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1. Introduction. The black-white pebbling game was introduced by Cook and
Sethi in 1976 [CS76] in an attempt to separate P from NL. The black-white pebbling
game received considerable attention throughout the next decade due to its numerous
applications including VLSI design, compilers, and algebraic complexity. In 1983 de-
termining its complexity was rated as “An Open Problem of the Month” in Johnson’s
The NP-Completeness Column [Joh83]. An excellent survey of pebbling results from
this period can be found in Pippenger [Pip80]. Recently, there has been a resurgence
of interest in pebbling games due to their links with propositional proof complexity
[BS02, ET01, Nor06, HU07]. In this paper we prove that the black-white pebbling
game is PSPACE-complete.

The black-white pebbling game was preceded by the black pebbling game, which
has also been widely studied [Pip80]. Let G = (V,E) be a directed acyclic graph
(DAG) with one distinguished output node, s. In the black pebbling game, a player
tries to place a pebble on s while minimizing the number of pebbles placed simultane-
ously on G. The game is split into distinct steps, each of which takes the player from
one pebbling configuration to the next. Initially, the graph contains no pebbles, and
each subsequent configuration follows from the previous by one of the following rules:

• At any point the player may place a black pebble on any source node v.
• At any point the player may remove a black pebble from any node v.
• For any node v, if all of v’s predecessors have pebbles on them, then the
player may place a black pebble on v, or may slide a black pebble from a
predecessor u to v.

The black pebbling game models deterministic space-bounded computation. Each
node models a result, and the placement of a black pebble on a node represents the
deterministic computation of the result from previously computed results. A sequence
of moves made by the player is called a pebbling strategy. If a strategy manages to
pebble s using no more than k pebbles, then that strategy is called a k-pebbling
strategy.

The black-white pebbling game is a more powerful extension of the black pebbling
game that includes white pebbles, which behave in a dual manner to the black pebbles.
As before, the player attempts to place a black pebble on s while minimizing the

∗Received by the editors January 17, 2008; accepted for publication (in revised form) February 4,
2010; published electronically April 30, 2010. This work was funded in part by NSERC. A pre-
liminary version of this paper appeared in Proceedings of the 49th Annual IEEE Symposium on
Foundations of Computer Science, 2008.

http://www.siam.org/journals/sicomp/39-6/71351.html
†Department of Computer Science, University of Toronto, Toronto M5S 3G4, ON, Canada

(philipp@cs.toronto.edu, toni@cs.toronto.edu).

2622

D
ow

nl
oa

de
d 

05
/1

4/
13

 to
 1

28
.1

00
.3

.6
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THE PSPACE-COMPLETENESS OF BLACK-WHITE PEBBLING 2623

number of pebbles placed simultaneously on G at any time. However, unlike the black
pebbling game, the black-white pebbling game does not end until every node other
than s is empty. So the player must remove any outstanding pebbles once s has been
reached. The black-white pebbling game extends the black pebbling game with the
addition of the following rules:

• At any point the player may remove a white pebble from any source node v.
• At any point the player may place a white pebble on any node v.
• For any node v with a white pebble on it, the player may slide the pebble
to an empty predecessor u if all of v’s other predecessors are pebbled, or the
player may remove the white pebble if all of v’s predecessors are pebbled.

• The game ends when s contains a black pebble and every other node is empty.
As before, the placement of each black pebble is meant to model the derivation of

a deterministically computed result, while the placement of each white pebble is meant
to model a nondeterministic guess, whose verification requires all of its antecedents
to be derived.

In 1978, Lingas showed that a generalization of the black pebbling game, played
on monotone circuits instead of DAGs, is PSPACE-complete [Lin78] via a reduction
from the quantified boolean satisfiability problem. This was a surprising result since
the PSPACE-complete games of the time involved two players and it was clear how
the alternation between them led to each game’s high complexity. In 1980, Gilbert,
Lengauer, and Tarjan elaborated on the basic structure of Lingas’s construction to
prove the PSPACE-completeness of the black pebbling game on DAGs [GLT80]. The
main difficulty in moving from monotone circuits to the more restricted class of DAGs
is the creation of an OR widget using only the global bound on the number of per-
missible pebbles and nodes which act like AND gates.

While the above results settle the complexity of black pebbling, determining the
complexity of black-white pebbling has resisted numerous attempts. In contrast to
black pebbling, white pebbles allow a much richer choice of strategies since they can
be placed anywhere on the graph regardless of previous pebble placements, thereby
breaking up the straight inductive pattern obvious in all pure black strategies. Al-
though the black pebbling number of a graph is never more than a square of the
black-white pebbling number [Hei81], the addition of white pebbles lowers the peb-
bling number of many graphs [Wil85, KS88]. Unfortunately, the constructions used
for the previous PSPACE-completeness results are both examples of such graphs. As
a result, neither can be used to differentiate between true and false quantified boolean
formulas (QBFs) in the presence of white pebbles.

We settle Johnson’s open problem by building on the construction of [GLT80]
to prove the PSPACE-completeness of the black-white pebbling game. The same
reduction also provides an infinite family of graphs which require exponential time to
minimally black-white pebble, but can be pebbled in linear time if we use just two
pebbles more than the minimum. This results in a time/space trade-off similar to
that proved in [GLT80] for pure black pebbling.

The rest of this paper is organized as follows. Section 2 contains definitions.
Section 3 contains an overview of our proof and a detailed description of our reduction.
In section 4 we prove the upper bound, and the lower bound is proved in section 5.
In section 6 we present exponential time/space trade-offs for black-white pebbling
that follow from our proof, as well as PSPACE-completeness of another version of
the black-white pebbling game. Finally, we conclude with a few open problems in
section 7.
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2624 PHILIPP HERTEL AND TONIANN PITASSI

2. Terminology.

2.1. General definitions. This section contains definitions which are used con-
tinuously throughout the paper. Our main result is a reduction from the quantified
boolean satisfiability (QSAT) problem. QSAT is the archetypal PSPACE-complete
problem [SM73]. It can be viewed as a generalization of SAT, where conjunctive nor-
mal form (CNF) formulas are replaced by QBF formulas and satisfying assignments
are replaced by more complicated QSAT models, which are essentially sets of satisfy-
ing assignments which respect the quantifiers of the QBF. For example, consider the
QBF formula f = ∃x1∀x2∃x3(x1 ∨x2)∧ (¬x3 ∨¬x2). A QSAT model for this formula
is a set of truth assignments corresponding to a tree. The root of the tree is labelled
with x1. Since it is an existentially quantified variable, there is only one edge out of
this root node, and it is labelled by x1 = 1. The next node is labelled by x2. Since
x2 is universally quantified, there are two edges out of x2; the left edge is labelled by
x2 = 0, and the right edge is labelled by x2 = 1. The left edge (x2 = 0) goes to a node
labelled by x3, and here we choose x3 = 1; the right edge (x2 = 1) goes to a node
also labelled by x3, and here we choose x3 = 0. Thus the whole tree defines two truth
assignments, each of which satisfies the formula, and together these assignments form
a QSAT model for f . For a formal definition of quantified boolean satisfiability, please
see any standard complexity text such as [Pap94], [Sip96], or [DK00]. Our reduction
transforms an instance of the QSAT problem into a DAG G.

Definition 2.1 (in-degree/out-degree). The in-degree of a node v is the number
of directed edges directed from other nodes to v. The out-degree of a node v is the
number of directed edges directed from v to other nodes.

Definition 2.2 (predecessor/successor). A node v is a predecessor of node u
if there is a directed edge from v to u. A node u is a successor of node v if v is a
predecessor of u.

Definition 2.3 (ancestor/descendant). We say that a node v is a descendant
of another node u if there is a path from u to v. We say that a node u is an ancestor
of another node v if v is a descendant of u. We say that v is a descendant of u along
path ρ if there is a subpath of ρ from u to v. We say that u is an ancestor of v along
path ρ if v is a descendant of u along ρ.

2.2. Black-white pebbling definitions. We now define terms which we use
throughout the paper to discuss black-white pebbling. For each of the following defi-
nitions, let G = (V,E) be a DAG with distinguished output node s. The distinguished
output node will also be referred to as the target node, or sink node.

Definition 2.4 (black-white pebbling moves). The black-white pebbling game
has six rules which control how pebbles can be moved on G.

1. For any node v, if each of v’s predecessors contains a pebble of either color,
then a black pebble can be placed on v. We call this move a black pebble
placement onto v.

2. For any node v, if some predecessor u of v contains a black pebble and each of
v’s other predecessors contains a pebble of either color, then the black pebble
can be slid from u to v. We call this move a black pebble slide from u to v.

3. For any node v which contains a black pebble, the black pebble can be removed
from v. We call this move a black pebble removal from v.

4. For any node v which contains a white pebble, if each of v’s predecessors
contains a pebble of either color, then the white pebble can be removed from v.
We call this move a white pebble removal from v.
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5. For any node v which contains a white pebble, if some predecessor u of v is
empty and each of v’s other predecessors contains a pebble of either color,
then the white pebble can be slid from v to u. We call this move a black
pebble slide from v to u.

6. For any node v, a white pebble can be placed on v. We call this move a white
pebble placement onto v.

The state of the game at any moment in time is captured by the notion of a
configuration. A configuration encodes which nodes contain black pebbles and which
contain white pebbles at that time.

Definition 2.5 (black-white pebbling configuration). A black-white pebbling
configuration M[i] for G is a pair of sets (B[i],W [i]), such that B[i] ⊆ V , W [i] ⊆ V ,
and B[i] ∩W [i] = ∅.

A black white pebbling strategy is a sequence of configurations, each one following
the last by a legal pebbling move. The strategy contains all of the information about
how the pebbles move on G during the entire play of the game.

Definition 2.6 (black-white pebbling strategy). A black-white pebbling strat-
egy S for G is a sequence of black-white pebbling configurations M[tstart], . . . ,M[tend],
such that M[tstart] = (∅, ∅), M[tend] = ({s}, ∅), and for all t, tstart ≤ t < tend,
M[t+ 1] follows from M[t] by a legal black-white pebbling move.

The black-white pebbling number measures the space efficiency of a pebbling
strategy.

Definition 2.7 (black-white pebbling number). The black-white pebbling num-
ber of a black-white pebbling configuration M[i] is |B[i]| + |W [i]|. The black-white
pebbling number of a black-white pebbling strategy S is the maximum black-white
pebbling number of any configuration of S. If a strategy has pebbling number k, then
it is referred to as a k-pebbling strategy. The black-white pebbling number of a DAG
G is the minimum k such that G has a k-pebbling strategy. For any given k, if G has
a k-pebbling strategy, then we say that G is k-pebblable.

We can now formally define the black-white pebbling game.

Definition 2.8 (black-white pebbling game). Given a DAG G = (V,E) with
distinguished output node s and a nonnegative integer k, k ≤ |V |, the black-white
pebbling game asks whether G is k-pebblable.

As the definition of a black-white pebbling strategy suggests, pebbling moves,
such as placements, removals, and slides, occur between configurations. Since config-
urations are indexed by discrete time units, moves actually occur during the transition
from one time unit to the next. For convenience we would like to talk about moves as
though they occur at time units, since it is much easier to state that a pebble is placed
on a node at a time t, rather than always stating that a pebble is placed on a node
between time t − 1 and t. When we speak about pebbling moves we will therefore
associate the action with the configuration to which the action transitions. This gives
rise to the following definitions which we use throughout the proof.

Definition 2.9. We say that v contains a black pebble at time tα if B[tα]
contains v. We say that v contains a white pebble at time tα if W [tα] contains v.
We say that v contains a pebble at time tα if it either contains a black pebble at tα

or contains a white pebble at tα.

Definition 2.10. We say that a node v of G is black pebbled at time tα of a
pebbling strategy S if B[tα − 1] does not contain v and B[tα] does. We say that v is
white pebbled at time tα if W [tα − 1] does not contain v and W [tα] does. We say
that v is pebbled at time tα if it is either black pebbled or white pebbled at time tα.
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2626 PHILIPP HERTEL AND TONIANN PITASSI

If a node is black pebbled at some time, it is always the result of a black pebble
placement or a black pebble slide to the node, but it is sometime unimportant exactly
which type of move resulted in the node containing the pebble, so we sometimes
employ this more generic language. The same is true for white pebbling and pebbling
in general. Similarly, we employ a generic term to capture all pebble removals, as it
is sometime unimportant whether a pebble was removed by a removal move or by a
slide from the node.

Definition 2.11. We say that a node v’s pebble is removed at time tα if v is
contained either in B[tα−1] or W [tα−1] but is contained in neither B[tα] nor W [tα].

Definition 2.12. We say that a black pebble is slid from v to its successor u at
time tα if B[tα − 1] contains v and does not contain u, and B[tα] contains u but not
v. Similarly, we say that a white pebble is slid from v to its predecessor u at time tα

if W [tα − 1] contains v and does not contain u, and W [tα] contains u but not v.
We use the follow term when discussing sets of nodes which simultaneously contain

pebbles.
Definition 2.13. We say a set of nodes V is simultaneously black pebbled at

time tα if some member of V is black pebbled at tα and all other members of V already
contain black pebbles at tα.

A black-white pebbling strategy induces a set of pebble assignments, each of which
records the interval between the time a pebble is initially placed on a node and the
time it is subsequently removed.

Definition 2.14. A pebble assignment P (v, t1, t2) records the interval during
which a node contains a pebble. The node v contains a pebble continuously from time
t1 to t2 − 1 inclusively, but does not contain a pebble at t1 − 1 or t2. If the pebble is
never removed from v, as in the last assignment of a black pebble to the target, t2 is
infinity. We say that P (v, t1, t2) starts at t1 and ends at t2.

Intuitively, if P (v, t1, t2) is in the set of pebble assignments induced by some
pebbling strategy S, then in S, the node v is pebbled at time t1 and its pebble is
removed subsequently at time t2. Since two distinct pebbling moves are required to
pebble a node and then to remove that node’s pebble, for all pebble assignments
P (v, t1, t2), t1 < t2. We also note that the following inequalities (t3 ≤ t2, t1 ≤ t4) are
used rather than equalities because of the sliding rule.

Definition 2.15. If v is a predecessor of u, then
1. if P (u, t3, t4) is a black pebble assignment, we say that P (v, t1, t2) supports
P (u, t3, t4) if t1 < t3 ≤ t2 with support time t3,

2. if P (u, t3, t4) is a white pebble assignment, we say that P (v, t1, t2) supports
P (u, t3, t4) if t1 ≤ t4 < t2 with support time t4.

Intuitively, a pebble assignment supports a black pebble assignment if it allows
the pebble to be placed, and a pebble assignment supports a white pebble assignment
if it allows the pebble to be removed.

Definition 2.16. Let S be a k-pebbling strategy of G. The support DAG D of
S is formed by adding a node for each pebble assignment in S and then adding edges
from each pebble assignment to the pebble assignments which it supports.

A pebble assignment can only support pebble assignments to one of its successors.
Therefore, since G is acyclic, so too is the support DAG associated with S. The node
associated with the pebble assignment to s is a sink in the support DAG for S.

3. Overview of our reduction.

3.1. Proof overview. Formally, the black-white pebbling game takes as input
a DAG G with a special target node s and an integer k and asks whether there is a
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k-pebbling strategy for s in G. We prove the following theorem.
Theorem 1. The black-white pebbling game is PSPACE-complete.
We first show that the black-white pebbling game is in PSPACE.
Lemma 2. The glack-white pebbling game is in PSPACE.
Proof. Given (G, k), we can easily guess a sequence of pebbling configurations

that pebbles G with at most k pebbles, keeping at most two configurations in memory
at any given time. Since each configuration requires at most polynomial space, this is
an NPSPACE algorithm. Next, we appeal to Savitch’s theorem to conclude that the
black-white pebbling game is in (deterministic) PSPACE.

To prove that the black-white pebbling game is PSPACE-hard, we will reduce
from QSAT [SM73]. Given a QBF ψ over n variables, we will create a graph G with
the property that ψ is in QSAT iff G has a 4n+ 3 black-white pebbling strategy.

Our construction is similar at a high-level to [GLT80], in which Gilbert, Lengauer,
and Tarjan create a graph from a QBF with the property that the formula is in QSAT
iff the graph has a pure k-black pebbling strategy for a specific k. The general idea
behind their reduction is to have the black pebbling correspond to the exponential-
time procedure that verifies that ψ is in QSAT. The graph is composed of two main
parts: a linear chain of clause widgets followed by a linear chain of quantifier widgets.
In all strategies which achieve the graph’s minimum pebbling number, pebbles must
be placed on certain special nodes in a way which corresponds to the lexicographically
first truth assignment in the QSAT model for ψ. Since this assignment satisfies ψ’s
3CNF, the player is able to successfully pebble through the clause widgets without
exceeding the minimum pebbling number. The player can then begin to make progress
through the quantifier widgets up to the first universal widget, say widget i. In order
to pebble through this widget without exceeding the pebbling number, the player must
leave a pebble on a “progress node” in widget i and then repebble the special nodes
for the innermost i variables, thereby placing pebbles in a way which corresponds to
the lexicographically second truth assignment in the QSAT model. The player can
then pebble up through the clause widgets again, and this time use the pebble which
was previously placed on the progress node to pebble through widget i, only to have
his or her progress arrested at the next universal widget, at which point the process
must repeat. Minimally black pebbling the graph corresponding to a true QBF with
k universal quantifier widgets therefore requires 2k time.

In this paper, we want to use ideas similar to those in [GLT80] to construct a graph
from a QBF with the property that the formula is in QSAT iff the graph has a k black-
white pebbling strategy. Unfortunately, the graphs used in all earlier constructions
are easy to pebble once white pebbles are allowed, regardless of whether or not the
QBF is in QSAT. Thus the main obstacle in proving hardness of black-white pebbling
is to determine how to modify the construction so that white pebbles will be rendered
useless. We accomplish this by building a graph which requires the player to use
the maximum number of pebbles in every configuration of every optimal pure black
strategy. The player must maintain a set of black pebbles which are temporarily fixed
on the graph along with a wave of black pebbles which moves up the graph, picking
up the fixed pebbles along the way. Together, the temporarily fixed set and the wave
always contain the maximum number of pebbles, even though pebbles are constantly
moving from the fixed set to the wave. The use of any white pebbles, which move
down the graph in the opposite direction from the wave, will therefore necessarily lead
to a suboptimal pebbling.

However, we run into trouble in the case of existentially quantified variables. The
problem stems from the fact that for an existential quantifier widget, we want to be
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2628 PHILIPP HERTEL AND TONIANN PITASSI

able to pebble up to that widget in either of two different ways—one corresponding to
the variable being set to true, and the other way corresponding to the variable being
set to false. Thus, there is an implicit OR in this argument. This difficulty was also
overcome in [GLT80], in the more limited context of black pebbling. In the context
of black-white pebbling, we have to simulate this implicit OR using only AND gates.
Any way of doing this will necessarily involve two different pebblings, and it requires
subtlety to accomplish this while still prohibiting white pebbles.

3.2. The reduction. To show that the black-white pebbling game is PSPACE-
hard, we reduce from QSAT. In our presentation, a QBF ψ = QnxnQn−1xn−1 · · ·Q1x1F ,
where F is a 3CNF containing m clauses over the n quantified variables xn, . . . , x1.
We have inverted the numbering of the variables simply as a convenience in the proof.
Given a QBF ψ, we produce a graph G whose target node s can be black-white peb-
bled using at most 4n+ 3 pebbles iff ψ is in QSAT. Our construction is designed to
penalize any use of white pebbles so that the optimal strategy is all black.

The graph which we construct is composed of n + m widgets, one for each quan-
tified variable and one for each clause in F . As in [GLT80], the quantifier widget for
Qixi contains four vertices which represent the variable xi; we call these nodes xi, x

′
i,

x̄i, x̄
′
i. They are divided into two literal subwidgets, with x′i and xi composing one

such subwidget in which x′i is a predecessor of xi, and x̄
′
i and x̄i composing the other.

We call xi and x̄i top nodes, and x′i and x̄
′
i bottom nodes. The location of pebbles on

these four nodes corresponds to the truth value assigned to xi by the current truth
assignment which is being tested by the pebbling. If pebbles are on xi and x̄

′
i, then

the variable xi is set to true. If pebbles are on x′i and x̄i or if pebbles are on x
′
i and x̄

′
i,

then the variable xi is set to false. Our construction will never allow an assignment
to place pebbles on both xi and x̄i in an optimal strategy. We will prove that the
player can use only black pebbles to set these truth assignments, so if pebbles are on
both bottom nodes, x′i and x̄

′
i, the player can easily slide one up to put the graph into

either the true or false configuration.
The construction of the quantifier widgets relies on a subwidget we call an i-slide.

An i-slide is designed to severely restrict the player’s pebbling strategies. An example
of a 4-slide is shown in Figure 1. Once the bottom nodes of an i-slide are black
pebbled, the i-slide strategy, where the bottom pebbles are slid up to the top nodes
in the appropriate order, is the only way to pebble the top nodes without exceeding
i pebbles.

Definition 3.1. An i-slide is a pair of sets (V, U) together with a set of edges
that satisfy the following properties. V is a set of i nodes v1, v2, . . . , vi, and U is a
set of i nodes u1, u2, . . . , ui such that (1) vj is the predecessor of all nodes vk such
that k > j; (2) uj is the predecessor of all nodes uk such that k > j; (3) uj is the
predecessor of all nodes vk such that k ≤ j; (4) uj has at least i− j + 1 predecessors
from outside of V or U .

Globally the construction is very much like that in [GLT80]. There are a num-
ber of nodes used to encode a truth assignment, which are predecessors to nodes
in both clause widgets and quantifier widgets. The clause widgets are connected
linearly and can only be pebbled within the space bound of 4n + 3 if the truth as-
signment encoded by the current pebbling configuration satisfies ψ’s CNF part, F .
The quantifier widgets are also connected to each other linearly and follow the last
clause widget. They slow the advance of the pebbling toward s. In order to advance
through them, it will be necessary to repebble the clause widgets numerous times,
once for each truth assignment required to show that ψ is in QSAT. Only once the
final quantifier widget is pebbled is it possible to pebble the target node s. We now
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zm

u4

l3j
′

v1 v2 v3 v4

u1
u2 u3

l2j

l2j
′

l1j
′

l1jzj−1 l3j

zj

G0 g3
0

g2
0g1

0

a0 b0 c0

Fig. 1. A clause widget for clause zj = (l1j ∨ l2j ∨ l3j ) (top), the connection of zm to G0 (center),

and a 4-slide ({v1, v2, v3, v4}, {u1, u2, u3, u4}) (bottom).

False SettingTrue SettingLiteral Widget

xi

x′i

x̄i

x̄′i x′i

xi

x′i

xi x̄ix̄i

x̄′i x̄′i

Fig. 2. A literal widget for variable xi (left). A literal widget for variable xi in the true state
(center). A literal widget for variable xi in the false state (right).

describe the individual widgets and how they are connected. These descriptions are
somewhat terse and are meant to be read in conjunction with Figures 1, 2, 3, 4,
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j

vi

j source nodes

The node vi has j source nodes as predecessors.

Ai

a1
i aj

iaj−1
i

a1
i aj

i

Ai

vi

j

bjib1i

Bi

a1
i

Ai

aj
i

j-Slide

(Bi, Ai)

Subwidget Legend

if k < j, then ak
i is a predecessor of aj

i .

The node vi is a predecessor of all j nodes in Ai.

The node vi is a successor of all j nodes in Ai.

There is a j-slide from Ai up to Bi.

Ai = {a1
i , · · · , am

i },
For every pair of nodes aj

i and ak
i in

a1
i

Ai

vi

aj
i

Fig. 3. Legend explaining the components of Figures 4 and 5.

and 5. Figure 6 shows a small example of a DAG produced from the QBF formula
ψ = ∀x3∃x2∀x1(x1 ∨¬x2 ∨x3)∧ (x1 ∨x2 ∨¬x3)∧ (¬x1 ∨x2 ∨¬x3)∧ (¬x1 ∨¬x2 ∨x3).

The universal widget is depicted in Figure 4. For every i, 1 ≤ i ≤ n, if widget i
is a universal widget, it is composed of source nodes plus the following five groups of
nodes:

• {x̄i, x̄′i, di, xi, x′i, yi},
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nodes

4i + 24i + 1

source

nodes

4i + 3

All with indegree 4i − 1

g4i−1
i g4i

i g4i+1
i g4i+2

i g4i+3
i

4i+ 2

4i + 1

4i

4i− 1-Slide
yi

4i + 3

2

r1i r2i r4i−1
i

Ri

4i

x′
i

xi

4

3

aibicihi

4i − 1

({g1
i , . . . , g

4i−1
i }, Ri)

4i − 2

4i − 2
4i − 2

4i− 1-Slide

(Ri, Gi−1)

x̄′
i

x̄i

di

Gi−1

g1
i−1

g1
i

Gi

g4i−1
i−1

nodes

source

nodes

sourcesource

Fig. 4. A universal widget for the black-white pebbling result.

