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Abstract: We introduce a more general notion of efficient simulatiobnsen proof systems, which we call
effectively-p simulation We argue that this notion is more natural from a compleiityeretic point of view,
and by revisiting standard concepts in this light we obtaime surprising new results. First, we give several
examples where effectively-p simulations are possiblevben different propositional proof systems, but where
p-simulations are impossible (sometimes under complasgsymptions). Secondly, we prove that the rather weak
proof system, for quantified propositional logic (QBF) can effectivelyspmulateany proof system for QBF.
Thus our definition sheds new light on the comparative poWeraof systems. We also give some evidence that
with respect to Frege and Extended Frege systems, an eéflsep simulation may not be possible. Lastly, we
prove new relationships between effectively-p simulaiautomatizability, and th2 versusN P question.
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1 Introduction itations as a measure of relative proof system strength
_ ) ) from the algorithmic perspective From an algorith-
Itis well known that NP=coNP if and only if therem;c point of view, proof systems can be viewed as non-
exists a polynomially bounded propositional proof sygieterministic algorithms for unsatisfiability. In fact) al
tem. A large research program over the last thirty yeagxT solvers to date can be viewed as deterministic im-
has been to classify proof systems according to their rglementations of a particular propositional proof sys-
ative strength, and to develop lower bound methods i@ For example, the Davis-Putnam algorithm (DPLL)
proving that these increasingly powerful proof systemgqorithm for SAT, as well as the highly successful
are not polynomially bounded. Conventionally, “relag|ayse learning methods are highly optimized determin-
tive strength” has been measured using the notion;gfic implementations of Resolution. Similarly, the "lift
polynomial simulation (p-simulation). A proof systemyng project” methods used in combinatorial optimiza-
A p-simulates a proof system B if every tautology hagn can be viewed as deterministic implementations of
proofs in A of size at most polynomially larger than igpe proof system LS+. Thus proof complexity is not
B. Intuitively, if A p-simulates B, then _it is at least Just an approach to th& P versuscoN P question, but
strong a proof system as B, because it can prove g§/the P versusN P question as well. This is because
tologies at least as efficiently as B. proving superpolynomial proof size lower bounds for a
The notion of p-simulation is very natural from theyarticular proof system unconditionally rule out a large
proof theoryperspective, where a primary goal is reelass of methods for solving SAT in polynomial time.
verse mathematics. In reverse mathematics, the ge#hen comparing such methods to one another, it seems
is to understand the minimal set of axioms requiregneedless restriction to insist on comparing them on the
to prove specific mathematical statements. For exagame input as would be required by the p-simulation
ple, Extended Frege systems correspond to a systenmofion. If the notion of feasibility is polynomial time,
bounded arithmetic allowing induction on polynomiakhen arguably some polynomial-time preprocessing of
time computable predicates, and it is known that a sighe input should be allowed for free when comparing
nificant amount of number theory can be carried otio different methods.
within this axiomatic system. A fundamental open Also, when proving lower bounds against proof sys-
question in reverse mathematics is to determine thgns, the lower bounds are typically shown for some
weakest propositional proof system that can resolve #ecific class of tautologies. In the analogous situa-
P versus NP question. The notion of p-simulation {gon in computational complexity, when a lower bound
a very useful tool in this overall endeavor, as it allowg shown, eg., Parity not illC?, the lower bound also
us to show that any mathematical statement that caniefids for all languages that Parity is reducible to under
proven efficiently in one syster¥ can also be proven pOGTIME reductions, sincedC? is closed under
in another systeml. DLOGTIME reductions. In a similar way, in proof
However, the notion of p-simulation has some limcomplexity, one would like to rule out not just lower



bounds for a certain sequence of tautologies, but aksy propositional or quantified system.
for any sequence of tautologies that is at least as “hardThe study of effective simulations is helpful in under-
as the sequence for which the lower bound is provestanding the concept of automatizability of proof sys-
There seems no straightforward way to do this using f&ms, which has seen a lot of interest in recent years.
simulation without insisting that the lower bound shouldn effectively-p simulation of proof system by proof
go through forall sequences of tautologies that doniystemB implies a reduction from automatizability of
have small proofs. A to automatizability ofB. In the case that proof sys-
In this paper, we explore a more general notidlem A is already known not to be automatizable under
of p-simulation called “effectively polynomial simula-a certain assumption, this gives non-automatizability of
tion” which we feel is very natural from a complexity-B under the same assumption.
theoretic point of view. Though closely related con- Effectively-p simulations raise the possibility of “lift-
cepts have been studied (see Related Work subsectiong; a lower bound from a weaker proof system to
we are the first to explicitly define this new notion and stronger one, in a similar way to a recent paper of
demonstrate its wide-ranging applicability. EssentjallBeame, Huynh-Ngoc and Pitassi [1]. If we have an ef-
given proof systems! and B for tautologies,B is said fectively p-simulation of a stronger proof system (in the
to effectively p-simulated if there is an efficient truth- sense of p-simulation) by a weaker one (a phenomenon
preserving reduction mapping tautologies with smadf which we give many examples in this paper), and
proofs in A to tautologies with small proofs i. A p- supposing that we have a lower bound method against
simulation is simply the special case of an effectivelythe weaker proof system which works for tautologies in
simulation where the reduction is the identity. the range of the reduction, we automatically get lower
While the original notion of p-simulation is funda-bounds against the stronger proof system as well.
mental, there are several reasons to study this mord-inally, the study of effectively-p simulations gives
general notion of simulation as well. First, we fedlise to interesting new questions, eg. does Resolu-
that the effective simulation notion addresses the wedlon effectively-p simulate Extended Frege, answer-
nesses of the notion of p-simulation mentioned earliémg which seems to require strengthening and extend-
Where we're chiefly interested in feasibility, it is natuing known proof techniques and developing new con-
ral to think of polynomial time as “given for free”, andnections between computational complexity and proof
for the notion of simulation we use to be closed undeomplexity.
polynomial-time reductions. From the point of view of
practice, this captures the possibility that when a prodfl ~Related Work
system is used as a SAT solver, polynomial-time pre-We observe that the concept of effectively-p simula-
processing applied to the input formula could make thien has been around implicitly for a long time. In fact
algorithm more effective. In fact, encoding problemis the original paper by Cook and Reckhow [2] defining
(such as planning and inference) into SAT has becom®positional proof systems, and p-simulations, they
a huge subarea within artificial intelligence. compare several different nondeterministic algorithms
It could be the case that effectively-p simulation is giproof systems), not all of which are for the same coNP
interesting notion, but that there are no interesting exemplete language. For instance, Resolution works ex-
amples of it which are not p-simulations. We show thatusively with unsatisfiable CNF formulas, whereas dif-
this is far from the truth. We give a number of exampldgerent Frege systems work with tautological formulas
(some new, some implicit in earlier work) of effectivelyover varying bases. In order to compare these proof
p simulations between proof systems where either nogystems directly, they consider natural reductions be-
simulation is known or a p-simulation has been provéween the different languages. A more extreme exam-
not to exist. This gives a much cleaner picture of propfe exists when comparing the strength of the Hajos
complexity. For example, there are many variants oélculus to the strength of various propositional proof
Resolution - Linear Resolution, Clause learning, k-Regstems. Here we are trying to compare nondetermin-
- which are either not equivalent to Resolution with réstic algorithms for very different co-NP complete lan-
spect to p-simulations or there the equivalence is rguages, and once again the comparison can only be ac-
known, however they arall equivalent to Resolution complished by introducing a mapping (reduction) that
with respect to effectively-p simulations. Moreovegllows one to convert strings in one language to strings
effectively-p simulation can be used to compare prowf the other.
systems of different kinds. For instance, proof systemsRazborov [3] and Pudlak [4] defined a notion of re-
with different vocabularies can be compared by this nduction between disjoinv P-pairs, with application to
tion, or a quantified proof system can be compared jimoof complexity in mind. Their notion corresponds to
power with a propositional one. Indeed, one of our magur notion of simulation when applied to the canonical
results in this paper shows that a certain quantified prqadir of a propositional proof system. However, our no-
system is universal in that it effectively-p simulates ewion is more general in that it applies, for example, to



