that we Now by Lemma 6, we get
have an AC-Frege proof of L, of size polynomial in

n, with intermediate linesL;,...,L; ,. We want to — THi (A1, Az, o Am) V —THR(Az, .0, A
get an AC'-Frege proof ofL!_ ,, of size polynomial in . . : .
n, with intermediate linesL!,...,L!. In the original The first sequent can be easily derived from this. The

TCO-Frege proofP, Liy; is either an initial sequent or PrOf Of the other sequents is similar. O

obtained from previous sequents by one of thé’ TRege Continuing with the simulation of theTh-right
inference rules. IfL;;; is an initial sequent, then we rule, let A' = A, B' = THy(A),...,A"),
are done by the argument used in the inductive basis. Soy _ THj_, (AL, ..., A ) and D' = THy (A}, _’Ain)_
suppose thatl;; was obtained from previous sequents \yi want to derivel” f) D' A" from I" — A B’mA'
by one of the T€-Frege inference rules. We will show . 41 _, ¢ A’. From the second sequent in Lemma 13
how to simulate these rules using Ad-rege proofs of we have A;’Cl — D'. Using this together with '

size polynomial in. I’ —» C',A’ we can apply weakening and cut to
All of the structural rules as well as the cuy-left, derive T/, A’ — D',A’. Now applying cut to this

—-right, A-left, A-right, v-left and v-right rules can be 5 mula together withl” — A’, B', A’ yields the formula
easily simulated by using Lemma 12 and the correspondingrr _, p pgr A Finally, applying weakening and cut to
0 . . ) ) . )
ACP-Frege rules. We are left with the-left, ©-right,  his formula together withB' — D', the first sequent in
Th-left and Th-right rules. , Lemma 13, we derivd” — D', A’ as desired.
Consider theTh-right rule. Suppose thal;., is a The simulation of the threshold-left rule is similar. The

sequent of the form® — Thy(As,. .., 4,), A and that  gimyjation of thed rules is also similar except that it uses
Liy1 was derived fromD' — Ay, Thy(As, ..., 4,), A the following lemma instead of Lemma 13:
and T' — Thg_1(A2,...,4,),A. We need to show

that I" — THy(AL ..., A ), A" can be de- Lemma 14 Let m = polylogn. The following sequents
rived from I — A’l’,THk(AfT’@),...,A;’(n)),A and have AC° -Frege proofs of size polynomial in.
' — THk_l(A’T”(Q),...,A’T”(n)),A”’, where 7, ¢ and

T are permutations and the primes, double primes and 1. A1, PARITY (A, .o, A)
triple primes indicate different AZ translations of the = PARITY)—1 (A2, ..., Am)
same formula or sequent. By Lemmas 11 and 12, it o PARITY (A, ..., Ap)

is sufficient to show thatl”" — THj(A],..., Al), A’ — Ay, PARITY(As, ..., Am)
can be derived fronT" — A, TH(AS,..., Al), A and

I - THy_1(A4),...,AL),A’. We will use the following 3. A41,PARITY 1 (4s, ..., An)
lemma: — PARITY,(Ay,..., An
Lemma 13 Let m = polylogn. The following sequents 4. PARITY;(As, ..., Ap)
have AC? -Frege proofs of size polynomial in. — A1, PARITY (A1, ..., Ap)
1. THy(As, ..., An) = TH(Ag, ..., An) The proof this lemma is similar to that of Lemma 13.
2. A1, THy_1(As, ..., Ap) = THE(Aq,..., A .
1 THi-1 (4, m) el m) 6. Our main result
3. THk(Al, Ce ,Am) — THk_l(AQ, . ,Am)
4. THy(A Ap) = Ar, TH(As Ap) We are now ready to prove our main theorem.
. ) ) m ) ) ) m
Proof Consider the first sequent. Let Theorem 15 Assuming that the Diffie-Hellman function
cannot be computed with circuits of sizZ%" for any
Go(Az, ..., Am) e > 0, AC°-Frege does not have feasible interpolation.

= THg(0,As,...,An)V-TH(As, ..., Ap ) .
k0,4, Am) k(A2 ) Proof DH,,, as defined by [3], is a TGFrege formula

and with m variables and of size polynomial im. By the
main theorem of [3],DH,, has a TC -Frege refutation
Gi(Az,..., An) of size polynomial inm. Setting m = polylogn, by

= THg(1,As,..., An) V-THE (A2, ..., An). Theorem 10, it follows that the AC translation ofDH,,,



has an AC -Frege refutation of size polynomial in.
Note that any AC translation of DH,, has the same
interpolation function adH,, itself. Thus, if AC’ -Frege
has feasible interpolation, then for evety, the Diffie-
Hellman function on(logn)* many bits has circuits of

size polynomial inn. The result follows. O
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