• {ai, bi, ci, hi},
• Ri = {r1i , . . . , r4i−1

i },
• Gi−1 = {g1i−1, . . . , g

4i−1
i−1 }, and

• Gi = {g1i , . . . , g4i+3
i }.

These are connected as follows. yi has 4i + 3 source nodes p1yi
through p4i+3

yi
as

predecessors, x′i has 4i + 2 source nodes p1xi
through p4i+2

xi
as predecessors, di has

4i+ 1 source nodes p1di
through p4i+1

di
as predecessors, and x̄′i has 4i source nodes p

1
x̄i

through p4ix̄i
as predecessors. The sole predecessor of xi is x

′
i, and the sole predecessor

of x̄i is x̄
′
i. For every pair of nodes gji and gki of Gi, if j < k, then gji is a predecessor

of gki . Similarly, for every pair of nodes gji−1 and gki−1 of Gi−1, if j < k, then gji−1

is a predecessor of gki−1. The same is true for Ri. The subgraph ({g1i , . . . , g4i−1
i }, Ri)

forms a 4i − 1 slide. (Ri, Gi−1) also forms a 4i − 1 slide. The node hi is a successor
of every node in Ri, the node ci is a successor of every node in {hi, r2i , . . . , r4i−1

i },
the node bi is a successor of every node in {hi, ci, r2i , . . . , r4i−1

i }, and the node ai is a
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4i+ 1

(Ri, Gi−1)

yi

nodes

sourcesource

nodesnodes

source

x′
i

xix̄i

x̄′
i

4i + 34i4i + 2

4i + 1

g4i+3
ig4i+2

ig4i+1
ig4i

ig4i−1
ig2

ig1
i

4i − 1

4i

4i+ 2

4i+ 3

node

1

source

h4i+1
ih4i

ih4i−1
ih1

i

r4i−1
ir1i

Ri

Hi

ai

di

g1
i−1

Gi−1

Gi

All with indegree 4i − 1
g4i−1
i−1

4i− 1-Slide

({h1
i , · · · , h4i−1

i }, Ri)

4i− 1-Slide

source

nodes

4i + 1

4i

source

nodes

source

nodes

4i − 1

source

nodes

2

4i + 1

Fig. 5. An existential widget for the black-white pebbling result.

successor of every node in {hi, ci, bi, r2i , . . . , r4i−1
i }. Finally, x̄′i is a predecessor of every

node in {g1i , . . . , g4ii }, x̄i is a predecessor of every node in {hi, ci}, di is a predecessor
of every node in {hi, ci, bi}, x′i is a predecessor of every node in {hi, ci, bi, ai}, xi is
a predecessor of every node in {g1i , . . . , g4i+1

i }, ai is a predecessor of every node in
{g1i , . . . , g4i+2

i }, and yi is a predecessor of every node in {g1i , . . . , g4i+3
i }.

The existential widget is depicted in Figure 5. For every i, 1 ≤ i ≤ n, if widget i
is an existential widget, it is composed of some source nodes plus the following four
groups of nodes:

• {x̄i, x̄′i, di, xi, x′i, yi},
• Gi−1 = {g1i−1, . . . , g

4i−1
i−1 },

• Ri ∪Hi ∪ {ai}, where Ri = {r1i , . . . , r4i−1
i }, and

• Hi = {h1i , . . . , h4i+1
i } and Gi = {g1i , . . . , g4i+3

i }.
x′i has 4i+3 source nodes p1xi

through p4i+3
xi

as predecessors, yi has 4i+ 2 source

nodes p1yi
through p4i+2

yi
as predecessors, di has 4i+1 source nodes p1di

through p4i+1
di

as
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x1x̄1

x2
x̄2

654

15

z4

z3

z2

z1

141312

z0

s

G0

G1

G2

G3

1110 8

9

7

x̄3 x3

10

15

2

2

2
3

4
3

2

15

14

13

12

1110

9

8

7

9

7

6

5

4

3

8 7 6 5 4 3 2 1

2 1

9

2

3

4

11 10
10

Fig. 6. An example of G for ψ = ∀x3∃x2∀x1(x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨
¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3).
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2634 PHILIPP HERTEL AND TONIANN PITASSI

predecessors, and x̄′i has 4i source nodes p
1
x̄i

through p4ix̄i
as predecessors. x̄′i also has yi

and x′i as predecessors. The sole predecessor of xi is x
′
i, and the only two predecessors

of x̄i are x̄′i and yi. For every pair of nodes gji and gki of Gi, if j < k, then gji is
a predecessor of gki . The same is true for every pair of nodes in Hi, Ri, and Gi−1.

Every node gji ∈ {g1i , . . . , g4i+1
i } has 4i+ 1− j source nodes as predecessors. Also, ai

is a predecessor of every node in {g1i , . . . , g4i+1
i }, x̄′i is a predecessor of every node in

{g1i , . . . , g4i+2
i }, and xi is a predecessor of every node in {g1i , . . . , g4i+3

i }. Also, ai is
the successor of every node in Hi, di is a predecessor of every node in {h1i , . . . , h4i+1

i },
x̄i is a predecessor of every node in {h1i , . . . , h4ii }, and ({h1i , . . . , h4i−1

i }, Ri) forms a
4i − 1 slide. Finally, yi is a predecessor of every node in Ri, and (Ri, Gi−1) forms a
4i− 1 slide.

For all i, 1 < i < n, Gi is part of both widget i and widget i + 1. G0 is special
in that it connects the string of quantifier widgets to the string of clause widgets. It
is described below. Gn is special because every node in Gn is a predecessor of the
target node s. We now describe the m clause widgets.

For each clause Ci from C1, . . . Cm, there is a corresponding node zi. This node
always has four predecessors, one of which is the previous clause node zi−1. The
other three, l1i , l

2
i , and l

3
i , correspond to the literals which occur in Ci. For example,

if the first literal in the ith clause is x̄j , then the node x̄j from quantifier widget j
is one of the predecessors of zi. z1 has a special source node z0 as a predecessor,
since it has no previous clause. Finally, we add edges from zm to all three nodes of
G0. There are also three source nodes a0, b0, and c0 which are connected to G0. a0
and b0 are predecessors of g10 , and c0 is a predecessor of g20 . Figure 1 shows both an
example of a clause widget and the connection between zm and G0. This completes
the construction.

In the remainder of the paper, we will show that the following theorem holds with
respect to this reduction.

Theorem 3. The QBF ψ = QnxnQn−1xn−1 . . . Q1x1F is in QSAT iff the target
node s of G can be pebbled with 4n+ 3 pebbles.

Since QSAT is PSPACE-complete [SM73], this shows that the black-white peb-
bling game is PSPACE-complete. In the upper bound proof, we begin by putting
G into a configuration which corresponds to the first truth assignment in ψ’s QSAT
model. Then we pebble up through the clause widgets and some of the quantifier
widgets before we have to put the graph into a configuration corresponding to the
next truth assignment in the QSAT model, etc. In this way we will cycle through
and verify all of the assignments in the QSAT model. In the lower bound proof, we
will show that every minimal pebbling strategy for G must follow this. We now define
how a pebbling configuration corresponds to a truth assignment.

Definition 3.2 (pebbling configuration to assignment correspondence). Let the
set of all truth assignments over variables xi+1, . . . , xn be denoted by Ai. Thus each βi
in Ai is a partial assignment that sets the outermost n−i variables of Qnxn . . . Q1x1F .
For any assignment βi ∈ Ai, define B[βi] to be the pebbling configuration of G con-
sisting of black pebbles on the following nodes:

• For each universally quantified variable xj of ψ, j ≥ i+1, if βi(xj) = 0, then
yj ∈ B[βi], x

′
j ∈ B[βi], dj ∈ B[βi], and x̄j ∈ B[βi]. Otherwise, if βi(xj) = 1,

then yj ∈ B[βi], x̄
′
j ∈ B[βi], aj ∈ B[βi], and xj ∈ B[βi].

• For each existentially quantified variable xj of ψ, j ≥ i+1, if βi(xj) = 0, then
yj ∈ B[βi], x

′
j ∈ B[βi], dj ∈ B[βi], and x̄j ∈ B[βi]. Otherwise, if βi(xj) = 1,

then yj ∈ B[βi], x̄
′
j ∈ B[βi], dj ∈ B[βi], and xj ∈ B[βi].
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Note that the negative assignment correspondences are identical in the existen-
tial and universal widgets, while the positive correspondences differ only in that the
universal contains the node aj while the existential contains dj . We also highlight the
fact that any assignment βi corresponds to 4(n− i) pebbles on the graph.

Definition 3.3 (time interval). We refer to a sequence of configurations from
time index tα through time index tω as the time interval from tα through tω, which
we denote as [tα, tω].

Definition 3.4 (clamped interval). For any node v and any time units tα,
tω such that tα ≤ tω, we say that v is clamped in the interval [tα, tω], denoted as
v ∈ •[[tα, tω]]•, iff v contains a black pebble during every configuration from M[tα]
through M[tω], i.e., for all t∗, tα ≤ t∗ ≤ tω, v ∈ B[t∗].

Definition 3.5 (empty interval). For any node v and any time units tα, tω such
that tα ≤ tω, we say that v is empty in the interval [tα, tω], denoted as v ∈ [[tα, tω]],
iff v contains no pebble during every configuration from M[tα] through M[tω], i.e.,
for all t∗, tα ≤ t∗ ≤ tω, v �∈ B[t∗] and v �∈ W [t∗].

4. Upper bound. Here, we show that if the QBF ψ = QnxnQn−1xn−1 . . . Q1x1F
is in QSAT, then the target node s of G can be pebbled with 4n + 3 pebbles. We
explicitly give a black-white pebbling strategy (which only ever uses black pebbles),
which achieves this space bound. In section 5, we prove that essentially this exact
strategy is the only way to pebble G with 4n+ 3 pebbles. A thorough understanding
of this section is therefore essential in order to understand the lower bound.

We begin by describing a local strategy which will be used repeatedly within the
4n + 3-pebbling strategy used to black pebble s. This local strategy explains how
we can simultaneously black pebble U using no more than i pebbles when given an
i-slide (V, U) in which every member of V contains a black pebble.

Definition 4.1 (i-slide strategy). Let (V, U) be an i-slide. The i-slide strategy
is very simple. For each j from 1 to i, simply slide the black pebble from vj to uj.

Lemma 4. If ψ is in QSAT, then the target node s of G can be pebbled with 4n+3
pebbles.

Lemma 4 follows from the following more general lemma by setting i = n.
Lemma 5. For all i, and all βi ∈ Ai such that ψ�βi∈ QSAT, if B[βi] ⊆ •[[tα, tω]]•,

then we can black pebble Gi at some time in [tα, tω] using 4n+ 3 pebbles.
Proof. The proof is by induction on i from 0 to n. The base case is when i = 0.

Let β0 be any assignment in A0. Recall that this corresponds to having 4n pebbles
locked up during the whole pebbling sequence, so we have only three pebbles left to
use. Suppose that Qnxn . . . Q1x1F �β0 is in QSAT. Then some literal in every clause
must be set to true. This implies that for each zj, 1 ≤ j ≤ m, at least one of l1j , l

2
j ,

or l3j is black pebbled in B[β0].
We can black pebble G0 as follows.
1. Start by putting a black pebble on z0. Then since at most two of z1’s other

predecessors are unpebbled, we have enough free pebbles to black pebble the
rest of z1’s predecessors. We know we can black pebble them because if some
lk1 is unpebbled, then lk1

′
must contain a black pebble in B[βi].

2. We therefore black pebble all of z1’s empty predecessors.
3. We then slide the pebble from z0 to z1 and lift the other (at most two) pebbles

which we just put down.
4. Once z1 is black pebbled, we black pebble z2 the same way, all the way to zm.
5. Once zm is black pebbled, we place the remaining two black pebbles onto a0

and b0.
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6. We then slide the pebble from a0 to g10 .
7. We then remove the black pebble from b0 and place it on c0 and slide it from
c0 to g20 .

8. Finally, we slide the pebble from zm to g30 .
Note that this strategy uses only black pebbles. For the inductive step there are two
cases depending on whether Qi is a universal or an existential quantifier.

Case 1. Qi is a universal quantifier. In this case, both ψ�βi∪{xi} and ψ�βi∪{x̄i} are
in QSAT. We begin in configuration B[βi] with 4i+ 3 free pebbles.

1. Black pebble yi, followed by x′i, then di, and then x̄i
′.

2. Then slide the pebble from x̄i
′ to x̄i.

3. At this point we have 4i−1 pebbles free and can apply the induction hypoth-
esis to black pebble every member of Gi−1.

4. Use the i-slide strategy to slide all of Gi−1’s pebbles to Ri.
5. Then slide the black pebble from r1i to hi.
6. Then slide the black pebble from x̄i to ci.
7. Then slide the black pebble from di to bi.
8. Then slide the black pebble from bi to ai.
9. Remove all pebbles from widget i except for the ones on ai, x

′
i, and yi.

10. Then slide the black pebble from x′i to xi and black pebble x̄′i again.
11. Now apply the induction hypothesis to black pebble every member of Gi−1

again.
12. Next, use the i-slide strategy to slide all of Gi−1’s pebbles to {g1i , . . . , g4i−1

i }.
13. Then slide x̄′i’s black pebble to g4ii .
14. Then slide xi’s black pebble to g4i+1

i .
15. Next slide the black pebble from ai to g

4i+2
i .

16. Finally, slide the black pebble from yi to g
4i+3
i .

Case 2. Qi is an existential quantifier. In this case, either ψ�βi∪{xi} or ψ�βi∪{x̄i} is
in QSAT. As in the universal case, we begin in B[βi] with 4i+ 3 free pebbles.

1. Black pebble x′i, followed by yi, di, and then x̄i
′.

The argument now proceeds differently if ψ�βi∪{xi} is in QSAT or if ψ�βi∪{x̄i}
is in QSAT.

• If ψ�βi∪{xi} is in QSAT:
2. Slide the black pebble from x′i to xi.
3. Then apply the induction hypothesis to black pebble Gi−1.
4. Then use the i-slide strategy to slide all of the pebbles from Gi−1 to Ri.
5. Then slide the black pebble from yi to x̄i.
6. Then use the i-slide strategy to slide all of the pebbles from Ri to

{h1i , . . . , h4i−1
i }.

7. After that, slide the pebble from x̄i to h
4i
i .

8. Then slide the pebble from di to h
4i+1
i .

9. Then slide the pebble from h4i+1
i to ai.

10. At this point remove all the pebbles from the widget so that only x̄′i, xi,
and ai remain.

11. Use the 4i free pebbles to pebble the source node predecessors of g1i and
then slide one to g1i itself.

12. Remove the pebbles left over on the source nodes and use them to sub-
sequently pebble each gji until g4ii is pebbled.

13. At this point slide the pebble from ai to g
4i+1
i , slide the pebble from x̄′i

to g4i+2
i , and finish by sliding the pebble from xi to g

4i+1
i .
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• If ψ�βi∪{x̄i} is in QSAT:
2. Slide the black pebble from x̄′i to x̄i.
3. Then apply the induction hypothesis to black pebble Gi−1.
4. Then use the i-slide strategy to slide all of the pebbles from Gi−1 to Ri.
5. Then use the i-slide strategy to slide all of the pebbles from Ri to

{h1i , . . . , h4i−1
i }.

6. Slide the pebble from x̄i to h
4i
i .

7. Slide the pebble from di to h
4i+1
i .

8. Then slide the pebble from h4i+1
i to ai.

9. At this point remove all the pebbles from the widget so that only yi, x
′
i,

and ai remain.
10. Use the 4i pebbles that are free to repebble x̄′i.
11. Then pick the pebble up from yi and pick up the 4i − 1 pebbles that

remain on the source node predecessors of x̄′i.
12. Slide the pebble from x′i to xi.
13. At this point x̄′i, xi, and ai are all pebbled, and we can finish by black

pebbling Gi as we did in steps 11, 12, and 13 of the previous case.
We have therefore shown that regardless of whether Qi is universal or existential, if
ψ�βi is in QSAT, then we can pebble through quantifier widget i using no more than
4n+ 3 pebbles. And in both cases the strategies use only black pebbles.

5. Lower bound. In this section, we show that if the target node s of G can
be pebbled with 4n + 3 pebbles, then the QBF ψ = QnxnQn−1xn−1 . . . Q1x1F is in
QSAT.

In our lower bound we will repeatedly show that certain pebble assignments must
precede others in any minimal pebbling strategy. If the player can just make unnec-
essary moves, for example, by using some free pebbles to pebble some node and then
immediately remove its pebble, then it is hard to make such an argument. We there-
fore follow the conventions of [GLT80] and will first define a set of frugal pebbling
strategies. These are pebbling strategies which make no unnecessary moves.

Definition 5.1 (necessary pebble assignment). We classify pebble assignments
as necessary or unnecessary. A pebble assignment P (v, t1, t2) is necessary if

1. it is the last black pebble assignment to the target node, or
2. a necessary black pebble assignment P (u, t3, t4) exists in the strategy such that
P (v, t1, t2) supports P (u, t3, t4), or

3. a necessary white pebble assignment P (z, t5, t6) exists in the strategy such that
P (v, t1, t2) supports P (z, t5, t6).

A pebble placement is unnecessary if it is not necessary.
Definition 5.2 (black-white pebbling frugality). We call a pebbling strategy

which contains no unnecessary assignments frugal.
By the definition above, every necessary pebble assignment except the one to s

supports at least one black assignment or at least one white assignment.
Definition 5.3. Let P (v, t1, t2) be a necessary pebble assignment such that v �= s

and let P (u, t3, t4) be a necessary pebble assignment supported by P (v, t1, t2) such
that its support time is minimal among all the necessary pebble assignments that are
supported by P (v, t1, t2). Then we say that P (u, t3, t4) necessitates P (v, t1, t2).

The support time of the pebble assignment that necessitates P (v, t1, t2) can be
thought of as the time at which P (v, t1, t2) is certified as necessary.

Definition 5.4. The chain of necessities originating at P (v, t1, t2) is an ordered
set of pebble assignments, starting with the assignment that necessitates P (v, t1, t2),
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2638 PHILIPP HERTEL AND TONIANN PITASSI

which is produced by adding a pebble assignment to the set and then adding the pebble
assignment which necessitates it, and so on.

Every pebble assignment P (u, t3, t4) in the chain of necessities originating at
P (v, t1, t2) is necessitated by exactly one other pebble assignment. Therefore, the
chain of necessities originating at P (v, t1, t2) will always contain exactly one pebble
assignment to each of v’s descendants along a single path from v to s. Therefore, as
long as v �= s, the chain of necessities originating at P (v, t1, t2) is nonempty. Note
that the chain of necessities originating at P (v, t1, t2) is a path from P (v, t1, t2) to the
last pebble assignment to s in the support DAG D of S.

Definition 5.5. Let P (u, t3, t4) be a pebble assignment in the chain of necessities
originating at P (v, t1, t2). The necessity distance from P (v, t1, t2) to P (u, t3, t4) in
the chain of necessities originating at P (v, t1, t2) is the ordinal of P (u, t3, t4) in the
chain of necessities originating at P (v, t1, t2).

Definition 5.6. J(P (v, t1, t2), t5) is the subset of the chain of necessities orig-
inating at P (v, t1, t2) that is composed of pebble assignments P (u, t3, t4), such that
t3 ≤ t5.

It is clear that since every member of the chain of necessities originating at
P (v, t1, t2) has a unique necessity distance, for each time t3 some member of the
subset J(P (v, t1, t2), t3) must have the maximum necessity distance among all mem-
bers of J(P (v, t1, t2), t3). Note that P (v, t1, t2) is not a member of J(P (v, t1, t2), t3)
for any t3.

We now prove that removing all unnecessary assignments from a k-pebbling strat-
egy for a graph G results in another k-pebbling strategy for G, and removing all of the
configurations between two repeated configurations also results in another k-pebbling
strategy. Once we have proved this, we can then limit ourselves to the consideration
of frugal pebblings that have no repeated configurations.

Lemma 6. Removing all unnecessary pebble assignments from a k-pebbling strat-
egy S results in another k-pebbling strategy S ′ which has no more configurations than
S.

Proof. We first explain what it means for us to remove a pebble assignment from
S. The strategy S is a set of configurations and therefore does not contain a set of
pebble assignments at all. Rather it induces a set of pebble assignments. So when we
say that we remove a pebble assignment from S we mean that we modify S so that
the set of pebble assignments which it induces is the same as before except without
the one assignment we wish to remove.

We now prove that removing all unnecessary pebble assignments will not affect
the correctness of the strategy and will not increase its pebbling number or its length
in configurations.

Consider the support DAG D of S. If there is an unnecessary pebble assignment
P (z, tα, tω) in D, then every one of its descendants must also be unnecessary. Oth-
erwise, the necessary descendant, P (u, t3, t4), would necessitate its predecessor in D
which would then cascade to cause all of the pebble assignments on the path from
P (z, tα, tω) to P (u, t3, t4), including P (z, tα, tω), to become necessary.

Since every descendant of an unnecessary pebble assignment is unnecessary, the
existence of an unnecessary assignment in D implies the existence of an unnecessary
pebble assignment P (v, t1, t2) that is a sink in D. Since P (v, t1, t2) does not support
any other pebble assignments, we can clearly remove it from S without affecting the
successful pebbling of s. We can therefore remove every unnecessary pebble assign-
ment by repeatedly finding an unnecessary pebble assignment and then removing all
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the sinks which are descendants of that assignment until we can no longer find any
unnecessary pebble assignments.

We now explain how we modify S so that the set of pebble assignments induced
by S ′ is the same as the one induced by S except that it does not include P (v, t1, t2).
As we have just shown, it is sufficient to consider removing only unnecessary pebble
assignments P (v, t1, t2) which support no other pebble assignment. We therefore do
not have to consider the removal of any white pebble assignments which begin with
a slide, as such assignments support the assignment from which the white pebble is
slid down, or the removal of any black pebble assignments which end with a slide,
as such assignments support the assignments to which the black pebble is slid. This
means that there are four kinds of pebble assignments which we might remove from
a strategy.

• A black pebble assignment P (v, t1, t2) that starts with a black pebble slide
from a predecessor u of v to v at t1 and ends with a black pebble removal
removal from v at t2.
We remove P (v, t1, t2) as follows. We begin by removing v from every con-
figuration from M[t1] through M[t2 − 1]. The transition from M[t1 − 1] to
M[t1] therefore becomes a black pebble removal from u, rather than a slide
from u to v. Originally, the only difference between M[t2 − 1] and M[t2] is
the fact that M[t2 − 1] contained v. Since it no longer does so, M[t2 − 1] is
identical to M[t2]. We therefore remove the entire configuration M[t2].

• A black pebble assignment P (v, t1, t2) that starts with a black pebble place-
ment onto v at t1 and ends with a black pebble removal from v at t2.
As before, we begin to remove P (v, t1, t2) by removing v from every config-
uration from M[t1] through M[t2 − 1]. As in the previous case, we must
remove the entire configuration M[t2]. This time we will also have to remove
M[t1]. Originally, the only difference between M[t1 − 1] and M[t1] was that
M[t1] contained v while M[t1 − 1] did not, so once v is removed from M[t1],
they become identical and, as before, we remove one of them.

• A white pebble assignment P (v, t1, t2) that starts with a white pebble place-
ment onto v at t1 and ends with a white pebble slide from v to a predecessor
u of v at t2.
In this case, we remove v from every configuration fromM[t1] throughM[t2−
1]. For the same reasons as are discussed in the previous cases we must also
remove M[t1].

• A white pebble assignment P (v, t1, t2) that starts with a white pebble place-
ment onto v at t1 and ends with a white pebble removal from v at t2.
As before, we remove v from every configuration from M[t1] through M[t2−
1], and for the same reasons as are discussed in the previous cases we must
also remove M[t1] and M[t2].

Since all the changes which are made to S involve removing nodes from config-
urations and none involve adding any, removing all unnecessary pebble assignments
cannot increase the strategy’s pebbling number. Similarly, we can see that the re-
moval of each unnecessary pebble assignment requires the removal of at least one
configuration and the addition of none, so the removal of any unnecessary pebble
assignments also leads to a decrease in the strategy’s length.

We also state without proof the following obvious lemma.
Lemma 7. Removing all of the configurations between a repeated configuration

and its duplicate from a k-pebbling strategy S results in another k-pebbling strategy S′

which has fewer configurations than S.
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The act of removing all unnecessary pebble assignments from S may create a
repeated configuration, and removing all repeated configurations may create new un-
necessary pebble assignments. We can therefore alternate removing all existing un-
necessary pebble assignments and removing all repeated configurations until there is
a round in which neither is removed. This process ends at some point because there
are originally a finite number of configurations in S and each back-to-back round ex-
cept the last must remove at least a single configuration. When the process ends, the
k-pebbling strategy S has been transformed into a new k-pebbling strategy S′ which,
by definition, contains no unnecessary pebble assignments or repeat configurations.