guantified propositional proof systems as well. DEFINITION 2.1 A propositional proof system is a
It was already observed in Pudlak’s work, as well ipolynomial-time onto functionA from {0,1}* to
subsequent work of Atserias and Bonet [5], that redu€-AUT'.
tions between disjoint NP-pairs help to understand au- o ) )
tomatizability. Though Atserias and Bonet never define " the above definition, we think of a domain element
effective simulations explicitly, one of their main result®S @n encoding of a proof, anél maps the encoding
can be interpreted as an effective simulatiokdtes by ©f @ Proof to the (encoding of) the formula that is be-
Resolution. ing proved. The onto condition ensures that the proof
The fact that reductions are implicitly used eveR/Stem is complete. _— .
in practice was pointed out very elegantly in a paperNOte that the above def!r?'“"” _does not require _the
by Hertel, Hertel and Urquhart [6]. In their paperPrOOf system to be pr(_)posmon_al in the_usual intuitive
they argue that sometimes reductions, even very nat se (Where_ the objeqt_s being manipulated are re-
and seemingly harmless ones, can be quite dangerﬁ ngtgd to being proposﬂmnal formulas.) For exam-
(meaning that they can drastically alter the difficulty dr'e: first prdgr systerp; .Of arithmetic, S.U.Ch as PA (Peano
the problem if one is not extremely careful). To suppo?tmhmet'c) fitthe deflnlthn ofa proposm_opal proof sys-
this claim, they present several examples of reductiolfe™ Even systems which do not explicitly talk about
between proof systems where the blowup under one nté?plean formulas (such as standard systems of set the-

ural setting is polynomial, but the blowup underanoth&?}” ZF;) cfan atllso t.)etV'eW?d as tf't.tm? the fef”.““?r:"
natural setting is exponential. where the function interprets certain formulas in the

o . nderlying lan representing th rr ndin
A summary of our contributions and outline of th% dle y fg a ?uage as representing the corresponding
rest of the paper is as follows. In Section 2 we gelolean formura. .
. Now let QT AUT denote the set of all encodings

fine effectively-p simulations and present some basitf‘ : - o
4 o : of valid quantified propositional formulas, where the
facts concerning the definitions. As mentioned ear-

. - guantification is over all the variables of the formula.
lier, although this concept was around before, we e define quantified propositional proof systems anal-
the first to present a general definition and to stu d prop P y

the concept in its own right. In Section 3, we preser%}pous'y to propositional proof systems.

some positive results, giving several examples whefg:rnition 2.2 A quantified propositional proof sys-

effectively-p simulations are possible, even in casgsy is a polynomial-time onto functiof from {0, 1}*
where p-simulations are provably impossible, or are ugy QTAUT

likely. In Section 4, we present some negative results,

giving some examples where effectively-p simulatio3erINITION 2.3 Let A and B be two proof systems.
are unlikely. A big question is whether or not a suffiThenA p-simulates3 if for all formulas f, the shortest
ciently strong system can effectively-p simulate a seem-proof for f is at most polynomially longer than the
ingly stronger one. When we began this work, we coshortestB proof of f.

jectured (or hoped) that Frege would effectively-p sim- A strongly p-simulatesB if A p-simulatesB and
ulate Extended Frege systems. However, in Sectionrdgreover, there is a polynomial-time computable func-
we present some conditional results indicating that thisn f that transformsB-proofs of f into A-proofs of
is probably unlikely. In Section 5 we present some neji

results concerning the connection between effectively-

p simulation, automatizability, and the versusNP ~ Remark 1. Note that our definition is implicitly

question. We conclude with open problems in Sectidfith respect to some class of formulas. For proposi-
6. tional systemsA and B, the p-simulation is (by de-

fault) with respect to propositional formulas and for
quantified propositional proof systems, fiigimulation
2 Definitions is (by default) with respect to quantified boolean for-

We fi It | noti ¢ ool il simul mulas. More generally for any class of formulas, and
Ve !rst reca t € usua hotion of polynomia simu aémy two proof systems that can prove formulas of this
tions given in the literature. In what follows, we will b

. . lype, we can define g-simulation with respect to this
working with boolean formulas over the standard basg'p & P

ass of formulas. When talking about p-simulations, or
AND' OR ano_l ,NOT' We assume some standard enc%qfectively-p simulations (defined next), we will explic-
ing of propositional formulas. For a formulg let [f]

d h di A q h itly mention the formulas only when it is not the default.
enote the encoding of. Let TAUT denote the set “sq jefineq above, for tautology, if one proof sys-
of valid propositional formulas. For the sake of con-

. L Yem A always contains a proof of that is within a

venience, we do not distinguish between formulas aBglynomial factor of the size of the smalleBtproof

their encodings here. of f, thenA is said to p-simulatd3. This relationship
maps B-proofs of f to similarly-sized A-proofs of f.



