
Effectively Polynomial Simulations
Toniann Pitassi1 Rahul Santhanam2

1University of Toronto, Toronto, Canada
2University of Edinburgh, Edinburgh, UK

toni@cs.toronto.edu rsanthan@inf.ed.ac.uk

Abstract: We introduce a more general notion of efficient simulation between proof systems, which we call
effectively-p simulation. We argue that this notion is more natural from a complexity-theoretic point of view,
and by revisiting standard concepts in this light we obtain some surprising new results. First, we give several
examples where effectively-p simulations are possible between different propositional proof systems, but where
p-simulations are impossible (sometimes under complexityassumptions). Secondly, we prove that the rather weak
proof systemG0 for quantified propositional logic (QBF) can effectively-psimulateanyproof system for QBF.
Thus our definition sheds new light on the comparative power of proof systems. We also give some evidence that
with respect to Frege and Extended Frege systems, an effectively-p simulation may not be possible. Lastly, we
prove new relationships between effectively-p simulations, automatizability, and theP versusNP question.

Keywords: Effectively polynomial simulation; proof complexity; automatizability

1 Introduction

It is well known that NP=coNP if and only if there
exists a polynomially bounded propositional proof sys-
tem. A large research program over the last thirty years
has been to classify proof systems according to their rel-
ative strength, and to develop lower bound methods for
proving that these increasingly powerful proof systems
are not polynomially bounded. Conventionally, “rela-
tive strength” has been measured using the notion of
polynomial simulation (p-simulation). A proof system
A p-simulates a proof system B if every tautology has
proofs in A of size at most polynomially larger than in
B. Intuitively, if A p-simulates B, then it is at least a
strong a proof system as B, because it can prove tau-
tologies at least as efficiently as B.

The notion of p-simulation is very natural from the
proof theoryperspective, where a primary goal is re-
verse mathematics. In reverse mathematics, the goal
is to understand the minimal set of axioms required
to prove specific mathematical statements. For exam-
ple, Extended Frege systems correspond to a system of
bounded arithmetic allowing induction on polynomial-
time computable predicates, and it is known that a sig-
nificant amount of number theory can be carried out
within this axiomatic system. A fundamental open
question in reverse mathematics is to determine the
weakest propositional proof system that can resolve the
P versus NP question. The notion of p-simulation is
a very useful tool in this overall endeavor, as it allows
us to show that any mathematical statement that can be
proven efficiently in one systemB can also be proven
in another systemA.

However, the notion of p-simulation has some lim-

itations as a measure of relative proof system strength
from the algorithmic perspective. From an algorith-
mic point of view, proof systems can be viewed as non-
deterministic algorithms for unsatisfiability. In fact, all
SAT solvers to date can be viewed as deterministic im-
plementations of a particular propositional proof sys-
tem. For example, the Davis-Putnam algorithm (DPLL)
algorithm for SAT, as well as the highly successful
clause learning methods are highly optimized determin-
istic implementations of Resolution. Similarly, the ”lift
and project” methods used in combinatorial optimiza-
tion can be viewed as deterministic implementations of
the proof system LS+. Thus proof complexity is not
just an approach to theNP versuscoNP question, but
to theP versusNP question as well. This is because
proving superpolynomial proof size lower bounds for a
particular proof system unconditionally rule out a large
class of methods for solving SAT in polynomial time.
When comparing such methods to one another, it seems
a needless restriction to insist on comparing them on the
same input as would be required by the p-simulation
notion. If the notion of feasibility is polynomial time,
then arguably some polynomial-time preprocessing of
the input should be allowed for free when comparing
two different methods.

Also, when proving lower bounds against proof sys-
tems, the lower bounds are typically shown for some
specific class of tautologies. In the analogous situa-
tion in computational complexity, when a lower bound
is shown, eg., Parity not inAC0, the lower bound also
holds for all languages that Parity is reducible to under
DLOGTIME reductions, sinceAC0 is closed under
DLOGTIME reductions. In a similar way, in proof
complexity, one would like to rule out not just lower

1

bounds for a certain sequence of tautologies, but also
for any sequence of tautologies that is at least as “hard”
as the sequence for which the lower bound is proved.
There seems no straightforward way to do this using p-
simulation without insisting that the lower bound should
go through forall sequences of tautologies that don’t
have small proofs.

In this paper, we explore a more general notion
of p-simulation called “effectively polynomial simula-
tion” which we feel is very natural from a complexity-
theoretic point of view. Though closely related con-
cepts have been studied (see Related Work subsection),
we are the first to explicitly define this new notion and
demonstrate its wide-ranging applicability. Essentially,
given proof systemsA andB for tautologies,B is said
to effectively p-simulateA if there is an efficient truth-
preserving reduction mapping tautologies with small
proofs inA to tautologies with small proofs inB. A p-
simulation is simply the special case of an effectively-p
simulation where the reduction is the identity.

While the original notion of p-simulation is funda-
mental, there are several reasons to study this more
general notion of simulation as well. First, we feel
that the effective simulation notion addresses the weak-
nesses of the notion of p-simulation mentioned earlier.
Where we’re chiefly interested in feasibility, it is natu-
ral to think of polynomial time as “given for free”, and
for the notion of simulation we use to be closed under
polynomial-time reductions. From the point of view of
practice, this captures the possibility that when a proof
system is used as a SAT solver, polynomial-time pre-
processing applied to the input formula could make the
algorithm more effective. In fact, encoding problems
(such as planning and inference) into SAT has become
a huge subarea within artificial intelligence.

It could be the case that effectively-p simulation is an
interesting notion, but that there are no interesting ex-
amples of it which are not p-simulations. We show that
this is far from the truth. We give a number of examples
(some new, some implicit in earlier work) of effectively-
p simulations between proof systems where either no p-
simulation is known or a p-simulation has been proven
not to exist. This gives a much cleaner picture of proof
complexity. For example, there are many variants of
Resolution - Linear Resolution, Clause learning, k-Res
- which are either not equivalent to Resolution with re-
spect to p-simulations or there the equivalence is not
known, however they areall equivalent to Resolution
with respect to effectively-p simulations. Moreover,
effectively-p simulation can be used to compare proof
systems of different kinds. For instance, proof systems
with different vocabularies can be compared by this no-
tion, or a quantified proof system can be compared in
power with a propositional one. Indeed, one of our main
results in this paper shows that a certain quantified proof
system is universal in that it effectively-p simulates ev-

ery propositional or quantified system.
The study of effective simulations is helpful in under-

standing the concept of automatizability of proof sys-
tems, which has seen a lot of interest in recent years.
An effectively-p simulation of proof systemA by proof
systemB implies a reduction from automatizability of
A to automatizability ofB. In the case that proof sys-
temA is already known not to be automatizable under
a certain assumption, this gives non-automatizability of
B under the same assumption.

Effectively-p simulations raise the possibility of “lift-
ing” a lower bound from a weaker proof system to
a stronger one, in a similar way to a recent paper of
Beame, Huynh-Ngoc and Pitassi [1]. If we have an ef-
fectively p-simulation of a stronger proof system (in the
sense of p-simulation) by a weaker one (a phenomenon
of which we give many examples in this paper), and
supposing that we have a lower bound method against
the weaker proof system which works for tautologies in
the range of the reduction, we automatically get lower
bounds against the stronger proof system as well.