We will assume from now on that every pebbling strategy is frugal and contains
no repeat configurations. We may at times remind the reader that we are dealing
with such strategies, but we would like to point out that in general all strategies are
assumed to be frugal.

We now prove a series of technical lemmas, culminating with Lemma 11. Lemma
11 is used repeatedly throughout the induction which forms the bulk of the lower
bound proof. In particular, it implies that the i-slide strategy described in the upper
bound proof is the only strategy which can successfully pebble the top level of the
i-slide using no more than i pebbles.

Lemma 8. Let P (v, t1, t2) be a necessary pebble assignment and let tω be a time
unit such that t1 ≤ tω. If a black pebble assignment P (u, t3, t4) ∈ J(P (v, t1, t2), tω),
where t3 < t1, then there must be a white pebble assignment in J(P (v, t1, t2), tω) that
is on the graph at t1 − 1.

Proof. Consider a black pebble assignment P (u, t3, t4) ∈ J(P (v, t1, t2), tω), where
t3 < t1, that is closest to P (v, t1, t2) in necessity distance. Consider the chain of
necessities between P (v, t1, t2) and P (u, t3, t4).

By the definition of necessary, P (u, t3, t4) cannot necessitate P (v, t1, t2) because
t3 < t1. P (u, t3, t4) must therefore necessitate another pebble assignment P (z, t5, t6)
in the chain of necessities originating at P (v, t1, t2). The necessity distance of P (v, t1, t2)
to P (z, t5, t6) is clearly 1 less than the necessity distance from P (v, t1, t2) to P (u, t3, t4).
Since P (u, t3, t4) is a black assignment that necessitates P (z, t5, t6), it follows that
t5 < t3, and therefore t5 < t1. Since P (u, t3, t4) is the closest black assignment to
P (v, t1, t2) that is placed before t1, P (z, t5, t6) must be a white assignment and there
can be no black pebble assignments placed before t1 with lower necessity distance
from P (v, t1, t2) in J(P (v, t1, t2), tω).

We will prove that since there is no black pebble assignment that starts before
t1 with lower necessity distance from P (v, t1, t2) than P (z, t5, t6) in J(P (v, t1, t2), tω),
there must be a white pebble assignment in J(P (v, t1, t2), tω) which remains on the
graph at the time step immediately preceding t1. The proof is by induction on the
necessity distance of P (v, t1, t2) to P (z, t5, t6).

Basis. In the basis, the necessity distance from P (v, t1, t2) to P (z, t5, t6) is 1,
so P (z, t5, t6) is the white pebble assignment which necessitates P (v, t1, t2). By the
definition of necessary, this means that t1 ≤ t6. So t5 < t1 ≤ t6, as required.

Induction step. If t6 ≥ t1, then the lemma holds. On the other hand, suppose that
t6 < t1. By the definition of necessitates, the assignment which P (z, t5, t6) necessitates
in the chain of necessities originating at P (v, t1, t2) must have been started before t6

and therefore before t1. It is also 1 unit of necessity distance closer to P (v, t1, t2) than
P (z, t5, t6) is. So this previous assignment also cannot be black by the assumptions of
the lemma and must therefore be white. We therefore apply the induction hypothesis
to find the white pebble assignment that is on the graph at t1 − 1.
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Lemma 9. Let P (v, t1, t2) be a necessary pebble assignment. If tα ≤ t1 ≤ tω and
at time t1 − 1 no descendant of v contains a white pebble, then no pebble assignment
whose node is in •[[tα, tω]]• is in J(P (v, t1, t2), tω).

Proof. If a node that is not a descendant of v is in •[[tα, tω]]•, then it is by defi-
nition not in J(P (v, t1, t2), tω) since the chain of necessities originating at P (v, t1, t2)
(and any subset of it) contains only pebble assignments to v’s descendants. We can
therefore restrict our attention to the descendants of v that are in •[[tα, tω]]•.

We first note that there are no white pebbles on any descendant of v at time t1−1.
By Lemma 8 if there is a black pebble assignment P (u, t3, t4) in J(P (v, t1, t2), tω) such
that t3 < t1, then there must be a white pebble assignment in J(P (v, t1, t2), tω) that
is on the graph at t1 − 1, a contradiction.

Lemma 10. Let P (v, t1, t2) be a necessary pebble assignment such that v �= s. If
t2 ≤ tω, then regardless of whether P (v, t1, t2) is a black or a white pebble assignment,
the member of J(P (v, t1, t2), tω) which has the maximum necessity distance among all
members of J(P (v, t1, t2), tω) must be on the graph at tω.

Proof. Since v is not the target node, there exists some member of the subset
J(P (v, t1, t2), tω), P (u, t3, t4), which has the maximum necessity distance among all
members of J(P (v, t1, t2), tω). If P (u, t3, t4) has no successor in the chain of necessities
justifying P (v, t1, t2), then u must be the target node and t4 must be infinity, in which
case P (u, t3, t4) clearly is on the graph at tω.

Suppose, on the other hand, that P (u, t3, t4) has a successor, P (z, t5, t6), in the
chain of necessities justifying P (v, t1, t2). Since P (u, t3, t4) has the greatest neces-
sity distance from P (v, t1, t2) of any member of J(P (v, t1, t2), tω), and the neces-
sity distance from P (v, t1, t2) to P (z, t5, t6) is greater by 1, P (z, t5, t6) is not in
J(P (v, t1, t2), tω). Therefore, tω < t5 < t6. So if P (z, t5, t6) is a white pebble as-
signment, then t4 > t6 > tω, and if P (z, t5, t6) is a black pebble assignment, then
t4 ≥ t5 > tω. In either case, t3 < tω + 1 ≤ t4, so P (u, t3, t4) is on the graph at
tω.

Definition 5.7. We say that a node is uniquely black pebblable during the
interval [t1, t2] if it can be black pebbled only once within the interval and can never
be white pebbled at all within the interval.

Lemma 11. Consider a (frugal) k-pebble strategy, S, of a graph G. Let v be a
node of G, v �= s, such that

1. no descendant of v contains a white pebble at any time in [tα, tω],
2. there is a set E of k− c clamped nodes in •[[tα, tω]]• such that v has c prede-

cessors not in E, and
3. v contains no pebble at tα and no white pebble at tω.

Then v is uniquely black pebblable in [tα, tω].
Proof.

Case 1. Suppose v is white pebbled at time t1, tα ≤ t1 ≤ tω. Then its white
pebble must be removed at t2 ≤ tω. By Lemma 10, at every time unit t3 between
t2 and tω inclusive, there must be a pebble on some node z of some member of
J(P (v, t1, t2), t3). Since G is acyclic, z is not one of the predecessors of v. By Lemma
9, z is not in •[[tα, tω]]•, so it is not in E. Thus at t2−1, there are k− c black pebbles
in E, 1 pebble on z, and 1 white pebble on v. This means that at most c− 2 pebbles
can be placed on v’s predecessors without exceeding the limit of k. Therefore, it is
impossible to remove v’s white pebble at t2. It is therefore impossible to white pebble
v in the first place between tα and tω.

Case 2. Suppose v is black pebbled at time t1 and its black pebble is removed at
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t2 < tω. By Lemma 10, at every time unit t3 between t2 and tω inclusive, there must
be a pebble on some node z of some member of J(P (v, t1, t2), t3) at t3. Since G is
acyclic, z is not one of the predecessors of v. By Lemma 9, z is not in •[[tα, tω]]•, so
it is not in E. Thus at each t3, there are k − c black pebbles in E and 1 pebble on
z. This means that at most c− 1 pebbles can be placed on v’s predecessors without
exceeding the limit of k. Therefore, it is impossible to put a black pebble on v at any
t3 between t2 and tω. It is therefore impossible to black pebble v for a second time
between tα and tω.

Lemma 12. Consider a (frugal) k-pebbling strategy S of a graph G. Let v be a
node of G, v �= s, such that

1. no descendant of v contains a white pebble at time tα,
2. there is a set E of k− c clamped nodes in •[[tα, tω]]• such that v has c source

node predecessors not in E,
3. v contains no pebble at tα and no white pebble at tω, and
4. v is black pebbled at some time t∗, tα < t∗ ≤ tω.

Then v is uniquely black pebblable during this interval, and the black pebble must
remain on v until at least the last time in [tα, tω] that v supports another pebble
assignment. Furthermore, if there are no white pebbles on any nonsource nodes of G
at tα, then v must be the first node of G pebbled during this interval other than one of
its own source node predecessors.

Proof. First we will argue that neither v nor any descendant of v can be white
pebbled during the interval [tα, t∗]. Suppose for the sake of contradiction that v′ is
the first node such that either v′ = v or v′ is a descendant of v, and v′ is white pebbled
at time t1, tα < t1 ≤ t∗. Since v is black pebbled at t∗, and v contains c predecessors,
and only c pebbles are free, the white pebble placed on v′ at time t1 must be removed
at some time t2 < t∗. By Lemma 10, at every time unit t3 between t2 and tω, there
must be a pebble on some node z of some member of J(P (v, t1, t2), t3). Since G is
acyclic, z is not one of the predecessors of v. By Lemma 9, z is not in E. So as in
Lemma 11, it is therefore impossible to white pebble v′ during the interval [tα, t∗]
because there will not be enough pebbles left to black pebble v at t∗.

We will now prove that if there are no nonsource nodes containing white pebbles at
tα, then v is the first node ofG pebbled during this interval other than its predecessors.
Since v is black pebbled at time t∗, at the preceding step, all c of the source nodes of
v contain pebbles. Any other pebble placed between tα and t∗ must be removed by
t∗ − 1, but this is impossible, using Lemmas 9 and 10 and the fact that the graph has
no white pebbles on nonsource nodes at time tα. Therefore v is the first node of G
pebbled during [tα, tω] other than one of its own source node predecessors.

As in Lemma 11, we can now argue that it is impossible to black pebble v for a
second time during this interval. Assume for the sake of contradiction that v contains
a black pebble during the interval t∗ to t1, t1 < tω, and then is black pebbled for a
second time at time t2, t1 < t2 ≤ tω. The first black pebble placement at t∗ means,
by Lemmas 10 and 9 and the fact that there are no white pebbles on any descendant
of v at t∗, that some pebble must remain on some descendant of v during the entire
interval [t∗, tω], but then this leaves too few pebbles for black pebbling v for a second
time.

Because v does not contain a white pebble at time tω, if v were white pebbled
after t∗ and before tω, the white pebble must be removed before tω, and now by an
argument similar to that of the second black pebbling, there are not enough pebbles
to do this. Thus, it is also impossible to white pebble v at any time after t∗ and
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before tω. Finally, since v is uniquely black pebblable in [tα, tω], the black pebble
must remain on v until at least the last time in [tα, tω] that v supports another pebble
assignment.

Definition 5.8. An unblocked path ρ from node z to node v in G at time tα is
a path from z to v in G such that at time tα, v is either empty or has a white pebble,
and all other nodes in ρ contain no pebbles.

The following lemma is very similar to one that appeared in [GT78].

Lemma 13. Suppose there is an unblocked path ρ from z to v at time tα. Suppose
we either want to black pebble v at t∗ or remove a white pebble from v at t∗, tα ≤ t∗ ≤
tω, and end in a configuration in which all of v’s predecessors on ρ are empty at tω.
Then each node on ρ must be pebbled at some time t1 and have its pebble removed at
some time t2, where tα < t1 < t2 ≤ tω.

Proof. The proof is by induction on the length of ρ.

Basis. When |ρ| = 1, z is one of v’s direct predecessors. Then in order to black
pebble v or remove a white pebble from v, z must be pebbled no later than t∗. Since
z is empty at tα and tω, z must be pebbled at a time t1, tα < t1, and its pebble must
be removed at some time t2 ≤ tω.

Induction step. When |ρ| = d, we know that the length of the subpath of ρ, call it
ρ′, from z’s successor y on ρ to v is d− 1. Since ρ is empty at tα and again at tω and
ρ′ is a subpath of ρ, ρ′ is empty at tα and tω. We can therefore apply the induction
hypothesis to conclude that y must be pebbled at some time t2, tα < t2, and have its
pebble removed at some time t3 ≤ tω.

If y is black pebbled at time t2, then z must be pebbled after tα but before t2,
and its pebble must be removed after t2 but no later than tω. If y is white pebbled
at time t2, then z must be pebbled after tα but no later than t3, and its pebble must
be removed after t3 but no later than tω.

The next lemma roughly states the following. A pebble, v, can be removed as
soon as it is no longer needed. Also, if during some interval, a pebble on v is needed
only for u, and u is pebbled multiple times during this interval, then these multiple
pebblings can be replaced by just one pebble placement on u.

Lemma 14. Let P (v, t1, t2) be a necessary black pebble assignment in a frugal k-
pebbling strategy, S, let the black pebble assignment P (u, t3, t4), t3 ≤ t2, be the pebble
assignment which has the latest support time, t∗, of any pebble assignment supported
by P (v, t1, t2), and let t′ be a time such that

1. t′ < t∗ < t2,
2. from t′ through t2 − 1, P (v, t1, t2) supports only pebble assignments to u, and
3. all of u’s predecessors, other than v, are clamped from t′ − 1 through t∗ − 1.

Then there is another frugal k-pebbling strategy S ′ in which P (v, t1, t2) is replaced
with P (v, t1, t′) and all of the pebble assignments which P (v, t1, t2) supported after t′

are replaced with the single black pebble assignment P (u, t′, t4).
Proof. We will show that the k-pebbling strategy S ′ exists by showing how we

can modify S to a new k-pebbling strategy such that the set of pebble assignments
induced by S ′ is just like that induced by S except that the pebble is slid from v to u
at the earliest possible time, t′, and then remains on u until t4, essentially replacing
numerous late assignments of pebbles to u with a single earlier one.

Basically, we will modify S to produce S ′ by removing v from every configuration
from M[t′] through M[t2 − 1] and adding u to the black set of every configuration
from M[t′] through M[t3−1] which does not already contain it. In this way, we merge
all of the pebble assignments to u which P (v, t1, t2) supported after t′ into a single
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2644 PHILIPP HERTEL AND TONIANN PITASSI

pebble assignment P (u, t′, t4) and shorten the pebble assignment to v to P (v, t1, t′).
Making this wholesale change requires some careful bookkeeping to make sure that no
syntactic errors creep into S ′. We will therefore consider each configuration in turn
from M[t′ − 1] to M[t2] and describe the changes we must make to each one.

We begin by considering M[t′ − 1]. There is already a move which transitions
M[t′−1] to M[t′] in S. Now u is in M′[t′−1] and v is not in M′[t′], so the differences
between M′[t′−1] and M′[t′] are as if two moves, the original one plus the slide from
v to u, are made simultaneously in S ′. This is not legal since each configuration must
follow from the last by exactly one legal move. We therefore add a configuration
M′[t′ − .5] between M′[t′ − 1] and M′[t′] which allows us to split the changes over
two time units so that the slide from v to u happens first, and the other move happens
second.

We now consider an arbitrary configurationM[i] which is between (and including)
M[t′] and M[t2]. When we consider M[i], we will also consider M[i− 1] so that we
can see what kind of pebbling move M[i] is the result of. Then we will explain how
we modify M[i] to produce M′[i]. Since v contains a pebble from t1 to t2, every M[i]
will contain v. But then we have the following cases, depending on what happens
with u.

• Neither M[i− 1] nor M[i] contains u.
In this case, we produce M′[i] by removing v from M[i] and adding u to
B′[i]. M[i− 1] is transformed into M′[i − 1] in the previous step.
In this case, a pebble is either placed onto some other node w or removed
from another node w at this time. In either case, v did not support the move,
so the move is still legal in S ′.

• M[i− 1] does not contain u, but M[i] does.
In this case u could be in W [i] or in B[i].
We produce M′[i] by removing v from M[i] and, regardless of whether u ∈
W [i] or u ∈ B[i], putting u ∈ B′[i]. M[i− 1] is transformed into M′[i− 1] in
the previous step.
Since u is not in M[i− 1], but it is in M[i], a pebble is placed onto u in the
move which transitions from M[i − 1] to M[i]. This may or may not have
been part of a slide from some node w to u.
If the pebble placement was part of a slide, then there are two differences
between M[i − 1] and M[i], namely, that M[i − 1] does contain the node
w where the pebble is slid from but does not contain u, and that M[i] does
contain u but does not contain w. Note that w �= v since v is in every
configuration that we are considering. When we add u to M′[i− 1], the slide
becomes a removal of a pebble from w rather than a slide, so everything is
okay and no other moves are affected.
If the pebble placement was not part of a slide, then the presence of u is the
only difference between M[i− 1] and M[i]. So when u is added to M[i− 1],
M′[i− 1] and M′[i] become identical. In this case we must therefore remove
this repetition by removing M′[i] from S ′.

• M[i− 1] does contain u, but M[i] does not.
In this case, we produce M′[i] by removing v from M[i] and adding u to B[i].
M[i− 1] is transformed into M′[i− 1] in the previous step.
Since u is in M[i−1], but it is not in M[i], a pebble is removed from u in the
move which transitions from M[i − 1] to M[i]. This may or may not have
been part of a slide from u to some node w.
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If the pebble removal was part of a slide, then there are two differences be-
tween M[i− 1] and M[i], namely, that M[i− 1] does not contain the node w
where the pebble is slid to but does contain u, and that M[i] does not contain
u but does contain w. Note that w �= v since v is in every configuration that
we are considering. When we add u to M′[i], the slide becomes the addition
of a pebble to w rather than a slide, so everything is okay and no other moves
are affected.
If the pebble removal was not part of a slide, then the presence of u is the
only difference between M[i − 1] and M[i]. So when u is added to M[i],
M′[i− 1] and M′[i] become identical. In this case we must therefore remove
this repetition by removing M′[i] from S ′.

• Both M[i− 1] and M[i] contain u.
In this case, u could be contained in either both W [i− 1] and W [i] or in both
B[i − 1] and B[i]. It is not possible for a single node to contain two differ-
ent colored pebbles in two consecutive configurations because every pebble
removal move results in a configuration in which the node from which the
pebble was removed is empty.
We produce M′[i] by removing v from M[i] and, regardless of whether u ∈
W [i] or u ∈ B[i], putting u ∈ B′[i]. M[i− 1] is transformed into M′[i− 1] in
a separate step.
Since u and v are in both original configurations, the move which transitions
from M[i − 1] to M[i] has nothing to do with u or v. A pebble is either
placed onto some other node w or removed from another node w at this time.
In either case, v did not support the move, so the move is still legal in S ′.

In all these cases, we always remove at least as many pebbles from the configura-
tion as we add, so the pebbling number does not increase.

We now consider M[t2]. M[t2 − 1] contains v, while M[t2] does not. In S, v’s
pebble could be removed with a slide or not. If it is removed with a slide, then the
slide has to be to u, since v contains a black pebble and only supports assignments
to u after t′. In this case there are two differences between M[t2 − 1] and M[t2],
namely, that M[t2 − 1] does not contain the node u where the pebble is slid to but
does contain v, and that M[t2] does not contain v but does contain u. When we
remove v to M′[t2 − 1], the slide becomes the addition of a pebble to u rather than
a slide, so everything is okay and no other moves are affected.

If the pebble is not removed with a slide, then there is only one difference between
M[t2 − 1] and M[t2], namely, that v is in M[t2 − 1] and not in M[t2]. When v is
removed to produce M′[t2−1], M′[t2−1] and M′[t2] become the same, and we must
remove M′[t2] from S ′.

Finally, if t4 > t2, then we must still modify every configuration M[i] from M[t2]
to M[t4]. Since M[i] is beyond t2, we modify M[i] only if W [i] contains u. In this
case we produce M′[i] by removing u from W ′[i] and adding it to B′[i].

It remains to argue that the new strategy is frugal. The only pebble placements
whose necessity can be affected by the modifications described above are the pebble
placements to u’s predecessors. But since u’s predecessors are clamped during this
whole time, we argue that the pebble placement will still be necessitated in the mod-
ified strategy. Let u′ be a predecessor of u. One case is when u′ is necessitated by a
placement to a successor other than u, in which case the event still occurs as before.
The second case is when u′ is necessitated by a placement onto u before t′; again this
event still occurs. The final case is when u′ is necessitated by the placement onto u
on or after t′. In this case, u′ will become necessitated by P (u, t′, t4).
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Lemma 15. Let G be a DAG and let S be a k-pebbling strategy for G. Let v be a
node of G and let t′ be a time such that

1. v is empty at t′,
2. v is black pebbled at t′ + 1,
3. there is a set E of k − 1 nodes in •[[t′, t′ + 1]]•,
4. one of v’s predecessors, u, is not in E.

Then u must contain a black pebble at t′ and must be empty at t′ + 1.
Proof. Since u is a predecessor of v and v is black pebbled at t′ + 1, u must

contain some pebble at t′. Since there are already k− 1 pebbles in E and 1 pebble on
u, adding another would exceed the space bound of k pebbles, so v’s pebble cannot be
a new one. But since every member of E is clamped in •[[t′, t′ +1]]•, we cannot reuse
one of those pebbles to black pebble v at t′+1. Therefore, u’s pebble must slide from
u to v at t′ +1, since this is the only pebble left and a slide is the only way to remove
a pebble from u and place a pebble on v during the same time step. This means that
u’s pebble must be black at t′, since only black pebbles can slide from a node to a
successor. Furthermore, u must be empty at t′ + 1 as a result of the slide.

We have now reached the point where (using the lemmas so far) we can prove
exactly how an i-slide must be pebbled.

Lemma 16. Let G be a DAG with target node s, let (V, U) be an i-slide in G, and
let tα, t1, and tω be times such that

1. tα < t1 ≤ tω,
2. there is a set of k − i nodes, none of which is in V or W , or is an ancestor

of any node in V or W in •[[tα, tω]]•,
3. all nodes of U and V are empty at tα,
4. v1 is black pebbled at t1 and v1 ∈ •[[t1, tω]]•,
5. every node in V contains some pebble at tω,
6. there are never more than k pebbles used during [tα, tω].

Then U must be simultaneously black pebbled at some time t1−1, at which time every
member of V must be empty.

Proof. Since there are k − i nodes in •[[tα, tω]]• and every member of (V, U) has
in-degree i, only v1’s predecessors can contain pebbles at t1 − 1.

All i members of U are predecessors of v, and each has in-degree i. Every member
of U must be empty by tω. If some member of U contained a white pebble at t1 − 1,
it could not be removed at some point in [t1, tω] since v1 and k − i other nodes are
in •[[t1, tω]]•. Therefore, at t1 − 1, every member of U must contain a black pebble.
Since this uses up all of the free pebbles, every member of V must be empty at this
time.

With these lemmas in hand, we are now ready to prove our main lower bound
lemma.

Lemma 17. Let ψ be a QBF and let G be the corresponding graph. If s has a
4n+3 black-white pebbling strategy in G, then ψ is in QSAT, and any 4n+3 black-white
pebbling strategy requires Ω(2k) steps, where k is the number of universal quantifiers
in ψ.

We first note that s has 4n+3 predecessors, Gn. Each of these nodes has in-degree
4n+ 3. So no node of Gn could ever contain a white pebble while s contains a black
pebble, because there would not be enough free pebbles to remove it. Therefore, in
order to pebble s, Gn must first be simultaneously black pebbled. Lemma 17 therefore
follows from the more general Lemma 18 by setting i = n, tα = tstart, and tω = tend.

Lemma 18. Let ψ be a QBF and let G be the corresponding graph. Suppose there
exists a frugal, optimal pebbling strategy of G such that the following holds. For all
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i, 1 ≤ i ≤ n, and for all βi ∈ Ai, there exist times tα, tω such that the following five
conditions are satisfied:

1. the only members of G which contain pebbles at tα are members of B[βi],
2. every member of Gi contains a black pebble at tω,
3. B[βi] ⊆ •[[tα, tω]]•,
4. there are never more than 4n + 3 pebbles on the graph at any time during

[tα, tω], and
5. no pebble is placed on any descendant of g4i+3

i during the interval [tα, tω].
Then we can conclude that ψ�βi is in QSAT and requires Ω(2k) units of time between
tα and tω, where k is the number of universal quantifiers among the i innermost
quantifiers.

Proof. The proof is by induction on i from 0 to n.
Basis. The base case is i = 0. Let β0 be any assignment in A0 and suppose there

exist times tα and tω such that B[β0] ⊆ •[[tα, tω]]•. We will show that simultaneously
black pebbling G0 at tω without ever exceeding 4n+3 pebbles or placing a pebble on
a descendant of g30 requires that ψ is in QSAT.