We can relax this definition to produce another kind afefined predicate. As far as we can see, this is not pos-
simulation (an effectively-p simulation, defined belowgible, since one seems to need the exact predicates that
in which we mapB proofs of f to similarly sizedA- are required in the EF proof, even in the presence of the
proofs of /', wheref’ is some formula which is a tau-substitution axiom. Thus intuitively, obtaining an effec-
tology if and only if f is a tautology, and moreovef, tive simulation of EF by Frege seems to require either
can be produced frori efficiently. (i) that the reduction, giverf, finds an EF proof off

We use the following definition of a truth-preservingnd then defines the needed predicates via extension ax-
transformation both for propositional and quantifietms (an impossiblility under complexity assumptions),
tautologies. or (ii) arguing that there exists a small (polynomial in

. . ... n) "core” of predicates that would suffice to simulate
DEFINITION 2.4 We say thaf? is a polynomial-time in EF proofs forall formulas of sizen.

m truth-preserving transformation from boolean formu- We next define automatizability. Like p-simulation

!as_ to boolean form_ulas i, for all b_oolean formulgisy and effectively-p simulation, automatizability comes in
is in TAUT (respectively QTAUT) if and onlyAf( f, m) two flavors: strong and weak

is in TAUT (respectively QTAUT), arf@(f, m) runs in
time polynomial in f| + m, where| f| is the number of

’ . . . DEFINITION 2.6 A (propositional or quantified) proof
connectives irf andm is an auxiliary parameter. (prop g )P

systemA is strongly automatizable if there is an algo-
DEFINITION 2.5 Let A and B be two proof sys- rithm @ such thatifg is a valid formula whose smallest
tems. Thend effectively-p simulates3 if there is a A-proofis of sizes;, thenQ(¢) runs in timepoly(s+|¢|)
polynomial-time inm truth-preserving transformation and produces ami-proof of¢. If Q produces not am-
from (encodings of) boolean formulas to (encodings gfjoof but a proof in some other proof systéimthenA
boolean formulasR(f, m) such that whem: is at least is said to be weakly automatizable.
the size of the shorte&-proof of f, R(f, m) has anA
proof of size polynomial inf| 4 m. If there also exists When we say “automatizable” in future, we mean
a polynomial-time function (again polytime ifi| +m) “weakly automatizable” by default. effectively-p sim-
that mapsB-proofs of f to A-proofs of R(f,m), then ulation of proof systemA by proof system’ implies
we say thatd strongly effectively-p simulate3. that if B is weakly automatizable then so.4s In other

] _ . words, effective simulation gives a reduction between
~ Remark 2. The role of the parameten in the defini- e automatizability properties of proof systems. This
tion mlght_nc_>t be clear at first S|ght._ We c_ould define oyas observed in essence already by [4] and [5]; it is
notion omittingm completely by stipulating thak(f) eyen easier to see with our definitions.
is computable in time polynomial ify| and thatR(f)
has smallA-proofs if f has smallB-proofs. The point Proposition 2.7 Let A and B be proof systems. 1B

is that our definition is more relaxed - it allows the resffectively-p simulatest and B is weakly automatiz-
duction to operate in time polynomial in the size of thgpje, thend is weakly automatizable.

smallestA-proof for f rather than in the size of. As
we show later, this relaxed notion still gives a reduction e also consider at times in this paper the “quasi’-
from automatizability of B to automatizability ofA. analogues of the polynomial-time notions defined
Since one of our main motivations for exploring this Noghove.  For instance, a proof system is quasi-
tion is the connection to automatizability, it makes senggtomatizable if there is a proof-finding procedure that
to work with the weakest notion of s;imulationforwhich)perateS in time quasipolynomial in the size of the
this connection holds. We note, though, that of the seynajlest proof, and a quasi-effective simulation is one
eral positive results about effectively p-simulations iyt operates in time quasipolynomial in the parameter
this paper, all but Proposition 3.1 and Theorem 3.3 g9 Analogues of our propositions for the polynomial-
through even if the stronger notion where the reductigine versions of simulation and automatizability also
can only take time polynomial ify| is used. hold for the quasi-analogues.

Remark 3. It is clear that if A can p-simulateB, ~ We now describe some specific proof systems.
then A can also effectively-p simulatB. For example, »
EF can effectively-p simulate Frege. In the oppositel Propositional Proof Systems
direction, it may seem at first that by using extension The resolution principle says thatdf andD are two
variables, many reverse effective simulations are easiliauses and is a variable, then any assignment that sat-
possible. Using our same example, we could try to a$fies both(C Vv z) and(D Vv —x) also satisfie&' v D.
fectively simulate EF by Frege by adding a polynomialFhe clauseC v D is said to be theesolventof the
sized set of extension axioms for predicates that arkausesC v x and D v —z and derived byresolving
complete forP/poly, thereby allowing Frege to sim-onthe variabler. A resolution refutatiorof a clause”
ulate each EF step by using an instance of the nevitgm a CNF formulaf consists of a sequence of clauses



in which each clause is either a clausefobr is a re- closed under the boolean operationsv and -, and
solvent of two previous clauses, a@ds the last clause the negation of &? formula is all/ formula, and vice
in the sequence. It isrfutationof f if C'is the empty versa. X! ; contains boti:? andII{ and formulas of
clause. Theizeof a resolution refutation is the numbethe form3z; ... 3z, A, whereA is all formula. Simi-
of resolvents in it. larly, ITZ, ; contains bottt? andII? and formulas of the

A linear resolutionrefutation of f is a resolution form formulas are formulas of the foriiz; ...V, A,
refutation with the additional restriction that the undewhere A is aX! formula. Thus X! (ITY) formulas are
lying graph structure must be linear. That is, the progiiantified boolean formulas witthblocks of alternating
consists of a sequence of clauggs. . ., C,, such that quantifiers, beginning witg (V).

