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Abstract

The complexity of the Black-White Pebbling Game
has remained open for 30 years. It was devised to cap-
ture the power of non-deterministic space bounded com-
putation. Since then it has been applied to problems in
diverse areas of computer science including VLSI de-
sign and more recently propositional proof complexity.
In this paper we show that the Black-White Pebbling
Game is PSPACE-complete. We then use similar ideas
in a more complicated reduction to prove the PSPACE-
completeness of Resolution space. The reduction also
yields a surprising exponential time/space speedup for
Resolution in which an increase of 3 units of space re-
sults in an exponential decrease in proof-size.

1 Introduction

The Black-White Pebbling Game was introduced by
Cook and Sethi in 1976 [3] in the context of determin-
ing lower bounds for space bounded Turing Machines.
The problem recevied considerable attention throughout
the next decade due to its numerous applications includ-
ing VLSI design, compilers, and algebraic complexity.
In 1983 determining its complexity was rated as “An
Open Problem of the Month” in David Johnson’sNP-
Completeness Column [9]. An excellent survey of peb-
bling results from this period can be found in Pippenger
[14]. Recently, there has been a resurgence of interest
in pebbling games due to their links with propositional
proof complexity [2, 5, 12]. In this paper we prove that
the Black-White Pebbling Game is PSPACE-complete.

The Black-White Pebbling Game was preceded by
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the Black Pebbling Game, which has also been widely
studied [14]. LetG = (V,E) be a DAG with one dis-
tinguished output node,s. In the Black Pebbling Game,
a player tries to place a pebble ons while minimizing
the number of pebbles placed simultaneously onG . The
game is split up into distinct steps, each of which takes
the player from one pebbling configuration to the next.
Initially, the graph contains no pebbles and each subse-
quent configuration follows from the previous by one of
the following rules:1) At any point a black pebble can
be placed on any source nodev. 2) At any point a black
pebble can be removed from any nodev. 3) For any node
v, if all of v’s predecessors have pebbles on them, then a
black pebble can be placed onv, or a black pebble can
be slid from a predecessoru to v.

The Black Pebbling Game models deterministic
space-bounded computation. Each node models a result
and the placement of a black pebble on a node represents
the deterministic computation of the result from previ-
ously computed results. A sequence of moves made by
the player is called apebbling strategy. If a strategy
manages to pebbles using no more thank pebbles, then
that strategy is called ak-pebbling strategy.

The Black-White Pebbling Game is a more powerful
extension of the Black Pebbling Game in which white
pebbles, which behave in a dual manner to the original
black pebbles, can also be used. As before, the player
attempts to place a black pebble ons while minimizing
the number of pebbles placed simultaneously onG at
any time. The Black-White Pebbling Game extends the
Black Pebbling Game with the addition of the following
rules: 4) At any point a white pebble can be placed on
any nodev. 5) At any point a white pebble can be re-
moved from any source nodev. 6) For any nodev with
a white pebble on it, the pebble can be slid to an empty
predecessoru if all of v’s other predecessors are pebbled,
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or the white pebble can be removed if all ofv’s prede-
cessors are pebbled.7) The game ends whens contains
a black pebble and every other node is empty.

As before, the placement of each black pebble is
meant to model the derivation of a deterministically-
computed result, while the placement of each white peb-
ble is meant to model a non-deterministic guess, whose
verification requires all of its antecedents to be derived.

In 1978, Lingas showed that a generalization of the
Black Pebbling Game, played on monotone circuits in-
stead of DAGs, is PSPACE-complete [11]. This was a
surprising result since the PSPACE-complete games of
the time involved two players and it was clear how the
alternation between them led to each game’s high com-
plexity. In 1980, Gilbert, Lengauer, and Tarjan elab-
orated on the basic structure of Lingas’s construction
to prove that the Black Pebbling Game on DAGs is
PSPACE-complete [6].

While the above results resolve the complexity of
black pebbling, determining the complexity of black
white pebbling has resisted numerous attempts. In con-
trast to black pebbling, white pebbles allow a much
richer choice of strategies since they can be placed any-
where on the graph regardless of previous pebble place-
ments, thereby breaking up the straight inductive pat-
tern obvious in all pure black strategies. Although the
black pebbling number of a graph is never more than a
square of the black-white pebbling number [7], the ad-
dition of white pebbles lowers the pebbling number of
many graphs [15], [10]. Unfortunately, the constructions
used for the previous PSPACE-completeness results are
both examples of such graphs. As a result, neither can
be used to differentiate between true and false QBFs in
the presence of white pebbles.

In Section 2, we finally resolve Johnson’s open prob-
lem by building on the construction of [6] to prove
the PSPACE-completeness of the Black-White Pebbling
Game. Our reduction also provides an infinite family
of graphs which require exponential time to minimally
black-white pebble, but can be pebbled in linear time if
we use just one pebble more than the minimum. This re-
sults in a time/space tradeoff result similar to that proved
in [6] for pure black pebbling.

In Section 3, we use similar ideas in a more compli-
cated reduction to prove the PSPACE-completeness of
Resolution space as well as an exponential time/space
tradeoff for Resolution. These results are motivated by
recent interest in the space required by Resolution proofs
and its connection to practical algorithms for solving
SAT. The satisfiability problem (SAT) has become a
viable and widespread approach for solving real-world

problems. SAT procedures are now a standard tool for
solving problems in hardware verification, circuit di-
agnosis, experimental design, planning and diagnosis
problems. Surprisingly, the best algorithms are highly
optimized variants of DPLL which is nothing more than
a backtrack search for a tree-like Resolution refutation.
The most successful variant,clause learning, employs
a very clever type of caching scheme. It underlies all
state-of-the art complete algorithms for solving SAT.

The basic idea behind clause learning is very simple:
while performing the backtrack search, store intermedi-
ate clauses that are learned along the way, in order to
potentially prune the remaining search space. The main
issue stems from the fact that in reality there is only a
finite amount of space available. Therefore, all clauses
simply cannot be stored, and the difficulty is in obtain-
ing a highly selective and efficient, yet effective caching
scheme. This has inspired a great deal of research into
methods and heuristics for caching schemes, resulting in
state-of-the art algorithms for SAT.

Underlying most of this empirical work is an assump-
tion that there is asmooth, nearly linear tradeoff between
time and space. For example,anyspace algorithms have
been developed for SAT and #SAT where a given imple-
mentation can use as much space as is currently avail-
able [4]. They used empirical results on certain distribu-
tions of inputs to suggest that for most ranges of param-
eters, the tradeoff between runtime and space is nearly
linear. In this paper we present theoretical results that
run strongly counter to this belief.

While time/space issues for Resolution-based satis-
fiability algorithms have been of central importance for
many years, it was only in the late nineties when the for-
mal study of space as a complexity measure for propo-
sitional proof systems was initiated. In 1999, Esteban
and Toran [5] proposed a definition of space complexity
for Resolution, calledclause space, that measures the
number of clauses that need to be kept simultaneously
in memory in order to verify the Resolution refutation.

Alekhnovich et al. [1] address the question of how to
measure the memory content for more general proposi-
tional proof systems. While the most obvious choice is
“bit space,” [1] introduces the related notion ofvariable
space, which counts the number of variable occurrences
that must simultaneously be kept in memory. They ar-
gue that variable space and bit space are within a loga-
rithmic factor of one another, but variable space makes
the model substantially cleaner. Thus we view variable
space as the right space measure to study: it applies to
a variety of proof systems, and captures in a natural and
clean way the space utilization of a broad range of com-
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plete algorithms for SAT.
In 2001, Ben-Sasson [2] was the first to study formal

time/space tradeoffs for Resolution.1 He asked if there
are formulas that have optimal proofs with respect to any
one of the parameters, but where optimizing one param-
eter must cost an increase in the other parameter. He
proved that this is the case for tree-like Resolution. That
is, he showed that there are formulas that have tree-like
Resolution proofs with linear size and also have (other)
tree-like Resolution proofs with constant clause space.
But on the other hand, he showed that these formulas
have no single tree-like Resolution proof with both lin-
ear size and constant clause space.