In order to black pebble zj or remove a white pebble from zj we must either black
pebble zj−1 or remove a white pebble from zj−1. In order to black pebble any node in
G0, we must pebble zm. Inductively, this means that at some point, for every single
zj , it is necessary to either black pebble it or remove a white pebble from it. But every
zj (except z0) has four predecessors, l

1
j , l

2
j , l

3
j , zj−1. Therefore, in order to pebble zj

at least one lkj must be black pebbled in B[β0]. But in this case, β0 satisfies clause
j of ψ. Since every zj must either be black pebbled or be removed, β0 must satisfy
every clause of ψ. Therefore ψ�β0 is in QSAT. Clearly, for every ψ, this process takes
Ω(1) time to complete.

Induction step. We now prove the induction step in which we will show that
if B[βi] ⊆ [tα, tω] and we can simultaneously black pebble Gi = {g1i , . . . , g4i+3

i } at
time tω without placing a pebble on any descendant of g4i+3

i while using no more
than 4i+ 3 pebbles during [tα, tω], then ψ�βi is in QSAT and there must be at least
Ω(2k) time units between tα and tω, where k is the number of universally quantified
variables among the innermost i variables of ψ. We are concerned that we never use
more than 4i + 3 pebbles, because βi, which is clamped during this time, contains
4n − 4i pebbles, which leaves us at most 4i + 3 to use before we exceed our global
bound of 4n+ 3 pebbles.

The induction step is split into two main cases depending on whether the ith
quantifier of ψ is a universal quantifier or an existential quantifier. The universal
case appeals to the induction hypothesis twice, once to prove that ψ�βi∪{x̄i} is in
QSAT and once to prove that ψ�βi∪{xi} is in QSAT. Together, the cases allow us to
conclude that ψ�βi is in QSAT. The existential case is split into two subcases, each of
which appeals to the induction hypothesis once. In one case we prove that ψ�βi∪{x̄i}
is in QSAT, and in the other case we prove that ψ�βi∪{xi} is in QSAT. Again, this
allows us to conclude that ψ�βi is in QSAT. Since the universal case appeals to the
induction hypothesis twice, each time using Ω(2k−1) units of time, we can conclude
that black pebbling all the members of Gi requires Ω(2k) time. For the existential
case, the number of universals in the innermost i widgets is the same as the number
of universals in the innermost i− 1 widgets, so the single application of the induction
hypothesis allows us to conclude that black pebbling all the members of Gi requires
Ω(2k) time.

Each case of the induction step is very complex. We will therefore present each
argument as an itemized sequence of key points, each of which is justified separately.
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We will use this sequence of points to build a table of intervals during some of which
we will prove that certain nodes must contain pebbles and during some of which we
will prove that certain nodes must be empty. These tables are shown in Figures 7,
8, and 9. Figure 7 summarizes the intervals for the induction step when the ith
quantifier is a universal quantifier. Figures 8 and 9 summarize the intervals for the
two subcases of the induction step when the ith quantifier is an existential quantifier.
In each figure, time is shown on the x-axis, while the nodes under consideration label
the y-axis. Each interval during which a node must contain a black pebble is shown
as a thick blue line next to the name of the node, while each interval during which the
node must be empty is shown as a thinner red line. The sequence of intervals for each
node is also labeled with the key point from the proof which justifies it. The shaded
green regions represent the times during which we appeal to the induction hypothesis.
Of critical importance is the sequence of intervals which enter the green region since
these encode the configuration which the graph is in at the moment when we appeal
to it.

One important point that we make now and use constantly throughout both
cases is that for all βi ∈ Ai, |B[βi]| = 4n − 4i. Since our space bound is 4n+ 3 and
B[βi] ∈ •[[tα, tω]]•, there are therefore at most 4i + 3 free pebbles available at any
time in [tα, tω]. We will therefore often refer to 4i+ 3 as the space bound during the
induction step and just take for granted that B[βi] fills the rest.

Case 1 (see Figure 7). Qi is a universal quantifier. We will show that in order to
black pebble Gi we must necessarily pass through a number of all-black configura-
tions, including black pebbling Gi−1 twice, once with black pebbles on yi, x

′
i, di, and

x̄i (the false configuration) and once with black pebbles on yi, x̄
′
i, ai, and xi (the

true configuration). We will work backwards through this strategy, showing that all
minimal black-white pebbling strategies for G must pass through the set of specified
configurations by showing that certain nodes must contain pebbles at certain times
and must be empty at other times.

We want to prove that the vertices must be pebbled in the order yi, x̄i, di, x̄
′
i, after

which we will be in a position to apply the induction hypothesis.

• (1.1) No descendant of any node in Gi ∪ Gi−1 ∪ Ri ∪ {ai, bi, ci, hi} that is
outside of widget i contains a white pebble at any time during [tα, tω].
The only descendants of any node in Gi ∪ Gi−1 ∪ Ri ∪ {ai, bi, ci, hi} which
are outside of widget i are all descendants of g4i+3

i . The only members of
these which can contain a pebble at tα are those in B[βi], so no descendant
of any of those nodes can contain a white pebble at tα. Furthermore, by the
assumptions of the induction step, we know that no descendants of g4i+3

i can
be pebbled during [tα, tω], so none can contain a white pebble at any time in
[tα, tω].

• (1.2) Every node of widget i other than members of Gi is in [[tω, tω]].
Between tα and tω there are at most 4i + 3 free pebbles. Gi has exactly
4i+ 3 members, and every member of Gi must contain a black pebble at tω.
No node of Gi is in B[βi]. Therefore there are not enough free pebbles to
keep one on any other node of widget i at tω. A similar argument will be
used repeatedly to show that certain nodes must be empty at certain times
between tα and tω.

• (1.3) g4i+3
i is uniquely black pebblable in [tα, tω], g4i+3

i ∈ [[tα, t14
g4i+3
i

− 1]],

and g4i+3
i ∈ •[[t14

g4i+3
i

, tω]]•, where t14
g4i+3
i

= tω; and for each j, 1 ≤ j ≤ 4i+ 2,
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gji is uniquely black pebblable in [tα, tω], gji ∈ [[tα, t14
gj
i

− 1]], and gji ∈
•[[t14

gj
i

, tω]]•, where t14
gj
i

< t14
gj+1
i

.

By (1.1) none of g4i+3
i ’s descendants contains any white pebbles at any time

in [tα, tω]. Also, g4i+3
i has 4i+3 predecessors, none of which is in •[[tα, tω]]•,

since they must all be empty at tα. Furthermore, g4i+3
i cannot contain a

white pebble at tω, since every member of Gi must contain a black pebble
at tω. We can therefore apply Lemma 11 to conclude that g4i+3

i is uniquely
black pebblable in [tα, tω] at some time t14

g4i+3
i

, and since it must contain a

black pebble until tω, g4i+3
i ∈ •[[t14

g4i+3
i

, tω]]• and g4i+3
i ∈ [[tα, t14

g4i+3
i

− 1]].

We can now prove by induction from j = 4i + 2 down to j = 1 that gji
is uniquely black pebblable in [tα, tω] and is clamped in •[[t14

gj
i

, tω]]•, where
t14
gj
i

< t14
gj+1
i

. The argument is exactly the same as for g4i+3
i except that gji

has more descendants than g4i+3
i , namely, every gli, where l > j. But by

the induction hypothesis we know that all of these nodes are uniquely black
pebblable in [tα, tω] and therefore cannot contain a white pebble at any time
in [tα, tω]. So we can still apply Lemma 11 to conclude that gji is uniquely
black pebblable in [tα, tω].
Furthermore, since gji is a predecessor of each gli where l > j, it must be black
pebbled before gli can be. Therefore, t14

gj
i

< t14
gj+1
i

. Futhermore, because each

member of gji must contain a black pebble at tω but cannot be repebbled

after t14
gj
i

, gji ∈ •[[t14
g4i+3
i

, tω]]• and gji ∈ [[tα, t14
gj
i

− 1]].

Finally, note that when g4i+3
i is black pebbled at t14

g4i+3
i

, every member of Gi

must contain a black pebble and all are clamped through tω. Since every
other pebbled node is also clamped through tω and there are no free pebbles,
no moves can be made between t14

g4i+3
i

and tω. Therefore, t14
g4i+3
i

= tω.

• (1.4) yi is uniquely black pebblable in [tα, tω] at time t1, yi ∈ [[tα, t1 − 1]],
and yi ∈ •[[t1, t14

g4i+3
i

− 1]]•, where no nodes other than yi’s predecessors are

pebbled between tα and t1.
In order to black pebble any member of Gi, we must first pebble yi. Neither
yi nor any of its 4i + 3 source node predecessors is in •[[tα, tω]]• since all of
widget i is empty at tα.
By (1.3) g4i+3

i must be black pebbled at time t14
g4i+3
i

. Also, g4i+3
i has 4i + 3

predecessors, including 4i + 2 members of Gi, which by (1.3) are clamped
until tω. By (1.2) yi must be empty at tω. We can therefore apply Lemma
15 to conclude that yi must contain a black pebble at t14

g4i+3
i

− 1.

We therefore know that yi is empty at tα, must be empty at tω, and must
contain a black pebble at some point in between. By the inductive hypothesis,
we know that there are no white pebbles on the graph at time tα. We can
therefore apply Lemma 12 to conclude that yi is uniquely black pebblable in
[tα, tω], where no nodes other than yi’s predecessors are pebbled between tα

and t1. Furthermore, yi ∈ [[tα, t1 − 1]], and since yi is a predecessor of
g4i+3
i , yi ∈ •[[t1, t14

g4i+3
i

− 1]]•.

Our argument now divides into two sections. In order to simultaneously black
pebble Gi, we must black pebble g4i+1

i , which requires that both ai and {g1i , . . . , g4ii }
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must contain pebbles. In the first part of the argument we prove that, in order
to pebble ai, ψ�βi∪{x̄i} must be QSAT, and that Ω(2k−1) units of time must pass
between tα and the time ai is pebbled, where k is the number of universally quantified
variables among the innermost i variables of ψ. In the second part of the argument, we
argue that pebbling each member of {g1i , . . . , g4ii } without exceeding our space bound
requires that ψ�βi∪{xi} is in QSAT, and that Ω(2k−1) units of time pass between the
time ai is pebbled and tω. This will allow us to conclude that black pebbling Gi

requires that ψ�βi is in QSAT and requires Ω(2k) time when widget i is a universal
quantifier widget.

• (1.5) ai is uniquely black pebblable in [tα, t14
g4i+3
i

− 1], ai ∈ [[tα, t10 − 1]],

and ai ∈ •[[t10, t14
g4i+2
i

− 1]]•, where t10 < t14
g1
i
.

In order to black pebble g1i , we must first pebble ai at some time t10, before
t14
g1
i
. By (1.4), we know that ai ∈ [[tα, t1]].

By (1.4), yi ∈ •[[t1, t14
g4i+3
i

−1]]•, so there are at most 4i+2 free pebbles during

[t1, t14
g4i+3
i

− 1]. By (1.3) and (1.1), we know that no descendants of ai can

contain a white pebble at any time in [tα, tω]. Since ai has 4i+2 predecessors,
none of which is yi, and since ai must be empty at t14

g4i+3
i

− 1, we can appeal

to Lemma 11 to conclude that ai is uniquely black pebblable in the interval
[t1, t14

g4i+3
i

− 1]. Let t10 be the time at which ai is black pebbled. Then since

ai is a predecessor of g1i and g1i must be black pebbled at t14
g1
i
, t10 < t14

g1
i
. Also,

since ai can be pebbled only once before t14
g4i+3
i

− 1, ai ∈ [[tα, t10 − 1]] and

ai’s pebble must stay in place until the last of its successors, g4i+2
i , is pebbled,

so ai ∈ •[[t10, t14
g4i+2
i

− 1]]•.
• (1.6) bi is uniquely black pebblable in [tα, t14

g4i+3
i

− 1], bi ∈ [[tα, t9− 1]], and

bi ∈ •[[t9, t10 − 1]]•, where t9 < t10.
In order to black pebble ai at time t10 we must pebble bi at some time t9,
before t10. By (1.4), we know that bi ∈ [[tα, t1]].
By (1.4), yi ∈ •[[t1, t14

g4i+3
i

−1]]•, so there are at most 4i+2 free pebbles during

[t1, t14
g4i+3
i

− 1]. By (1.3), (1.1), and (1.5), we know that no descendants of bi

can contain a white pebble at any time in [t1, t14
g4i+3
i

− 1]. Since bi has 4i+ 2

predecessors, none of which is yi, and since bi must be empty at t14
g4i+3
i

− 1,

we can appeal to Lemma 11 to conclude that bi is uniquely black pebblable
in the interval [t1, t14

g4i+3
i

− 1]. Let t9 be the time at which bi is black pebbled.

Then since bi is a predecessor of ai, t
9 < t10. Also, since bi can be pebbled

only once before t14
g4i+3
i

− 1, bi ∈ [[tα, t9 − 1]] and bi’s pebble must stay in

place until ai is pebbled, so bi ∈ •[[t9, t10 − 1]]•.
• (1.7) ci is uniquely black pebblable in [tα, t14

g4i+3
i

− 1], ci ∈ [[tα, t8 − 1]], and

ci ∈ •[[t8, t10 − 1]]•, where t8 < t9.
In order to black pebble bi at time t9 we must pebble ci at some time t8,
before t9. By (1.4), we know that ci ∈ [[tα, t1]].
By (1.4), yi ∈ •[[t1, t14

g4i+3
i

−1]]•, so there are at most 4i+2 free pebbles during

[t1, t14
g4i+3
i

−1]. By (1.3), (1.1), (1.5), and (1.6), we know that no descendants of

ci can contain a white pebble at any time in [t1, t14
g4i+3
i

−1]. Since ci has 4i+2
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predecessors, none of which is yi, and since ci must be empty at t14
g4i+3
i

− 1,

we can appeal to Lemma 11 to conclude that ci is uniquely black pebblable
in the interval [t1, t14

g4i+3
i

− 1]. Let t8 be the time at which ci is black pebbled.

Then since ci is a predecessor of bi, t
8 < t9. Also, since ci can be pebbled

only once before t14
g4i+3
i

− 1, ci ∈ [[tα, t8 − 1]] and ci’s pebble must stay in

place until ai is pebbled, so ci ∈ •[[t8, t10 − 1]]•.
• (1.8) hi is uniquely black pebblable in [tα, t14

g4i+3
i

−1], hi ∈ [[tα, t7−1]], and

hi ∈ •[[t7, t10 − 1]]•, where t7 < t8.
In order to black pebble ci at time t8 we must pebble hi at some time t7,
before t8. By (1.4), we know that hi ∈ [[tα, t1]].
By (1.4), yi ∈ •[[t1, t14

g4i+3
i

− 1]]•, so there are at most 4i + 2 free pebbles

during [t1, t14
g4i+3
i

− 1]. By (1.3), (1.1), (1.5), (1.6), and (1.7), we know that no

descendants of hi can contain a white pebble at any time in [t1, t14
g4i+3
i

− 1].

Since hi has 4i + 2 predecessors, none of which is yi, and since hi must be
empty at t14

g4i+3
i

−1, we can appeal to Lemma 11 to conclude that hi is uniquely

black pebblable in the interval [t1, t14
g4i+3
i

− 1]. Let t7 be the time at which hi

is black pebbled. Then since hi is a predecessor of ci, t
7 < t8. Also, since

hi can be pebbled only once before t14
g4i+3
i

− 1, hi ∈ [[tα, t7 − 1]] and hi’s

pebble must stay in place until ai is pebbled, so hi ∈ •[[t7, t10 − 1]]•.
• (1.9) x′i is uniquely black pebblable in [t1, t14

g4i+3
i

− 1], x′i ∈ [[tα, t2− 1]], and

x′i ∈ •[[t2, t10 − 1]]•, where t1 < t2 < t14
g4i+3
i

− 1 and no nodes other than x′i’s

predecessors are pebbled between t1 and t2.
We first prove that x′i ∈ [[tα, t1]]. x′i is not a member of B[βi], so it is
empty at tα. From (1.4) we know that x′i cannot be pebbled between tα and
t1 and therefore must remain empty at t1.
x′i must also be empty at t14

g4i+3
i

− 1 since g4i+3
i has 4i+ 3 predecessors, none

of which is x′i. We now show that it must be black pebbled at some time
between t1 and t14

g4i+3
i

− 1.

We know that x′i must contain some pebble at t10−1 since it is a predecessor
of ai. This pebble must be removed by t14

g4i+3
i

− 1 since x′i is not one of

g4i+3
i ’s 4i + 3 predecessors. By (1.4) yi ∈ •[[t10, t14

g4i+3
i

− 1]]•, by (1.5) ai ∈
•[[t10, t14

g4i+2
i

− 1]]•, and by (1.3) g1i ∈ •[[t14
g4i+2
i

− 1, t14
g4i+3
i

− 1]]•, so at least two

of the 4i+3 free pebbles must be clamped at each time unit in [t10, t14
g4i+3
i

−1].

This means that there are not enough free pebbles to remove a white pebble
from x′i during [t10, t14

g4i+3
i

− 1]. So x′i must contain a black pebble at t10 − 1.

We therefore know that x′i must be empty at t1 and t14
g4i+3
i

− 1 and must

contain a black pebble at some point in [t1, t14
g4i+3
i

− 1]. By (1.4), we know

that yi ∈ •[[t1, t14
g4i+3
i

− 1]]•. By the induction hypothesis and (1.4), we know

that no nodes contain white pebbles at tα, yi is black pebbled at t1, and no
nodes other than yi’s predecessors are pebbled between tα and t1. Thus there
are no white pebbles on nonsource nodes of the graph at t1. Since x′i has 4i+2
source nodes as predecessors, we can therefore apply Lemma 12 to conclude
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that x′i is uniquely black pebblable in [t1, t14
g4i+3
i

− 1] and x′i is pebbled at t2,

t1 < t2 < t14
g4i+3
i

− 1, where no nodes other than x′i’s predecessors are pebbled

between t1 and t2, so x′i ∈ [[tα, t2 − 1]]. Since x′i is a predecessor of ai,
x′i ∈ •[[t2, t10 − 1]]•.

• (1.10) xi ∈ [[t10 − 1, t10]], xi ∈ •[[t10 + 1, t14
g4i+1
i

− 1]]•, x′i ∈ •[[t2, t10]]•,
and x′i ∈ [[t10 + 1, t14

g4i+3
i

− 1]].

xi must be empty at t10 − 1 since by (1.4) yi ∈ •[[t1, t14
g4i+3
i

− 1]]• and ai has

4i + 2 predecessors, none of which is xi or yi. It must remain empty at t10

since ai is pebbled at t10, not xi, so xi ∈ [[t10 − 1, t10]].
By (1.5), (1.6), (1.7), and (1.8) we already know that three of x′i’s successors,
ai, bi, ci, and hi can be pebbled only a single time in [t1, t14

g4i+3
i

− 1] and none

is pebbled after t10. x′i only has a single other successor xi.
Since x′i is not one of g

1
i ’s 4i+3 predecessors, it must be empty at t14

g1
i
−1. But

xi must contain a pebble by t14
g1
i
−1 since it is a predecessor of g1i . Furthermore,

the pebble must be black because g1i has 4i + 3 predecessors, none of which
is x′i. Therefore x′i must be empty and, by (1.3), must remain empty until
tω, so a white pebble cannot be removed from xi. xi is therefore the only
successor of x′i that is pebbled after t10 and before x′i is empty at t14

g1
i
− 1. We

can therefore apply Lemma 14 to conclude that x′i’s pebble can be slid to xi
at t10 + 1, so xi ∈ •[[t10 + 1, t14

g4i+1
i

− 1]]•.
We will pause for a moment to make some general comments about our use of
Lemma 14. Observe that in applying Lemma 14, we are slightly modifying
our strategy. However, the new strategy will still satisfy all five conditions of
our lemma, and, moreover, all of the properties that we have proved so far
continue to hold for our new strategy. In what follows, we will be applying
Lemma 14 several times. Each time Lemma 14 is applied, it will be applied
in the same general way, to argue that we can move a pebble up from either
x′i or x̄

′
i. Thus we will be slightly modifying the strategy as we go along, but

again the new strategy will always continue to satisfy the five conditions of
our lemma, as well as all of the properties that we have proved up until that
point.
Now continuing on with the argument, by (1.9) x′i is uniquely black pebblable
in [t1, t14

g4i+3
i

− 1], x′i ∈ [[t10 + 1, t14
g4i+3
i

− 1]]. We can also extend the

result from (1.9) to conclude that x′i ∈ •[[t2, t10]]• since x′i is uniquely black
pebblable in [t1, t14

g4i+3
i

− 1] and must therefore contain a pebble until the last

time one of its successors is black pebbled during this time.
• (1.11) di is uniquely black pebblable in [t2, t14

g4i+1
i

− 1], di ∈ [[tα, t3 − 1]],

di ∈ [[t10 − 1, t14
g4i+1
i

− 1]], and di ∈ •[[t3, t9 − 1]]•, where no nodes other

than di’s predecessors are pebbled between t2 and t3, and t2 < t3 < t8.
In order to pebble ci at t

8 we must first pebble di at some time t3, t3 < t8.
We first prove that di ∈ [[tα, t2]]. di is not a member of B[βi], so it is
empty at tα. From (1.4) we know that di cannot be pebbled between tα and
t1, and by (1.9) we know that di cannot be pebbled between t1 and t2 and
therefore must remain empty at t2.
di must also be empty at t10 − 1 since, by (1.4), yi ∈ •[[t1, t14

g4i+3
i

− 1]]• and ai
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has 4i+2 predecessors, none of which is di or yi. We now show that di must
be black pebbled at some point in [t2, t10 − 1].
As we have already noted, di must contain some pebble at t8 − 1 and must
be empty at t10 − 1. Suppose, for the sake of contradiction, that di contains
a white pebble at t8 − 1. Then its pebble must be removed at some time in
[t8, t10− 1]. But by (1.4) and (1.9), we know that yi and x

′
i in •[[t2, t10− 1]]•,

and by (1.7), we know that ci is in •[[t8, t10−1]]•, so di’s white pebble cannot
be removed in [t8, t10− 1] due to its high in-degree. di must therefore contain
a black pebble at t8 − 1.
We therefore know that di must be empty at t2 and t10 − 1 and must contain
a black pebble at some point in between. From the previous paragraph, we
know that yi and x

′
i are in •[[t2, t10 − 1]]•. By the induction hypothesis, no

nodes contain white pebbles at tα. By (1.4), between tα and t1 the only nodes
that are pebbled are yi and the predecessors of yi, and by (1.9) the only nodes
pebbled between t1 and t2 are x′i and the predecessors of x′i. Therefore, there
are no white pebbles on any nonsource nodes of the graph at t2. Since di
has 4i + 1 source nodes as predecessors, we can therefore apply Lemma 12
to conclude that di is uniquely black pebblable in [t2, t10 − 1] and must be
pebbled at t3, t2 < t3 < t8 − 1, where no nodes other than di’s predecessors
are pebbled between t2 and t3, so di ∈ [[tα, t3 − 1]]. Also, since di is a
predecessor of bi, di ∈ •[[t3, t9 − 1]]•.
We now show that di ∈ [[t10 − 1, t14

g4i+1
i

− 1]]. As mentioned already, di

must be empty at t10 − 1. We show that di cannot be pebbled at any time
in [t10, t14

g4i+1
i

− 1]. By (1.4) yi ∈ •[[t10, t14
g4i+1
i

− 1]]•. By (1.10) there is a

pebble on either xi or x
′
i during every time unit in [t10, t14

g4i+1
i

− 1]. By (1.5)

ai ∈ •[[t10, t14
g4i+1
i

−1]]•. Since di has in-degree 4i+1, it is therefore impossible

to black pebble it at any point in [t10, t14
g4i+1
i

− 1].

By the same argument, it is also impossible to remove a white pebble from di
at any point in [t10, t14

g4i+1
i

−1]. So if di was white pebbled during [t10, t14
g4i+1
i

−1],

the pebble would have to remain on di at t
14
g4i+1
i

−1. But since g4i+1
i has 4i+3

predecessors, none of which is di, di must be empty at t14
g4i+1
i

−1. It is therefore

impossible to white pebble di during [t10, t14
g4i+1
i

− 1]. Since di cannot be

pebbled at all in [t10, t14
g4i+1
i

−1] and is uniquely black pebblable in [t2, t10−1], it

is uniquely black pebblable in [t2, t14
g4i+1
i

−1]. Since it is pebbled at t3 < t10−1

and is empty at t10 − 1, this implies that di ∈ [[t10 − 1, t14
g4i+1
i

− 1]].