C,, is the empty clause, and for every< i < m, ei- The system( is a proof system for QBF formulas
ther C; is an initial clause olC; is derived fromC;_; that extends PK [20]. Lines in the proof are still se-
andC}; forsomej < ¢ — 1. quents' — A but nowI’, A are finite sets of QBF for-

We briefly review the definition of Frege and Eximulas. The rules ofr include all propositional rules of
tended Frege systems. More detailed definitions can®i€, and additionally include rules for introducing each
foundin [18, 28, 29]. The sequent calculus is a very gjuantifier (on both the left side, and the right side of
egant proof system that can be used as a frameworktioe arrow). The syster&r, is a proof system for QBF
capturing many natural and well-studied proof systemshere the cut rule is restricted to propositional formu-
A propositionalsequents a line of the forml" — A, las only. Similarly,GG; is a subsystem aff obtained by
wherel™ andA are finite sets of propositional formulasrestricting the cut rule t&? QBF formulas. Note that
The intended meaning of the sequent is that the cdheG systems can be used to prove any QBF formula.
junction of the formulas ii" implies the disjunction of Beyond QBF proof systems, we can view any stan-
the formulas inA. A PK proof (a propositional sequentdard axiomatic system as being a proof system for
calculus proof) of a sequeilt — A is a sequence of propositional reasoning. As mentioned earlier, Peano
sequents, where: (i) each sequent is either an instaAcghmetic, and even ZFC (Zermelo-Fraenkel Set The-
of a PK axiom, or follows from one or two previoury) can be studied with respect to their ability to
formulas by an instance of a PK rule and (ii) the fingrove propositional formulas (with a suitable encoding
sequenti§’ — A. The PK rules are very natural. Theyf propositional formulas).
include some structural rules, as well as two rules for
each connective, one for introducing the connective g
the left side of the arrow, and one for introducing the
connective on the right side of the arrow. The most im-
portant rule of PK is theut-rule, which allows oneto As mentioned earlier, anytime we have a p-
inferl’ — A fromI', A — A andl' — A, A. A PK simulation between two proof systems, we also have
proof of a formulaf is a proof of the sequent f. an effectively-p simulation. Thus, for example, the

With no restrictions on the cut-rul@ K is polynomi- usual hierarchy of p-simulations continues to hold un-
ally equivalent to Frege systems. By restricting the cder effectively-p simulation.
rule, we can elegantly obtain many commonly studied We also observe that effective simulations can es-
subsystems of Frege systems. For example, if the taflish equivalences between two proof systems, where
rule is restricted to formulagl which are just literals, the equivalence with respect to p-simulation hinges on
then we have a system which is equivalent to resoliinding short proofs for a particular statement. In our
tion. By restricting the cut rule to bounded-depth fowmiew, these are examples pointing out that sometimes p-
mulas (ACy), we obtain bounded-depth, diCy-Frege simulation is the better concept, since effectively-p sim-
systems, and so on. An Extended Frege proof of a fedation does not provide a fine enough granularity be-
mula f is a proof of E — f, whereFE is a sequence oftween systems for applications in reverse mathematics.
extension axioms. An extension axiom is an axiom &br example, it is known that the monotone sequent cal-
the form(A <= 1, V...VIx), wherel; are literals and culus (monotone PK) can quasipolynomially simulate
A is a new variable. Extension axioms allow efficierf?K with respect to monotone sequents, and it is open
reasoning about predicates computable by polynomialhether or not a p-simulation is possible [7]. On the
size circuits, by introducing new variables to represeather hand, it is not hard to show that monotone PK can
the various subcomputations of the circuit. effectively-p simulate PK with respect to monotone se-

guents. Similarly, it is not hard to see, using the results
2.2 Quantified Propositional Systems and Be- of Soltys and Cook [8], that Frege can quasipolynomi-
yond ally effectively-p simulate the system LAP (capturing

First we recall the usual inductive definitions of quarinear algebra reasoning).
tified boolean formulast{ = II{ is the class of quan- Another simple observation allows us to obtain effec-
tifier free propositional formulas. Both? andII! are tive p-simulations between two proof systems whenever

Effectively-p simulations: positive re-
sults



the stronger of the two is automatizable: that ends withC; and includesCy,...C;_; in order

along the line. We show how to extefido deriveC; ;.
Proposition 3.1 Let P and P’ be two proof systems There are two cases. The first is wherg, ; is de-
that are both automatizable. Then each effectivelyrped from two earlier clause§;, Cy, in 7 by resolving
simulates the other. onz, 1 <j < k< Ifi=Fkthenwe can simply add

C;y1 to the end ofL. Otherwise letly,... [, be the
Proof. We show thatP’ effectively simulates”; the |jiterals in C;. ResolveC; with the following (initial)
other direction follows by symmetry. Given an inpuglauses of g{z vV -z vV =l1), ..., (z V =2 V —l,,) until
formulag for P and the parameten, we define an effi- the last clause irl is (z vV —x). Now resolve this last
cient simulation as follows. We run the automatizatioflause onz with C; and thenC, so the last clause be-
procedure forP on ¢. If it halts with a proof within comesC;, 1. The other case is whefi;,; is an axiom
poly(m) steps, we output a trivial tautology which hagontaining the literak*. In this case, derive the clause
polynomial-size proofs ir’. If not, then we outpud. (z v —z) as above fron’; and then resolve the axiom
This transformation is truth-preserving, since the outpgt , with it to obtainC;; again at the end of the line.
of the reduction is a tautology iff the input is. Also, if |t is still unknown whether or not linear resolution
the input formula has proofs of size poly(m) in P, can p-simulate resolution, but it is conjectured to be
then the output formula has small proofs too, since itfgise.
a trivial tautology. O

_ 3.2 Clause Learning
As a consequence, we get that the following pairs .
Our second example is a very recent result prov-

of proof systems effectively (quasi)simulate each other: . : .
Nullstellensatz and Polynomial Calculus, Tree Resolltd that Clause Leaming effectively-p simulates Res

. . ution. Clause Learning is a particular refinement of
tion and Polynomial Calculus, small rank LS and sm esolution that is very important. Most state-of-the-art
rank LS+, tree-LS and small rank LS, small rank LS+ fyimp :

I complete algorithms for SAT make use of highly op-
and tree-LS. On the other hand, it is known that be- . P gorit gnly op
. . timized Resolution SAT solvers and all are based on
tween many of these systems there are no p-simulations. . :
L the idea of Clause Learning. Informally, clause learn-
For example, it is known that Nullstellensatz does ng

(quasip-simulate PC [9]; low rank.S does not p- ng is an implementation of DPLL whereby intermedi-

: . . te clauses that are generated are "learned” or "cached”
simulate low rankZLS*; and Tree resolution does no .
o along the way. Then in later states of the DPLL algo-
(quasi)p-simulate any of the other systems.