However, for general Resolution the problem re-
mained open. The main result of Section 3 is an answer
to this question, showing that in a very strong sense it is
not possible to optimize both size and space simultane-
ously. We exhibit formulas that require exponential size
to refute if restricted to a minimal variable space Reso-
lution implementation, but with just three more units of
space, the proof size drops to linear! In light of our ear-
lier discussion, this result is surprising, as it runs counter
to the belief is that there is a smooth,almost linear trade-
off between space and time.

We also prove a related theorem. Given a CNF for-
mula F , the Resolution space problem is to determine
the minimal-space Resolution proof ofF. We prove that
the Resolution space problem is PSPACE-complete, af-
firming that memory management for Resolution-based
SAT algorithms is a complex issue.

2 Black-White Pebbling

2.1 Definitions and Proof Overview

Formally, the Black-White Pebbling Game takes as
input a DAGG with a special target nodes and an inte-
gerk and asks whether there is ak-pebbling strategy for
s in G . We prove the following theorem.

Theorem 1: The Black-White Pebbling Game is
PSPACE-complete.

It is not hard to see that black-white pebbling is in
PSPACE. Given(G ,k), we can easily guess a sequence
of configurations that pebblesG with at mostk pebbles.

1In the algorithms literature, this tradeoff is viewed as a time/space
tradeoff, whereas from a proof complexity point of view, thetradeoff
would be more accurately called a size/space tradeoff. Sizeand time
are equated because the runtime of a Resolution-based SAT algorithm
is tightly connected to the size of the underlying Resolution proof.

Then by Savitch’s theorem, this implies that black-white
pebbling is in (deterministic) PSPACE.

The rest of this section is devoted to showing that the
Black-White Pebbling Game is PSPACE-hard. To prove
this, we will reduce from QSAT. Given a QBFψ, we will
create a graphG with the property thatψ is in QSAT if
and only ifG has a 4n+3 black-white pebbling strategy.

Following the conventions of [13] and [6], we clas-
sify pebble placements asnecessary or unnecessary.
The first placement of a black pebble on the target ver-
tex is necessary. A placement of a black or white pebble
on any other nodev is necessary if and only if the peb-
ble remains onv until a necessary placement occurs on a
successor ofv (this can occur concurrently if we are slid-
ing a black pebble up fromv to the successor). We call a
pebbling strategy which contains no unnecessary place-
mentsfrugal. Clearly, removing all unnecessary place-
ments from ak-pebbling strategy for a graphG results
in a frugalk-pebbling strategy forG . We can therefore
limit ourselves to considering just frugal pebblings.

Our construction is similar at a high-level to [6],
where they create a graph from a QBF with the property
that the formula is in QSAT if and only if the graph has
a small pure black pebbling strategy. The general idea
behind their reduction is to have the black pebbling cor-
respond to the exponential-time procedure that verifies
thatψ is in QSAT. The graph is composed of two main
parts: a linear chain of clause widgets followed by a lin-
ear chain of quantifier widgets. In all strategies which
achieve the graph’s minimum pebbling number, pebbles
must be placed on certain special nodes in a way which
corresponds to the lexicographically first truth assign-
ment in the QSAT model forψ. Since this assignment
satisfiesψ’s 3CNF the player is able to successfully peb-
ble through the clause widgets without exceeding the
minimum pebbling number. The player can then begin
to make progress through the quantifier widgets up to
the first universal widget, say widgeti. In order to peb-
ble through this widget without exceeding the pebbling
number, the player must leave a pebble on a “progress
node” in widgeti and then repebble the special nodes
for the innermosti variables, thereby placing pebbles in
a way which corresponds to the lexicographically sec-
ond truth assignment in the QSAT model. The player
can then pebble up through the clause widgets again, and
this time use the pebble which was previously placed on
the progress node to pebble through widgeti, only to
have his/her progress arrested at the next universal wid-
get, at which point the process must repeat. Minimally
black pebbling the graph corresponding to a true QBF
with k universal quantifier widgets therefore requires 2k
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time.

Unfortunately, the graphs used in all earlier construc-
tions are easy to pebble once white pebbles are allowed,
regardless of whether or not the QBF is in QSAT. Thus
the main obstacle in proving hardness of black-white
pebbling is to determine how to modify the construction
so that white pebbles will be rendered useless. We ex-
ploit an important observation to do this. In 1979, Meyer
auf der Heide [7] proved a strong duality between black
and white pebbles. Namely, he proved that on any graph
G , for any pure blackk-pebbling strategy there is a pure
white k-pebbling strategy and vice versa. In order to
prove this, he made a modification to the rules of the
game. Pure black strategies still begin with an empty
graph and end with a single black pebble on the tar-
get node, but pure white pebbling strategies now begin
with a single pebble on the target node, and end with a
completely empty graph. His proof amounts to showing
that running a pure blackk-pebbling strategy backward
yields a pure whitek-pebbling strategy, and vice versa.
This has some implications for the original Black-White
Pebbling Game, in which every strategy must end with
a single black pebble on the target node. Namely, if you
try to use as close to a pure white strategy as you can
to black pebble the target node of some DAGG and if
the maximum pebbling numberk is reached in any pure
black strategy ofG at some time when there is no black
pebble on the target node, then the black-white strategy
will necessarily usek + 1 pebbles, one black pebble on
the target node andk white pebbles which are simulat-
ing some optimal black pebbling in reverse. By similar
reasoning, if one can build a graph which requires the
player to use the maximum number of pebbles in ev-
ery configuration of every optimal pure black strategy,
then using a white pebble in support of a black pebbling
of any intermediate node should also exceed the maxi-
mum. Our construction is designed to enforce this while
maintaining the original properties found in [6].

However, we run into troubles in the case of existen-
tially quantified variables. The problem stems from the
fact that for an existential quantifier widget, we want to
be able to pebble up to that widget in either of two dif-
ferent ways–one corresponding to the variable being set
to true, and the other way corresponding to the variable
being set to false. Thus, there is an implicit OR in this ar-
gument. This difficulty was also overcome in [6], in the
more limited context of black pebbling. If we were con-
structing monotone circuits rather than graphs (which
are special cases of monotone circuits with only AND
gates), then things become much easier, even when al-
lowing the use of white pebbles, since we can use an

explicit OR gate to allow for either of these two types
of pebblings. Our proof of Theorem 10 in Section 3,
which uses OR gates as a building block in order to
prove an exponential time/space speedup theorem for
Resolution, does this and actually implies the PSPACE-
completeness of this problem. However, when OR gates
are not allowed, we have to simulate this implicit OR
using only AND gates. Any way of doing this will nec-
essarily involve two different pebblings, and it is quite
subtle to see how to accomplish this while still prohibit-
ing white pebbles.

2.2 The Reduction

To show that the Black-White Pebbling Game is
PSPACE-hard, we reduce from QSAT. In our presenta-
tion, a QBFψ = QnxnQn−1xn−1 · · ·Q1x1F , whereF is a
3CNF containingm clauses over then quantified vari-
ablesxn, . . . ,x1. We have inverted the numbering of the
variables simply as a convenience in the proof. Given a
QBF ψ, we produce a graphG whose target nodes can
be black-white pebbled using at most 4n + 3 pebbles if
and only if ψ is in QSAT. Our construction is designed
to penalize any use of white pebbles, so that the optimal
strategy is all black.