Finally, the study of effectively-p simulations gives
rise to interesting new questions, eg. does Resolu-
tion effectively-p simulate Extended Frege, answer-
ing which seems to require strengthening and extend-
ing known proof techniques and developing new con-
nections between computational complexity and proof
complexity.

1.1 Related Work
We observe that the concept of effectively-p simula-

tion has been around implicitly for a long time. In fact
in the original paper by Cook and Reckhow [2] defining
propositional proof systems, and p-simulations, they
compare several different nondeterministic algorithms
(proof systems), not all of which are for the same coNP
complete language. For instance, Resolution works ex-
clusively with unsatisfiable CNF formulas, whereas dif-
ferent Frege systems work with tautological formulas
over varying bases. In order to compare these proof
systems directly, they consider natural reductions be-
tween the different languages. A more extreme exam-
ple exists when comparing the strength of the Hajos
calculus to the strength of various propositional proof
systems. Here we are trying to compare nondetermin-
istic algorithms for very different co-NP complete lan-
guages, and once again the comparison can only be ac-
complished by introducing a mapping (reduction) that
allows one to convert strings in one language to strings
in the other.

Razborov [3] and Pudlak [4] defined a notion of re-
duction between disjointNP -pairs, with application to
proof complexity in mind. Their notion corresponds to
our notion of simulation when applied to the canonical
pair of a propositional proof system. However, our no-
tion is more general in that it applies, for example, to

2

quantified propositional proof systems as well.
It was already observed in Pudlak’s work, as well in

subsequent work of Atserias and Bonet [5], that reduc-
tions between disjoint NP-pairs help to understand au-
tomatizability. Though Atserias and Bonet never define
effective simulations explicitly, one of their main results
can be interpreted as an effective simulation ofk-Res by
Resolution.

The fact that reductions are implicitly used even
in practice was pointed out very elegantly in a paper
by Hertel, Hertel and Urquhart [6]. In their paper,
they argue that sometimes reductions, even very natural
and seemingly harmless ones, can be quite dangerous
(meaning that they can drastically alter the difficulty of
the problem if one is not extremely careful). To support
this claim, they present several examples of reductions
between proof systems where the blowup under one nat-
ural setting is polynomial, but the blowup under another
natural setting is exponential.

A summary of our contributions and outline of the
rest of the paper is as follows. In Section 2 we de-
fine effectively-p simulations and present some basic
facts concerning the definitions. As mentioned ear-
lier, although this concept was around before, we are
the first to present a general definition and to study
the concept in its own right. In Section 3, we present
some positive results, giving several examples where
effectively-p simulations are possible, even in cases
where p-simulations are provably impossible, or are un-
likely. In Section 4, we present some negative results,
giving some examples where effectively-p simulations
are unlikely. A big question is whether or not a suffi-
ciently strong system can effectively-p simulate a seem-
ingly stronger one. When we began this work, we con-
jectured (or hoped) that Frege would effectively-p sim-
ulate Extended Frege systems. However, in Section 4,
we present some conditional results indicating that this
is probably unlikely. In Section 5 we present some new
results concerning the connection between effectively-
p simulation, automatizability, and theP versusNP
question. We conclude with open problems in Section
6.

2 Definitions

We first recall the usual notion of polynomial simula-
tions given in the literature. In what follows, we will be
working with boolean formulas over the standard basis:
AND, OR and NOT. We assume some standard encod-
ing of propositional formulas. For a formulaf , let [f]
denote the encoding off . Let TAUT denote the set
of valid propositional formulas. For the sake of con-
venience, we do not distinguish between formulas and
their encodings here.

DEFINITION 2.1 A propositional proof system is a
polynomial-time onto functionA from {0, 1}∗ to
TAUT .

In the above definition, we think of a domain element
as an encoding of a proof, andA maps the encoding
of a proof to the (encoding of) the formula that is be-
ing proved. The onto condition ensures that the proof
system is complete.

Note that the above definition does not require the
proof system to be propositional in the usual intuitive
sense (where the objects being manipulated are re-
stricted to being propositional formulas.) For exam-
ple, first order systems of arithmetic, such as PA (Peano
arithmetic) fit the definition of a propositional proof sys-
tem. Even systems which do not explicitly talk about
boolean formulas (such as standard systems of set the-
ory, ZFC) can also be viewed as fitting the definition,
where the function interprets certain formulas in the
underlying language as representing the corresponding
boolean formula.

Now let QTAUT denote the set of all encodings
of valid quantified propositional formulas, where the
quantification is over all the variables of the formula.
We define quantified propositional proof systems anal-
ogously to propositional proof systems.

DEFINITION 2.2 A quantified propositional proof sys-
tem is a polynomial-time onto functionA from {0, 1}∗

to QTAUT

DEFINITION 2.3 Let A and B be two proof systems.
ThenA p-simulatesB if for all formulasf , the shortest
A-proof for f is at most polynomially longer than the
shortestB proof off .

A strongly p-simulatesB if A p-simulatesB and
moreover, there is a polynomial-time computable func-
tion f that transformsB-proofs off into A-proofs of
f .

Remark 1. Note that our definition is implicitly
with respect to some class of formulas. For proposi-
tional systemsA and B, the p-simulation is (by de-
fault) with respect to propositional formulas and for
quantified propositional proof systems, thep-simulation
is (by default) with respect to quantified boolean for-
mulas. More generally for any class of formulas, and
any two proof systems that can prove formulas of this
type, we can define ap-simulation with respect to this
class of formulas. When talking about p-simulations, or
effectively-p simulations (defined next), we will explic-
itly mention the formulas only when it is not the default.

As defined above, for tautologyf , if one proof sys-
tem A always contains a proof off that is within a
polynomial factor of the size of the smallestB-proof
of f , thenA is said to p-simulateB. This relationship
mapsB-proofs off to similarly-sizedA-proofs off .

3

We can relax this definition to produce another kind of
simulation (an effectively-p simulation, defined below)
in which we mapB proofs off to similarly sizedA-
proofs off ′, wheref ′ is some formula which is a tau-
tology if and only iff is a tautology, and moreover,f ′

can be produced fromf efficiently.
We use the following definition of a truth-preserving

transformation both for propositional and quantified
tautologies.

DEFINITION 2.4 We say thatR is a polynomial-time in
m truth-preserving transformation from boolean formu-
las to boolean formulas if, for all boolean formulasf , f
is in TAUT (respectively QTAUT) if and only ifR(f, m)
is in TAUT (respectively QTAUT), andR(f, m) runs in
time polynomial in|f | + m, where|f | is the number of
connectives inf andm is an auxiliary parameter.

DEFINITION 2.5 Let A and B be two proof sys-
tems. ThenA effectively-p simulatesB if there is a
polynomial-time inm truth-preserving transformation
from (encodings of) boolean formulas to (encodings of)
boolean formulas,R(f, m) such that whenm is at least
the size of the shortestB-proof off , R(f, m) has anA
proof of size polynomial in|f | + m. If there also exists
a polynomial-time function (again polytime in|f |+ m)
that mapsB-proofs off to A-proofs ofR(f, m), then
we say thatA strongly effectively-p simulatesB.