. ) rithm, the cache is checked to see if the current sub-
In this section we present some other exampl

. . . . Foblem to be solved has already been solved earlier.
where an effectively-p simulation is possible, but a p-

. S . . ; pis gives a way of pruning the DPLL tree and it has
simulation is not possible, or is conjectured to be NBLen shown to be highly effective, not only for SAT, but
possible. ' ’

also for important generalizations of SAT such as QBF
31 Linear Resolution solvers and Bayesian infgrence. (See for gxample [11-
14].) [15] and [16] formalize Clause Learning and the
#Srmer shows that that it is superpolynomially more ef-
Sficient than other common resolution refinements (such
as regular and tree resolution.) Whether or not Clause
Learning p-simulates Resolution is an important open
problem. However, the following somewhat surprising
theorem was recently proven.

Our first example is the theorem whose proof h
been known for some time, showing that linear re
lution can effectively-p simulate all of Resolution.

Theorem 3.2 [10] Linear resolution effectively-p sim-
ulates Resolution.

We sketch the proof here, both for completeness, afileorem 3.3 [17] Clause learning effectively-p simu-
to give the reader an idea of how such a simulation Cgjles Resolution.

be proven. Lelf be a CNF formula over,, ...z, and

let g be the following set o2n? clauses: On the one hand, this proves formally that Clause
Learning is as powerful as all of resolution with re-
{@iVozi V] [ 1<d,j <n,a€{0,1}}. spect to solving SAT. But on the other hand, it unfor-

tunately shows that finding clause learning proofs (in a
Suppose thaf is an unsatisfiable CNF formula thatvorst-case sense) is as hard as finding general resolu-

has a resolution refutation of siz& Then it can be tion proofs.
shown inductively that there is a linear resolution refu-
tation Off Ag of size p0|yn0mia| |nS’, as follows. Let 3.3 Effectively-p simulations for local extensions
m = (4, ...Cg be the resolution refutation ¢f. Since  We make a simple observation that allows us to see
C, € f, we can clearly derivé€’; in linear resolution. several examples where p-simulations do not hold, but
Now assume we have a linear resolution derivation effectively-p simulations do hold.



DEFINITION 3.4 Let f be aboolean function ohvari- 3.4 G, can effectively-p simulate any proof sys-

ables,ys, ..., yr. We assume without loss of generality tem
that f is a CNF formula. The formulg? is a CNF In this section, we will prove thaf, can effectively-
formula definingf. The variables of © arey,,...,yx p simulate any quantified propositional proof system,

plus variablescc, for each claus&’ of f. The clauses including Peano Arithmetic, and Zermelo-Frankl Set
of f* are as follows. For each clausg of f, we have Theory (ZFC). Sadowski [19] showed that if there is
clauses that express the fact tifais equivalenttocc.  an optimal quantified propositional proof system, i.e.,
a quantified propositional proof system that p-simulates
all others, thenVP N coN P has complete languages,
which is considered unlikely. Our result shows that in
contrast, there is a proof system whicteféectively op-
timal.

DEFINITION 3.5 Let z1,...,2, be a vector ofn
Boolean variables. The set of d@ltlocal boolean func-
tions overZ consists of all functiong such thatf is
a boolean function defined on a subsetkofariables
of Z. The formulaZ X T'(k, n) consists of the conjunc-
tion of the formulag'?, wheref ranges over alk-local

' Theorem 3.8 For any i, G can effectively-p simulate
boolean functions ovet.

any proof system far! quantified boolean formulas.

DEeFINITION 3.6 (k-local extensions of proof systems%,
Let P be a rule-based propositional proof system. D
fine P(k) to be a propositional proof system containi
all rules and axioms of plus the additional axiomg?”
for all k-local functionsf.

roof. (sketch) LetS be any quantified proof system
n(?or ¥{-QBF formulas. We want to show th&t, can
%ffectively—p simulateS. The high level idea is as fol-
lows. We define a reduction frolm! quantified propo-
sitional formulas toX!, , quantified propositional for-
Examples of well-studied-local extensions of stan-mulas as follows. Given & QBF formulaf, and a
dard proof systems includeRes(k), CP(k), LS(k) numberm, we mapf to f’, wheref’ is the formula:
andLS* (k). Indeed, Atserias and Bonet [5] implicitlyRefln, — f. Refly, is the reflection principle foS
show that Resolution effectively simulat&s(k) for and it will be a fixedvX{ formula depending only off
each constant, and Pudlak [4] implicitly shows thatandm that asserts that for any{ formula 4, and for
C'P effectively simulates’ P(2). any «, if a is anS proof of A, Then A is satisfied by
We generalize the above observations. Each of tAkassignments. We now proceed with the details, and
above proof systems is obtained from the base systBRgin by defining/”.
by introducing extension axioms for all conjunctions of By definition, S is a polynomial-time algorithm that
up tok-literals. Note that ouk-local extension is more Mmaps strings (encodings 6#proofs) to strings (encod-
general than these since we allow extension variabiggs of:{-QBF formulas). We will assume withoutloss
for everyfunction onk variables and not just the ANDOf generality that all proof systemS map strings of
function. The following lemma shows that as long d§ngthm to strings of lengthn: we can always pad the
we obtainP’ from P by adding extension variables fooutput with leading zeroes if this is not the case.
some local functions, theR can effectively-p simulate  Now fix mm and consideiS on inputs of lengthm.

P, SincesS is polynomial-time computable, there is a fixed
circuit, Cy,,, of size polynomial inm with inputsz =
Lemma 3.7 Let P’ be a rule based proof system. Sup,, ..., x,, that computes(«) for eacha € {0,1}™.

pose that”’ is another proof system such th&tk) p- Using extension variables to represent each intermedi-
simulates”’, and P’ p-simulates”. ThenP effectively- ate gate of”,,,, we can define a formulBroof? (Z, )
p simulates”’. In particular, P effectively-p simulatessuch thatProofS (o, 3) is true if and only ifC,,, on in-
P(k). puta outputsi3. (Note that the variables of the formula
arez, i, plus the extension variables used to define each
intermediate gate af’,,.)

Fix some standard encoding af!-QBF formu-
las. Then we can define a propositional formula
eFormulai(gj) that is true if and only ify encodes a
(X7 U IIY)-QBF formula. Similarly we can define a
! formula SAT; ., (7, Z) that is true if and only if
Formula;(y) is true, andt’ satisfies th&! formula en-
coded byy. (Herem is the length of the vectord ¢/, 2.)