The graph which we construct is composed ofn +
m widgets, one for each quantified variable and one for
each clause inF. As in [6], the quantifier widget for
Qixi contains four vertices which represent the variable
xi, we call these nodesxi, x′i, x̄i, x̄′i. The location of peb-
bles on these four nodes corresponds to the truth value
assigned toxi by the current truth assignment which is
being tested by the pebbling. If pebbles are onxi and
x̄′i, then the variablexi is set to true. If pebbles are on
x′i andx̄i or if pebbles are onx′i andx̄′i, then the variable
xi is set to false. Our construction will never allow an
assignment to place pebbles on bothxi andx̄i.

The construction of the quantifier widgets relies on
a subwidget we call ani-slide. An i-slide is designed
to severely restrict the player’s pebbling strategies. An
example of a 4-slide is shown in Figure 1. Once the
bottom nodes of ani-slide are black-pebbled, thei-slide
strategy, where the bottom pebbles are slid up to the top
nodes in the appropriate order, is the only way to black-
pebble the top nodes without exceedingi pebbles.

Definition 2.1: An i-slide is a pair of sets(V,U) to-
gether with a set of edges that satisfy the following prop-
erties.V is a set ofi nodesv1,v2, · · · ,vi andU is a set of
i nodesu1,u2, · · · ,ui such that: (1)v j is the predecessor
of all nodesvk such thatk > j; (2) u j is the predecessor
of all nodesuk such thatk > j; (3) u j is the predecessor
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v2v1

zm

z j

l3j

l3j
′

l2j

l2j
′

l1j
′

l1jz j−1

G0 g3
0

g2
0g1

0

a0 b0 c0
u4

u3u2u1

v4v3

Figure 1. A clause widget for clause z j = (l1
j ∨ l2

j ∨ l3
j ) (left). The connection of zm to G0 (center).

And a 4-slide ({v1,v2,v3,v4},{u1,u2,u3,u4}) (right).

of all nodesvk such thatk ≤ j; (4) u j has at leasti− j+1
predecessors from outside ofV or U .

Globally the construction is very much like that in
[6]. There are a number of nodes used to encode a
truth assignment, which are predecessors to nodes in
both clause widgets and quantifier widgets. The clause
widgets are connected linearly and can only be pebbled
within the space bound of 4n +3 if the truth assignment
encoded by the current pebbling configuration satisfies
F . The quantifier widgets are also connected to each
other linearly and follow the last clause widget. They
slow the advance of the pebbling towards. In order to
advance through them, it will be necessary to repebble
the clause widgets numerous times, once for each truth
assignment required to show thatψ is in QSAT. Only
once the final quantifier widget is pebbled is it possible
to pebble the target nodes. We now describe the indi-
vidual widgets and how they are connected. These de-
scriptions are somewhat terse and are meant to be read
in accompaniment to Figures 1, 2, 3, and 4.

The universal widget is depicted in Figure 3.
For every i, 1 ≤ i ≤ n, if widget i is a univer-
sal widget, it is composed of 4 groups of nodes,
{x̄i, x̄′i,di,xi,x′i,yi}, Gi−1 = {g1

i−1, . . . ,g
4i−1
i−1 }, {ai,bi},

andGi = {g1
i , . . . ,g

4i+3
i }. These are connected as fol-

lows. yi has 4i+3 source nodesp1
xi

throughp4i+3
xi

as pre-
decessors,x′i has 4i + 2 source nodesp1

xi
throughp4i+2

xi

as predecessors,di has 4i + 1 source nodesp1
di

through

p4i+1
di

as predecessors, and ¯x′i has 4i source nodesp1
x̄i

throughp4i
x̄i

as predecessors. The sole predecessor ofxi

is x′i and the sole predecessor of ¯xi is x̄′i. For every pair of
nodesg j

i andgk
i of Gi, if j < k theng j

i is a predecessor
of gk

i . Similarly, for every pair of nodesg j
i−1 andgk

i−1

of Gi−1, if j < k theng j
i−1 is a predecessor ofgk

i−1. The

subgraph({g1
i , . . . ,g

4i−1
i },Gi−1) forms an 4i− 1 slide.

The nodebi is a successor of every node inGi−1, and the
nodeai is a successor of every node inGi−1∪{bi}. Fi-
nally, x̄′i is a predecessor of every node in{g1

i , . . . ,g
4i
i }, x̄i

is a predecessor ofbi, di is a predecessor of both nodes in
{bi,ai}, x′i is also a predecessor of both nodes in{bi,ai},
xi is a predecessor of every node in{g1

i , . . . ,g
4i+1
i }, ai is

a predecessor of every node in{g1
i , . . . ,g

4i+2
i }, andyi is

a predecessor of every node in{g1
i , . . . ,g

4i+3
i }.

The existential widget is depicted in Figure 4. For
everyi, 1≤ i ≤ n, if widget i is an existential widget, it
is composed of 4 groups of nodes,{x̄i, x̄′i,di,xi,x′i,yi},
Gi−1 = {g1

i−1, . . . ,g
4i−1
i−1 }, Ri = {r1

i , . . . ,r
4i+1
i } ∪ Hi =

{h1
i , . . . ,h

4i+1
i }∪ {ai}, andGi = {g1

i , . . . ,g
4i+3
i }. x′i has

4i + 3 source nodesp1
xi

throughp4i+3
xi

as predecessors,
yi has 4i + 2 source nodesp1

yi
throughp4i+2

yi
as prede-

cessorsdi has 4i + 1 source nodesp1
di

throughp4i+1
di

as

predecessors, and ¯x′i has 4i source nodesp1
x̄i

throughp4i
x̄i

as predecessors. ¯x′i also hasyi andx′i as predecessors.
The sole predecessor ofxi is x′i and the only two prede-
cessors of ¯xi arex̄′i andyi. For every pair of nodesg j

i and
gk

i of Gi, if j < k theng j
i is a predecessor ofgk

i . The same
is true for every pair of nodes inHi, Ri, andGi−1. Ev-
ery nodeg j

i ∈ {g1
i , . . . ,g

4i+1
i } has 4i+1− j source nodes

as predecessors. Also,ai is a predecessor of every node
in {g1

i , . . . ,g
4i+1
i }, x̄′i is a predecessor of every node in

{g1
i , . . . ,g

4i+2
i }, andxi is a predecessor of every node in

{g1
i , . . . ,g

4i+3
i }. Also,ai is the successor of every node in

Hi, di is a predecessor of every node in{h1
i , . . . ,h

4i+1
i },

x̄i is a predecessor of every node in{h1
i , . . . ,h

4i
i } and

({h1
i , . . . ,h

4i−1
i },Ri) forms a 4i− 1 slide. Finally,yi is

a predecessor of every node inRi and(Ri,Gi−1) forms a
4i−1 slide.

For all i, 1 < i < n, Gi is part of both widgeti and
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widgeti+1. G0 is special in that it connects the string of
quantifier widgets to the string of clause widgets and is
described below.Gn is special because every node inGn

is a predecessor of the target nodes. We now describe
them clause widgets.