Remark 2. The role of the parameterm in the defini-
tion might not be clear at first sight. We could define our
notion omittingm completely by stipulating thatR(f)
is computable in time polynomial in|f | and thatR(f)
has smallA-proofs if f has smallB-proofs. The point
is that our definition is more relaxed - it allows the re-
duction to operate in time polynomial in the size of the
smallestA-proof for f rather than in the size off . As
we show later, this relaxed notion still gives a reduction
from automatizability ofB to automatizability ofA.
Since one of our main motivations for exploring this no-
tion is the connection to automatizability, it makes sense
to work with the weakest notion of simulation for which
this connection holds. We note, though, that of the sev-
eral positive results about effectively p-simulations in
this paper, all but Proposition 3.1 and Theorem 3.3 go
through even if the stronger notion where the reduction
can only take time polynomial in|f | is used.

Remark 3. It is clear that ifA can p-simulateB,
thenA can also effectively-p simulateB. For example,
EF can effectively-p simulate Frege. In the opposite
direction, it may seem at first that by using extension
variables, many reverse effective simulations are easily
possible. Using our same example, we could try to ef-
fectively simulate EF by Frege by adding a polynomial-
sized set of extension axioms for predicates that are
complete forP/poly, thereby allowing Frege to sim-
ulate each EF step by using an instance of the newly

defined predicate. As far as we can see, this is not pos-
sible, since one seems to need the exact predicates that
are required in the EF proof, even in the presence of the
substitution axiom. Thus intuitively, obtaining an effec-
tive simulation of EF by Frege seems to require either
(i) that the reduction, givenf , finds an EF proof off
and then defines the needed predicates via extension ax-
ioms (an impossiblility under complexity assumptions),
or (ii) arguing that there exists a small (polynomial in
n) ”core” of predicates that would suffice to simulate
EF proofs forall formulas of sizen.

We next define automatizability. Like p-simulation
and effectively-p simulation, automatizability comes in
two flavors: strong and weak.

DEFINITION 2.6 A (propositional or quantified) proof
systemA is strongly automatizable if there is an algo-
rithm Q such that ifφ is a valid formula whose smallest
A-proof is of sizes, thenQ(φ) runs in timepoly(s+|φ|)
and produces anA-proof ofφ. If Q produces not anA-
proof but a proof in some other proof systemB, thenA
is said to be weakly automatizable.

When we say “automatizable” in future, we mean
“weakly automatizable” by default. effectively-p sim-
ulation of proof systemA by proof systemB implies
that if B is weakly automatizable then so isA. In other
words, effective simulation gives a reduction between
the automatizability properties of proof systems. This
was observed in essence already by [4] and [5]; it is
even easier to see with our definitions.

Proposition 2.7 Let A and B be proof systems. IfB
effectively-p simulatesA and B is weakly automatiz-
able, thenA is weakly automatizable.

We also consider at times in this paper the “quasi”-
analogues of the polynomial-time notions defined
above. For instance, a proof system is quasi-
automatizable if there is a proof-finding procedure that
operates in time quasipolynomial in the size of the
smallest proof, and a quasi-effective simulation is one
that operates in time quasipolynomial in the parameter
m. Analogues of our propositions for the polynomial-
time versions of simulation and automatizability also
hold for the quasi-analogues.

We now describe some specific proof systems.

2.1 Propositional Proof Systems
The resolution principle says that ifC andD are two

clauses andx is a variable, then any assignment that sat-
isfies both(C ∨ x) and(D ∨ ¬x) also satisfiesC ∨ D.
The clauseC ∨ D is said to be theresolventof the
clausesC ∨ x andD ∨ ¬x and derived byresolving
on the variablex. A resolution refutationof a clauseC
from a CNF formulaf consists of a sequence of clauses

4

in which each clause is either a clause ofF or is a re-
solvent of two previous clauses, andC is the last clause
in the sequence. It is arefutationof f if C is the empty
clause. Thesizeof a resolution refutation is the number
of resolvents in it.

A linear resolution refutation of f is a resolution
refutation with the additional restriction that the under-
lying graph structure must be linear. That is, the proof
consists of a sequence of clausesC1, . . . , Cm such that
Cm is the empty clause, and for every1 6 i 6 m, ei-
therCi is an initial clause orCi is derived fromCi−1

andCj for somej < i − 1.
We briefly review the definition of Frege and Ex-

tended Frege systems. More detailed definitions can be
found in [18, 28, 29]. The sequent calculus is a very el-
egant proof system that can be used as a framework for
capturing many natural and well-studied proof systems.
A propositionalsequentis a line of the formΓ → ∆,
whereΓ and∆ are finite sets of propositional formulas.
The intended meaning of the sequent is that the con-
junction of the formulas inΓ implies the disjunction of
the formulas in∆. A PK proof (a propositional sequent
calculus proof) of a sequentΓ → ∆ is a sequence of
sequents, where: (i) each sequent is either an instance
of a PK axiom, or follows from one or two previous
formulas by an instance of a PK rule and (ii) the final
sequent isΓ → ∆. The PK rules are very natural. They
include some structural rules, as well as two rules for
each connective, one for introducing the connective on
the left side of the arrow, and one for introducing the
connective on the right side of the arrow. The most im-
portant rule of PK is thecut-rule, which allows one to
infer Γ → ∆ from Γ, A → ∆ andΓ → A, ∆. A PK
proof of a formulaf is a proof of the sequent→ f .

With no restrictions on the cut-rule,PK is polynomi-
ally equivalent to Frege systems. By restricting the cut
rule, we can elegantly obtain many commonly studied
subsystems of Frege systems. For example, if the cut
rule is restricted to formulasA which are just literals,
then we have a system which is equivalent to resolu-
tion. By restricting the cut rule to bounded-depth for-
mulas (AC0), we obtain bounded-depth, orAC0-Frege
systems, and so on. An Extended Frege proof of a for-
mulaf is a proof ofE → f , whereE is a sequence of
extension axioms. An extension axiom is an axiom of
the form(A ⇐⇒ l1∨. . .∨lk), whereli are literals and
A is a new variable. Extension axioms allow efficient
reasoning about predicates computable by polynomial-
size circuits, by introducing new variables to represent
the various subcomputations of the circuit.

2.2 Quantified Propositional Systems and Be-
yond

First we recall the usual inductive definitions of quan-
tified boolean formulas.Σq

0 = Πq
0 is the class of quan-

tifier free propositional formulas. BothΣq
i andΠq

i are

closed under the boolean operations∧, ∨ and¬, and
the negation of aΣb

i formula is aΠq
i formula, and vice

versa.Σq
i+1

contains bothΣq
i andΠq

i and formulas of
the form∃x1 . . .∃xkA, whereA is aΠq

i formula. Simi-
larly, Πq

i+1
contains bothΣb

i andΠq
i and formulas of the

form formulas are formulas of the form∀x1 . . . ∀xkA,
whereA is aΣq

i formula. Thus,Σq
i (Πq

i) formulas are
quantified boolean formulas withi blocks of alternating
quantifiers, beginning with∃ (∀).

The systemG is a proof system for QBF formulas
that extends PK [20]. Lines in the proof are still se-
quents,Γ → ∆ but nowΓ, ∆ are finite sets of QBF for-
mulas. The rules ofG include all propositional rules of
PK, and additionally include rules for introducing each
quantifier (on both the left side, and the right side of
the arrow). The systemG0 is a proof system for QBF
where the cut rule is restricted to propositional formu-
las only. Similarly,Gi is a subsystem ofG obtained by
restricting the cut rule toΣq

i QBF formulas. Note that
theG systems can be used to prove any QBF formula.