• (1.12) x̄′i is in [[t7, t9 − 1]].
By (1.4) yi ∈ •[[t7− 1, t9]]•. Also, hi has 4i+2 predecessors, none of which is
yi or x̄

′
i, so in order to black pebble hi at t

7, x̄′i must be empty at t7 − 1. At
t9− 1, x̄′i must also be empty for essentially the same reasons. Between these
points there are always at least 4 pebbles on the widget. From t7 through
t9 − 1 there is a pebble on yi by (1.4), on x′i by (1.9), on hi by (1.8), and
on di by (1.11). Since x̄′i has 4i source nodes as predecessors, it cannot be
black pebbled during [t7, t9 − 1]. It also cannot be white pebbled during this
interval and have the pebble removed by t9 − 1. It must therefore remain
empty during [t7, t9 − 1].
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• (1.13) x̄i must contain a black pebble at t8 − 1 and must be empty at t9 − 1.
In order to black pebble ci at t

8, x̄i must contain a pebble at t8−1. Suppose,
for the sake of contradiction, that x̄i contains a white pebble at t8 − 1. We
show that this will force us to exceed the space bound. bi is pebbled at t9

and has 4i+2 predecessors, none of which is x̄i. Also, by (1.4), yi is clamped
at this time and is also not a predecessor of bi. x̄i must therefore be empty at
t9 − 1. This means that x̄i’s white pebble must be removed at some point in
[t8 − 1, t9 − 1]. This requires x̄′i to contain a pebble at the moment the white
pebble is removed from x̄i. But by (1.12) we know that x̄′i cannot contain a
pebble during [t8 − 1, t9 − 1], so x̄i must contain a black pebble at t8 − 1.

• (1.14) x̄′i is uniquely pebblable in the interval [t3, t8 − 1], x̄′i ∈ [[tα, t4 − 1]],
x̄′i ∈ •[[t4, t4]]•, and x̄′i ∈ [[t4 + 1, t8 − 1]]; x̄i ∈ [[tα, t4]] and x̄i ∈
•[[t4 + 1, t8 − 1]]•, where no nodes other than x̄′i’s predecessors are pebbled
between t3 and t4, so t3 < t4 < t8.
We first prove that x̄′i ∈ [[tα, t3]]. x̄′i is not a member of B[βi], so it is
empty at tα. From (1.4) we know that x̄′i cannot be pebbled between tα and
t1. By (1.9) we know that x̄′i cannot be pebbled between t1 and t2. By (1.11)
we know that x̄′i cannot be pebbled between t2 and t3 and therefore must
remain empty at t3. By the same argument x̄i ∈ [[tα, t3]].
From (1.13) we know that x̄i must contain a black pebble at t8−1. In order to
black pebble x̄i by t

8−1, we must first pebble x̄′i at some time t4, t4 < t8−1.
Suppose x̄′i is white pebbled at this time. x̄′i must be empty at t8 − 1 since
by (1.4) yi ∈ •[[t1, t14

g4i+3
i

− 1]]• and by (1.7) ci is pebbled at t8 and ci has

4i+ 2 predecessors, none of which is yi or x̄
′
i, so x̄

′
i’s white pebble is needed

and must be removed between t4 and t8− 1 at a time when there is already a
pebble on x̄i. But by (1.4), (1.10), and (1.11) there must be three other nodes
clamped during this time, so x̄′i’s white pebble cannot be removed between
t4 and t8 − 1. x̄′i therefore must be black pebbled at t4.
We therefore know that x̄′i must be empty at t3 and t8−1 and must contain a
black pebble at some point in between. By (1.4), (1.9), and (1.11), we know
that there are three nodes in •[[t3, t8 − 1]]•. By the induction hypothesis,
there are no white pebbles on the graph at tα. By (1.4), (1.9), and (1.11),
the only nodes pebbled between tα and t3 are black pebbles on yi and its
predecessors, x′i and its predecessors, and di and its predecessors. Therefore,
there are no white pebbles on any nonsource nodes at t3. Finally, x̄′i has 4i
source nodes as predecessors. We can therefore apply Lemma 12 to conclude
that x̄′i is uniquely black pebblable in [t3, t8 − 1] and x̄′i must be pebbled at
t4, t3 < t4 < t14

g1
i
− 1, where no nodes other than x̄′i’s predecessors are pebbled

between t3 and t4, so x̄′i ∈ [[tα, t4 − 1]] and x̄i ∈ [[tα, t4]].
Since x̄′i must be empty at t8− 1, it must be removed before any of x̄′i’s other
successors get pebbled after t14

g1
i
− 1. This means that the pebble assignment

to x̄′i that begins at t
4 only supports pebble assignments to a single successor,

x̄i, between t4 and the time it is removed before t8 − 1. We can therefore
apply Lemma 14 to conclude that x̄′i’s pebble is slid up to x̄i at t

4 + 1. So
x̄′i ∈ •[[t4, t4]]•, x̄′i ∈ [[t4 + 1, t8 − 1]], and x̄i ∈ •[[t4 + 1, t8 − 1]]•.

• (1.15) xi ∈ [[tα, t4 + 1]].
xi is not a member of B[βi], so it is empty at tα. From (1.4) we know that xi
cannot be pebbled between tα and t1, and by (1.9) we know that xi cannot
be pebbled between t1 and t2. By (1.11) we know that xi cannot be pebbled
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between t2 and t3. By (1.14) we know that xi cannot be pebbled between t3

and t4 + 1. It must therefore remain empty at t4 + 1.
• (1.16) r1i is uniquely black pebblable in [t4 + 1, t8 − 1], r1i ∈ •[[t6, t7 − 1]]•,
where t6 < t7.
In order to black pebble hi we must first pebble r1i at some time t6 before t7.
By (1.14), r1i is empty at t4 + 1. By (1.4) yi is in •[[t1, t14

g4i+3
i

− 1]]•. By (1.9)

x′i is in •[[t2, t10 − 1]]•. By (1.11) di is in •[[t3, t9 − 1]]•. And by (1.14) x̄i
is in •[[t4 + 1, t8 − 1]]•. r1i has 4i − 1 predecessors, none of which is yi, x

′
i,

di, or x̄i. By (1.1), (1.3), (1.5), (1.6), (1.7), and (1.8) no descendant of r1i
can contain a white pebble at any time in [t4 + 1, t8 − 1]. Finally, r1i cannot
contain a white pebble at t8 − 1 because it must be empty then due to the
clamping of yi and ci’s in-degree of 4i + 2. We can therefore apply Lemma
11 to conclude that r1i is uniquely black pebblable in [t4 + 1, t8 − 1].
Due to the fact that r1i is a predecessor of hi, r

1
i must be pebbled at some

time t6, t6 < t7 and r1i ∈ •[[t6, t7 − 1]]•.
• (1.17) Gi−1 must be simultaneously black pebbled at t5 = t6 − 1 when every
member of Ri is empty and every member of Gi−1 is in [[tα, t4+1]], where
t4 + 1 < t5.
By (1.4) yi is in •[[t1, t14

g4i+3
i

− 1]]•. By (1.9) x′i is in •[[t2, t10 − 1]]•. By (1.11)

di is in •[[t3, t9−1]]•. And by (1.14) x̄i is in •[[t4+1, t8−1]]•. By (1.16) r1i is
black pebbled at t6. We can therefore apply Lemma 16 to conclude that Gi−1

must be simultaneously black pebbled at t5 = t6 − 1 when every member of
Ri is empty.
(1.4), (1.9), (1.11), and (1.14) also tell us that every member of Gi−1 is in
[[tα, t4 + 1]], so t5 > t4 + 1.

• (1.18) Every member of Ri is in [[tα, t6 − 1]].
Since no member of Ri is in B[βi], Ri is empty at tα. By (1.17), every member
of Ri also must be empty at t5. Furthermore, the first time in [tα, tω] that any
successor of any member ofRi is pebbled is after t6 = t5+1. It would therefore
not be frugal to pebble any member of Ri between t

α and t5, since the pebble
would have to be removed before supporting another pebble placement. Since
by (1.17) t5 = t6 − 1, every member of Ri is in [[tα, t6 − 1]].

The following relationships between the times at which certain nodes are pebbled
are demonstrated by the points proved above.

1. By (1.3), tω = t14
g4i+3
i

, and for each j, 1 ≤ j ≤ 4i+ 2, t14
gj
i

< t14
gj+1
i

.

2. By (1.5), t10 < t14
g1
i
.

3. By (1.6), t9 < t10.
4. By (1.7), t8 < t9.
5. By (1.8), t7 < t8.
6. By (1.16), t6 < t7.
7. By (1.17), t4 + 1 < t5 and t5 < t6.
8. By (1.14), t3 < t4.
9. By (1.11), t2 < t3.

10. By (1.9), t1 < t2.
11. By (1.4), tα < t1.

These inequalities produce the following ordering of times, which labels most of the
x-axis of Figure 7: tα < t1 < t2 < t3 < t4 < t4 + 1 < t5 < t6 < t7 < t8 < t9 < t10 <
t14
g1
i
< · · · < t14

g4i+3
i

= tω.

Figure 7 provides a summary of the points proved above. Every thin red line
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segment represents a time interval during which we know a specific node must be
empty. Every thick blue segment represents a time interval during which we know a
specific node must contain a black pebble. Each sequence of line segments is labeled
to the right by the points which justify it. Of particular interest to us now is the
sequence of line segments that are entering the region labeled as the “first induction.”
In particular, we know that every member of Gi is empty during [t4 + 1, t5] since
[t4 + 1, t5] is a subinterval of [tα, tω] and, by (1.3), each member of Gi is uniquely
black pebblable in [tα, tω] and must be pebbled after t5. Similarly, by (1.8), hi must
be empty during [t4 +1, t5] because [t4+1, t5] is a subinterval of [t1, t14

g4i+3
i

− 1] and hi

is uniquely black pebblable in [t1, t14
g4i+3
i

− 1] at some point after t5. By (1.5), (1.6),

and (1.7), the same is also true for ai, bi, and ci. By (1.18), every member of Ri

must also be empty during this interval. Therefore, no member of widget i which is
a descendant of g4i−1

i−1 can be pebbled during the interval [t4 + 1, t5]. Also, by (1.4),
(1.14), (1.11), and (1.9), exactly the nodes in B[βi] ∪ {yi, x̄i, di, x′i} = B[βi ∪ {x̄i}]
contain black pebbles at t4 + 1 and are in •[[t4 + 1, t5]]•.

We can therefore apply the induction hypothesis to conclude that black pebbling
Gi−1 requires ψ�βi∪{x̄i} to be in QSAT and that Ω(2k) units of time must pass between
t4 + 1 and t5, where k is the number of universally quantified variables among the
innermost i− 1 variables of ψ.

We now proceed with the second phase of the argument, which will show that
ψ�βi∪{xi} must also be in QSAT and that a further Ω(2k) units of time must pass
between t5 and tω.

• (1.19) There exists a time t11, t10+1 < t11 < t14
g1
i
, such that x̄′i is black pebbled

at t11 and x̄′i ∈ •[[t11, t14
g4i
i
− 1]]•.

In order to black pebble g1i at time t14
g1
i
we must pebble x̄′i at some time t11,

t11 < t14
g1
i
. Note that x̄′i must be empty at t10 since by (1.4) yi is clamped at

that time and ai has 4i+2 other predecessors, none of which is x̄′i. By (1.10)
x̄′i must remain empty at t10 + 1, since the move that transitions from t10 to
t10 + 1 places a black pebble on xi and does not affect x̄′i. Also, x̄′i must be
empty again by t14

g4i+1
i

since g4i+1
i has 4i+3 predecessors, none of which is x̄′i.

We will now show that x̄′i must contain a black pebble at some point t11

between t10 + 1 and t14
g4i+1
i

.

By (1.3) we know that g4ii is empty at t14
g4i
i
−1 and is black pebbled at t14

g4i
i
. By

(1.3) we also know that there are 4i−1 members of Gi in •[[t14
g4i
i
−1, t14

g4i
i
]]•. By

(1.4), (1.10), and (1.5) the nodes yi, xi, and ai are also in •[[t14
g4i
i
− 1, t14

g4i
i
]]•.

Since x̄′i is another one of g4ii ’s predecessors, we can apply Lemma 15 to
conclude that x̄′i must contain a black pebble at t14

g4i
i
− 1.

We have therefore shown that x̄′i is empty at t10 + 1 and t14
g4i+1
i

and must

contain a black pebble at some point t11 in between. By (1.4), (1.10), and
(1.5) the nodes yi, xi, and ai are all in •[[t10 + 1, t14

g4i+1
i

− 1]]•. Thus at time

t11 − 1, the 4i source node predecessors of x̄′i contain pebbles, and all other
pebbles on the graph are black. Thus we can apply Lemma 12 to conclude
that x̄′i is uniquely black pebblable at t11 in [t11 − 1, t14

g4i+1
i

− 1]. Furthermore,

since g4ii is a successor of x̄′i that by (1.3) is black pebbled at t14
g4i
i
, we have

x̄′i ∈ •[[t11, t14
g4i
i
− 1]]•.
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• (1.20) Every member of {hi, ci, bi} is in [[t11, t14
g4i+3
i

− 1]].

By (1.4), (1.10), and (1.5) yi, ai, and xi are all in •[[t10 + 1, t14
g4i
i
]]•. Since x̄′i

has 4i+1 source nodes as predecessors, we know that the rest of the nodes in
widget i, including every member of {hi, ci, bi}, must be empty at t11, which
by (1.19) is when x̄′i is black pebbled.
By (1.6), (1.7), and (1.8) every member of {hi, ci, bi} is uniquely black peb-
blable in [t1, t14

g4i+3
i

− 1], and each is pebbled before t11. It is therefore

impossible to pebble them again before t14
g4i+3
i

, so they must each be in

[[t11, t14
g4i+3
i

− 1]].

• (1.21) x̄i is empty at t11.
By (1.19), x̄′i, which has 4i source node predecessors, is black pebbled at t11.
By (1.4), (1.10), and (1.5), yi, xi, and ai are clamped at t11 − 1. This means
that there is not a single free pebble available for x̄i at t11 − 1. It remains
empty at t11 because x̄′i is black pebbled at t11, and this cannot affect x̄i.

• (1.22) Every member of Ri and every member of Gi−1 is empty at t11.
This proof is essentially the same as that of (1.21). (In (1.21) we argued that
4i + 3 pebbles are on specific nodes at time t11, and therefore there are no
pebbles left to put on Ri or Gi−1.)

• (1.23) r4i−1
i is uniquely black pebblable in [t11, t14

g4i
i
−1], r4i−1

i ∈ [[t11, t13
r4i−1
i

−
1]], and r4i−1

i ∈ •[[t13
r4i−1
i

, t14
g4i−1
i

−1]]•, where t13
r4i−1
i

< t14
g1
i
; and for each j, 1 ≤

j ≤ 4i−2, rji is uniquely black pebblable in [t11, t14
g4i
i
−1], rji ∈ [[t11, t13

rji
−1]],

and rji ∈ •[[t13
r4i−1
i

, t14
g1
i
− 1]]•, where t11 < t13

rji
< t13

rj+1
i

< t14
g1
i
.

In order to black pebble g1i , every member of Ri must first contain a pebble
at some time t13 before t14

g1
i
. By (1.22) every member of Ri is empty at t11.

Since, by (1.19), t11 < t14
g1
i
and every member of Ri is empty at t11, we know

that t14
g1
i
> t13 > t11. We prove that for all j, 1 ≤ j ≤ 4i − 1, rji is uniquely

black pebblable in [t11, t14
g4i
i
− 1].

The proof is by induction from j = 4i − 1 down to j = 1 in which we apply
Lemma 11 during each round. Consider rji , 1 ≤ j ≤ 4i− 1. By (1.4), (1.10),
(1.5), and (1.19), the four nodes yi, xi, ai, and x̄

′
i are all in •[[t11, t14

g4i
i
− 1]]•.

gji−1 has 4i− 1 other predecessors that by (1.19) are empty at t11. By (1.1),

(1.3), (1.20), and (1.5) and the induction hypothesis that each rli, where l > j,

is uniquely black pebblable in [t11, t14
g4i
i
− 1], no descendant of rji can contain

a white pebble at any time in [t11, t14
g4i
i
− 1]. Finally, we must show that rji

itself cannot contain a white pebble at t14
g4i
i
− 1. By (1.3), g4ii is black pebbled

at t14
g4i
i
, and due to g4ii ’s in-degree of 4i+3 and since rji is not a predecessor of

g4ii , we know that rji must be empty at t14
g4i
i
− 1 and therefore cannot contain

a white pebble at that time. We can therefore apply Lemma 11 to conclude
that rji is uniquely black pebblable in [t11, t14

g4i
i
− 1].

Furthermore, since rji is a predecessor of each rli, such that l > j, it must

be black pebbled before rli can be. Therefore, rji must be pebbled at t13
rji
,

t13
rji
< t13

rj+1
i

. Also, since every member of Ri must be pebbled in order to
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black pebble g1i at t14
g1
i
, we have t13

rji
< t14

g1
i
. Since rji is empty at t11, is uniquely

black pebblable in [t11, t14
g4i
i
− 1], and is first pebbled at t13

rji
, we can conclude

that rji ∈ [[t11, t13
rji

− 1]].

Since each member of Ri is uniquely black pebblable in [t11, t14
g4i
i
−1] and t13 is

the earliest time that every member ofRi contains a black pebble, t
13 = t13

r4i−1
i

.

Since every member of rji is a predecessor of g1i , we have t13 < t14
g1
i
.

• (1.24) g4i−1
i−1 is uniquely black pebblable in [t11, t14

g4i
i
−1], g4i−1

i−1 ∈ [[t11, t12
g4i−1
i−1

−
1]], and g4i−1

i−1 ∈ •[[t12
g4i−1
i−1

, t14
g4i−1
i

− 1]]•, where t12
g4i−1
i−1

= t12 < t14
g1
i
; and for

each j, 1 ≤ j ≤ 4i − 2, gji−1 is uniquely black pebblable in [t11, t14
g4i
i

− 1],

gji−1 ∈ [[t11, t12
gj
i−1

− 1]], and gji−1 ∈ •[[t12
gj
i−1

, t13
rji

− 1]]•, where t11 < t12
gj
i−1

<

t12
gj+1
i−1

< t13
rji
.

In order to black pebble r1i , every member of Gi−1 must first contain some
pebble at some time t12, t12 < t13

r1i
. By (1.22) every member of Gi−1 is empty

at t11. Since, by (1.19), t11 < t14
g1
i
and every member of Gi−1 is empty at t11,

we know that t12 > t11. We now prove that for all j, 1 ≤ j ≤ 4i − 1, gji−1 is
uniquely black pebblable in [t11, t14

g4i
i
− 1].

The proof is by induction from j = 4i − 1 down to j = 1 in which we apply
Lemma 11 during each round. Consider gji−1, 1 ≤ j ≤ 4i−1. By (1.4), (1.10),
(1.5), and (1.19), the 4 nodes yi, xi, ai, and x̄′i are all in •[[t11, t14

g4i
i

− 1]]•.
gji−1 has 4i− 1 other predecessors that by (1.19) are empty at t11. By (1.1),

(1.3), (1.20), (1.5), and the induction hypothesis that each gli−1, where l > j,

is uniquely black pebblable in [t11, t14
g4i
i
−1], no descendant of gji−1 can contain

a white pebble at any time in [t11, t14
g4i
i
− 1]. Finally, we must show that gji−1

itself cannot contain a white pebble at t14
g4i
i
− 1. By (1.3), g4ii is black pebbled

at t14
g4i
i
, and due to g4ii ’s in-degree of 4i+3 and since gji−1 is not a predecessor

of g4ii , we know that gji−1 must be empty at t14
g4i
i

− 1 and therefore cannot

contain a white pebble at that time. We therefore can apply Lemma 11 to
conclude that gji−1 is uniquely black pebblable in [t11, t14

g4i
i
− 1].

Furthermore, since gji−1 is a predecessor of each gli−1, such that l > j, it

must be black pebbled before gli−1 can be. Therefore, gji−1 must be pebbled
at t12

gj
i−1

, t12
gj
i−1

< t12
gj+1
i−1

. Also since every gpi−1, p ≥ j, is a predecessor of

every rqi , q ≤ j, each gpi−1 must be pebbled in order to black pebble any

rqi . Therefore, t13
rji

> t12
gj
i−1

. Since gji−1 is empty at t11, is uniquely black

pebblable in [t11, t14
g4i
i
− 1], and is first pebbled at t12

gj
i−1

, we can conclude that

gji−1 ∈ [[t11, t12
gj
i−1

− 1]].

Since each member of Gi−1 is uniquely black pebblable in [t11, t14
g4i
i
− 1] and

t12 is the earliest time that every member of Gi−1 contains a black pebble,
t12 = t12

g4i−1
i−1

. Since every member of gji−1 is a predecessor of r1i , we have

t12 < t13
r1i
.
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The following relationships between the times at which certain nodes are pebbled
are demonstrated by the points proved above.

12. By (1.19), t10 + 1 < t11.
13. By (1.24), t11 < t12

g1
i−1

, t12
g4i−1
i−1

< t14
g1
i
, and for each j, 1 ≤ j ≤ 4i−2, t12

gj
i−1

< t12
gj+1
i−1

.

14. By (1.23), t12
g4i−1
i−1

< t13
r1i
, t13

r4i−1
i

< t14
g1
i
, and for each j, 1 ≤ j ≤ 4i−2, t13

rji
< t13

rj+1
i

.

These inequalities produce the following ordering of times, which labels all of the
x-axis of Figure 7: tα < t1 < t2 < t3 < t4 < t4 + 1 < t5 < t6 < t7 < t8 < t9 < t10 <
t11 < t12

g1
i−1

< · · · < t12
g4i−1
i−1

= t12 < t13
r1i
< · · · < t13

r4i−1
i

= t13 < t14
g1
i
< · · · < t14

g4i+3
i

= tω.

As before, Figure 7 provides a summary of the points proved above. Of particular
interest to us now is the sequence of line segments that are entering the region labeled
as the “second induction.” Particularly, we know that every member of Gi is empty
during [t11, t12] since [t11, t12] is a subinterval of [tα, tω] and each member of Gi is
uniquely black pebblable in [tα, tω] and must be pebbled after t12. By (1.20) every
member of {hi, ci, bi} must be empty during [t11, t12]. By (1.23), every member of
Ri must be empty during [t11, t12]. Also, ai is clamped in •[[t10, t14

g4i+2
i

− 1]]•, which
contains [t11, t12] as a subinterval. Therefore, no member of widget i which is a
descendant of g4i−1

i−1 can be pebbled during the interval [t11, t12]. Also every node in
B[βi] ∪ {yi, x̄′i, ai, xi} = B[βi ∪ {xi}] is in •[[t11, t12]]•.

We can therefore apply our induction hypothesis to conclude that ψ�βi∪{xi} must

be in QSAT and that Ω(2k) units of time must pass between t11 and t12, where k is
the number of universally quantified variables among the innermost i− 1 variables of
ψ.

Thus we have shown that a 4n + 3 pebbling must black pebble Gi−1 twice be-
tween tα and tω, once implying that ψ�βi∪{x̄i} is in QSAT, and once implying that

ψ�βi∪{xi} is in QSAT. Each time requires Ω(2k) time, where k is the number of uni-
versally quantified variables among the innermost i − 1 variables of ψ. Therefore,
black pebbling Gi requires time Ω(2k+1) and implies that ψ�βi is in QSAT.

Case 2. Qi is an existential quantifier. We will show that in order to black pebble
Gi, we must necessarily pass through a number of all-black partial configurations,
including simultaneously black pebbling Gi−1, either with black pebbles on yi, x

′
i, di,

and x̄i (the false configuration), or with black pebbles on yi, x̄
′
i, di, and xi (the true

configuration). The proof will split into two cases, Case 2a, in which we consider the
false configuration, and Case 2b, in which we consider the true configuration. But
first we prove a few general points that are true for both cases.

• (2.1) No descendant of any node in Gi ∪Gi−1 ∪Hi ∪Ri ∪ {ai} that is outside
of widget i contains a white pebble at any time during [tα, tω].
This argument is the same as the argument for (1.1).

• (2.2) Every node of widget i other than members of Gi is in [[tω, tω]].
This argument is the same as the argument for (1.2).

• (2.3) g4i+3
i is uniquely black pebblable in [tα, tω], g4i+3

i ∈ [[tα, t13
g4i+3
i

− 1]],

and g4i+3
i ∈ •[[t13

g4i+3
i

, tω]]•, where t13
g4i+3
i

= tω; and for each j, 1 ≤ j ≤ 4i+ 2,

gji is uniquely black pebblable in [tα, tω], gji ∈ [[tα, t13
gj
i

− 1]], and gji ∈
•[[t13

gj
i

, tω]]•, where t13
gj
i

< t13
gj+1
i

.