For each clauseCi, there is a corresponding nodezi.
This node always has four predecessors, one of which is
the previous clause nodezi−1. The other three,l1

i , l2
i , and

l3
i , correspond to the literals which occurCi. For exam-
ple, if the first literal in theith clause is ¯x j, then the node
x̄ j from quantifier widgetj is one of the predecessors
of zi. z1 has a special source nodez0 as a predecessor,
since it has no previous clause. Finally, we add edges
from zm to all three nodes ofG0. There are also three
source nodesa0, b0, andc0 which are connected toG0.
a0 andb0 are predecessors ofg1

0 andc0 is a predeces-
sor of g2

0. Figure 1 shows both an example of a clause
widget as well the connection betweenzm andG0. This
completes the construction.

Theorem 2: The QBFψ = QnxnQn−1xn−1 . . .Q1x1F
is in QSAT if and only if the target nodes of G can
be pebbled with 4n +3 pebbles.

Definition 2.2: Let the set of all truth assignments over
variablesxi+1, . . . ,xn be denoted byAi. Thus eachαi in
Ai is a partial assignment that sets the outermostn− i
variables ofQnxn . . .Q1x1F. We use the notation(v1,v2)
to denotev1 or v2. For any assignment toαi, defineBαi

to be the pebbling configuration ofG consisting of black
pebbles on the following nodes: For each universally
quantified variablex j of ψ, j ≥ i+1, if αi(x j) = 0, then
y j ∈ Bαi , x′j ∈ Bαi , d j ∈ Bαi , and(x̄ j, x̄′j) ∈ Bαi . Other-
wise, if αi(x j) = 1, theny j ∈ Bαi , x̄′j ∈ Bαi , a j ∈ Bαi and
(x j,x′j) ∈ Bαi . For each existentially quantified variable
x j of ψ, j ≥ i+1, if αi(x j) = 0, theny j ∈ Bαi , x′j ∈ Bαi ,
d j ∈ Bαi , and(x̄ j, x̄′j) ∈ Bαi . Otherwise, ifαi(x j) = 1,
theny j ∈ Bαi , x̄′j ∈ Bαi , d j ∈ Bαi and(x j,x′j) ∈ Bαi .

Definition 2.3 (Black clamping interval) Let t0 ≤ t j ≤
tk ≤ tend . For any nodev, we sayv ∈ [ta,tb] if v is black
pebbled during every configuration from timeta through
time tb. More generally, for any pair of nodes(u,v), we
say that(u,v) ∈ [ta,tb] if either u or v is black pebbled
during every configuration from timeta to timetb. Let S
be a set of pairs of nodes. We say thatS ⊆ [ta,tb] if for
all (u,v) ∈ S, (u,v) ∈ [ta,tb]. Note thatu andv may be
the same nodes.

Lemma 3: If ψ is in QSAT, then the target nodes of G
can be pebbled with 4n +3 pebbles.

Ai

Ai

The nodevi has j source nodes as predecessors.

j source nodes

vi

Subwidget Legend

if k < j, thenak
i is a predecessor ofa j

i .
For every pair of nodesa j

i andak
i in Ai = {a1

i , · · · ,a
m
i },

The nodevi is a predecessor of allj nodes inAi.

The nodevi is a successor of allj nodes inAi.

There is aj-slide fromAi up toBi.

a
j
i

b
j
ib1

i

Bi

vi

j

a1
i

Ai

a
j
i

j-Slide

(Bi ,Ai)

Ai

a1
i

a
j
ia1

i

a
j−1
i

j

a
j
i

vi

a1
i

Figure 2. Legend explaining the compo-
nents of Figures 3 and 4.

Lemma 11 follows from the following more general
lemma by settingi = n.

Lemma 4: For all i, αi ∈ Ai, suppose the graphG is
initially in configurationBαi . If ψ is in QSAT, then we
can black pebbleGi at some timet > 1 using 4n + 3
pebbles, while keepingBαi clamped (i.e.,Bαi ∈ [1,t].)

Proof: The proof is by induction oni from 0 to n.
The base case is wheni = 0. Let α0 be any assignment
in A0. Suppose thatQnxn · · ·Q1x1F⌈α0 is in QSAT. Then
some literal in every clause must be set to true. This
implies that for eachz j , 1≤ j ≤ m, at least one ofl1

j , l2
j ,

or l3
j are black pebbled inBα0. We can therefore black

pebbleG0 as follows. Start by putting a black pebble
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Figure 3. A universal widget.

on z0. Then since at most two ofz1’s other predecessors
are unpebbled, we have enough free pebbles to black
pebble the rest ofz1’s predecessors. We know we can
black pebble them because if somelk

1 is unpebbled, then
lk
1
′
must be black pebbled inBαi . We can therefore black

pebble all ofz1’s predecessors. We can then slide the
pebble fromz0 to z1 and lift the other (at most 2) pebbles
which we just put down. Oncez1 is black pebbled, we
can then black pebblez2 the same way, all the way tozm.
Oncezm is black pebbled we can use the remaining two
black pebbles to black pebblea0 andb0, and then slide
the pebble fromzm to c0. We can then slide the black
pebble froma0 to g1

0, from b0 to g2
0, and fromc0 to g3

0.
Note that this strategy uses only black pebbles. For the
inductive step there are two cases depending on whether
Qi is a universal or an existential quantifier.

Case 1:Qi is a universal quantifier. In this case, both
ψ⌈αi∪{xi} andψ⌈αi∪{x̄i} are in QSAT. We begin in con-
figuration Bαi with 4i + 3 free pebbles. Black pebble
yi, followed byx′i, thendi, and then ¯xi

′. Then move the
pebble from ¯xi

′ to x̄i. At this point we have 4i−1 peb-
bles free and can apply the induction hypothesis to black
pebbleGi−1. Then slide the black pebble from ¯xi to bi,
then the black pebble fromdi to ai. Remove all pebbles
from widgeti except for the ones onai, x′i, andyi. Then

slide the black pebble fromx′i to xi and black pebble ¯x′i
again. Now apply the induction hypothesis to simulta-
neously black pebbleGi−1 again. Next, use thei-slide
strategy to slide all ofGi−1’s pebbles to{g1

i , . . . ,g
4i−1
i }.

Then slide ¯x′i’s black pebble tog4i
i , and thenxi’s black

pebble tog4i+1
i . Next slide the black pebble fromai to

g4i+2
i Finally, slide the black pebble fromyi to g4i+3

i .
Case 2: Qi is an existential quantifier. In this case,

eitherψ⌈αi∪{xi} or ψ⌈αi∪{x̄i} is in QSAT. As in the uni-
versal case, we begin inBαi with 4i + 3 free pebbles.
Black pebblex′i, followed byyi, di, and then ¯xi

′.
If ψ⌈αi∪{xi} is in QSAT, move the black pebble from

x′i to xi. Then apply the induction hypothesis to black
pebbleGi−1. Then use thei-slide strategy to move all of
the pebbles fromGi−1 to Ri. Then slide the black pebble
from yi to x̄i. Then use thei-slide strategy to move all of
the pebbles fromRi to {h1

i , . . . ,h
4i−1
i }. After that, slide

the pebble from ¯xi to h4i
i and then slide the pebble from

di to h4i+1
i . Then slide the pebble fromh4i+1

i to ai. At
this point remove all the pebbles off of the widget so
that only x̄′i, xi, andai remain. Use the 4i free pebbles
to pebble the source node predecessors ofg1

i and then
slide one tog1

i itself. Use the pebbles left over on the
source nodes to subsequently pebble eachg j

i until g4i
i is

pebbled. At this point slide the pebble fromai to g4i+1
i ,

slide the pebble from ¯x′i to g4i+2
i , and finish by sliding

the pebble fromxi to g4i+1
i .