Beyond QBF proof systems, we can view any stan-
dard axiomatic system as being a proof system for
propositional reasoning. As mentioned earlier, Peano
Arithmetic, and even ZFC (Zermelo-Fraenkel Set The-
ory) can be studied with respect to their ability to
prove propositional formulas (with a suitable encoding
of propositional formulas).

3 Effectively-p simulations: positive re-
sults

As mentioned earlier, anytime we have a p-
simulation between two proof systems, we also have
an effectively-p simulation. Thus, for example, the
usual hierarchy of p-simulations continues to hold un-
der effectively-p simulation.

We also observe that effective simulations can es-
tablish equivalences between two proof systems, where
the equivalence with respect to p-simulation hinges on
finding short proofs for a particular statement. In our
view, these are examples pointing out that sometimes p-
simulation is the better concept, since effectively-p sim-
ulation does not provide a fine enough granularity be-
tween systems for applications in reverse mathematics.
For example, it is known that the monotone sequent cal-
culus (monotone PK) can quasipolynomially simulate
PK with respect to monotone sequents, and it is open
whether or not a p-simulation is possible [7]. On the
other hand, it is not hard to show that monotone PK can
effectively-p simulate PK with respect to monotone se-
quents. Similarly, it is not hard to see, using the results
of Soltys and Cook [8], that Frege can quasipolynomi-
ally effectively-p simulate the system LAP (capturing
linear algebra reasoning).

Another simple observation allows us to obtain effec-
tive p-simulations between two proof systems whenever

5

the stronger of the two is automatizable:

Proposition 3.1 Let P and P ′ be two proof systems
that are both automatizable. Then each effectively-p
simulates the other.

Proof. We show thatP ′ effectively simulatesP ; the
other direction follows by symmetry. Given an input
formulaφ for P and the parameterm, we define an effi-
cient simulation as follows. We run the automatization
procedure forP on φ. If it halts with a proof within
poly(m) steps, we output a trivial tautology which has
polynomial-size proofs inP ′. If not, then we outputφ.
This transformation is truth-preserving, since the output
of the reduction is a tautology iff the input is. Also, if
the input formula has proofs of size6 poly(m) in P ,
then the output formula has small proofs too, since it is
a trivial tautology. �

As a consequence, we get that the following pairs
of proof systems effectively (quasi)simulate each other:
Nullstellensatz and Polynomial Calculus, Tree Resolu-
tion and Polynomial Calculus, small rank LS and small
rank LS+, tree-LS and small rank LS, small rank LS+
and tree-LS. On the other hand, it is known that be-
tween many of these systems there are no p-simulations.
For example, it is known that Nullstellensatz does not
(quasi)p-simulate PC [9]; low rankLS does not p-
simulate low rankLS∗; and Tree resolution does not
(quasi)p-simulate any of the other systems.

In this section we present some other examples
where an effectively-p simulation is possible, but a p-
simulation is not possible, or is conjectured to be not
possible.

3.1 Linear Resolution
Our first example is the theorem whose proof has

been known for some time, showing that linear reso-
lution can effectively-p simulate all of Resolution.

Theorem 3.2 [10] Linear resolution effectively-p sim-
ulates Resolution.

We sketch the proof here, both for completeness, and
to give the reader an idea of how such a simulation can
be proven. Letf be a CNF formula overx1, . . . xn and
let g be the following set of2n2 clauses:

{xi ∨ ¬xi ∨ xa
j | 1 6 i, j 6 n, a ∈ {0, 1}}.

Suppose thatf is an unsatisfiable CNF formula that
has a resolution refutation of sizeS. Then it can be
shown inductively that there is a linear resolution refu-
tation off ∧ g of size polynomial inS, as follows. Let
π = C1, . . . CS be the resolution refutation off . Since
C1 ∈ f , we can clearly deriveC1 in linear resolution.
Now assume we have a linear resolution derivationL

that ends withCi and includesC1, . . . Ci−1 in order
along the line. We show how to extendL to deriveCi+1.

There are two cases. The first is whereCi+1 is de-
rived from two earlier clausesCj , Ck in π by resolving
onx, 1 6 j < k 6 i. If i = k then we can simply add
Ci+1 to the end ofL. Otherwise letl1, . . . , lw be the
literals in Ci. ResolveCi with the following (initial)
clauses of g:(x ∨ ¬x ∨ ¬l1), . . . , (x ∨ ¬x ∨ ¬lw) until
the last clause inL is (x ∨ ¬x). Now resolve this last
clause onx with Cj and thenCk so the last clause be-
comesCi+1. The other case is whenCi+1 is an axiom
containing the literalxa. In this case, derive the clause
(x ∨ ¬x) as above fromCi and then resolve the axiom
Ci+1 with it to obtainCi+1 again at the end of the line.

It is still unknown whether or not linear resolution
can p-simulate resolution, but it is conjectured to be
false.

3.2 Clause Learning
Our second example is a very recent result prov-

ing that Clause Learning effectively-p simulates Res-
olution. Clause Learning is a particular refinement of
Resolution that is very important. Most state-of-the-art
complete algorithms for SAT make use of highly op-
timized Resolution SAT solvers and all are based on
the idea of Clause Learning. Informally, clause learn-
ing is an implementation of DPLL whereby intermedi-
ate clauses that are generated are ”learned” or ”cached”
along the way. Then in later states of the DPLL algo-
rithm, the cache is checked to see if the current sub-
problem to be solved has already been solved earlier.
This gives a way of pruning the DPLL tree and it has
been shown to be highly effective, not only for SAT, but
also for important generalizations of SAT such as QBF
solvers and Bayesian inference. (See for example [11–
14].) [15] and [16] formalize Clause Learning and the
former shows that that it is superpolynomially more ef-
ficient than other common resolution refinements (such
as regular and tree resolution.) Whether or not Clause
Learning p-simulates Resolution is an important open
problem. However, the following somewhat surprising
theorem was recently proven.

Theorem 3.3 [17] Clause learning effectively-p simu-
lates Resolution.

On the one hand, this proves formally that Clause
Learning is as powerful as all of resolution with re-
spect to solving SAT. But on the other hand, it unfor-
tunately shows that finding clause learning proofs (in a
worst-case sense) is as hard as finding general resolu-
tion proofs.

3.3 Effectively-p simulations for local extensions
We make a simple observation that allows us to see

several examples where p-simulations do not hold, but
effectively-p simulations do hold.

6

DEFINITION 3.4 Letf be a boolean function onk vari-
ables,y1, . . . , yk. We assume without loss of generality
that f is a CNF formula. The formulafD is a CNF
formula definingf . The variables offD arey1, . . . , yk

plus variablesxC , for each clauseC of f . The clauses
of fD are as follows. For each clauseC of f , we have
clauses that express the fact thatC is equivalent toxC .

DEFINITION 3.5 Let x1, . . . , xn be a vector of n
Boolean variables. The set of allk-local boolean func-
tions over~x consists of all functionsf such thatf is
a boolean function defined on a subset ofk variables
of ~x. The formulaEXT (k, n) consists of the conjunc-
tion of the formulasfD, wheref ranges over allk-local
boolean functions over~x.

DEFINITION 3.6 (k-local extensions of proof systems)
Let P be a rule-based propositional proof system. De-
fineP (k) to be a propositional proof system containing
all rules and axioms ofP plus the additional axiomsfD

for all k-local functionsf .