This argument is the same as the argument for (1.3).
• (2.4) x′i is uniquely black pebblable in the interval [tα, tω], and there exists
some time t∗ such that x′i ∈ [[tα, t1 − 1]], x′i ∈ •[[t1, t∗]]•, and xi ∈
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•[[t∗+1, t13
g4i+3
i

−1]]•, where no nodes other than predecessors of x′i are pebbled

between tα and t1, so t1 > tα.
In order to black pebble g4i+3

i at time t13
g4i+3
i

, we must slide a black pebble

up from xi since, by (2.3), the other 4i+ 2 pebbles are clamped on previous
members of Gi until t

ω. Therefore xi must be black pebbled at some time t∗,
t∗ < t13

g4i+3
i

. In order to black pebble xi we must first pebble x′i at some time

t1, t1 < t∗. We will now show that x′i must be black pebbled at t1.
Since every node of widget i is empty at tα, x′i is empty at tα. By (2.2),
x′i is empty again at tω. But x′i’s pebble can be removed no earlier than t∗.
From t∗ to t13

g4i+3
i

= tω there is always at least one pebble on xi or in Gi, so

x′is pebble could not be removed if it were white. x′i must therefore be black
pebbled at t1, and tα < t1 < tω. We know that there are no white pebbles
on the graph at time tα. Since x′i has 4i + 3 source nodes as predecessors,
we can apply Lemma 12 to conclude that x′i is uniquely black pebblable in
[tα, tω] and must be pebbled at t1, tα < t1 < t∗, where no nodes other than
x′i’s predecessors are pebbled between tα and t1, so x′i ∈ [[tα, t1 − 1]].
Since x′i is uniquely black pebblable in [tα, tω] and must contain a pebble
until xi is black pebbled at t∗, x′i ∈ •[[t1, t∗ − 1]]• and xi ∈ •[[t∗, t13

g4i+3
i

− 1]]•.
• (2.5) yi ∈ [[t13

g1
i
− 1, tω]].

Since yi is not one of g1i ’s 4i + 3 predecessors, it must be empty at t13
g1
i
− 1.

For yi to contain a pebble after t13
g1
i
− 1, it must therefore be pebbled at some

time during [t13
g1
i
, tω]. By (2.3) and (2.4), we know that g1i and either xi or x

′
i

must each contain a pebble from t13
g1
i
through t13

g4i+3
i

− 1. There are therefore

not enough free pebbles to black pebble yi at any time during [t13
g1
i
, tω] or to

remove a white pebble from yi at any time during [t13
g1
i
, tω].

By (2.2) we know that yi must be empty by tω, so if yi were white pebbled
during [t13

g1
i
, tω], it would also have to have its white pebble removed during

[t13
g1
i
, tω]. It is therefore not possible to pebble yi at all in this interval and it

must remain empty. Therefore yi ∈ [[t13
g1
i
− 1, tω]].

• (2.6) ai is uniquely black pebblable in [tα, tω], ai ∈ [[tα, t11 − 1]], and
ai ∈ •[[t11, t13

g4i+1
i

− 1]]•, where t11 < t13
g1
i
.

Let t11 be the earliest time that ai is pebbled during [tα, tω]. We must show
that ai must be black pebbled at t11 and that ai cannot be pebbled again
after t11. We first prove that ai ∈ •[[t11, t13

g1
i
− 1]]•. This is because members

of Gi are the only successors of ai, so ai must contain a pebble until at least
the first of these is black pebbled; otherwise the assignment to ai would not
be necessary.
Therefore, if ai were white pebbled at t11, by (2.2) its pebble would have to
be removed sometime after t13

g1
i
− 1 but before tω.

Since g1i has 4i+3 predecessors, none of which is yi or one of yi’s predecessors,
or is in Hi or Ri, all of these nodes must be empty at t13

g1
i
− 1, so there is an

unblocked path ρ from each of yi’s predecessors to ai at t
13
g1
i
− 1. By Lemma

13, removing the white pebble from ai after t13
g1
i
− 1 and then removing all

of the pebbles from ρ before tω requires yi to be repebbled during [t13
g1
i
, tω],
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which is not possible by (2.5). We can therefore conclude that ai must be
black pebbled at t11.
The same argument can be made to show that ai cannot be pebbled at all
again after t13

g1
i
− 1. Since t11 is the earliest time in [tα, tω] that ai is pebbled,

we can conclude that ai is uniquely black pebblable in [tα, tω] and therefore
must contain a pebble until the last time one of its successors is pebbled in
[tα, tω], which, by (2.3), occurs at t13

g4i+1
i

− 1, so ai ∈ •[[t11, t13
g4i+1
i

− 1]]•.
Since ai is uniquely black pebblable in [tα, tω] and is black pebbled at t11,
ai ∈ [[tα, t11 − 1]].

At this point our proof splits into two cases: either a black pebble is on x̄′i at t
11

or it is not. The first of these cases implies that ψ�βi∪{x̄i} is in QSAT, and the second
implies that ψ�βi∪{xi} is in QSAT.

Case 2a (see Figure 8). Suppose there is no black pebble on x̄′i at t
11. Then there

are two subcases to consider. In Subcase (i) there is a white pebble on x̄′i at t
11, and

in Subcase (ii) there is no pebble at all on x̄′i.
First, we consider Subcase (i): there is a white pebble on x̄′i at t11. We show

that this subcase is impossible.

To start with, we prove that yi must be empty at t11 − 1 because all the free
pebbles are needed in other places. ai has 4i + 1 predecessors which must all be
pebbled at t11 − 1. By (2.4), either xi or x′i must contain a pebble at this time.
x̄′i must also because we are assuming that it contains a pebble at t11. There are
therefore not enough pebbles to allow one to remain on yi at t

11 − 1. Also, a pebble
is placed on ai at t

11, not on yi, so it must remain empty at t11.

We cannot pebble yi after t
11 because by (2.6) and (2.4) both ai and either xi or x

′
i

contain pebbles from t11 through t13
g4i+1
i

− 1. By (2.5), it is also not possible to pebble

yi after t
13
g4i+1
i

−1. We therefore cannot black pebble yi or remove a white pebble from

yi at any time in [t11 − 1, tω] because yi has 4i+ 2 source node predecessors.

But since yi is a predecessor of x̄′i, removing x̄′i’s white pebble along with all the
rest of the widget’s pebbles outside of Gi by t

ω requires that yi is pebbled after t11.
Since this is impossible, we can therefore conclude that x̄′i cannot contain a white
pebble at t11.

Second, we consider Subcase (ii): there is no pebble at all on x̄′i at t
11.

• (2a.1) x̄′i must be black pebbled at some time t12, t11 < t12 < t13
g1
i
and x̄′i ∈

•[[t12, t13
g4i+2
i

− 1]]•.
In order to black pebble g1i at time t13

g1
i
, t13

g1
i
> t11, we must first pebble x̄′i at

some time t12 before t13
g1
i −1

. Since, by the assumption of Subcase (ii), x̄′i is

empty at t11, we have t11 < t12 < t13
g1
i
− 1.

x̄′i cannot be black pebbled after t13
g1
i
− 1 since, by (2.5), yi must stay empty

after this time and yi is a predecessor of x̄′i. This also precludes x̄′i from
having a white pebbled removed from it during [t13g1

i
, tω], which, by (2.2),

must happen by tω. Therefore, we can conclude that x̄′i cannot be pebbled
at all in [t13

g1
i
, tω]. This also means that x̄′i must be black pebbled at t12,

since otherwise its white pebble would have to be removed during [t13
g1
i
, tω].

Therefore, x̄′i ∈ •[[t12, t13
g4i+2
i

− 1]]•.
• (2a.2) x′i ∈ •[[t1, t12]]• and xi ∈ •[[t12 + 1, t13

g4i+3
i

− 1]]•.
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The above argument implies that x′i will not have to support another pebble
assignment to x̄′i after t

12. Since xi is x
′
i’s only other successor, we can apply

Lemma 14 to conclude that x′i’s pebble is slid up to xi at t
12 + 1. Therefore,

x′i ∈ •[[t1, t12]]• and xi ∈ •[[t12 + 1, t13
g4i+3
i

− 1]]•.
• (2a.3) yi is uniquely black pebblable in [t1, tω], yi ∈ [[tα, t2 − 1]], and
yi ∈ •[[t2, t12 − 1]]•, where no nodes other than yi’s predecessors are pebbled
between t1 and t2, where t2 > t1.
In order to black pebble x̄′i at t12 we must first pebble yi at some time t2,
t2 < t12. By (2.4) yi is in [[tα, t1]], so t2 > t1. Suppose yi contains a white
pebble at t12 − 1. Then by (2.5), this pebble must be removed by t13

g1
i
. But it

cannot be removed by then because it has 4i+ 2 predecessors and by (2a.1)
and (2a.2) there are not enough free pebbles. yi must therefore contain a
black pebble at t12 − 1. By the induction hypothesis and (2.4) we know that
no nonsource nodes contain white pebbles at t1. Also yi has 4i+2 predecessors
and by (2a.2) x′i ∈ •[[t1, t12]]•. We can therefore apply Lemma 12 to conclude
that yi is uniquely black pebblable in [t1, t12 − 1], yi ∈ [[tα, t2 − 1]], and
yi ∈ •[[t2, t12 − 1]]•, where no nodes other than yi’s predecessors are pebbled
between t1 and t2.
By (2.6), ai ∈ •[[t11, t13

g4i+1
i

− 1]]•; we can therefore make the same argument

as in (2.5) to conclude that yi cannot be pebbled at any time in [t11, tω]. This
means that yi is uniquely black pebblable in [t1, tω].

• (2a.4) h4i+1
i is uniquely black pebblable in [t2, t12 − 1], h4i+1

i ∈ [[tα, t8
h4i+1
i

−
1]], and h4i+1

i ∈ •[[t8
h4i+1
i

, t11 − 1]]•, where t8
h4i+1
i

< t11; and for each j,

1 ≤ j ≤ 4i, hji is uniquely black pebblable in [t2, t12−1], hji ∈ [[tα, t8
hj
i

−1]],

and hji ∈ •[[t8
hj
i

, t11 − 1]]•, where t8
hj
i

< t8
hj+1
i

.

We first prove that each member of Hi is in [[tα, t2]]. No member of Hi is
a member of B[βi], so they are all empty at tα. From (2.4) we know that no
member of Hi can be pebbled between tα and t1, and by (2a.3) we know that
no member of Hi can be pebbled between t1 and t2 and all must therefore
remain empty at t2.
By (2.1), (2.3), and (2.6) we know that none of the descendants of h4i+1

i can
contain a white pebble at any time during [t2, t12 − 1]. In order to pebble ai
at time t11, h4i+1

i must contain a pebble at time t11−1. By (2.6), (2a.2), and
(2a.3), ai, x

′
i, and yi are in •[[t11, t12 − 1]]• and x̄′i has 4i other predecessors,

none of which is inHi, so h
4i+1
i must be empty at t12−1. Since h4i+1

i has 4i+1
predecessors, none of which is x′i or yi, we can apply Lemma 11 to conclude
that h4i+1

i is uniquely black pebblable in [t2, t12 − 1]. Let t8
h4i+1
i

be the time

at which h4i+1
i is black pebbled. Since h4i+1

i is a predecessor of ai and can
be pebbled only once before t11, t8

h4i+1
i

< t11, h4i+1
i ∈ [[tα, t8

h4i+1
i

− 1]], and

h4i+1
i ∈ •[[t8

h4i+1
i

, t11 − 1]]•.
We can now prove by induction from j = 4i down to j = 1 that hji is
uniquely black pebblable in [t2, t12 − 1] and is clamped in •[[t8

hj
i

, t11 − 1]]•,
where t8

hj
i

< t8
hj+1
i

.

By (2.1), (2.3), (2.6), and the induction hypothesis we know that none of the
descendants of hji can contain a white pebble at any time during [t2, t12 − 1].
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In order to pebble ai at time t11, hji must contain a pebble at time t11−1. By
(2.6), (2a.2), and (2a.3), ai, x

′
i, and yi are in •[[t11, t12−1]]• and x̄′i has 4i other

predecessors, none of which is in Hi, so h
j
i must be empty at t12 − 1. Since

hji has 4i+1 predecessors, none of which is x′i or yi, we can apply Lemma 11

to conclude that hji is uniquely black pebblable in [t2, t12 − 1]. Let t8
hj
i

be the

time at which hji is black pebbled. Since hji is a predecessor of hj+1
i and both

must be pebbled before t11, we have t8
hj
i

< t8
hj+1
i

. Since hji is a predecessor

of ai and can be pebbled only once before t11, hji ∈ [[tα, t8
hj
i

− 1]] and

hji ∈ •[[t8
hj
i

, t11 − 1]]•.
• (2a.5) di is uniquely black pebblable in [t2, t11], di ∈ [[tα, t3 − 1]], and
di ∈ •[[t3, t8

h4i+1
i

− 1]]•, where no nodes other than di’s predecessors can be

pebbled between t2 and t3, where t3 > t2.
We first prove that di is in [[tα, t2]]. di is not a member of B[βi], so it is
empty at tα. From (2.4) we know that di cannot be pebbled between tα and
t1 and by (2a.3) we know that di cannot be pebbled between t1 and t2 and
must therefore remain empty at t2.
In order to black pebble h1i at t8

h1
i
, we must first pebble its predecessor di at

some time t3 < t8
h1
i
. Since di ∈ [[tα, t2]], we have t3 > t2. Also, di must

be empty at t11, since ai has 4i + 1 predecessors, none of which is di, yi, or
x′i, and by (2a.3) and (2a.2) both yi and x

′
i are in •[[t2, t11]]•.

We also show that di must contain a black pebble at t8
h4i+1
i

− 1 since, as

mentioned, both yi and x′i are clamped until t11. By (2a.4), so are ai’s 4i
other predecessors from Hi. There are therefore 4i + 2 nodes clamped in
•[[t8

h4i+1
i

− 1, t11 − 1]]•, so di’s pebble must slide from di to h4i+1
i at t8

h4i+1
i

.

di must therefore contain a black pebble at t8
h4i+1
i

− 1.

By the induction hypothesis, (2.4), and (2a.3), we know that no nonsource
nodes contain white pebbles at t2. Finally, since di has 4i+1 source nodes as
predecessors, we can apply Lemma 12 to conclude that di is uniquely black
pebblable in [t2, t11,], di ∈ •[[t3, t8

h4i+1
i

− 1]]•, and no nodes other than di’s

predecessors can be pebbled between t2 and t3, so di ∈ [[tα, t3 − 1]].
• (2a.6) x̄′i is uniquely black pebblable in [t3, t8

h4i+1
i

− 1], x̄′i ∈ [[tα, t4 − 1]],

x̄′i ∈ •[[t4, t4]]•, and x̄′i ∈ [[t4 + 1, t8
h4i+1
i

− 1]]; x̄i ∈ [[tα, t4]] and x̄i ∈
•[[t4+1, t8

h4i
i
−1]]•, where no nodes other than x̄′i’s predecessors can be pebbled

between t3 and t4, where t4 > t3.
We first prove that x̄′i is in [[tα, t3]]. x̄′i is not a member of B[βi], so it
is empty at tα. From (2.4) we know that x̄′i cannot be pebbled between tα

and t1. By (2a.3) we know that x̄′i cannot be pebbled between t1 and t2.
By (2a.5) we know that x̄′i cannot be pebbled between t2 and t3 and must
therefore remain empty at t3.
In order to pebble h4ii , x̄i must contain a pebble at t8

h4i
i
− 1. We now show

that this pebble must be black. By (2a.3), (2a.2), and (2a.4) we know that yi,
x′i, and h

1
i through h4i−1

i are in •[[t8
h4i
i
− 1, t11]]•. There are therefore 4i + 2

pebbles clamped in [t8
h4i
i
− 1, t11]. This means that x̄i’s pebble must move

from x̄i at t8
h4i
i
− 1 to h4ii at t8

h4i
i
. The only way this can happen is if x̄′i’s
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pebble is black and is slid to x̄i. Therefore, x̄i must contain a black pebble at
t8
h4i
i
− 1. By (2a.5) x̄i must be empty at t3, so we know that x̄i must be black

pebbled at some time t#, t3 < t# ≤ t8
h4i
i
− 1, and that x̄i ∈ •[[t#, t8

h4i
i
− 1]]•.

In order to black pebble x̄i at t#, we must first pebble x̄′i at some time t4,
t4 < t#. Since x̄′i is in [[tα, t3]], t4 > t3. Also, x̄′i must be empty at t11

because ai has 4i+1 predecessors, none of which is x̄′i, yi, or x
′
i, and by (2a.3)

and (2a.2) we know that both yi and x
′
i are in •[[t2, t8

h4i
i
− 1]]•. We will now

show that x̄′i must contain a black pebble at t# − 1.
Suppose for the sake of contradiction that x̄′i contains a white pebble at
t# − 1. The same argument that shows that x̄′i must be empty at t11 can
also be made to show that x̄′i must be empty at t8

h4i
i
− 1. So its white pebble

must be removed at some time during [t#, t8
h4i
i
− 1]. But by (2a.3), (2a.2),

and (2a.5) we know that yi, x
′
i, and di are in •[[t2, t8

h4i
i
− 1]]•, and by the

argument above we have x̄i ∈ •[[t#, t8
h4i
i
− 1]]•. This means that there are

never enough free pebbles available during [t#, t8
h4i
i
− 1] to remove x̄′i’s white

pebble. x̄′i must therefore contain a black pebble at t# − 1.
By the induction hypothesis, (2.4), (2a.3), and (2a.5), we can argue that no
nonsource nodes contain white pebbles at t3. Also, x̄′i has 4i source nodes as
predecessors, and by (2a.3), (2a.2), and (2a.5) we know that yi, x

′
i, and di

are in •[[t2, t8
h4i+1
i

− 1]]•. Thus we can apply Lemma 12 to conclude that x̄′i
is uniquely black pebblable in [t3, t8

h4i+1
i

− 1], where no nodes other than x̄′i’s

predecessors can be pebbled between t3 and t4, so x̄′i ∈ [[tα, t4 − 1]] and
x̄i ∈ [[tα, t4]]. Furthermore, x̄′i’s pebble must stay in place until the last
time one of its successors is pebbled during [t3, t8

h4i+1
i

− 1].

We already know that there is no pebble on x̄′i at t
11 and by (2.3) and (2.6)

every member ofGi is pebbled only after t11. So the only one of x̄′i’s successors
that is pebbled in [t3, t8

h4i+1
i

− 1] is x̄i. We can therefore apply Lemma 14 to

conclude that x̄′i’s pebble is slid to x̄i at time t4+1. So x̄′i ∈ •[[t4, t4]]• and x̄i ∈
•[[t4+1, t8

h4i
i
−1]]•. Also, since x̄′i is uniquely black pebblable in [t3, t8

h4i+1
i

−1],

is pebbled at t4, and is empty again at t4 + 1, x̄′i ∈ [[t4 + 1, t8
h4i+1
i

− 1]].

• (2a.7) r4i−1
i is uniquely black pebblable in [t4+1, t8

h4i
i
−1], r4i−1

i ∈ [[tα, t6
r4i−1
i

−
1]], and r4i−1

i ∈ •[[t6
r4i−1
i

, t8
h4i−1
i

−1]]•, where t6
r4i−1
i

< t8h1
i
; and for each j, 1 ≤

j ≤ 4i−2, rji is uniquely black pebblable in [t4+1, t8
hj
i

−1], rji ∈ [[tα, t6
rji
−1]],

and rji ∈ •[[t6
rji
, t8

hj
i

− 1]]•, where t6
rji
< t6

rj+1
i

.

We first prove that each member of Ri is in [[tα, t4 + 1]]. No member of
Ri is a member of B[βi], so they are all empty at tα. From (2.4) we know
that no member of Ri can be pebbled between tα and t1, and by (2a.3) we
know that no member of Ri can be pebbled between t1 and t2. By (2a.5) we
know that no member of Ri can be pebbled between t2 and t3. By (2a.6) we
know that no member of Ri can be pebbled between t3 and t4 + 1, so each
member of Ri is in [[tα, t4 + 1]].
By (2.1), (2.3), (2.6), and (2a.4) we know that none of the descendants of
r4i−1
i can contain a white pebble at any time during [t4 + 1, t8

h4i
i
− 1]. In
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order to pebble h4i−1
i at time t8

h4i−1
i

, r4i−1
i must contain a pebble at time

t8
h4i−1
i

− 1. By (2a.2), (2a.3), (2a.5), and (2a.6), x′i, yi, di, and x̄i are in

•[[t4 + 1, t8
h4i
i
− 1]]•. h4ii has 4i − 1 other predecessors, none of which is in

Ri, so r
4i−1
i must be empty at t8

h4i
i
− 1. Since r4i−1

i has 4i − 1 predecessors

other than x′i, yi, di, or x̄i, we can apply Lemma 11 to conclude that r4i−1
i

is uniquely black pebblable in [t4 + 1, t8
h4i
i
− 1]. Let t6

r4i−1
i

be the time at

which r4i−1
i is pebbled in [t4 +1, t8

h4i
i
− 1]. So r4i−1

i ∈ [[tα, t6
r4i−1
i

− 1]]. By

(2a.4), the only time before t11 at which h1i can be black pebbled is t8h1
i
, so

t6
r4i−1
i

< t8
h1
i
. Since r4i−1

i is a predecessor of h4i−1
i and can be pebbled only

once before t8
h4i−1
i

, r4i−1
i ∈ •[[t6

r4i−1
i

, t8
h4i−1
i

− 1]]•.
We can now prove by induction from j = 4i − 2 down to j = 1 that rji is
uniquely black pebblable in [t4+1, t8

h4i
i
−1] and is clamped in •[[t6

rji
, t8

hj
i

−1]]•,
where t6

rji
< t6

rj+1
i

.

By (2.1), (2.3), (2.6), (2a.4), and the induction hypothesis we know that
none of the descendants of rji can contain a white pebble at any time during

[t4 + 1, t8
h4i
i
− 1]. In order to pebble hji at time t8

hj
i

, rji must contain a pebble

at time t8
hj
i

− 1. By (2a.2), (2a.3), (2a.5), and (2a.6), x′i, yi, di, and x̄i are

in •[[t4 + 1, t8
h4i
i
− 1]]•. h4ii has 4i− 1 other predecessors, none of which is in

Ri, so r
j
i must be empty at t8

h4i
i
− 1. Since rji has 4i − 1 predecessors other

than x′i, yi, di, or x̄i, we can apply Lemma 11 to conclude that rji is uniquely

black pebblable in [t4+1, t8
h4i
i
− 1]. Let t6

rji
be the time at which rji is pebbled

in [t4 + 1, t8
h4i
i
− 1]. So rji ∈ [[tα, t6

rji
− 1]]. Since rji must be black pebbled

before rj+1
i can be pebbled, t6

rji
< t6

rj+1
i

. Since rji is a predecessor of hji and

can be pebbled only once before t8
hj
i

, rji ∈ •[[t6
rji
, t8

hj
i

− 1]]•.
• (2a.8) xi ∈ [[tα, t4 + 1]].
xi is not a member of B[βi], so it is empty at tα. From (2a.2) we know that
xi cannot be pebbled between tα and t1, and by (2.4) we know that xi cannot
be pebbled between t1 and t2. By (2a.5) we know that xi cannot be pebbled
between t2 and t3. By (2a.6) we know that xi cannot be pebbled between t3

and t4 + 1. It must therefore remain empty at t4 + 1.
• (2a.9) g4i−1

i−1 is uniquely black pebblable in [t4+1, t8
h4i
i
−1], g4i−1

i−1 ∈ [[tα, t5
g4i−1
i−1

−
1]], and g4i−1

i−1 ∈ •[[t5
g4i−1
i−1

, t6
r4i−1
i

− 1]]•, where t4 + 1 < t5
g4i−1
i−1

= t5 < t6
r1i
; and

for each j, 1 ≤ j ≤ 4i− 2, gji−1 is uniquely black pebblable in [t4 +1, t8
h4i
i
− 1],

gji−1 ∈ [[tα, t5
gj
i−1

−1]], and gji−1 ∈ •[[t5
gj
i−1

, t6
rji
−1]]•, where t4+1 < t5

gj
i−1

<

t5
gj+1
i−1

.

This argument is almost the same as the argument for (2a.7).

The following relationships between the times at which certain nodes are pebbled
are demonstrated by the points proved above.

• By (2.3), tω = t13
g4i+3
i

, and for each j, 1 ≤ j ≤ 4i+ 2, t13
gj
i

< t13
gj+1
i

.

• By (2.6), t11 < t13
g1
i
.
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• By (2a.4), t8
h4i+1
i

< t11, and for each j, 1 ≤ j ≤ 4i, t8
hj
i

< t8
hj+1
i

.

• By (2a.7), t6
r4i−1
i

< t8
h1
i
, and for each j, 1 ≤ j ≤ 4i− 2, t6

rji
< t6

rj+1
i

.

• By (2a.9), t4+1 < t5
g1
i
, t5

g4i−1
i

< t6
r1i
, and for each j, 1 ≤ j ≤ 4i−2, t5

gj
i

< t5
gj+1
i

.

• By (2a.6), t3 < t4.
• By (2a.5), t2 < t3.
• By (2a.3), t1 < t2.
• By (2.4), tα < t1.