If ψ⌈αi∪{x̄i} is in QSAT, move the black pebble from
x̄′i to x̄i. Then apply the induction hypothesis to black
pebbleGi−1. Then use thei-slide strategy to move all of
the pebbles fromGi−1 to Ri. Then use thei-slide strategy
to move all of the pebbles fromRi to {h1

i , . . . ,h
4i−1
i }.

After that, slide the pebble from ¯xi to h4i
i and then slide

the pebble fromdi to h4i+1
i . Then slide the pebble from

h4i+1
i to ai. At this point remove all the pebbles off of

the widget so that onlyyi, x′i, andai remain. Use the
4i pebbles that are free to repebble ¯x′i and then pick the
pebble up fromyi and pick up the 4i− 1 pebbles that
remain on the source node predecessors of ¯x′i. Slide the
pebble fromx′i to xi. At this point x̄′i, xi, andai are all
pebbled and we can finish by black pebblingGi as we
did in the positive case.2

Lemma 5: Let ψ be a QBF, and letG be the corre-
sponding graph. Ifs has a 4n + 3 black-white pebbling
strategy inG , thenψ is in QSAT, and any 4n +3 black-
white pebbling strategy requiresΩ(2k) steps, wherek is
the number of universal quantifiers inψ.

We first note thats has 4n+3 predecessors,Gn. Each
of these nodes has indegree 4n + 3. So no node ofGn

could ever contain a white pebble whiles contains a
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Figure 4. An existential widget.

black pebble, because there would not be enough free
pebbles to discharge it. Therefore, in order to pebbles,
Gn must first be simultaneously black pebbled. Lemma
5 therefore follows from the more general Lemma 6.

Lemma 6: For all αi ∈ Ai, if there exists timest ′, t ′′

such thatBαi ⊆ [t ′,t ′′], then black pebblingGi at t ′′ from
Bαi using no more than 4n+3 pebbles, requires thatψ is
in QSAT and requiresΩ(2k) units of time betweent ′ and
t ′′, wherek is the number of universal quantifiers among
thei inner most quantifiers.

The following lemma will be used repeatedly. In par-
ticular, it implies that for anyi-slide (V,U), in order to
pebbleV using no more thani pebbles,U must first be
black pebbled at some earlier time.

Lemma 7: Let G be a DAG which is to bek pebbled.
Let v be a node ofG which hasc predecessorsp1, . . . , pc.
Let U be a set ofk − c pairs of nodes such that:1)
U ⊆ [t ′,t ′′], 2) for each(x1,x2) ∈ U , neitherx1 nor x2

in {v, p1, . . . , pc}, 3) for each(x1,x2) ∈U wherex1 6= x2,
neitherx1 nor x2 is a descendant ofv. Finally, suppose
v is not white pebbled att ′′. Then betweent ′ andt ′′, v
can be black pebbled at most once and cannot be white
pebbled.

Proof: Supposev is white pebbled at some time be-
tweent ′ andt ′′. Then, by frugality, its white pebble can
only be discharged once it has contributed toward plac-
ing a black pebble on some descendantz of v. SinceG is
acyclic,z cannot be a predecessor ofv. Also, since all of
the nodes inU either have their black pebbles fixed be-
tweent ′ andt ′′ or are not descendants ofv, z cannot be in
U . So there arek− c black pebbles inU , 1 black pebble
on z, and 1 white pebble onv. This means that at most
c−2 pebbles can be placed onv’s predecessors without
exceeding the limit ofk. Therefore, it is impossible to
dischargev’s white pebble until aftert ′′. But sincev is
not white pebbled att ′′, v cannot be white pebbled in the
first place. A similar argument forbids a second black
pebbling. 2

Proof: [of Lemma 6] The proof is by induction oni
from 0 ton. The base case is wheni = 0. Letα0 be any
assignment inA0 and suppose there exist timest ′ and
t ′′ such thatBα0 ⊆ [t ′,t ′′]. We will show that simulta-
neously black pebblingG0 at t ′′ without ever exceeding
4n +3 pebbles requires thatψ is in QSAT.

In order to black pebblez j or discharge a white peb-
ble from z j we must either black pebblez j−1 or dis-
charge a white pebble fromz j−1. In order to black peb-
ble any node inG0, we must pebblezm. Inductively,
this means that at some point for every singlez j, it was
necessary to either black pebble it or discharge a white
pebble from it. But everyz j (exceptz0) has 4 predeces-
sors,l1

j , l2
j , l3

j , z j−1. Therefore, in order to pebblez j at

least onelk
j must be black pebbled inBα0. But in this

case,α0 must satisfy clausej of F. Since everyz j must
either be black pebbled or discharged,α0 must satisfy
every clause ofF. ThereforeF⌈α0 is in QSAT.

Induction Step: We now prove the induction step in
which we will show that if we can simultaneously black
pebbleGi = {g1

i · · ·g
4i+3
i } using no more than 4i+3 peb-

bles without moving any pebbles inBαi , thenψ⌈αi is in
QSAT and the pebbling must take timeΩ(2k), wherek
is the number of universally quantified variables among
the inner mosti variables ofψ.

Case 1: Qi is a universal quantifier. We will show
that in order to black pebbleGi we must necessarily pass
through a number of all-black configurations, including
black pebblingGi−1 twice, once with black pebbles on
x′i, di, and either ¯xi or x̄′i (the false configuration), and
once with black pebbles on ¯x′i, ai, and eitherxi or x′i (the
true configuration).

We appeal to Lemma 7 to conclude that sinceyi has
4i + 3 source nodes as predecessors, our first action
within widget i must be to black pebbleyi and it must
stay in place until its last successorg4i+3

i is pebbled for

8



the final time att15, soyi ∈ [t1,t15−1].
Now thatyi is clamped, we can appeal to Lemma 7

to conclude that no node inGi ∪{ai,bi,x′i} can be white
pebbled and each can only be black pebbled once be-
tweent1 andt15−1. Sincex′i has 4i + 2 source nodes as
predecessors, our second action within widgeti must be
to black pebblex′i and it must stay in place until its suc-
cessorxi is pebbled for the last time. Then a pebble must
remain onxi until all of its successors are pebbled for
the last time, because we can never repebble/discharge
xi oncex′i is empty. Lett7 be the time thatai is pebbled
and lett12 be the timeg3i

i is pebbled. Thenx′i ∈ [t2,t7−1]
and(xi,x′i) ∈ [t7,t12−1].

Our argument now divides into two sections. In order
to simultaneously black pebbleGi we must black peb-
ble g4i+3

i , which requires that bothai and{g1
i , . . . ,g

4i
i }

be pebbled. In the first part of the argument we prove
that in order to black pebbleai, ψ⌈αi∪{x̄i} must be QSAT
and thatΩ(2k) units of time must pass betweent0 andt7,
wherek is the number of universally quantified variables
among the inner mosti−1 variables ofψ. In the second
part of the argument, we argue thatg1

i , . . . ,g
4i
i must also

be simultaneously black pebbled in order to black peb-
ble g4i+3

i and that pebbling them without exceeding our
bound necessitates thatψ⌈αi∪{xi} is in QSAT and that
Ω(2k) units of time pass between timest7 and t14− 1.
This will allow us to conclude that black pebblingGi re-
quires thatψ⌈αi is in QSAT and requiresΩ(2k′) time,
wherek′ = k +1 is the number of universally quantified
variables among the inner mosti variables ofψ.