Examples of well-studiedk-local extensions of stan-
dard proof systems include:Res(k), CP (k), LS(k)
andLS+(k). Indeed, Atserias and Bonet [5] implicitly
show that Resolution effectively simulatesRes(k) for
each constantk, and Pudlak [4] implicitly shows that
CP effectively simulatesCP (2).

We generalize the above observations. Each of the
above proof systems is obtained from the base system
by introducing extension axioms for all conjunctions of
up tok-literals. Note that ourk-local extension is more
general than these since we allow extension variables
for everyfunction onk variables and not just the AND
function. The following lemma shows that as long as
we obtainP ′ from P by adding extension variables for
some local functions, thenP can effectively-p simulate
P ′.

Lemma 3.7 Let P be a rule based proof system. Sup-
pose thatP ′ is another proof system such thatP (k) p-
simulatesP ′, andP ′ p-simulatesP . ThenP effectively-
p simulatesP ′. In particular, P effectively-p simulates
P (k).

Proof. The proof is straightforward. LetP , P ′, P (k)
be defined as above, and letf be a formula overn vari-
ables,~x. We mapf to f ′ = f ∧ EXT (k, n). It is clear
that the mapping is polynomial-time, and that it pre-
serves satisfiability. We claim that iff has a shortP ′

proof, thenf ′ = f ∧ EXT (k, n) has a shortP -proof.
By the p-simulation ofP ′ by P (k), f has a shortP (k)
proof, and thusf ′ has a shortP proof. �

It follows from the above lemma thatRes effectively-
p simulatesRes(k) [5] and similarly forCP /CP (k),
LS/LS(k), andLS+/LS+(k). In all of these cases, it
is known that p-simulations are not possible. (See [18].)

3.4 G0 can effectively-p simulate any proof sys-
tem

In this section, we will prove thatG0 can effectively-
p simulate any quantified propositional proof system,
including Peano Arithmetic, and Zermelo-Frankl Set
Theory (ZFC). Sadowski [19] showed that if there is
an optimal quantified propositional proof system, i.e.,
a quantified propositional proof system that p-simulates
all others, thenNP ∩ coNP has complete languages,
which is considered unlikely. Our result shows that in
contrast, there is a proof system which iseffectively op-
timal.

Theorem 3.8 For any i, G0 can effectively-p simulate
any proof system forΣq

i quantified boolean formulas.

Proof. (sketch) LetS be any quantified proof system
for Σq

i -QBF formulas. We want to show thatG0 can
effectively-p simulateS. The high level idea is as fol-
lows. We define a reduction fromΣq

i quantified propo-
sitional formulas toΣq

i+1
quantified propositional for-

mulas as follows. Given aΣq
i QBF formulaf , and a

numberm, we mapf to f ′, wheref ′ is the formula:
ReflSm → f . ReflSm is the reflection principle forS
and it will be a fixed∀Σq

i formula depending only onS
andm that asserts that for anyΣq

i formulaA, and for
anyα, if α is anS proof of A, ThenA is satisfied by
all assignments. We now proceed with the details, and
begin by definingf ′.

By definition,S is a polynomial-time algorithm that
maps strings (encodings ofS-proofs) to strings (encod-
ings ofΣq

i -QBF formulas). We will assume without loss
of generality that all proof systemsS map strings of
lengthm to strings of lengthm: we can always pad the
output with leading zeroes if this is not the case.

Now fix m and considerS on inputs of lengthm.
SinceS is polynomial-time computable, there is a fixed
circuit, Cm, of size polynomial inm with inputs~x =
x1, . . . , xm that computesS(α) for eachα ∈ {0, 1}m.
Using extension variables to represent each intermedi-
ate gate ofCm, we can define a formulaProofS

m(~x, ~y)
such thatProofS

m(α, β) is true if and only ifCm on in-
putα outputsβ. (Note that the variables of the formula
are~x, ~y, plus the extension variables used to define each
intermediate gate ofCm.)

Fix some standard encoding ofΣq
i -QBF formu-

las. Then we can define a propositional formula
Formulai(~y) that is true if and only ify encodes a
(Σq

i ∪ Πq
i)-QBF formula. Similarly we can define a

Σq
i formula SATi,m(~y, ~z) that is true if and only if

Formulai(~y) is true, and~z satisfies theΣq
i formula en-

coded by~y. (Herem is the length of the vectors~x, ~y, ~z.)
SATi,m is defined inductively. For example, the follow-
ing equalities hold:
(1) SATi,m([∃xA(x)], τ) = ∃xSATi,m([A(x)], τ),
(2) SATi,m([∀xA(x)], τ) = ∀xSATi,m[A(x)], τ),

7

(3) SATi,m([¬A], τ) = ¬SATi,m([A], τ), and
(4) SATi+1,m([A], τ) = SATi,m([A], τ) whenever

A ∈ Πq
i ∪ Σq

i .
Note thatSATi,m will be aΣq

i formula. (Of course, we
will need to introduce polynomial inm many extension
variables in order to be able to encode and decode QBF
formulas, and in order to manipulate them.)

Finally, we defineReflSm to be the following for-
mula: ∀~x∀~y∀~z(¬ProofS

m(~x, ~y) ∨ SATi,m(~y, ~z). This
formula states that for every~x, ~y, ~z of lengthm, if ~x
codes anS-proof of some formula,f encoded by~x, then
f is satisfied by every assignment~z to its free variables.
The formulaReflSm is a∀Σq

i formula.
Our reduction, givenf andm, will map f to f ′ =

ReflSm → f . The reduction is clearly polynomial-time
and truth preserving. It is left to argue that iff is aΣq

i -
QBF formula with a shortS-proof, thenf ′ has a short
G0 proof.

Let [f] be the encoding off , and suppose thatf has
an S-proof, α, of sizem. We will first argue thatG0

can efficiently prove∃~xProofS
m(~x, [f]). By definition,

the circuitCm on inputα, outputs[f]. Therefore it is
not hard to see thatG0 has a polynomial-size proof of
ProofS

m(α, [f]). This is just a matter of verifying inG0

that the circuitCm on inputα, outputs[f]. Now using
the rule for∃, G0 can derive∃~xProofS

m(~x, [f]) from
ProofS

m(α, [f]), as claimed.
Secondly, we claim thatG0 can prove that¬f →

∃~z¬SATi,m([f], ~z). (See [20] for example.) Now com-
bining the above two arguments, it follows thatG0 can
efficiently prove¬f → ¬ReflSm, as desired. �

Could it be the case that there is a propositional
proof system which effectively simulates all proposi-
tional proof systems? This is a possibility, but the con-
struction of such a system would imply the existence
of a complete disjointNP -pair, which is a longstand-
ing open problem [21]. However, perhaps the more in-
teresting question is whether a “natural”, well-studied
propositional proof system like EF effectively simulates
all other propositional proof systems that are “natural”
in some sense. We have no evidence in support of or
against this possibility.

4 Effectively-p simulation: negative re-
sults

In this section we discuss several situations where
effectively-p simulations do not seem to be possible.

Our first observation in this direction is as follows.

Claim 4.1 LetA be a propositional proof system that is
automatizable, and letB be another propositional proof
system that is not automatizable (under assumptions),
then under the same assumptions,A cannot effectively-
p simulateB.

From the above claim, it follows that Tree-
Resolution, Nullstellensatz, PC, and low rankLS, LS+

cannot effectively p-simulate Frege or Extended Frege,
under assumptions about hardness of factoring [22–24].

As a further example, we show that Tree Resolution
is unlikely to effectively simulateG0.