It follows from the above lemma th@ies effectively- SAT; ,, is defined inductively. For example, the follow-
p simulatesRes(k) [5] and similarly forCP/CP(k), ing equalities hold:
LSILS(k), andLST/LS™ (k). In all of these cases, it (1) SAT; ,,,([3zA(x)],7) = F2SAT;  ([A(2)], T),
is known that p-simulations are not possible. (See [18](R) SAT; . ([VxA(x)], 7) = VaSAT; m[A(2)], ),

Proof. The proof is straightforward. LeP, P’, P(k)
be defined as above, and Jebe a formula overn vari-
ables, . We mapf to f' = f A EXT(k,n). Itis clear
that the mapping is polynomial-time, and that it pr
serves satisfiability. We claim that jf has a short”’
proof, thenf’ = f A EXT(k,n) has a shorP-proof.
By the p-simulation of”’ by P(k), f has a shorP (k)
proof, and thug’’ has a shorf’ proof.



(3) SAT; n([-A], ) = =SAT; »n([A], 7), and From the above claim, it follows that Tree-
(4) SAT;+1.m([A],7) = SAT; ..(JA],7) whenever Resolution, Nullstellensatz, PC, and low rabk, LS™
Aellluxl. cannot effectively p-simulate Frege or Extended Frege,
Note thatSAT; ,,, will be aX formula. (Of course, we under assumptions about hardness of factoring [22-24].
will need to introduce polynomial im many extension  As a further example, we show that Tree Resolution
variables in order to be able to encode and decode QBRinlikely to effectively simulat&r,.
formulas, and in order to manipulate them.)

Finally, we defineRefl> to be the following for-
mula: VaVivz(~Proofs (Z,4) V SAT; (¥, 7). This
formula states that for every,, z of lengthm, if Z proof. Theorem 5.4 in the next section shows that if
codes arb-proof of some formulaf encoded byé, then nyp ¢ P, thenG, is not automatizable. The same
f is satisfied by every assignmefito its free variables. proof scales to show that NP ¢ QP, thenGy is
The formulaRe f1, is avx{ formula. not quasi-automatizable. If Tree Resolution effectively-

Our reduction, givery andm, will map f to f' = p simulated,, thenG, would be quasi-automatizable,
Refly, — f. The reduction is clearly polynomial-timesince Tree Resolution is. Thus, under the assump-

and truth preserving. It is left to argue thatfifis aX{- tion that NP N coNP ¢ QP, Tree Resolution cannot
QBF formula with a shors-proof, thenf’ has a short effectively-p simulate?,. O
Gy proof.

Let [f] be the encoding of, and suppose that has
an S-proof, «, of sizem. We will first argue thaiG,
can efficiently provelz Proofs (Z,[f]). By definition,
the circuitC,, on inputa, outputs[f]. Therefore it is
not hard to see tha¥, has a polynomial-size proof of
Proofs (a, [f]). Thisis just a matter of verifying ity
that the circuitCy,, on inputa, outputs|f]. Now using Theorem 4.3 There is a proposition proof systeid
the rule for3, G, can derive3ZProof, (Z,[f]) from  such that f Factoring is notin polynomial time infinitely
Proof;(a,[f]), as claimed. often, then

Secondly, we claim thaf, can prove that-f — 1. EF(Extended Frege) is not automatizable
7S AT m([f], Z). (See [20] for example.) Now com- 2. P js not automatizable

bining the above two arguments, it follows th@§ can 3. P does not effectively-p simulate EF
efficiently prove-~f — —Refl? , as desired. O

Theorem 4.2 If NP Z QP, then Tree Resolution does
not effectively-p simulat€’y.

How about if both two proof systems are not autom-
atizable (under reasonable complexity assumptions)?
This is the typical case for strong enough proof systems,
say bounded-depth Frege or stronger. We can still show
a negative result in this case, however one of the proof
systems involved is rather “unnatural”.

Proof Sketch. The basic idea is to defin® to be a
Could it be the case that there is a propositionalparsified” version of EF in some sensB.will retain
proof system which effectively simulates all proposienough of the nature of EF that automatizability/of
tional proof systems? This is a possibility, but the cofyould have unlikely consequences, and yet an effective
struction of such a system would imply the existenegmulation of EF byP would imply that EF is automa-
of a complete disjointV P-pair, which is a longstand-tizable infinitely often, which again would have an un-
ing open problem [21]. However, perhaps the more ifikely complexity consequence. This proof idea is anal-
teresting question is whether a “natural”, well-studieglgous to Ladner’s construction [25] of a sethhP that
propositional proof system like EF effectively simulateg neither inP nor N P-complete, assuminiy P # P.
all other propositional proof systems that are “natural” we need to define what “sparsified” means. On in-
in some sense. We have no evidence in support offpiitely many tautology lengthsP will be exactly like
against this possibility. EF, however there will be a triply exponential separa-
tion between each two consecutive input lengths. On
4 Effectively-p simulation: negative re- all remaining tautology Iength;l? will be exactly like _
sults the truth-table proof system, with each tautology having
only exponential-size proofs.
In this section we discuss several situations whereBonet, Pitassi and Raz [23] showed that if EF is au-
effectively-p simulations do not seem to be possible. tomatizable, then Factoring is easy. Their proof also
Our first observation in this direction is as follows. shows that if EF is automatizable on infinitely many
tautology lengths, then Factoring is easy infinitely of-
Claim 4.1 Let A be a propositional proof system that igen. Thus, if EF is automatizable &Yis automatizable,
automatizable, and I&B be another propositional proofthen Factoring is easy infinitely often.
system that is not automatizable (under assumptions)|t remains to be shown that the same conclusion fol-
then under the same assumptioAs;annot effectively- lows if P effectively simulates EF. We focus on tau-
p simulateB. tology lengths. for which P looks like the truth-table



proof system for all input lengths betwe&ry(n) to 2™  bility, and moreover the size of th-refutation for this

- by definition of P, there are infinitely many of these new formula will be the same as before.

Assume, for the sake of contradiction, that there is anlf NP = P, any two proof systems effectively-p
effectively polynomial simulatiom? of EF by P, and simulate each other. Hence we need to put some as-
let ¢ be a constant such thatffhas an EF-proof of size sumptions ord in order to get negative results without
m, thenR(f, m) has aP-proof of sizem®. Let f be any proving thatP is different from N P. Next we define
tautology of lengtm. We define a procedu@(f, m) a natural restrictions od. We assume without loss of
running in polynomial time such that ffis a tautology generality thatf is a 3SCNF formula im variables. We
of sizen with an EF- proof of size at most, then@ slightly abuse notation and say that suchfahas size
outputs a proof off (in a different proof system). Thisn.

implies that EF is automatizable. - )

Q(f,m) runs R(f,m). If R(f,m) outputs a for- DEFINITIQN 4.5 (Oblivious reductlons) _LetA be a
mula with more tham log(m) variables, therq) outputs POlynomial-time truth-preserving reduction frofy m
something arbitrary. The point is that in such a cgse 10 f A g. Ais an oblivious reduction if for alh there
cannotbe a tautology with EF-proofs of size at mast  €Xists a unique such that for allf of sizen, A(f) maps
since the output formula does not haeproofs of size 10 f A g. Thatis, A is oblivious to everything abouft
at mostme (P looks like the truth-table proof systemgXcept for its size.
in this range of lengths), so it does not matter wigat
does. On the other hand, suppose tR&f, m) outputs
a formula with at most log(m) variables. By exhaus-
tive search( determines ifR(f, m) is a tautology or
not. If it is, then@ outputsR(f, m) together with the
truth-table proof thai?( f, m) is a tautology, otherwise
it does something arbitrary.