Sinceai can only be black pebbled once and is needed
to pebble each node ofGi, ai ∈ [t7,t14−1]. In order to
black pebbleai at timet7 we must pebblebi at some time
t6, beforet7. Again, we know thatbi can only be black
pebbled once int1 to t14, sobi ∈ [t6,t7 −1]. Also, di is
a predecessor of bothai andbi and must be pebbled at
timest6−1 andt7−1. Sincex′i is in [t2,t7], by Lemma
7 we can conclude thatdi cannot be white pebbled and
can only be black pebbled once in this interval. Also,
since it has in-degree 4i, di must be black pebbled att3,
immediately aftert2 as in Lemma 11, sodi ∈ [t3,t7−1].
The same argument can be made to argue that(x̄i, x̄′i) ∈
[t4,t6−1], wheret4 is aftert3. In order to black pebbleai

or bi, we must first pebbleGi−1 at some timet5 beforet6.
This whole time the nodesx′i, di, and(x̄i, x̄′i) are clamped.
We can therefore apply Lemma 7 to conclude thatGi−1

must be black pebbled at some timet5 betweent4 andt6 .
We can now apply the induction hypothesis to conclude
that black pebblingGi−1 requiresψ⌈αi∪{x̄i} to be QSAT
and black pebblingGi−1 from B[t4] requires timeΩ(2k),
wherek is the number of universally quantified variables

among the inner mosti−1 variables ofψ.
We now proceed with the second phase of the argu-

ment. We know that each node inGi cannot be white
pebbled and can only be black pebbled once. So when
we black pebbleg4i+3

i at timet15, all the rest ofGi must
already be black pebbled. Considerg4i+2

i . In order to
black pebble it at timet14 beforet15, we must first black
pebbleg4i+1

i at time t13 beforet14. In order to black
pebbleg4i+1

i at time t13 we must first black pebbleg4i
i

at time t12 and in order to pebble that, we must peb-
ble g1

i , . . . ,g
4i−1
i at time t11. But we must also pebble

x̄′i. Note that ¯x′i must be empty att7 sinceyi is clamped
andai has 4i+2 other predecessors, none of which is ¯x′i.
Also, x̄′i must be empty again byt13−1, sinceg4i+1

i has
4i + 3 predecessors, none of which is ¯x′i. We can there-
fore apply Lemma 7 to conclude that betweent7 andt13,
x̄′i cannot be white pebbled and can only be black peb-
bled once in that interval. We must therefore repebble ¯x′i
at some timet8 aftert7 whenai and(xi,x′i) are clamped
and x̄′i ∈ [t8,t12− 1]. Since ¯x′i is a predecessor of ev-
ery node ing1

i , . . . ,g
4i−1
i , these nodes can only be black

pebbled at some timet11, with g1
i being pebbled first at

t10, aftert8. Every node ofGi−1 is a predecessor ofg1
i .

Since the three nodes{x̄′i,ai,(xi,x′i)} are clamped during
the interval[t7,t11] we can apply Lemma 7 to conclude
thatGi−1 must be black pebbled att9 betweent8 andt10.
Since{x̄′i,ai,(xi,x′i)} is the true assignment for variable
xi we can apply our induction hypothesis to conclude
that ψ⌈αi∪{xi} must be QSAT and black pebblingGi−1

from B[t7] requires timeΩ(2k), wherek is the number
of universally quantified variables among the inner most
i−1 variables ofψ.

Thus we have shown that any 4n + 3 pebbling must
black pebbleGi−1 twice betweent0 andt15, once imply-
ing that ψ⌈αi∪{x̄i} is in QSAT, and once implying that
ψ⌈αi∪{xi} is in QSAT. Each time requiresΩ(2k) time,
wherek is the number of universally quantified variables
among the inner mosti− 1 variables ofψ. Therefore,
black pebblingGi requires timeΩ(2k+1), and implies
thatψ⌈αi is in QSAT.

Case 2:Qi is an existential quantifier. We will show
that in order to black pebbleGi, we must necessarily
pass through a number of all-black partial configura-
tions, including simultaneously black pebblingGi−1, ei-
ther with black pebbles onx′i, di, and either ¯xi or x̄′i (the
false configuration), or with black pebbles on ¯x′i, di, and
eitherxi or x′i (the true configuration).

By Lemma 7, no node inGi ∪{x′i} can be white peb-
bled betweent0 andt15, and each can be black pebbled
at most once. Based on which nodes ofGi are predeces-
sors to others, we can conclude thatg4i+3

i must be black
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pebbled last, at timet15, g4i+2
i must be black pebbled be-

fore that at timet14 andg4i+2
i ∈ [t14,t15], andg4i+1

i must
be pebbled before that at timet13 andg4i+1

i ∈ [t13,t15], g1
i

must be pebbled before that at timet12 andg1
i ∈ [t12,t15].

Also, (xi,x′i) ∈ [t1,t15−1].
Now consideryi. It has degree 4i + 2, and it must

be black pebbled at timet2, and can never be repebbled
again. Thus it must remain black pebbled until it is used
for the last time.

Clearly, both ¯x′i ∈ B[t12− 1] andai ∈ B[t12− 1]. Let
t11 be the last timeai is pebbled. At this time,ai must be
pebbled black. We can see this becauseg4i+1

i cannot get
its black pebble fromg1

i through tog4i
i since these can

only be pebbled once. All of these must be in place when
g4i+1

i gets its black pebble, so it cannot get a black peb-
ble from eitherxi or x̄′i since both of these are needed to
supportg4i+2

i and could not be repebbled with so many
black pebbles clamped inGi. g4i+1

i ’s 4i+3rd predeces-
sor isai, so it must receive its black pebble via a slide
move fromai. So ai must be black during the interval
[t11,t12−1].

At this point our proof splits into two cases, either a
black pebble is on ¯x′i at t11 or not. One of these cases
will imply that ψ⌈αi∪{xi} is in QSAT and the other one
will imply that ψ⌈αi∪{x̄i} is in QSAT.

Suppose there is no black pebble on ¯x′i at t11. Then
there are two subcases to consider. Subcase (i): there
is no pebble at all on ¯x′i or subcase (ii) there is a white
pebble on ¯x′i at t11. First we consider subcase (i): there
is no pebble at all on ¯x′i. Then we must repebble ¯x′i at
some timet∗ betweent11 and t12−1. We will first ar-
gue that two nodes,x′i andyi must be clamped during
the interval[t2,t11]. First, becausex′i is black pebbled
at t1, and is a predecessor of ¯x′i, and can never be peb-
bled again (because its indegree is 4i+3), it follows that
x′i ∈ [t1,t∗ − 1]. Secondly, sinceyi is a predecessor of
x̄′i (and by the above reasoning gets black pebbled only
once att2), it follows thatyi ∈ [t2,t∗−1]. Thus bothx′i
andyi are clamped during the interval[t2,t11].

Now we will argue that each node ofHi must be black
pebbled, and can only be pebbled once. Lett10 be the
time whenh4i+1

i is pebbled; lett9 be the time whenh4i
i is

pebbled; lett8 be the time whenh4i−1
i is pebbled, and let

t7 be the time whenh1
i is pebbled, wheret7 < t8 < t9 <

t10. By Lemma 7 and becausex′i andyi are clamped, and
all nodes inHi have indegree 4i+1, it follows that each
can only be pebbled once and must be pebbled black.
Thus,h4i+3

i ∈ [t10,t11−1], h4i+2
i ∈ [t9,t11− 1], h4i+1

i ∈
[t8,t11−1], andh1

i ∈ [t7,t11−1].
Next we will argue that during the interval[t3,t10−1],

the three nodesdi, x′i andyi are all black clamped. (We

already know thatx′i andyi are black clamped during this
interval.) Becausedi has indegree 4i+1, by Lemma 7,
again we know thatdi must be black pebbled at timet3
and can only be black pebbled once. Thus,di is black
and clamped during the interval[t3,t10−1].