Theorem 4.2 If NP 6⊆ QP , then Tree Resolution does
not effectively-p simulateG0.

Proof. Theorem 5.4 in the next section shows that if
NP 6⊆ P , thenG0 is not automatizable. The same
proof scales to show that ifNP 6⊆ QP , thenG0 is
not quasi-automatizable. If Tree Resolution effectively-
p simulatedG0, thenG0 would be quasi-automatizable,
since Tree Resolution is. Thus, under the assump-
tion thatNP ∩ coNP 6⊆ QP , Tree Resolution cannot
effectively-p simulateG0. �

How about if both two proof systems are not autom-
atizable (under reasonable complexity assumptions)?
This is the typical case for strong enough proof systems,
say bounded-depth Frege or stronger. We can still show
a negative result in this case, however one of the proof
systems involved is rather “unnatural”.

Theorem 4.3 There is a proposition proof systemP
such that if Factoring is not in polynomial time infinitely
often, then

1. EF(Extended Frege) is not automatizable
2. P is not automatizable
3. P does not effectively-p simulate EF

Proof Sketch. The basic idea is to defineP to be a
“sparsified” version of EF in some sense.P will retain
enough of the nature of EF that automatizability ofP
would have unlikely consequences, and yet an effective
simulation of EF byP would imply that EF is automa-
tizable infinitely often, which again would have an un-
likely complexity consequence. This proof idea is anal-
ogous to Ladner’s construction [25] of a set inNP that
is neither inP norNP -complete, assumingNP 6= P .

We need to define what “sparsified” means. On in-
finitely many tautology lengths,P will be exactly like
EF , however there will be a triply exponential separa-
tion between each two consecutive input lengths. On
all remaining tautology lengths,P will be exactly like
the truth-table proof system, with each tautology having
only exponential-size proofs.

Bonet, Pitassi and Raz [23] showed that if EF is au-
tomatizable, then Factoring is easy. Their proof also
shows that if EF is automatizable on infinitely many
tautology lengths, then Factoring is easy infinitely of-
ten. Thus, if EF is automatizable orP is automatizable,
then Factoring is easy infinitely often.

It remains to be shown that the same conclusion fol-
lows if P effectively simulates EF. We focus on tau-
tology lengthsn for which P looks like the truth-table

8

proof system for all input lengths betweenlog(n) to 2n

- by definition ofP , there are infinitely many of these.
Assume, for the sake of contradiction, that there is an
effectively polynomial simulationR of EF by P , and
let c be a constant such that iff has an EF-proof of size
m, thenR(f, m) has aP -proof of sizemc. Letf be any
tautology of lengthn. We define a procedureQ(f, m)
running in polynomial time such that iff is a tautology
of sizen with an EF- proof of size at mostm, thenQ
outputs a proof off (in a different proof system). This
implies that EF is automatizable.

Q(f, m) runs R(f, m). If R(f, m) outputs a for-
mula with more thanc log(m) variables, thenQ outputs
something arbitrary. The point is that in such a case,f
cannotbe a tautology with EF-proofs of size at mostm,
since the output formula does not haveP -proofs of size
at mostmc (P looks like the truth-table proof system
in this range of lengths), so it does not matter whatQ
does. On the other hand, suppose thatR(f, m) outputs
a formula with at mostc log(m) variables. By exhaus-
tive search,Q determines ifR(f, m) is a tautology or
not. If it is, thenQ outputsR(f, m) together with the
truth-table proof thatR(f, m) is a tautology, otherwise
it does something arbitrary.

Since R is tautology-preserving,R(f, m) together
with its truth-table proof act as a proof off in some
propositional proof system. It’s clear thatQ operates in
polynomial time and outputs a proof off wheneverf is
a tautology of size at mostm.

The argument given above works for allf of sizen,
wheren is in the “sparse” range ofP , and there are
infinitely manyn, as we observed. Thus under the as-
sumption thatP effectively-p simulates EF, EF is au-
tomatizable infinitely often, which means that Factoring
is easy infinitely often by the result of Bonet, Pitassi and
Raz [23]. �

4.1 No effectively-p simulations under restricted
reductions

We don’t know how to say anything in general about
the non-existence of effectively-p simulations between
two natural proof systems neither of which is believed
to be automatizable. However, we can say something if
we constrain the form of the reduction.

Claim 4.4 Let P and P ′ be two propositional proof
systems for refuting unsatisfiable CNF formulas, and
such thatP effectively-p simulatesP ′. Let A be the
polynomial time algorithm that transformsf to f ′.
Then we can assume without loss of generality thatA
mapsf to f ′ = (f ∧ g), for someg that depends onf
andm.

Since the reduction is truth preserving, we can al-
ways take the conjunction of whatever formulaA re-
turns withf . This formula will still preserve satisfia-

bility, and moreover the size of theP -refutation for this
new formula will be the same as before.

If NP = P , any two proof systems effectively-p
simulate each other. Hence we need to put some as-
sumptions onA in order to get negative results without
proving thatP is different fromNP . Next we define
a natural restrictions onA. We assume without loss of
generality thatf is a 3CNF formula inn variables. We
slightly abuse notation and say that such anf has size
n.

DEFINITION 4.5 (Oblivious reductions) LetA be a
polynomial-time truth-preserving reduction fromf , m
to f ∧ g. A is an oblivious reduction if for alln there
exists a uniqueg such that for allf of sizen, A(f) maps
to f ∧ g. That is,A is oblivious to everything aboutf
except for its size.

This type of reduction is natural and have been de-
fined and studied in many contexts similar to ours. The
intuition behind this restricted definition is that it is hard
to determine whether or notf is satisfiable, and that ba-
sically no useful information can be obtained about an
arbitraryf in polytime, just by looking atf .

Now assume thatA is an oblivious reduction map-
pingf to f ∧g. We can assume without loss of general-
ity thatg is also a CNF formula.g is a formula involving
the original variables off , call them~x, plus new vari-
ables~y. Furthermore, it must be the case that for every
assignmentα to the variables off , there exists an as-
signmentβ to the new variables ofg such thatg(α, β) is
true. This is because the reduction is oblivious. Assume
for sake of contradiction that there is an assignmentα
to thex variables such that for allβ, g(α, β) is false.
Fix somef of sizen such thatf(α) is true. ThenA is
not truth preserving on inputf . Thusg has the prop-
erty that for everyα, there exists aβ such thatg(α, β)
is true. Note that this implies that each clause ofg must
involve at least one new variable.

Other reasonable assumptions are as follows.

DEFINITION 4.6 Let A be a polynomial-time truth-
preserving reduction fromf , m, to f ∧ g. Let ~x be
the original set of variables underlyingf , and letg be
a CNF over the~x variables, plus new variables,~y. A
is symmetric if for all permutationsπ of x, there is a
permutationπ′ to y such thatg(~x, ~y) = g(π(~x), π′(~y)).
A is extensional if for each assignment to~x, there is
exactly one assignment for~y such thatg(~x, ~y) is true.

All of our positive results for effectively-p simu-
lations excepting those based on automatizability are
oblivious, symmetric and extensional.

Our next results use only the symmetric and exten-
sional restrictions. We will need the following amazing
theorem of Clote and Krannakis [26], later generalized
in [27].

