
Guilt Free Data Reuse ∗

[Extended Abstract]

Cynthia Dwork
Microsoft Research

Vitaly Feldman
IBM Almaden Research

Center

Moritz Hardt
Google Research

Toniann Pitassi
University of Toronto

Omer Reingold
Samsung Research America

Aaron Roth
University of Pennsylvania

ABSTRACT
Existing approaches to ensuring the validity of inferences
drawn from data assume a fixed procedure to be performed,
selected before the data are examined. Yet the practice
of data analysis is an intrinsically interactive and adaptive
process: new analyses and hypotheses are proposed after
seeing the results of previous ones, parameters are tuned on
the basis of obtained results, and datasets are shared and
reused.

In this work we initiate a principled study of how to guar-
antee the validity of statistical inference in adaptive data
analysis. We demonstrate new approaches for addressing
the challenges of adaptivity that are based on techniques
developed in privacy-preserving data analysis.

As an application of our techniques we give a simple and
practical method for reusing a holdout (or testing) set to
validate the accuracy of hypotheses produced adaptively by
a learning algorithm operating on a training set.

1. INTRODUCTION: THE PROBLEM AND
WHY IT IS IMPORTANT

From discovering new particles and clinical studies to elec-
tion results prediction and credit score evaluation, scientific
research and industrial applications rely heavily on statis-
tical data analysis. The goal of statistical data analysis is
to enable an analyst to discover the properties of a process
or phenomenon by analyzing data samples generated by the
process. Fortunately, data samples reflect many properties
of the process that generated them: if smoking increases the
risk of lung cancer, then we should expect to see a correla-
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tion between smoking and lung cancer in samples of medical
records. However, data will also exhibit idiosyncrasies that
result from the randomness in the process of data sampling
and do not say anything about the process that generated
them – these idiosyncrasies will disappear if we re-sample
new data from the process. Teasing out the true properties
of the process from these idiosyncrasies is a notoriously hard
and error-prone task. Problems stemming from such errors
can be very costly and have contributed to a wider concern
about the reproducibility of research findings, most notably
in medical research [18].

Statisticians have long established a number of ways to
measure the confidence in a result of analysis, most famously
p-values and confidence intervals. These concepts allow the
analyst to express the probability (over random sampling)
that the outcome of an analysis is just an idiosyncrasy that
does not hold for the true distribution of the data. Accord-
ingly, the results can be declared statistically significant when
this probability is sufficiently small. The guarantees that a
confidence interval or p-value provide have a critical caveat
however: they apply only if the analysis procedure was cho-
sen without examining the data to which the procedure is
applied.

A simple and well-recognized misuse of this guarantee
happens when an analyst performs multiple analyses but
reports only the most favorable result (for example having
the lowest p-value). It is known by many names including the
multiple comparisons problem, multiple testing, p-hacking
and data dredging. As a result of such cherry picking, the
reported analysis depends on the data, its stated p-value
is incorrect and conclusions often invalid. A number of
techniques, most notably false discovery rate control [3],
have been developed to address multiple comparisons when
the set of analyses to be performed is known before the data
are gathered. At the same time the practice of data analysis
goes well beyond picking the best outcome from a fixed
collection of analyses. Data exploration inspires hypothesis
generation; results from one test determine which analyses
are performed next; one study on a large corpus determines
the next study on the same corpus. In short, data analysis
in practice is inherently an adaptive process.

While very useful, reusing data in adaptive analysis can
greatly increase the risk of spurious discoveries. Adaptive
choices in analysis can lead to an exponential growth in
the number of procedures that would have been performed
had the analyst received different data samples. In other



words adapting the analysis to data results in an implicit and
potentially very large multiple comparisons problem aptly
referred to as the “garden of forking paths” by Gelman and
Loken [14].

Although not usually understood in these terms, “Freed-
man’s paradox” is an elegant demonstration of the powerful
effect of adaptive analysis on the validity of conclusions [13].
In Freedman’s simulation an equation is fitted, variables with
an insignificant t-statistic are dropped and the equation is re-
fit to this new—adaptively chosen—subset of variables, with
famously misleading results: when the relationship between
the dependent and explanatory variables is non-existent, the
procedure overfits, erroneously declaring significant relation-
ships. An excellent and interactive demonstration of variable
selection on the results of linear regression analysis can be
found at [1].

While our previous discussion was concerned primarily
with applications of statistics, adaptive data analysis presents
a similar challenge in machine learning. An important goal
in machine learning is to obtain a predictive model that
generalizes well, that is a model whose accuracy on the data
is representative of its accuracy on future data generated by
the same process. Indeed, a large body of theoretical and
empirical research was developed for ensuring generalization
in a variety of settings. In theoretical work it is commonly
assumed that the learning algorithm operates on a freshly
sampled dataset. In practice, instead, a dataset is split
randomly into two (or sometimes more) parts: the training
set and the testing, or holdout, set. The training set is used
for learning a predictor, and then the holdout set is used
to estimate the true accuracy of the predictor. Because the
predictor is independent of the holdout dataset, such an
estimate is a valid estimate of the true prediction accuracy.