Now again we can apply Lemma 7 toRi. Since 3 of
the widget’s nodes are clamped during this interval, and
since all nodes inRi have degree 4i, it follows that they
can only be pebbled once betweent3 andt10−1 and are
black. Lett6 be the timer1

i is pebbled,t6 < t7.
Finally, we want to show that(x̄i, x̄′i) ∈ [t3 + 1,t9 −

1] and furthermore the pebbled node is black. First, ¯xi

must be pebbled at timet7−1 because it is a predecessor
of h1

i . Furthermore we will argue that it must be black
pebbled. At timet7− 1, x̄′i must be unpebbled because
in order to pebbleh1

i at time t7, there must be 4i + 3
pebbles already on thisith widget, not including ¯x′i (the
4i+1 predecessors ofh1

i plus the clamped nodesx′i and
yi.) Similarly, x̄′i must unpebbled att9. Now if x̄i were
pebbled white rather than black att7−1, it would have
to be discharged byt9; but this cannot happen since it
would have to be discharged through the unpebbled ¯x′i,
which would exceed our allowable space. Thus we have
argued that ¯xi must be pebbled black att7−1, and further
remains black untilt9−1 since it is a predecessor of each
node in{h1

i , . . . ,h
4i
i }.

Now to black pebble ¯xi by t7−1, x̄′i must be pebbled
earlier, say at timet4, t3 < t4 < t7−1. It is left to argue
thatt4 = t3 +1. When we black pebble ¯x′i at timet4, we
have already argued that there are three nodes already
clamped,x′i, yi and di. Because ¯x′i has indegree 4i, it
follows that it must be black pebbled next, and can only
be pebbled once. Thus(x̄i, x̄′i) ∈ [t3 +1,t9−1].

Now in order to black pebbler1
i at t6, every node of

Gi−1 must be pebbled att6 − 1. Again we can apply
Lemma 7. Since there are 4 nodes clamped, and the de-
gree of each node inGi is 4i−1, it follows by our lemma
that every node inGi can only be pebbled once between
t4 andt9 and must be black pebbled. Now finally we can
apply the induction hypothesis to conclude that since ev-
ery node in{(x̄i, x̄′i),x

′
i,di,yi} is clamped whileGi is be-

ing black pebbled,ψ⌈αi∪{x̄i} is in QSAT.
The other subcase (ii) is an analogous argument to

subcase (i) but for the dual case of a white pebble being
discharged from ¯x′i (rather than it being black pebbled.)

Suppose, on the other hand, that there is a black peb-
ble on x̄′i at t11. We will now show that onlyBαi ∪
{x′i,di,yi} can be pebbled when we pebble ¯x′i for the last
time beforet11 at some timet4. Suppose for the sake of
contradiction that there is a pebble on some other node
z at t4. Sinceyi is a predecessor of ¯x′i and can only be
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pebbled att2, yi ∈ [t2,t4 − 1]. So di must be empty at
t4−1 because ¯x′i has 4i+2 predecessors which must be
on the graph, along withz, at t4 − 1, which fills up the
space bound.

In order to pebbleai by t11 we must therefore pebble
di at some time betweent4 andt11. Supposedi is white
pebbled. This pebble must be discharged byt11−1 be-
causeai has 4i + 1 predecessors and both(x′i,xi) andx̄′i
are clamped untilt11, sodi’s pebble is needed. By fru-
gality there must be a pebble inHi at the timedi is dis-
charged. So at this time there must be pebbles on a node
of Hi, one of(xi,x′i), and ¯xi and we must exceed the space
bound. Suppose on the other hand thatdi is black peb-
bled betweent4 andt11. This takes 4i + 1 pebbles and
there must be pebbles on(xi,x′i), x̄′i and by frugalityz′,
wherez′ is betweenz andai. So we can never pebble
di betweent4 andt11. We therefore know that when ¯x′i
is pebbled for the last time beforet11, there can be no
pebble onz.

By the argument which we just finished, any node of
Gi−1 can only be pebbled aftert4. We now show that
Gi−1 must be simultaneously black pebbled in order to
black pebbleai.

We know that both ¯x′i ∈ [t4,t11] and(x′i,xi) ∈ [t4,t11].
Therefore by Lemma 7, any node inHi can only be
pebbled once in[t4,t11] and must be black. Call the
time h4i+1

i is pebbledt10, the time h4i
i is pebbledt9,

the timeh4i−1
i is pebbledt8, and the timeh1

i is pebbled
t7. So x̄i must pebbled at some timet6 beforet7 and
x̄i ∈ [t6,t7−1]. Suppose it is white pebbled. Then it must
be discharged beforet10 because its pebble is needed to
pebbleh4i+1

i . Note thatyi must be empty att7−1 since
our space bound is reached byh1

i ’s predecessors and the
clamping of(xi,x′i) and x̄′i. So when ¯xi is discharged,
there can be no pebble onyi. Therefore, to discharge ¯xi,
yi must be pebbled again aftert7 and beforet11, which
is impossible due to its high indegree. Suppose, on the
other hand that ¯xi is black pebbled att6. This means that
yi ∈ [t2,t6−1]. So there are at least 3 pebbles clamped
from t4 until t7−1. Butdi must be pebbled beforet7−1.
Sodi must be pebbled beforet4, at some timet3 aftert2,
anddi ∈ [t3,t10−1].

Thus {(xi,x′i), x̄
′
i,di,(yi, x̄i)} ⊆ [t4,t7 − 1], so by

Lemma 7 any node ofRi can only be pebbled black and
pebbled once during this interval. Lett5 be the timer1

i
is pebbled. The nodesGi−1∪{(xi,x′i), x̄

′
i,di,yi} must all

be pebbled att5−1. So{(xi,x′i), x̄
′
i,di,yi} ∈ [t4,t5−1].

So Gi−1 must only be pebbled black and once during
this interval, so we can apply the induction hypothesis
to conclude thatψ⌈αi∪{xi} is in QSAT. 2

Corollary 8: There exists an infinite family of graphs
such that any minimal space black-white pebbling of
these graphs requires exponential-time, but they can be
refuted in linear time with the use of 1 additional pebble.

Proof: Let G be the DAG corresponding to the for-
mulaψ = ∀xn∀xn−1 . . .∀x1(x1∨ x̄1∨x2)∧(x2∨ x̄2∨x3)∧
. . .∧ (xn ∨ x̄n ∨ x1). This formula is clearly QSAT, since
its 3CNF part is a tautology. Also, sinceψ hasn uni-
versally quantified variables, by Lemma 5, the minimal
4n + 3 pebbling strategy forG requires time 2n to exe-
cute. We can pebbleG in linear time using exactly one
extra pebble by following the upperbound’s strategy ex-
cept that in each universal widget, we keep a pebble on
x′i as we pebbleai, which then allows us to pebble up the
otherside without any repebbling.2

3 Exponential Speedup for Resolution

In this section we discuss two main results, the
PSPACE-completeness of Resolution space, as well as
a surprising exponential speedup for Resolution. Due to
space limitations, we omit the technical details of the re-
ductions, as well as most of the proofs here but note that
they can be found in [8].

Definition 3.1: [1] A configuration C is a set of
clauses. Iff is a CNF formula, then the sequence of con-
figurationsπ = C [0],C [1], ...,C [k] is a RES proof of C
from F if C [0] = /0, C ∈ C [k], and for eachi < k, C [i+1]
is obtained fromC [i] by one of the following rules: (1)
deleting one or more clauses from the current configu-
ration; (2) add the resolvent of two clauses ofC [i]; (3)
download an axiom (clause) off . If /0 ∈ C[k], thenπ is
a proof of f .