9

Theorem 4.7 (Clote, Kranakis) Letf = {fn | n =
1, 2, . . .} be a boolean function, wherefn denote the
function in ouputs of lengthn. For eachn, we define
an equivalence relation on the set of all permutations
of ~x as follows. Letπ1 and π2 be two permutations
of ~x Thenπ1 ≡ π2 if and only if f(π1(x)) is isomor-
phic to f(π2(x)). We will say that the functionfn is
k-symmetric if the number of equivalence classes for
fn is k. So iffn is a truly symmetric function, then it
is 1-symmetric. We say thatf is poly-symmetric if there
exists a constantk such that for all sufficiently largen,
the number of equivalence classes is at mostnk. If f is
poly-symmetric, thenf is anNC1 function.

Theorem 4.8 Assume that our reduction is symmetric
and extensional. Then Frege effectively-p simulates Ex-
tended Frege if and only if Frege p-simulates Extended
Frege.

Proof. Let A be a symmetric, extensional reduction,
mappingf to f ∧ g. SinceA is extensionalg defines a
set of boolean functionsH = {h1, . . . , hl}, using using
extension variables. For each such function, we must
have all symmetric versions of it defined ing. Since
g is polynomial size, this implies that eachh is poly-
symmetric. Now by the above theorem, this implies that
eachhi ∈ H is anNC1 function. But this implies that
Frege can efficiently provef ∧ g if and only if Frege
can efficiently provef . But this implies that Frege (by
itself, with no advice ”g”) can p-simulate EF. �

Finally, we can prove that if the reduction is exten-
sional and has low communication complexity, then
neither tree-like Cutting Planes nor sublinear width
Resolution can effectivelyp-simulate Frege. Note that
the restriction on communication complexity is essen-
tial. Since we are not insisting in this result that reduc-
tions are efficiently computable, if there is no restriction
on the communication complexity, Resolutioncansim-
ulate Frege by extensional reductions, using Remark 3
in Section 2.

Theorem 4.9 Suppose that our reductionA is an exten-
sional reduction, mappingf to f ∧ g, and such that all
functions defined byg have communication complexity
at mostnǫ for someǫ < 1. Then such a reduction will
not give an effectively-p simulation for Frege systems by
tree-like Cutting Planes, or small width Resolution

Proof. (sketch) We follow the proof of [23]. Letf be
the clique-coclique interpolant statement as in that pa-
per, overn variables in total. The formula has the form
Clique(x, y) ∧ coClique(x, z), where Clique(x, y)
states thaty is a subset ofk vertices in the graphx (onn
vertices) that forms a clique, andCoclique(x, z) states
thatz is a partition of then vertices ofx into k + 1 sets

such that no edges exist between the sets. These state-
ments have polynomial-size Frege proofs. Now sup-
pose thatA mapsf to f ∧ g, whereg defines a set of
new functions of low communication complexity. As-
sume for sake of contradiction thatA works. Sincef
has short Frege proofs,f ∧ g should have short tree-
like CP (Resolution) proofs. On the other hand, sinceg
defines functions that have small communication com-
plexity, we can still apply the feasible interpolation ar-
gument using the proof from [23]. That is, we can build
a monotone circuit of small size takes as input an as-
signment to thex variables (a graph) and that says ”1” if
the graph contains ak-clique, and says ”0” if the graph
contains ak + 1-cocliques, violating known monotone
circuit lower bounds. Thus we reach a contradiction
from the existence of such a reductionA. �

5 Effectively polynomial simulations and
automatizability

In this section, we use what we know about effective
simulations to draw conclusions about automatizability.

First, we use some of our observations earlier to give
evidence that automatizing Linear Resolution might be
hard.

Proposition 5.1 If Res(k) is not automatizable for
somek, then Linear Resolution is not automatizable.

Proof. By Theorem 3.2, Linear Resolution effectively
simulates Resolution. By Lemma 3.7, Resolution ef-
fectively simulates Res(k) for any constantk. By tran-
sitivity of effective simulations, Linear Resolution ef-
fectively simulates Res(k). By the connection between
automatizability and effective simulations, we get the
statement in the proposition. �

Alekhnovich and Razborov showed that Resolution
is not strongly automatizable unless the parameterized
class W[P] is tractable. From the fact that Theorem 3.2
actually gives a strong effective simulation, we derive
the following corollary to their result.

Corollary 5.2 Linear Resolution is not strongly autom-
atizable unless W[P] is tractable.

Next, we try to say something more general about
how automatizability of proof systems relates to the NP
vs P question.

Lemma 5.3 If NP ! = P , then there is a propositional
proof system that is not automatizable.

Proof. Consider the propositional proof systemA
from {0, 1}∗ to ˆTAUT defined as follows:
A(〈φ, 0w〉) = φ ∨ (¬φ) if w is a satisfying assignment
to φ,

10

A(〈φ, 12
|φ|

〉) = φ if φ is a tautology,
A(z) = 1 for all otherz.

First we show thatA is indeed a propositional proof
system.A is polynomial-time computable since we can
check in time exponential in the length of a formula
whether the formula is a tautology or not.A is onto
since every tautologyφ has pre-image〈φ, 12

φ

〉.
Next, we prove that if there is an automatization pro-

cedureF for A, then SAT can be solved in polynomial
time. Assume thatF (z) runs in timeNk, whereN is
the size of the smallest proof forz in proof systemA.
Our algorithm to solve SAT is simple: Given inputφ,
run F on φ ∨ (¬φ) for (2|φ|)k steps. IfF halts within
that time, then output “yes”, otherwise output “no”.

The correctness of this algorithm follows from the
fact that〈φ ∨ (¬φ)〉 has proofs of size at most2|φ| ac-
cording toA iff φ is satisfiable. �

We show how to use the results of previous sections
to show that in some sense,G0 is “universal” in terms
of automatizability, i.e., ifG0 is automatizable, so are
all quantified proof systems. Moreover, the automatiz-
ability of G0 is equivalent toNP = P .

Theorem 5.4 The following four statements are equiv-
alent:

1. G0 is automatizable
2. All propositional proof systems are automatizable
3. NP = P
4. All quantified proof systems are automatizable

Proof.
We show (1) implies (2) implies (3) implies (4) im-

plies (1).
(1) implies (2): This follows from the fact that every

propositional proof system is effectively simulated by
G0, using the connection between effective simulations
and automatizability.

(2) implies (3): This follows from Lemma 5.3.
(3) implies (4): LetA be a quantified proof system.

Using the assumption thatNP = P , we define a proce-
dureF that outputsA-proofs for valid formulae in time
polynomial in the size of the smallestA-proof. Letφ
be a valid formula given as input toF , and letn = |φ|.
We defineF as a polynomial-time procedure with an
NP oracleL, but from the assumption thatNP = P ,
it follows that F itself can be implemented in poly-
nomial time. The NP-oracleL is defined as follows:
〈φ, 1m, w〉 ∈ L iff there is anA-proof of φ of size at
mostm with prefix w. F first sets an internal param-
eterm to be equal ton. It queries its NP oracle with
〈φ, 1m, ǫ〉. If the query answers yes, then it uses self-
reducibility to find the lexicographically smallest proof
of size at mostm, using theNP -oracleL to search for
the proof. If the query answers no, it setsm < −2m,
and repeats the process. Since every tautology has a

proof in A, this process will eventually terminate. By
definition ofL, the procedure actually halts and outputs
anA-proof forφ in time that’s polynomial in the small-
estA-proof forφ.