These inequalities produce the following ordering of times, which labels most of the
x-axis of Figure 8: tα < t1 < t2 < t3 < t4 < t4 + 1 < t5

g1
i−1

< · · · < t5
g4i−1
i−1

= t5 < t6
r1i
<

· · · < t6
r4i−1
i

< t8
h1
i
< · · · < t8

h4i+1
i

< t11 < t12 < t13
g1
i
< · · · < t13

g4i+3
i

= tω.

As in the universal case, the ordering allows us to produce a figure which sum-
marizes the points proved above (Figure 8). Of particular interest to us now is the
sequence of line segments that are entering the region labeled as the “induction.” Par-
ticularly, we know that every member of Gi is empty during [t4+1, t5] since [t4+1, t5]
is a subinterval of [tα, tω] and each member of Gi is uniquely black pebblable in [tα, tω]
and must be pebbled after t5. ai must also be empty during [t4 +1, t5] since it is also
uniquely black pebblable in [tα, tω] and must be pebbled at t11 after t5. The same
is true for Hi and Ri since both are uniquely black pebblable in [t4 + 1, t8

h4i
i
− 1]

and must be pebbled after t5. Therefore, no member of widget i which is a descen-
dant of g4i−1

i−1 can be pebbled during the interval [t4 + 1, t5]. Also every node in
B[βi] ∪ {yi, x̄i, di, x′i} = B[βi ∪ {x̄i}] is in •[[t4 + 1, t5]]•.

We can therefore apply the induction hypothesis to conclude that black pebbling
Gi−1 requires ψ�βi∪{x̄i} to be in QSAT and that Ω(2k) units of time must pass between
t4 + 1 and t5, where k is the number of universally quantified variables among the
innermost i− 1 variables of ψ.

Case 2b (see Figure 9). Suppose, on the other hand, that there is a black pebble
on x̄′i at t

11. We will now show that ψ�βi∪{x̄i} must be in QSAT. Our first step is to
show that only nodes in B[βi]∪ {x′i, di, yi} can be pebbled when we pebble x̄′i for the
last time before t11, call the time t4.

• (2b.1) yi ∈ [[t11 − 1, tω]].
By (2.4) we know that either xi or x′i contains a pebble during each time
step from t1 through t13

g4i+3
i

− 1, and by the assumption of this case x̄′i ∈
•[[t4, t11 − 1]]•. Furthermore, ai has 4i+ 1 predecessors which are not xi, x

′
i,

x̄′i, or yi. yi must therefore be empty at t11 − 1.
By (2.6) ai contains a pebble during each time step from t11 through t13

g4i+1
i

−1.

Combined with (2.4), this means that there are therefore at most 4i+ 1 free
pebbles at all times from t11 through t13g1

i
−1. It is therefore impossible to black

pebble yi at any time in [t11, t13
g1
i
− 1]. By (2.5), yi’s pebble would have to be

removed by t13
g1
i
−1 if it was white pebbled at some time in [t11, t13

g1
i
−1], which

is also impossible. yi therefore cannot be pebbled at all during [t11, t13
g1
i
− 1].

Since it must be empty at t11 − 1, it must remain empty until t13
g1
i
− 1. By

(2.5) yi must remain empty until tω, so yi ∈ [[t11 − 1, tω]].
• (2b.2) x̄′i must contain a black pebble at t13

g4i+2
i

−1 and must be empty at t13
g4i+2
i

.

By (2.3) g4i+2
i is empty at t13

g4i+2
i

− 1 and is black pebbled at t13
g4i+2
i

. By (2.3)
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we know that there are 4i + 1 members of Gi in •[[t13
g4i+2
i

− 1, t13
g4i+2
i

]]•. By

(2.4) we know that either xi or x′i is in •[[t13
g4i+2
i

− 1, t13
g4i+2
i

]]•. Since x̄′i is

another predecessor of g4i+2
i , we can apply Lemma 15 to conclude that x̄′i

must contain a black pebble at t13
g4i+2
i

− 1 and must be empty at t13
g4i+2
i

.

• (2b.3) x̄′i ∈ •[[t4, t13
g4i+2
i

− 1]]•, x′i ∈ •[[t1, t4]]•, x′i ∈ [[t4 + 1, t4 + 1]], and

xi ∈ •[[t4 + 1, t13
g4i+3
i

− 1]]•.
By the conditions of this case, we know that x̄′i ∈ •[[t4, t11]]•. Also, by
(2b.1), yi ∈ [[t11 − 1, tω]]. Therefore x̄′i cannot be black pebbled after t11

since yi is a predecessor of x̄′i. This also precludes the removal of any white
pebble from x̄′i after t

11. Since x̄′i is a predecessor of g4i+2
i , this means that

x̄′i ∈ •[[t4, t13
g4i+2
i

− 1]]•. Also, x′i must be empty at t13
g1
i
− 1, since g1i has 4i+3

predecessors, none of which is x′i.
Therefore, between t4 and the time x′i’s pebble is removed before t13g1

i
, the

pebble assignment to x′i will not support another assignment to x̄′i. Since x
′
i

has only one other successor, xi, we can apply Lemma 14 to conclude that x′i’s
pebble can be slid to xi at t

4 +1. So x′i ∈ •[[t1, t4]]•, x′i ∈ [[t4+1, t4+1]],
and xi ∈ •[[t4 + 1, t13

g4i+3
i

− 1]]•.
• (2b.4) yi must contain a black pebble at t4 − 1.
Since yi is a predecessor of x̄′i, it must contain some pebble at t4−1. Suppose
for the sake of contradiction that yi contains a white pebble at t4 − 1. By
(2b.3), x̄′i ∈ •[[t4 + 1, t11]]• and xi ∈ •[[t4 + 1, t11]]•.
Therefore yi’s pebble must be removed at some time t# before t11 − 1, since
ai has 4i + 1 predecessors, none of which is yi, x̄

′
i, or xi. Also because x̄′i

and xi are in •[[t4 +1, t11]]• there are at most 4i+1 free pebbles at any time
during this interval and only 4i free pebbles between t4 + 1 and t# because
of the white pebble on yi. It is therefore impossible to remove a white pebble
from yi at any time in [t4, t11]. Therefore, yi must contain a black pebble at
t4 − 1.

• (2b.5) yi is uniquely black pebblable in [t1, tω], yi ∈ [[tα, t2 − 1]], and
yi ∈ •[[t2, t4 − 1]]•, where no nodes are pebbled between t1 and t2 except yi’s
predecessors, where t2 > t1.
yi is not a member of B[βi], so it is empty at tα. From (2.4) we know that yi
cannot be pebbled between tα and t1, so yi ∈ [[tα, t1]].
In order to black pebble x̄′i at t4, we must first pebble yi at some time t2,
t2 < t4. By (2.4) we know that yi must be empty at t1, so t2 > t1. By
(2b.4) yi must contain a black pebble at t4 − 1. Since yi has 4i + 2 source
nodes as predecessors, and by (2.4) we know that there are no white pebbles
on nonsource nodes at t1, and by (2b.3) x′i ∈ •[[t1, t4 − 1]]•, we can apply
Lemma 12 to conclude that yi is uniquely black pebblable in [t1, t4 − 1] and
yi ∈ •[[t2, t4−1]]•, where no nodes other than yi’s predecessors can be pebbled
from t1 through t2, so yi ∈ [[tα, t2 − 1]].
Furthermore, by (2.4) we know that either xi or x

′
i contains a pebble during

each time step from t1 through t13
g4i+3
i

− 1, and by the assumption of this case

x̄′i ∈ •[[t4, t11 − 1]]•. It is therefore impossible to black pebble yi at any time
in [t4, t11 − 1]. By (2b.1), yi must be empty at t11 − 1, so if yi were white
pebbled at some time in [t4, t11 − 1], its pebble would have to be removed
by then. But this is also impossible during [t4, t11 − 1]. Finally, by (2b.1) yi
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cannot be pebbled at t11 or later. It is therefore impossible to black pebble
yi again after t4, and it is also impossible to remove a white pebble from yi
after t4, which would be necessary by (2.2) if yi were white pebbled in this
time. We can therefore extend the interval during which yi is uniquely black
pebblable from [t1, t4 − 1] to [t1, tω].

• (2b.6) Every member of Hi is in [[tα, t4 + 1]].
Suppose, for the sake of contradiction, that some member hji of Hi is pebbled

a some time t# in [tα, t4 − 1]. Then hji or another member of Hi must still
contain a pebble during every time unit in [t#, t11 − 1]. This is because
every member of Hi has successors only in Hi ∪ {ai}, and ai is pebbled only
later at t11. So if there were a time in [t#, t11 − 1] at which no member of
Hi contains a pebble, then a pebble would have had to have been removed
before it supported any other assignment, and therefore it could not have
been necessary.
Since x̄′i has 4i+ 2 predecessors, none of which is in Hi, only one member of

Hi, namely hji , can contain a pebble at t4 − 1. Also, di must be empty at

t4− 1, because x̄′i has 4i+2 predecessors and hji contains the last free pebble
at t4 − 1. This means that di must also be empty at t4 since di cannot be
affected by the move which pebbles x̄′i at t

4.
We first show that this implies that di must be entirely empty during [t4 −
1, t13g1

i
]. This will then allow us to prove that ai cannot be black pebbled at

t11, which is a contradiction with (2.6) and will allow us to conclude that no
member of Hi can be pebbled during [tα, t4].
By (2b.3) and the fact that there must be a pebble somewhere in Hi at all
times during [t4−1, t11−1], we know that there would have to be three pebbles
on nodes which are not predecessors of di at all times in [t4 − 1, t11− 1]. And
then from (2b.3) and (2.6) we know that there would have to be three pebbles
on nodes which are not predecessors of di at all times in [t11, t13

g1
i
]. This means

that di cannot be black pebbled and cannot have a white pebbled removed
from it at any time in [t4−1, t13

g1
i
], since it has in-degree 4i+1. And note that

if di contained a white pebble at any time before t13
g1
i
− 1, it would have to be

removed before t13
g1
i
−1 because g1i has 4i+3 predecessors, none of which is di.

di can therefore never contain a white pebble at any time in [t4−1, t13
g1
i
]. Since

di is empty at t4 and cannot be black or white pebbled during [t4 − 1, t13
g1
i
], di

must be entirely empty during [t4 − 1, t13
g1
i
].

This will now allow us to prove that ai cannot be black pebbled at t11. In
order to black pebble ai at t

11, every member of Hi must contain a pebble
at t11 − 1. Since only one member of Hi can contain a pebble at t4, a pebble
must be placed on some member of Hi at some point in [t4 +1, t11 − 1]. This
pebble cannot be black, because black pebbling a member ofHi would require
di to contain a pebble during the preceding time unit, which we have already
shown to be impossible. The member of Hi must therefore be white pebbled
at some point in [t4 + 1, t11 − 1]. But then its white pebble would have to be
removed by t13

g1
i
− 1, since g1i has 4i+ 3 predecessors, none of which is in Hi.

But removing the white pebble by t13
g1
i
− 1 would also require that di contain

a pebble at some point in [t4 − 1, t13
g1
i
], which is impossible. It is therefore
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impossible to pebble any member of Hi at any point in [t4 + 1, t11 − 1]. This
means that it will be impossible to black pebble ai at t

11.
This is a contradiction with (2.6), so our original assumption must be false
and we can conclude that no member of Hi can be pebbled during [tα, t4]. By
(2b.3), xi is pebbled at t4 + 1. This move cannot affect any member of Hi,
so no member of Hi can be pebbled during [tα, t4 + 1]. Since every member
of Hi is empty at tα, every member of Hi is in [[tα, t4 + 1]].

• (2b.7) h4i+1
i is uniquely black pebblable in [t4+1, t13

g4i+2
i

−1], h4i+1
i ∈ [[tα, t8

h4i+1
i

]],

and h4i+1
i ∈ •[[t8

hj
i

, t11 − 1]]•, where t4 +1 < t8
h4i+1
i

< t11; and for each j, 1 ≤
j ≤ 4i, hji is uniquely black pebblable in [t4 + 1, t13

g4i+2
i

− 1], hji ∈ [[tα, t8
hj
i

]],

and hji ∈ •[[t8
hj
i

, t11 − 1]]•, where t4 + 1 < t8
hj
i

< t8
hj+1
i

.

By (2.1), (2.3), and (2.6) we know that none of the descendants of h4i+1
i can

contain a white pebble at any time during [t4 + 1, t13
g4i+2
i

− 1]. In order to

pebble ai at time t11, h4i+1
i must contain a pebble at time t11− 1. By (2b.3),

xi and x̄′i are in •[[t4 + 1, t13
g4i+2
i

− 1]]•. g4i+2
i has 4i + 3 predecessors, none

of which is in Hi, so h4i+1
i must be empty at t13

g4i+2
i

− 1. Since h4i+1
i has

4i + 1 predecessors, none of which is xi or x̄′i, we can apply Lemma 11 to
conclude that h4i+1

i is uniquely black pebblable in [t4 +1, t13
g4i+2
i

− 1]. We can

combine this with (2b.6) to conclude that h4i+1
i is uniquely black pebblable

in [tα, t13
g4i+2
i

− 1], so h4i+1
i ∈ [[tα, t8

h4i+1
i

]]. Since h4i+1
i is a predecessor of

ai and can be pebbled only once before t11, h4i+1
i ∈ •[[t8

h4i+1
i

, t11 − 1]]•.
We can now prove by induction from j = 4i down to j = 1 that hji is uniquely
black pebblable in [t4+1, t13

g4i+2
i

− 1] and is clamped in •[[t8
hj
i

, t11− 1]]•, where
t8
hj
i

< t8
hj+1
i

.

By (2.1), (2.3), (2.6), and the induction hypothesis we know that none of
the descendants of hji can contain a white pebble at any time during [t4 +

1, t13
g4i+2
i

− 1]. In order to pebble ai at time t11, hji must contain a pebble at

time t11−1. By (2b.3), xi and x̄
′
i are in •[[t4+1, t13

g4i+2
i

−1]]•. g4i+2
i has 4i+3

predecessors, none of which is in Hi, so h
j
i must be empty at t13

g4i+2
i

− 1. Since

hji has 4i+1 predecessors, none of which is xi or x̄
′
i, we can apply Lemma 11

to conclude that hji is uniquely black pebblable in [t4 +1, t13
g4i+2
i

− 1]. We can

combine this with (2b.6) to conclude that hji is uniquely black pebblable in

[tα, t13
g4i+2
i

−1], so hji ∈ [[tα, t8
hj
i

]]. Since hji must be pebbled before hj+1
i can

be pebbled, t8
hj
i

< t8
hj+1
i

. Since hji is a predecessor of ai and can be pebbled

only once before t11, hji ∈ •[[t8
hj
i

, t11 − 1]]•.
• (2b.8) di must contain a black pebble at t8

h4i+1
i

−1 and must be empty at t8
h4i+1
i

.

By (2b.7), h4i+1
i is empty at t8

h4i+1
i

− 1 and is black pebbled at t8
h4i+1
i

. By

(2b.7) there are 4i members of Hi in •[[t8
h4i+1
i

− 1, t8
h4i+1
i

]]•. By (2b.3), we

know that x̄′i ∈ •[[t8
h4i+1
i

− 1, t8
h4i+1
i

]]• and x′i ∈ •[[t8
h4i+1
i

− 1, t8
h4i+1
i

]]•. Since di
is another predecessor of h4i+1

i , we can apply Lemma 15 to conclude that di
must contain a black pebble at t8

h4i+1
i

− 1 and must be empty at t8
h4i+1
i

.
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• (2b.9) yi ∈ [[t8
h1
i
− 1, tω]].

By (2b.6), t4 + 1 < t8
h1
i
− 1. Therefore, by (2b.3) xi and x̄′i are clamped at

t8h1
i
− 1. Since h1i has 4i+1 predecessors other than xi and x̄

′
i, none of which

is yi, yi must be empty at t8
h1
i
−1. Furthermore, by (2b.5), since yi is uniquely

black pebblable and was pebbled at t2, before t4 + 1, yi cannot be pebbled
again before tω, so yi ∈ [[t8

h1
i
− 1, tω]].

• (2b.10) x̄i ∈ •[[t7, t8
h4i
i
− 1]]•, t7 < t8

h1
i
.

Since x̄i is a predecessor of h1i , it must be pebbled at some last time before
t8
h1
i
, call the time t7, so clearly t7 < t8

h1
i
. As proved in the argument for (2b.6),

at any time in [t8
h1
i
, t11 − 1], there must be some pebble in Hi, and by (2b.9)

yi must be empty at all times in [t8
h1
i
− 1, t11 − 1].

Suppose that the pebble is removed from x̄i at some time during the interval
[t8
h1
i
, t8

h4i+i
i

− 1]. Then it must be pebbled again at some time before t8
h4i+1
i

,

since it is a predecessor of h4i+1
i . Since yi must be empty at every time unit

during [t8
h1
i
− 1, t11 − 1], it is not possible to black pebble x̄i at that time. x̄i

must therefore be white pebbled. But x̄i must be empty again by t11 − 1,
since by (2b.3) xi and x̄

′
i are in •[[t4 + 1, t11]]•, and since ai has 4i+ 1 other

predecessors, none of which is x̄i. But removing a white pebble from x̄i by
t11 − 1 requires yi to contain a pebble at some point after t8

h1
i
− 1, which

is impossible. x̄i’s pebble can therefore not be removed before t8
h4i
i
− 1, so

x̄i ∈ •[[t7, t8
h4i
i
− 1]]•.

• (2b.11) t4 < t7.
Since two different nodes are pebbled at t4 and t7, t4 �= t7. Therefore, suppose
for the sake of contradiction that t4 > t7. Since, by (2b.10), x̄i ∈ •[[t7, t8

h4i
i
−

1]]• and by (2b.6) t8
h4i
i
− 1 > t4+1, the pebble must remain on x̄i at t

4, when

x̄′i is black pebbled. x̄′i has 4i+2 other predecessors, so di must be empty at
t4.
By (2b.3) both xi and x̄′i are clamped from t4 + 1 through t8

h4i+1
i

− 1. And

by (2b.10), x̄i is clamped through t8
h4i
i
− 1 and by (2b.7), h1i is clamped from

t8
h4i
i
−1 through t8

h4i+1
i

−1. This means that there are not enough free pebbles

to black pebble di at any time before t8
h4i+1
i

. But by (2b.8) di must contain a

black pebble at t8
h4i+1
i

−1. This is a contradiction, which allows us to conclude

that t4 < t7.
• (2b.12) yi ∈ •[[t2, t7 − 1]]•.
By (2b.5) we already know that yi is uniquely black pebblable in [t1, tω,] and
must be pebbled at time t2 < t7 and yi ∈ •[[t2, t4 − 1]]•. Now we will show
that yi ∈ •[[t2, t7−1]]•. This is simply because yi is a predecessor of x̄i which,
by (2b.10), is pebbled at t7, t1 < t7 < tω. Since yi cannot be repebbled before
tω and x̄i is a successor of yi, we conclude that yi ∈ •[[t2, t7 − 1]]•.

• (2b.13) di is uniquely black pebblable in [t2, t11], di ∈ [[tα, t3 − 1]], and
di ∈ •[[t3, h4i+1

i − 1]]•, where t2 < t3 < t4 and no pebbles are placed on any
node between t2 and t3, except onto di’s predecessors.
We first prove that di ∈ [[tα, t2]]. di is not a member of B[βi], so it is
empty at tα. From (2.4) we know that di cannot be pebbled between tα and
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t1. By (2b.5), di cannot be pebbled between t1 and t2, so di ∈ [[tα, t2]].
In order to black pebble any member of Hi, we must first pebble di. di must
be empty by t11 − 1, since by (2b.3) x̄′i and xi are clamped during t11 − 1
and ai has 4i+ 1 other predecessors, none of which is di. By (2b.8), di must
contain a black pebble at t8

h4i+1
i

− 1.

By (2b.12) and (2b.3), at least three nodes yi, x̄
′
i, and x

′
i must be clamped in

•[[t4, t4]]•; by (2b.12), (2b.3), and (2b.11) three nodes yi, x̄
′
i, and xi clamped

in •[[t4+1, t7−1]]•; by (2b.10) and (2b.3) three nodes x̄i, x̄
′
i, and xi clamped

in •[[t7, t8
h1
i
− 1]]•; by (2b.7) and (2b.3) three nodes h1i , x̄

′
i, and xi clamped in

•[[t8
h1
i
, t11 − 1]]•; and by (2.6) and (2b.3) three nodes ai, x̄

′
i, and xi clamped

in •[[t11 − 1, t11]]•. So di cannot be black pebbled at any time from t4 until
t11 − 1. So di must contain a black pebble at t4.
By (2b.5) di must be empty at t2. Therefore, di must be black pebbled at some
time t3, t2 < t3 < t4. By (2b.3) and (2b.12) x′i and yi are in •[[t2, t4]]•. By
the induction hypothesis, (2.4), and (2b.5), we know that no nonsource nodes
contain white pebbles at t2. Also di has 4i+ 1 source nodes as predecessors.
Thus we can apply Lemma 12 to conclude that di is uniquely black pebblable
in [t2, t4], where no pebbles are placed on any node between t2 and t3, except
onto di’s predecessors, so di ∈ [[tα, t3 − 1]]. By the argument above, we
extend the interval during which di is uniquely black pebblable to [t2, t11].
Since di is a predecessor of h4i+1

i , di ∈ •[[t3, t8
h4i+1
i

− 1]]•.
• (2b.14) x̄′i is uniquely black pebblable in [t3, t13

g4i+2
i

−1] and x̄′i ∈ [[tα, t4−1]],

where no pebbles are placed on any node between t3 and t4, except onto x̄′i’s
predecessors.
x̄′i is not a member of B[βi], so it is empty at tα. From (2.4) we know that
x̄′i cannot be pebbled between tα and t1. By (2b.5), x̄′i cannot be pebbled
between t1 and t2. By (2b.13) we know that x̄′i must be empty at t3, so
x̄′i ∈ [[tα, t3]].
By (2b.3) we know that x′i ∈ •[[t3, t4]]•, by (2b.12) we know that yi ∈
•[[t3, t4]]•, and by (2b.6) and (2b.13) we know that di ∈ •[[t3, t4]]•. Fur-
thermore, by the conditions of Case 2, we know that x̄′i contains a black
pebble at t4. Since x̄′i has 4i source node predecessors, and since we can
argue (by the induction hypothesis, (2.4), (2b.5), and (2b.13)) that no non-
source nodes contain white pebbles at t3, we can apply Lemma 12 to conclude
that x̄′i is uniquely black pebblable in [t3, t4], where no pebbles are placed
on any node between t3 and t4, except onto x̄′i’s predecessors. Therefore
x̄′i ∈ [[tα, t4 − 1]].
By (2b.3) we know that x̄′i ∈ •[[t4, t13

g4i+2
i

− 1]]•, so we can extend the interval

during which x̄′i is uniquely black pebblable to [t3, t13
g4i+2
i

− 1].

• (2b.15) x̄i ∈ [[tα, t4 + 1]], xi ∈ [[tα, t4]], x̄′i ∈ [[tα, t4 − 1]].
No member of {x̄i, x̄′i, xi} is a member of B[βi], so they are all empty at tα.
From (2b.3) we know that no member of {x̄i, x̄′i, xi} can be pebbled between
tα and t1, and by (2.4) we know that no member of {x̄i, x̄′i, xi} can be pebbled
between t1 and t2. By (2b.13) we know that no member of {x̄i, x̄′i, xi} can be
pebbled between t2 and t3. By (2b.14) we know that no member of {x̄i, x̄′i, xi}
can be pebbled between t3 and t4 − 1 and therefore they must all be empty.
Furthermore, by (2b.3), neither x̄i nor xi can be pebbled at t4, and x̄i cannot
be pebbled between t4 and t4 + 1.
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• (2b.16) r4i−1
i is uniquely black pebblable in [t4+1, t8

h4i
i
−1], r4i−1

i ∈ [[tα, t6
r4i−1
i

−
1]], and r4i−1

i ∈ •[[t6
r4i−1
i

, t8
h4i−1
i

− 1]]•, where t4 + 1 < t6
r4i−1
i

< t8
h1
i
; and for

each j, 1 ≤ j ≤ 4i − 2, rji is uniquely black pebblable in [t4 + 1, t8
h4i
i
− 1],

rji ∈ [[tα, t6
rji

− 1]], and rji ∈ •[[t6
rji
, t8

hj
i

− 1]]•, where t4 + 1 < t6
rji
< t6

rj+1
i

.