Definition 3.2: [2] The variable space of a proofπ is
the maximum size of any configurationC in π. Thevari-
able space of an unsatisfiable CNF formulaf is the min-
imum space over all proofs off . Unless specified oth-
erwise, space in this paper will refer to variable space.
Given a CNF formulaf and a numberk, the Resolution
space problem asks whether there is a spacek Resolu-
tion proof of f .

Our first theorem settles the complexity of the Resolu-
tion space problem.

Theorem 9: The Resolution space problem is
PSPACE-complete.
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Our second theorem, which is quite surprising, shows
that allowing (or disallowing) even 3 extra units of stor-
age can have drastic consequences for Resolution-based
SAT algorithms.

Theorem 10: There exist CNF formulas such that any
minimal space proof of these formulas requires expo-
nential size, but that can be refuted in linear size, with 3
more units of space.

There is a clear connection between the nature of
these two results and those of Theorem 1 and Corollary
8. As before, a reduction from the QSAT problem is
central to their proofs. The reduction used here is glob-
ally quite similar to that of Section 2, but its widgets are
very different. Most notably, our constructionG is now
a monotone circuit instead of a DAG. ButG still pos-
sesses the following two crucial properties.

(1) First, the black-white pebbling number ofG is
equal to the black pebbling number ofG . That is,
our monotone circuitG has the important property that
white pebbles do not help at all, soG ’s optimal pebbling
strategy is pure black.

(2) Secondly, ifψ is in QSAT, then any optimal strat-
egy will require exponential time in the number of uni-
versal quantifiers. But if we let the strategy use a small
constant number of pebbles more, thenG can be pebbled
in linear time, whether or notψ is in QSAT.

Now fromG , we define an associated “pebbling for-
mula”, Peb(G ), defined below.

Definition 3.3: [2] Let G be a monotone circuit.
Peb(G ) is a set of clauses, with one variablevi for
each vertex inG , and containing the following (Horn)
clauses: (1) For each source vertexv, we have the
clause(v); (2) For each AND vertexv with predecessors
u1, . . . ,ul , we have the clauses(¬u1∨¬u2∨ . . .∨ul ∨v);
(3) Finally for each OR vertexv and each predecessoru
of v, we have the clause(¬u∨v). By a Resolution proof
of Peb(G ), we mean a Resolution derivation of the unit
clause(s) from Peb(G ).

As mentioned earlier, [2] showed that one can extract
a black-white pebbling strategy forG from a Resolution
proof of Peb(G ), where the strategy’s pebbling number
is related to proof’s Resolution space. If the converse re-
lationship held, then Theorem 9 & 10 would follow eas-
ily from Theorem 1 and Corollary 8. Unfortunately, the
converse does not hold and more work is needed. It is
not hard to see that from apure black pebbling strategy
for G , we do obtain a corresponding space-preserving
Resolution proof ofPeb(G ).

Intuitively, since white pebbles do not help to peb-
bleG , by special property (1) of our reduction, the con-
verse relationship should hold for our special graphs,
even with the addition of white pebbles.

This is the high-level idea behind the argument.
However, significant technical difficulties arise when
carrying out the proof. In order to mimic a step of the
black pebbling strategy, one ofPeb(G )’s axioms must be
downloaded, and this forces the Resolution simulation
to use more space than was needed in the pebbling step.
When an axiom is downloaded, the Resolution space ex-
ceeds the graphs’s pebbling number by the axiom’s size.
The problem with this “slack space” is that some ax-
ioms ofPeb(G ) are larger than others because their cor-
responding nodes have higher indegree inG . We there-
fore exceed the pebbling number by different amounts
at different points in the proof. During periods in the
proof when only smaller axioms are being downloaded,
we are able to use this space difference to deviate from
the pure black pebbling strategy. To solve this prob-
lem, we further modifyG to obtainGRES which has even
more structure which serves to “fill up” the slack space
in Peb(GRES). The simplest way to do this is to allow
ourselves the use of OR-nodes, which we use to solve
the slack space problem. We also use the OR-nodes to
construct efficient quantifier widgets, which reduce the
pebbling number of the resulting circuit. Even with this
modification, our argument is substantially more com-
plicated than before. As in Section 2, we argue that the
only way for the Resolution proof to proceed at each
step is to follow the all-black pebbling strategy–however
now we need to use a global graph-theoretic argument,
whereas before we essentially argued locally.

We show that the QBF formulaψ is in QSAT if and
only if Peb(GRES) has a space 6n+3 Resolution deriva-
tion. Moreover, the above two special properties con-
tinue to hold in this context. In particular, our reduction
satisfies (2’): Ifψ is in QSAT, then any space 6n+3 Res-
olution proof of Peb(GRES) requires exponential size.
However, with 6n + 6 space, for anyψ, the associated
formulaPeb(GRES) has a linear-space proof.

Our main results follow from Lemmas 11, 12, & 13
and Theorem 14. Lemma 11 provides the optimal peb-
bling strategy forG , while Lemma 12 provides the sub-
optimal yet linear time strategy. Lemma 13 shows that
the there are Resolution proofs whose size and space are
proportional to those pebbling strategies.

Lemma 11: If ψ is in QSAT, then the target nodes of
G can be pebbled with 3n +1 pebbles.
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Lemma 12: There is a black pebbling strategy forG
which pebbless in timeO(|G |) and uses 3n+4 pebbles,
regardless of whetherψ is in QSAT.

Lemma 13: The k-pebble, t-time black pebbling
strategies of Lemmas 11 & 12 for the target nodes of G
imply the existence of spacek+d Resolution derivations
of Peb(GRES) which take time polynomial int, whered
is the maximum size of any axiom ofPeb(GRES).

Theorem 14 is the hardest part of the argument. It proves
that the Resolution proof obtained from the pebbling
strategy from Lemma 11 truly is optimal, and that any
space-optimal proof has exponential size.

Theorem 14: Let ψ be a QBF, and letGRES be the
associated monotone circuit. Then ifPeb(GRES) can be
derived using at most 6n + 3 space, thenψ is in QSAT,
and any 6n +3 space proof requiresΩ(2k) steps, where
k is the number of universally quantified variables inψ.

We are now able to prove our two main results.

Theorem 9: The Resolution space problem is PSPACE-
complete.

Proof: Every unsatisfiable formula has a spacen
Resolution proof, and thus there is an NPSPACE algo-
rithm guessing a spacen proof. By Savitch’s theorem,
this implies a PSPACE algorithm. To show PSPACE-
hardness, from a QBF formulaψ, we construct the as-
sociated CNF formulaPeb(GRES). By Lemmas 11 &
13, if ψ is in QSAT, then there is a Resolution deriva-
tion of Peb(GRES) which uses 6n+3 space. Conversely,
by Theorem 14, if there is a Resolution derivation of
Peb(GRES) using 6n +3 space, thenψ is in QSAT. 2

Theorem 10: There exist CNF formulas which have
linear size Resolution proofs that can be verified in space
k +3, but whose smallest Resolution proofs that can be
verified in spacek have exponential size.

Proof: Let ψ = ∀xn∀xn−1 . . .∀x1F be any totally
universally quantified QBF which is in QSAT, and let
GRES be the graph obtained fromψ. Sinceψ is in QSAT,
by Lemmas 11 & 13 and Theorem 14, there exist space
6n +3 Resolution proofs ofPeb(GRES), and all of them
requireΩ(2n) size. By Lemmas 12 & 13, there exists
a space 6n + 6 derivation ofPeb(GRES) which only re-
quiresO(|Peb(GRES)|) size. 2
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