(4) implies (1): This is immediate sinceG0 is a quan-
tified proof system. �

6 Discussion
There are many research directions worthy of explo-

ration. In this paper, we have given several examples
of effectively polynomial simulations. It would be in-
teresting to generalize these results and provide a high-
level framework which would facilitate the discovery
of further examples. More challenging is to find new
lower bound techniques to rule out the possibility of
effectively-p simulations in specific cases. We highlight
several problems below.
• Resolve (unconditionally) whether or not Res-

olution can obliviously effectively-p simulate a
stronger proof system such as Frege or Extended
Frege (or evenAC0-Frege) A positive result would
be quite surprising, and as mentioned in the in-
troduction, could allow us to prove lower bounds
for stronger proof systems by proving Resolution
lower bounds for specific unsatisfiable formulas.
On the other hand, a negative result seems to re-
quire extending lower bound techniques for Reso-
lution. In either case, a new and very interesting
lower bound would be established.

• We proved that if one proof systemA is automa-
tizable, and another proof systemB is not (under
assumptions), thenA does not effectively-p simu-
late B (under the same assumptions). We would
like to know if the same implication holds for the
weaker notion of feasible interpolation. That is,
prove (or disprove) the following conjecture: IfA
has feasible interpolation, andB does not (under
assumptions) thenB does not effectively-p simu-
lateA (under same assumptions). A proof would
show, under complexity assumptions, that Reso-
lution cannot effectively-p simulateAC0-Frege,
Frege, or Extended Frege.

• Resolve whether or not Frege can effectively-p
simulate Extended Frege. We conjecture that such
a simulation is not possible. Note that a negative
answer will require some assumption(s) since an
effectively-p simulation would exist ifNP = P .
Resolving the question even for extensional reduc-
tions would also be very interesting.

Acknowledgement
We thank Albert Atserias, Jakob Nordstrom, Phuong

Nguyen, Iddo Tzammeret and Avi Wigderson for useful
discussions.

11

References

[1] P. Beame, D-T. Huynh-Ngoc, and T. Pitassi. Hardness
amplification in proof complexity. Manuscript,2009.

[2] Stephen A. Cook and Robert A. Reckhow. The rela-
tive efficiency of propositional proof systems.Journal
of Symbolic Logic, 44(1):36–50, 1977.

[3] A. A. Razborov. On provably disjoint NP-pairs. Techni-
cal Report RS-94-36, BRICS, 1994.

[4] Pavel Pudlák. On reducibility and symmetry of disjoint
np pairs. Theoretical Computer Science, 295:323–339,
2003.

[5] A. Atserias and M. L. Bonet. On the automatization
of resolution and related propositional proof systems,
2004.

[6] A. Hertel, P. Hertel, and A. Urquhart. Formalizing dan-
gerous sat encodings. InProceedings from SAT 2007,
pages 159–172.

[7] A. Atserias, N. Galesi, and Pudlak P. Monotone simula-
tions of nonmonotone proofs.Journal of Computer and
System Sciences, 65(4):626–638, 2002.

[8] M Soltys and S Cook. The proof complexity of linear
algebra. Annals of Pure and Applied Logic, 130:277–
323, 2004.

[9] M. Clegg, J. Edmonds, and R. Impagliazzo. Using the
Gröbner basis algorithm to find proofs of unsatisfiabil-
ity. In Proceedings of the Twenty-Eighth Annual ACM
Symposium on Theory of Computing, pages 174–183,
Philadelphia, PA, May 1996.

[10] J. Buresh-Oppenheim and T. Pitassi. The complexity
of resolution refinements.Journal of Symbolic Logic,
72(4):1336–1352, 2007.

[11] R. J. Bayardo and J. D. Pehoushek. Counting Models us-
ing Connected Components. InProceedings of the AAAI
National Conference (AAAI), pages 157–162, 2000.

[12] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and
S. Malik. Chaff: Engineering an efficient sat solver.
In Proc. of the Design Automation Conference (DAC),
2001.

[13] Jessica Davies and Fahiem Bacchus. Using more rea-
soning to improve #SAT solving. InProceedings of
the AAAI National Conference (AAAI), pages 185–190,
2007.

[14] Tian Sang, Fahiem Bacchus, Paul Beame, Henry A.
Kautz, and Toniann Pitassi. Combining component
caching and clause learning for effective model count-
ing. In Theory and Applications of Satisfiability Testing
(SAT), 2004.

[15] Paul Beame, Henry Kautz, and Ashish Sabharwal. To-
wards understanding and harnessing the potential of
clause learning. Journal of Artificial Intelligence Re-
search, 22:319–351, 2004.

[16] A. Van Gelder. Pool resolution and its relationship to
regular resolution and dpll with clause learning. InIn
Logic for Programming, Artificial Intelligence and Rea-
soning (LPAR), pages 580–594, 2005.

[17] F. Bacchus, P. Hertel, T. Pitassi, and A. Van Gelder.
Clause learning can effectively psimulate resolution. In
Proceedings from AAAI 2008.

[18] N. Segerlind. The complexity of propositional proofs.
Bulletin of Symbolic Logic, 13(4):482–537, 2007.

[19] Zenon Sadowski. On an optimal quantified propositional
proof system and a complete language for NP cap co-
NP. In Proceedings of the Eleventh International Sym-
posium on Fundamentals of Computation Theory, pages
423–428, 1997.

[20] J. Krajı́ček and P. Pudlák. Quantified propositionalcal-
culi and fragments of bounded arithmetic. 36(1), 1990.

[21] Christian Glasser, Alan Selman, and Liyu Zhang. Sur-
vey of disjoint NP-pairs and relations to propositional
proof systems. InTheoretical Computer Science, Essays
in Memory of Shimon Even., pages 241–253. Springer,
2006.

[22] K. Krajı́ček and P. Pudlák. Some consequences of cryp-
tographic conjectures forS1

2 and EF. In D. Leivant,
editor, Logic and Computational Complexity: interna-
tional workshop, LCC ’94, volume 960 ofLecture Notes
in Computer Science, pages 210–220. Springer-Verlag,
1995.

[23] M. Bonet, T. Pitassi, and R. Raz. On interpolation and
automatization for frege systems.SIAM Journal of Com-
puting, 29(6):1939–1967, 2000.

[24] M. Bonet, C. Domingo, R. Gavalda, A. Maciel, and
T. Pitassi. Non-automatizability of bounded-depth Frege
proofs. In ProceedingsFourteenth Annual IEEE Con-
ference on Computational Complexity (formerly: Struc-
ture in Complexity Theory Conference), pages 15–23,
Atlanta, GA, May 1999.

[25] Richard E. Ladner. On the structure of polynomial time
reducibility. Journal of the ACM, 22(1):155–171, Jan-
uary 1975.

[26] P. Clote and E. Kranakis. Boolean functions, invariance
groups, and parallel complexity.SIAM Journal of Com-
puting, 20:553–590, 1991.

[27] L. Babai, R. Beals, and P. Takacsi-Nagy. Symmetry and
compexity. InProceedings 24th STOC, pages 438–449,
1992.

[28] P. Beame and T. Pitassi. Propositional Proof Complex-
ity: Past, Present, and Future. In G. Paun, G. Rozen-
berg, and A. Salomaa, editors,Current Trends in The-
oretical Computer Science: Entering the 21st Century,
pages 42–70. World Scientific Publishing, 2001.

[29] A. Urquhart. The complexity of propositional proofs.
Bulletin of Symbolic Logic, 1(4):425–467, December
1995.

12