No member of Ri is a member of B[βi], so they are all empty at tα. From
(2b.3) we know that no member of Ri can be pebbled between tα and t1, and
by (2.4) we know that no member of Ri can be pebbled between t1 and t2.
By (2b.13) we know that no member of Ri can be pebbled between t2 and t3.
By (2b.14) we know that no member of Ri can be pebbled between t3 and t4

and therefore they must all be empty. Furthermore, by (2b.3), no member of
Ri can be pebbled between t4 and t4 + 1. Therefore, every member of Ri is
in [[tα, t4 + 1]].
By (2.1), (2.3), (2.6), and (2b.7) we know that none of the descendants of
r4i+1
i can contain a white pebble at any time during [tα, t8

h4i
i
−1]. I n order to

pebble h4i−1
i at time t8

h4i−1
i

, r4i−1
i must contain a pebble at time t8

h4i−1
i

−1. By

(2b.3) and (2b.13), xi, x̄
′
i, and di are in •[[t4 + 1, t8

h4i
i
− 1]]•. h4ii has 4i other

predecessors, none of which is in Ri, so r
4i−1
i must be empty at t8

h4i
i
−1. Since

r4i−1
i has 4i predecessors, none of which is xi, x̄

′
i, or di, we can apply Lemma

11 to conclude that r4i−1
i is uniquely black pebblable in [t4 +1, t8

h4i−1
i

− 1], so

r4i−1
i ∈ [[tα, t6

r4i−1
i

− 1]]. Since r4i−1
i is a predecessor of h4i−1

i and can be

pebbled only once before t8
h4i
i
, r4i−1

i ∈ •[[t6
r4i−1
i

, t8
h4i−1
i

− 1]]•.
We can now prove by induction from j = 4i − 2 down to j = 1 that rji is
uniquely black pebblable in [t4+1, t8

h4i−1
i

−1] and is clamped in •[[t6
rji
, t8

hj
i

−1]]•,
where t6

rji
< t6

rj+1
i

.

By (2.1), (2.3), (2.6), (2b.7), and the induction hypothesis we know that

none of the descendants of rji can contain a white pebble at any time during

[t4 + 1, t8
h4i
i
− 1]. In order to pebble hji at time t8

hj
i

, rji must contain a pebble

at time t8
hj
i

−1. By (2b.3) and (2b.13), xi, x̄
′
i, and di are in •[[t4+1, t8

h4i
i
−1]]•

and h4ii has 4i other predecessors, none of which is in Ri, so rji must be

empty at t8
h4i
i
− 1. Since rji has 4i predecessors, none of which is xi, x̄

′
i, or

di, we can apply Lemma 11 to conclude that rji is uniquely black pebblable

in [t4 + 1, t8
h4i
i
− 1], rji ∈ [[tα, t6

rji
− 1]]. Since rji must be pebbled before

rj+1
i can be pebbled, t6

rji
< t6

rj+1
i

. Since rji is a predecessor of hji and can be

pebbled only once before t8
h4i
i
, rji ∈ •[[t6

rji
, t8

hj
i

− 1]]•.
• (2b.17) t6

r4i−1
i

< t7 < t8
h1
i
.

By (2b.10) and (2b.11), we already know that t4 < t7 < t8
h1
i
. We must now

show that t6
r4i−1
i

< t7. We do not have to consider the case when t7 = t6
r4i−1
i

since two nodes cannot be pebbled at the same time, and by (2b.10) x̄i is
black pebbled at t7, and by (2b.16) r4i−1

i is black pebbled at t6
r4i−1
i

.

Suppose for the sake of contradiction that t6
r4i−1
i

> t7. That means that x̄i

must contain a pebble at t6
r4i−1
i

− 1, because removing it before then is not
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frugal since all of x̄i’s successors are pebbled only after t6
r4i−1
i

− 1. But by

(2b.3) and (2b.13), xi, x̄
′
i, and di are in •[[t4+1, t8

h4i
i
− 1]]• and therefore also

contain pebbles at t6
r4i−1
i

− 1. This means that there are at most 4i − 1 free

pebbles available at t6
r4i−1
i

− 1, but r4i−1
i has 4i predecessors, none of which is

x̄i, xi, x̄
′
i, or di, so it cannot be black pebbled at t6

r4i−1
i

−1. This contradiction

allows us to conclude that t6
r4i−1
i

< t7.

• (2b.18) g4i−1
i−1 is uniquely black pebblable in [t4+1, t7−1], g4i−1

i−1 ∈ [[tα, t5
g4i−1
i−1

−
1]], and g4i−1

i ∈ •[[t5
g4i−1
i−1

, t6
r4i−1
i

− 1]]•, where t4 + 1 < t5
g4i−1
i−1

< t6
r1i
; and for

each j, 1 ≤ j ≤ 4i−2, gji−1 is uniquely black pebblable in [t4+1, t7−1], gji−1 ∈
[[tα, t5

gj
i−1

−1]], and g4i−1
i ∈ •[[t5

gj
i−1

, t6
rji
−1]]•, where t4+1 < t5

gj
i−1

< t5
gj+1
i−1

.

No member of Gi−1 is a member of B[βi], so they are all empty at tα. From
(2b.3) we know that no member of Gi−1 can be pebbled between tα and t1

and by (2.4) we know that no member of Gi−1 can be pebbled between t1 and
t2. By (2b.13) we know that no member of Gi−1 can be pebbled between t2

and t3. By (2b.14) we know that no member of Gi−1 can be pebbled between
t3 and t4 and therefore they must all be empty. Furthermore, by (2b.3), no
member of Gi−1 can be pebbled between t4 and t4 + 1. Therefore, every
member of Gi−1 is in [[tα, t4 + 1]].
In order to black pebble r1i at t6

r1i
, every member of Gi−1 must first contain a

pebble at some time t5. We will now show that every member of Gi−1 must
contain a black pebble at t5. By (2b.14) we know that t5 > t4. By (2b.3) we
know that t5 > t4 + 1.
This proof will be inductive, like the proof of (2a.9), but we will first prove
noninductively that every member of Gi−1 must be empty at t7 − 1. By
(2b.16) and (2b.17) each of Ri’s 4i − 1 members is in •[[t7, t8

h1
i
− 1]]•. By

(2b.3) x̄′i and xi are in •[[t7, t8
h1
i
− 1]]•. By (2b.13) di ∈ •[[t7, t8

h1
i
− 1]]•. And

by (2b.10) x̄i ∈ •[[t7, t8
h1
i
− 1]]•. Since this sums to 4i + 3 clamped nodes at

t7, every node in Gi−1 must be empty at t7. Since no member of Gi−1 is a
predecessor of x̄i, and x̄i is pebbled at t7, every member of Gi−1 must also
be empty at t7 − 1.
By (2.1), (2.3), (2.6), (2b.7), and (2b.16) we know that none of the descen-

dants of g4i−1
i−1 can contain a white pebble at any time during [t4 + 1, t7 − 1].

In order to pebble r4i−1
i at time t6

r4i−1
i

, g4i−1
i−1 must contain a pebble at time

t5
g4i−1
i−1

− 1. We already know from the argument above that g4i−1
i−1 must be

empty at t7 − 1. Since g4i−1
i−1 has 4i− 1 predecessors other than x̄′i, xi, di, or

yi, we can apply Lemma 11 to conclude that g4i−1
i−1 is uniquely black pebblable

in [t4 + 1, t7 − 1]. Let t5
g4i−1
i−1

be the time at which g4i−1
i−1 is pebbled. Then

g4i−1
i−1 ∈ [[tα, t5

g4i−1
i−1

− 1]]. By (2b.7), (2b.16), and (2b.17), the only time

before t7 − 1 at which r1i can be black pebbled is t6r1i
, so t5

g4i−1
i−1

< t6r1i
. Since

g4i−1
i−1 is a predecessor of r4i−1

i and can be pebbled only once before t6
r4i−1
i

,

g4i−1
i ∈ •[[t5

g4i−1
i−1

, t6
r4i−1
i

− 1]]•.D
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We can now prove by induction from j = 4i − 2 down to j = 1 that gji−1 is
uniquely black pebblable in [t4+1, t7−1] and is clamped in •[[t5

gj
i−1

, t6
rji
−1]]•,

where t5
gj
i−1

< t5
gj+1
i−1

.

By (2.1), (2.3), (2.6), (2b.7), (2b.16), and the induction hypothesis we know
that none of the descendants of gji−1 can contain a white pebble at any time

during [t4 + 1, t7 − 1]. In order to pebble rji at time t6
rji
, gji−1 must contain a

pebble at time t6
rji

− 1. We already know from the argument above that gji−1

must be empty at t7 − 1. Since gji−1 has 4i − 1 predecessors other than x̄′i,
xi, di, or yi, we can apply Lemma 11 to conclude that gji−1 is uniquely black

pebblable in [t4 + 1, t7 − 1]. Let t5
gj
i−1

be the time at which gji−1 is pebbled.

Then gji−1 ∈ [[tα, t5
gj
i−1

−1]]. Since gji−1 must be black pebbled before gj+1
i−1

can be pebbled, t5
gj
i−1

< t5
gj+1
i−1

. Since gji−1 is a predecessor of rji and can be

pebbled only once before t6
rji
, gji−1 ∈ •[[t5

gj
i−1

, t6
rji

− 1]]•.
Finally, it is clear that since every member of Gi−1 is uniquely black pebblable
and all are clamped until at least t6

r1i
− 1, t5

g4i−1
i−1

= t5.

The following relationships between the times at which certain nodes are pebbled
are demonstrated by the points proved above.

• By (2.3), tω = t13
g4i+3
i

, and for each j, 1 ≤ j ≤ 4i+ 2, t13
gj
i

< t13
gj+1
i

.

• By (2.6), t11 < t13
g1
i
.

• By (2b.7), t8
h4i+1
i

< t11, and for each j, 1 ≤ j ≤ 4i, t8
hj
i

< t8
hj+1
i

.

• By (2b.10), t7 < t8h1
i
.

• By (2b.17), t6
r4i−1
i

< t7

• By (2b.16), for each j, 1 ≤ j ≤ 4i− 2, t6
rji
< t6

rj+1
i

.

• By (2b.18), t4+1 < t5
g1
i
, t5

g4i−1
i

< t6
r1i
, and for each j, 1 ≤ j ≤ 4i−2, t5

gj
i

< t5
gj+1
i

.

• By (2b.13), t3 < t4.
• By (2b.13), t2 < t3.
• By (2b.5), t1 < t2.
• By (2.4), tα < t1.

These inequalities produce the following ordering of times, which labels the x-axis of
Figure 9: tα < t1 < t2 < t3 < t4 < t4 + 1 < t5

g1
i−1

< · · · < t5
g4i−1
i−1

= t5 < t6
r1i
· · · <

t6
r4i−1
i

< t7 < t8
h1
i
· · · < t8

h4i+1
i

< t11 < t13
g1
i
. . . t13

g4i+3
i

= tω.

As in the universal case, the ordering allows us to produce a figure (Figure 9) which
summarizes the points proved above. Of particular interest to us now is the sequence
of line segments that are entering the region labeled as the “induction.” Particularly,
we know that every member of Gi is empty during [t4 + 1, t5] since [t4 + 1, t5] is a
subinterval of [tα, tω] and each member of Gi is uniquely black pebblable in [tα, tω]
and must be pebbled after t5. ai must also be empty during [t4 +1, t5] since it is also
uniquely black pebblable in [tα, tω] and must be pebbled at t11 after t5. The same is
true forHi and Ri since both are uniquely black pebblable in [t4+1, t9−1] and must be
pebbled after t5. Therefore, no member of widget i which is a descendant of g4i−1

i−1 can
be pebbled during the interval [t4 +1, t5]. Also every node in B[βi]∪ {yi, x̄′i, di, xi} =
B[βi ∪ {xi}] is in •[[t4 + 1, t5]]•.
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2678 PHILIPP HERTEL AND TONIANN PITASSI

We can therefore apply the induction hypothesis to conclude that black pebbling
Gi−1 requires ψ�βi∪{xi} to be in QSAT and that Ω(2k) units of time must pass between
t4 + 1 and t5, where k is the number of universally quantified variables among the
innermost i− 1 variables of ψ.

We have shown that regardless of whether widget i corresponds to a universal
quantifier or an existential quantifier, simultaneously black pebbling Gi using no more
than 4n + 3 pebbles requires that ψ�βi be in QSAT and requires Ω(2k) units of
time between tα and tω, where k is the number of universal quantifiers among the i
innermost quantifiers. This completes the proof of Lemma 18.

This brings us to the main result of this section.

Theorem 19 (main theorem). The black-white pebbling game on DAGs is
PSPACE-complete.

Proof. By Lemma 2 we know that the black-white pebbling game is in PSPACE.
By Lemmas 4 and 18 ψ is in QSAT iff G can be black-white pebbled using 4n + 3
pebbles, and the black-white pebbling game is therefore PSPACE-hard.

6. Exponential time/space trade-off for black-white pebbling and the
PSPACE-completeness of the symmetric game.

Theorem 20. There exists an infinite family of graphs such that any minimal
space black-white pebbling of these graphs requires exponential time, but they can be
pebbled in linear time with the use of two additional pebbles.

Proof. Let G be the DAG corresponding to the formula ψ = ∀xn∀xn−1 . . . ∀x1(x1∨
x̄1 ∨ x2) ∧ (x2 ∨ x̄2 ∨ x3) ∧ · · · ∧ (xn ∨ x̄n ∨ x1). This formula is clearly QSAT, since
its 3CNF part is a tautology. Also, since ψ has n universally quantified variables, by
Lemma 17, the minimal 4n+ 3 pebbling strategy for G requires time 2n to execute.
We can pebble G in linear time using exactly two extra pebbles by following our
upper bound strategy except that in each universal widget, we keep a pebble on x̄′i
and one on Ri, which will allow us to pebble the universal widget just once without
any repebbling. More concretely, we make the following changes to the strategy
through the universal widget: We modify step 2 (see the proof of Lemma 5, Case 1)
so that instead of sliding a black pebble to x̄i, we place a black pebble on x̄i, and
continue to keep a black pebble on x̄′i. Similarly we modify step 5 so that instead of
sliding a black pebble from r1i to hi, we place a black pebble on hi and continue to
keep a pebble on r1i . Modify step 9 by removing all pebbles from widget i except for
those on ai, x

′
i, yi, x̄

′
i, and Ri. Skip steps 10 and 11. Finally, modify step 12 to use

the i-slide strategy to slide all of Ri’s pebbles to {g1i , . . . , g4i−1
i }. The rest of the steps

stay unchanged.

6.1. PSPACE-completeness of the symmetric black-white pebbling game.
Here we show that our PSPACE-completeness result is robust in the sense that it holds
for both variants of black-white pebbling.

6.2. Definition of symmetric black-white pebbling. The symmetric black-
white pebbling game is very similar to the black-white pebbling game. The only
difference is in the ending condition. The symmetric black-white pebble game ends
successfully if the player can place either a black or a white pebble on s and then
remove every pebble from G, including the one on s, without ever exceeding a given
bound on the number of pebbles simultaneously placed on G. As before we are inter-
ested in pebbling s, using a minimum number of pebbles, but now we no longer need
to end with a black pebble on s as a witness.
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g1
n

q4n+3q1

Q

4n + 3

s

4n + 3-Slide

Gn

g4n+3
n

(Q,Gn)

Fig. 10. Modification made to G to form Gsym.

Definition 6.1 (symmetric black-white pebbling strategy). Let G = (V,E) be
a DAG with distinguished output node s. A symmetric black-white pebbling strategy
for G is a sequence of black-white pebbling configurations M[tstart], . . . ,M[tend], such
that M[tstart] = (∅, ∅); M[tend] = (∅, ∅) for all t, tstart ≤ t ≤ tend − 1; Mt+1 follows
from Mt by a legal black-white pebbling move; and for some t, tstart < t < tend,
s ∈ B[t] or s ∈ W [t].

The symmetric black-white pebbling game is more general than the standard
version, since every k-pebbling strategy can be converted to a symmetric k-strategy
simply by adding one more move which removes the black pebble from s.

The symmetric black-white pebbling game was introduced in [CS76]. It was
proved in [CS76, Hei81] that every symmetric k-pebbling strategy is reversible, mean-
ing that if you transform the strategy by playing the moves in reverse after turning
every white pebble into a black pebble and vice versa, then the resulting strategy is still
a symmetric k-pebbling strategy. We will use this fact extensively to transform our
PSPACE-completeness proof of black-white pebbling into a PSPACE-completeness
proof of symmetric black-white pebbling.

6.2.1. Modification to the definition of frugality. Since we can now place
either a black or a white pebble on s, whereas we could place only a black pebble on
s in the asymmetric version of the game, we must modify our definition of frugality.
Instead of asserting that the last black pebble assignment to s is necessary, we now
say that the last pebble assignment to s, regardless of the color, is necessary.

6.2.2. Modification to the black-white pebbling reduction. In order to
prove the PSPACE-completeness of the symmetric black-white pebbling game we
must make one very minor modification to our construction G. Instead of making s
the successor of every node in Gn, we will add an intermediate set of 4n+ 3 vertices
Q = {q1, . . . , q4n+3} such that (Q,Gn) forms a 4n+ 3-slide and s is the successor of
every node in Q. Since (Q,Gn) forms a 4n+ 3-slide, qi is a predecessor of every qj ,
j > i. Note that each node in {s} ∪ Q ∪ Gn has in-degree 4n+ 3. The modification
is shown in Figure 10. We call the modified construction Gsym.

6.3. Proof that symmetric black-white pebbling is PSPACE-complete.
We will show that Gsym is symmetric black-white pebblable iff ψ is in QSAT. Clearly
the upper bound remains almost entirely unchanged. We still pebble s using the same
strategy, except that we must use the i-slide strategy one more time to move the black
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pebbles from Gn to Q before finally pebbling s. We then remove all the black pebbles
to empty the graph entirely.

The lower bound also remains very similar. Since symmetric strategies are re-
versible, we will no longer constrain our strategy to be purely black. Instead, when
ψ is in QSAT, Gsym is 4n + 3 pebblable by both a pure black strategy and a pure
white strategy but by no mixed strategies. (By a pure black strategy we mean that
only black pebbles are placed on nodes other than source nodes, and, similarly, by a
pure white strategy we mean that only white pebbles are placed on nodes, excluding
source nodes.) We define the dual of a black clamped interval (Definition 3.4), a white
clamped interval, which is required in our lower bound. As before, we will assume
that all strategies are frugal.

Definition 6.2 (white clamped interval). For any node v and any time units tα,
tω such that tα ≤ tω, we say that v is white clamped in the interval [tα, tω], denoted
as v ∈ ◦[[tα, tω]]◦, if v contains a white pebble during every configuration from M[tα]
through M[tω], i.e., for all t∗, tα ≤ t∗ ≤ tω, v ∈W [t∗].

The first step of the proof is to prove the following statement.

Lemma 21. Let P (s, t2, t3) be the last pebble assignment to s. Pebbling s at
time t2 and removing the pebble afterwards at t3 without exceeding the space bound of
4n+3 pebbles requires either that Gn be simultaneously black pebbled at some time t1,
t1 < t2 and Q ∪ {s} ⊆ [[tstart, t1]], or that Gn be simultaneously white pebbled at
some time t4, t4 > t3 and Q ∪ {s} ⊆ [[t4, tend]].

Proof.

Case 1. Suppose P (s, t2, t3) is a black pebble assignment. Since q1 is a predecessor
of s, either there is a black pebble on q1 at time t2 − 1, or there is a white pebble on
q1 at time t2 − 1.

Case 1a. Suppose the pebble on q1 at t2 − 1 is black and was placed on q1 at time
t∗ < t2, so q1 ∈ •[[t∗, t2 − 1]]•. Also suppose for the sake of contradiction that there
is some white pebble on a node v of Gn at time t∗ − 1. This white pebble must be
removed from v at some time between t∗ and t2, because s has 4n+ 3 predecessors,
none of which is v. But v also has 4n+ 3 predecessors, and q1 ∈ •[[t∗, t2 − 1]]•. This
means that we cannot remove v’s white pebble during [t∗, t2 − 1] without violating
the space bound; thus there can be no white pebbles in Gn at time t∗−1, so Gn must
have been simultaneously black pebbled at time t1, t1 = t∗ − 1 < t2.

Now suppose there is a pebble of either color on some node of Q ∪ {s} during
any time unit in [tstart, t1]. We know that the pebble cannot be on s, since only
the last pebble assignment to s is necessary, and that assignment begins only at t2,
t2 > t1. The pebble must therefore be on some member of Q. Consider the member
of Q, qj , which contains a pebble during [tstart, t1] such that j is maximum over all
the members of Q that contain a pebble during [tstart, t1]. By the definition of j,
no successor of qj in Q is pebbled during [tα, t1]. Also since s is not pebbled during
[tα, t1], we can conclude that no successor of qj is pebbled until after t1. But since Gn

has 4n+3 members and each contains a pebble at t1, qj must be empty at t1, before
a pebble is ever placed on one of its successors. Therefore, the pebble assignment to
qj was unnecessary, which contradicts our general assumption that all of our pebbling
strategies are frugal. We can therefore conclude that Q ∪ {s} ⊆ [[tstart, t1]].

Case 1b. Suppose, on the other hand, that q1 is white pebbled at time t∗ < t2. Then
q1’s white pebble must be removed at some time t4 after t2, so q1 ∈ ◦[[t∗, t4 − 1]]◦.
Since q1 has 4n + 3 predecessors, none of which is s, t3 < t4. Since Gn is empty at
t2, all of q1’s predecessors (all the nodes of Gn) must be repebbled before t4. Since
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each node of Gn has in-degree 4n+ 3 and q1 ∈ ◦[[t2, t4 − 1]]◦, no member of Gn can
be black pebbled during [t2, t4 − 1]. So q1’s white pebble must be slid down to some
node of Gn, and Gn must then be simultaneously white pebbled at time t4, t4 > t3.

Now suppose that there is a pebble of either color on some node of Q∪{s} during
any time unit in [t4, tend]. Clearly, each member of Q ∪ {s} must be empty at t4,
since Gn has size 4n + 3 and every member of Gn contains a pebble at t4. So some
node in Q ∪ {s} is repebbled during [t4, tend]. We know that s cannot be repebbled,
since P (s, t2, t3) was the last pebble assignment to s. The pebble must therefore
be placed on some member of Q. Consider the member of Q, qj , which contains
a pebble during [t4, tend] such that j is maximum over all the members of Q that
contain a pebble during [t4, tend]. By the definition of j, no successor of qj in Q is
pebbled during [t4, tend], and since s is not pebbled again at all, we can conclude that
no successor of qj is ever pebbled. But the entire graph must be empty by tend, so
qj ’s pebble must be removed before a pebble is ever placed on one of its successors.
Therefore, the pebble assignment to qj was unnecessary, which contradicts our general
assumption that all of our pebbling strategies are frugal. We can therefore conclude
that Q ∪ {s} ⊆ [[t4, tend]].

Case 2. Suppose P (s, t2, t3) is a white pebble assignment. This case follows from
Case 1 by Meyer auf der Heide’s duality lemma.

We now formalize a dual statement to Lemma 18 which reverses Lemma 18 by
the method described in [Hei81].

Lemma 22. For all i, 1 ≤ i ≤ n, and for all βi ∈ Ai, if there exist times tα, tω

such that
1. every member of Gi contains a white pebble at tα,
2. the only members of G which contain pebbles at tω are members of W [βi],
3. W [βi] ⊆ ◦[[tα, tω]]◦,
4. there are never more than 4n + 3 pebbles on the graph at any time during

[tα, tω], and
5. no pebble is placed on any descendant of g4i+3

i during the interval [tα, tω],
then ψ�βi is in QSAT and requires Ω(2k) units of time between tα and tω, where k is
the number of universal quantifiers among the i innermost quantifiers.

We can appeal to Lemma 18 as a proof of Lemma 22. If we assume for the
sake of contradiction that the statement of Lemma 22 is false and a 4n + 3 black-
white pebbling strategy could remove the white pebbles from Gi without violating our
conditions even when ψ�βi is not in QSAT, then we could reverse this 4n+3 strategy
using Meyer auf der Heide’s duality lemma to simultaneously black pebble Gi using
no more than 4n+3 pebbles, even when ψ�βi is not in QSAT. This is a contradiction
to Lemma 18.

By Lemma 21, it is therefore sufficient to appeal to Lemmas 18 and 22 together
to conclude that Gsym is symmetric black-white pebblable only if ψ is in QSAT.

7. Conclusion and open problems. A preliminary version of this paper ap-
peared in Proceedings of the 49th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS 2008). In that version we claimed that the PSPACE-completeness
of black-white pebbling can be used to prove a similar PSPACE-completeness result
for determining the minimal space required to refute an unsatisfiable formula in res-
olution. We still conjecture that this is the case.

An intriguing open problem is the complexity of approximating the pebbling
number of a graph. As far as we are aware, there are no results known here, even
for black pebbling. In particular, what is the best polynomial-time approximation
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algorithm for black pebbling, or black-white pebbling, a graph? Can we get to within
a constant factor of the optimal in polynomial time?
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