Since R is tautology-preservingR(f, m) together
with its truth-table proof act as a proof gfin some
propositional proof system. It's clear th@toperates in
polynomial time and outputs a proof gfwheneverf is
a tautology of size at most.

The argument given above works for dllof sizen,

This type of reduction is natural and have been de-
fined and studied in many contexts similar to ours. The
intuition behind this restricted definition is that it is kar
to determine whether or ngtis satisfiable, and that ba-
sically no useful information can be obtained about an
arbitrary f in polytime, just by looking ajf .

Now assume thatl is an oblivious reduction map-
ping f to f A g. We can assume without loss of general-
ity thatg is also a CNF formulag is a formulainvolving
the original variables of, call themz, plus new vari-
ablesy. Furthermore, it must be the case that for every
assignmenty to the variables off, there exists an as-
wheren is in the “sparse” range of, and there are signmemﬁ_to the new variablescg‘sqch th.a:b(a’ﬁ) Is

true. This is because the reduction is oblivious. Assume

infinitely manyn, as we observed. Thus under the ags L ; ;
. . . . or sake of contradiction that there is an assignment
sumption thatP effectively-p simulates EF, EF is au-,

tomatizable infinitely often, which means that Factori 0 the variables such that for alf, g(a, ) is false.

is easy infinitely often by the result of Bonet, Pitassi and . sorr;]ef of sizer such thatf(o‘r)] IS t”;]e' TEenA I
Raz [23]. not truth preserving on input. Thusg has the prop-

erty that for everyy, there exists & such thaty(«, 3)

) ) ) ) is true. Note that this implies that each clause afust

4.1 No effectively-p simulations under restricted jnyolve at least one new variable.

reductions Other reasonable assumptions are as follows.
We don’t know how to say anything in general about

the non-existence of effectively-p simulations betwedPEFINITION 4.6 Let A be a polynomial-time truth-

two natural proof systems neither of which is believegreserving reduction frony, m, to f A g. LetZ be

to be automatizable. However, we can say somethingtie original set of variables underlying, and letg be

we constrain the form of the reduction. a CNF over thet variables, plus new variableg, A
is symmetric if for all permutations of z, there is a

Claim 4.4 Let P and P’ be two propositional proof permutations’ to y such thaty(%, i) = g(r(Z), 7' (¥/))-

systems for refuting unsatisfiable CNF formulas, andl is extensional if for each assignment & there is

such thatP effectively-p simulate$”’. Let A be the exactly one assignment fgrsuch thaty(Z, %) is true.

polynomial time algorithm that transformg to f’.

Then we can assume without loss of generality that All of our positive results for effectively-p simu-

mapsf to f/ = (f A g), for somey that depends orf lations excepting those based on automatizability are
andm. oblivious, symmetric and extensional.

Our next results use only the symmetric and exten-
Since the reduction is truth preserving, we can aional restrictions. We will need the following amazing
ways take the conjunction of whatever formuwlare- theorem of Clote and Krannakis [26], later generalized
turns with f. This formula will still preserve satisfia-in [27].



Theorem 4.7 (Clote, Kranakis) Letf = {f, | n = such that no edges exist between the sets. These state-
1,2,...} be a boolean function, wherg, denote the ments have polynomial-size Frege proofs. Now sup-
function in ouputs of length. For eachn, we define pose thatd mapsf to f A g, whereg defines a set of
an equivalence relation on the set of all permutatiomsew functions of low communication complexity. As-
of ¥ as follows. Letr; and m» be two permutations sume for sake of contradiction that works. Sincef
of ¥ Thenm; = my if and only if f(7;(x)) is isomor- has short Frege proofd, A g should have short tree-
phic to f(m2(x)). We will say that the functiotf,, is like CP (Resolution) proofs. On the other hand, sipce
k-symmetric if the number of equivalence classes fdefines functions that have small communication com-
fnis k. Soiff, is a truly symmetric function, then itplexity, we can still apply the feasible interpolation ar-
is 1-symmetric. We say thdtis poly-symmetric if there gument using the proof from [23]. That is, we can build
exists a constarit such that for all sufficiently large, a monotone circuit of small size takes as input an as-
the number of equivalence classes is at mdstlf f is signmentto the: variables (a graph) and that says "1” if
poly-symmetric, theyf is an N C; function. the graph contains &-clique, and says "0” if the graph
contains & + 1-cocliques, violating known monotone

Theorem 4.8 Assume that our reduction is symmetricircuit lower bounds. Thus we reach a contradiction
and extensional. Then Frege effectively-p simulates Esem the existence of such a reductidn O
tended Frege if and only if Frege p-simulates Extended
Frege.

: 5 Effectively polynomial simulations and
Proof. Let A be a symmetric, extensional reduction, automatizability
mappingf to f A g. SinceA is extensionay defines a  |n this section, we use what we know about effective
set of boolean functiond = {hy,...,h}, using using simulations to draw conclusions about automatizability.
extension variables. For each such function, we mustFirst, we use some of our observations earlier to give
have all symmetric versions of it defined in Since evidence that automatizing Linear Resolution might be
g is polynomial size, this implies that eaéhis poly- hard.
symmetric. Now by the above theorem, this implies that
eachh; € H is an NC; function. But this implies that Proposition 5.1 If Res§) is not automatizable for
Frege can efficiently provg A ¢ if and only if Frege somek, then Linear Resolution is not automatizable.

can efficiently provef. But this implies that Frege (by
itself, with no advice ¥”) can p-simulate EF. O Proof. By Theorem 3.2, Linear Resolution effectively

simulates Resolution. By Lemma 3.7, Resolution ef-
Fina”y, we can prove that if the reduction is eXterT-ective|y simulates Rega for any constank. By tran-
sional and has low communication complexity, thegtivity of effective simulations, Linear Resolution ef-
neither tree-like Cut'[lng Planes nor sublinear W|dtféct|ve|y simulates Rega By the connection between

Resolution can effectively-simulate Frege. Note thataytomatizability and effective simulations, we get the
the restriction on communication complexity is esseBtatement in the proposition. 0

tial. Since we are not insisting in this result that reduc- ) )
tions are efficiently computable, if there is no restriction Alekhnovich and Razborov showed that Resolution

on the communication complexity, Resoluticansim- 1S Not strongly automatizable unless the parameterized

ulate Frege by extensional reductions, using Remar#'gss W[P] is tractable. From the fact that Theorem 3.2
in Section 2. actually gives a strong effective simulation, we derive

the following corollary to their result.

-Srigic;rﬁren dﬁﬁi;‘:p&?e it:gttgufr fdugﬂzﬁ‘i?g t?\);ttegl-l Corollary 5.2 Linear Resolution is not strongly autom-
. on, mapp g, dNE .. atizable unless W[P] is tractable.

functions defined by have communication complexity

at mostn© for somee < 1. Then such a reduction will  nNext we try to say something more general about

not give an effectively-p simulation for Frege systems Ry, 4tomatizability of proof systems relates to the NP
tree-like Cutting Planes, or small width Resolution | ¢ p question.

Proof. (sketch) We follow the proof of [23]. Lef be Lemma 5.3 If NP! = P, then there is a propositional
the clique-coclique interpolant statement as in that pgroof system that is not automatizable.

per, overm variables in total. The formula has the form

Clique(z,y) A coClique(x,z), where Clique(z,y) Proof.  Consider the propositional proof system
states thay is a subset of vertices in the graph (onn  from {0,1}* to TAUT defined as follows:

vertices) that forms a clique, aff@oclique(x, z) states A((¢, 0w)) = ¢ V (—¢) if w is a satisfying assignment
thatz is a partition of then vertices ofx into k + 1 sets to ¢,
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A((o, 12W>) = ¢ if ¢ is a tautology, proof in A, this process will eventually terminate. By
A(z) = 1for all otherz. definition of L, the procedure actually halts and outputs
an A-proof for ¢ in time that's polynomial in the small-
First we show that4 is indeed a propositional proofest A-proof for ¢.
system.A is polynomial-time computable since we can (4) implies (1): This isimmediate sineg&, is a quan-
check in time exponential in the length of a formultfied proof system. O
whether the formula is a tautology or no# is onto
since every tautology has pre-imagég, 12¢>. ) .
Next, we prove that if there is an automatization pr& Discussion
cedureF for A, then SAT can be solved in polynomial There are many research directions worthy of explo-
time. Assume thaf"(z) runs in imeN*, whereN is ration. In this paper, we have given several examples
the size of the smallest proof farin proof systemA. of effectively polynomial simulations. It would be in-
Our algorithm to solve SAT is simple: Given inpgt teresting to generalize these results and provide a high-
run F on¢ V (=¢) for (2|¢|)* steps. IfF halts within |evel framework which would facilitate the discovery
that time, then output “yes”, otherwise output “no”™.  of further examples. More challenging is to find new
The correctness of this algorithm follows from théower bound techniques to rule out the possibility of
fact that(¢ v (=¢)) has proofs of size at mo8t$| ac- effectively-p simulations in specific cases. We highlight
cording toA iff ¢ is satisfiable. U several problems below.

We show how to use the results of previous sections® Resolve (unconditionally) whether or not Res-
to show that in some sens@ is “universal” in terms olution can obliviously effectively-p simulate a
of automatizability, i.e., iiG, is automatizable, so are  Stronger proof system such as Frege or Extended

' . 0 e
all quantified proof systems. Moreover, the automatiz- €g€ (or evenl("-Frege) A positive result would
ability of Gy is equivalent taV P = P. be quite surprising, and as mentioned in the in-
troduction, could allow us to prove lower bounds

Theorem 5.4 The following four statements are equiv-  for stronger proof systems by proving Resolution

alent: lower bounds for specific unsatisfiable formulas.
1. Gy is automatizable On the other hand, a negative result seems to re-
2. All propositional proof systems are automatizable  quire extending lower bound techniques for Reso-
3. NP=P lution. In either case, a new and very interesting
4. All quantified proof systems are automatizable lower bound would be established.

e We proved that if one proof syster is automa-

Proof. tizable, and another proof systeRis not (under
‘We show (1) implies (2) implies (3) implies (4) im-  3ssumptions), thed does not effectively-p simu-

plies (1). late B (under the same assumptions). We would
(1) implies (2): This follows from the fact that every |ike to know if the same implication holds for the

propositional proof system is effectively simulated by  \yeaker notion of feasible interpolation. That is,
Gh, using the connection between effective simulations  prove (or disprove) the following conjecture: Af

and automatizability. has feasible interpolation, anfd does not (under
(2) implies (3): This follows from Lemma 5.3. assumptions) the® does not effectively-p simu-
(3) implies (4): LetA be a quantified proof system.  |ate A (under same assumptions). A proof would
Using the assumption that P = P, we define a proce-  ghow, under complexity assumptions, that Reso-
dureF' that outputsA-proofs for valid formulae in time lution cannot effectively-p simulatelCO-Frege,
polynomial in the size of the smallest-proof. Let¢ Frege, or Extended Frege.
be a valid formula given as input #6, and letn = |¢|. 4 Resolve whether or not Frege can effectively-p
We definel” as a polynomial-time procedure with an  simylate Extended Frege. We conjecture that such
NP oracleL, but from the assumption thaf P = P, a simulation is not possible. Note that a negative
it follows that F' itself can be implemented in poly- answer will require some assumption(s) since an
nomial time. The NP-oraclé, is defined as follows: effectively-p simulation would exist iNP = P.
(¢, 1™, w) € L iff there is anA-proof of ¢ of size at Resolving the question even for extensional reduc-
mostm with prefix w. F first sets an internal param- tions would also be very interesting.

eterm to be equal ton. It queries its NP oracle with
(¢, 1™ €). If the query answers yes, then it uses self:

reducibility to find the lexicographically smallest proofls‘CknOWIedgement

of size at mostn, using theN P-oracleL to search for ~ We thank Albert Atserias, Jakob Nordstrom, Phuong
the proof. If the query answers no, it sets< —2m, Nguyen, Iddo Tzammeret and Avi Wigderson for useful
and repeats the process. Since every tautology hadistcussions.
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