However, in practice the holdout dataset is rarely used
only once. One prominent example in which a holdout set is
often adaptively reused is hyper-parameter tuning. Similarly,
the holdout set in a machine learning competition, such as
the famous ImageNet competition, is typically reused many
times adaptively. Other examples include using the hold-
out set for variable selection, generation of base learners (in
aggregation techniques such as boosting and bagging), check-
ing a stopping condition, and analyst-in-the-loop decisions.
Such reuse is known to lead to overfitting to the holdout set
(e.g.[22, 7]).

The literature recognizes the risks and proposes solutions
in a number of special cases of adaptive data analysis. Most
of them address a single round of adaptivity such as variable
selection followed by regression on selected variables or model
selection followed by testing and are optimized for specific
inference procedures (see Ch. 7 in [17] for an overview). Yet,
to our knowledge, there is no prior work giving a general
methodology for addressing the risks of adaptive data reuse
over many rounds of adaptivity and without restricting the
type of procedures that are performed. We describe such a
methodology, based on techniques from privacy-preserving
data analysis, together with a concrete application we call
the reusable holdout.

2. OUR APPROACH AND RESULTS
Let us establish some simple terminology. We represent a

Additional averaging over k different partitions is used in
k-fold cross-validation.

data point as an element of some universe X and a dataset
consists of n data points. A data generating process gives
rise to a probability distribution over datasets. We will
focus on the most commonly studied setting in which each
point of the dataset is drawn randomly and independently
from some unknown distribution P over X . For example,
the dataset may contain the health information and habits
of n individuals, and the analyst is trying to learn about
medical conditions affecting the population from which the
individuals were drawn randomly.

We view adaptive analysis as a process in which an ana-
lyst wishes to ask a sequence of queries on a given dataset.
Here a query could refer to an execution of some statistical
procedure, a learning algorithm, preprocessing step or any
other inspection of the data. Crucially, after asking the first
t queries, the analyst can use the results of those queries to
pick the query performed at step t+ 1. While our approach
can be applied to a very general definition of queries, for
simplicity we first focus on queries that estimate the mean
of a function φ : X → [0, 1] on the unknown distribution
P or P[φ] = Ex∼P [φ(x)]. The estimate is required to be
correct up to some additive error τ usually referred to as
tolerance with high probability. Such queries allow the ana-
lyst to learn a variety of basic statistics of the population,
e.g., the fraction of the population over six feet all. More
generally, they allow the analyst to estimate the true means
and moments of individual attributes, correlations between
attributes and the accuracy of any predictive model. Such
queries are referred to as statistical in the context of the
well-studied statistical query model [19] and have been also
studied in statistics as linear statistical functionals. It is
known that many standard data analyses can be performed
using access to statistical queries instead of direct access to
data (see [19, 4] for examples).

Even in this relatively simple setting the question of how
many adaptively chosen statistical queries can be correctly
answered using n samples drawn i.i.d. from P has not been
previously examined. The conservative approach of using
fresh samples for each adaptively chosen query requires n to
scale linearly with the number of queries m. We observe that
such a bad dependence is inherent in the standard approach
of estimating expectations by the exact empirical average
on the samples. This is directly implied by “Freedman’s
paradox” [13] and we describe an additional simple example
in [9]. This situation is in stark contrast to the non-adaptive
case in which n = O

(
logm
τ2

)
samples suffice to answer m

queries with tolerance τ using empirical averages.
We demonstrate that the problem can be addressed using

techniques developed in the context of differential privacy,
a definition of privacy tailored to privacy-preserving data
analysis. Roughly speaking, differential privacy ensures that
the probability of observing any outcome from an analysis
is “essentially unchanged” by modifying any single dataset
element (the probability distribution is over the randomness
introduced by the algorithm).

The central insight of the differentially private data analysis
is that it is possible to learn statistical properties of a dataset
while controlling the amount of information revealed about
any dataset element. Our approach is based on the same
view of the adaptive data reuse problem: the analyst can
be prevented from overfitting to the data if the amount of
information about the data revealed to the analyst is limited.
To ensure that information leakage is limited, the algorithm



needs to control the access of the analyst to the data. We
show that this view can be made formal by introducing
the notion of maximum information between two random
variables. This notion allows us to bound the factor by which
uncertainty about the dataset is reduced given the output of
the algorithm on this dataset. We describe it in more detail
in Section 3.1.

Our main technical result is a broad transfer theorem
showing that any analysis that is carried out in a differentially
private manner must lead to a conclusion that generalizes
to the underlying distribution. This theorem allows us to
draw on a rich body of results in differential privacy and to
obtain corresponding results for our problem of guaranteeing
generalization in adaptive data analysis. We describe this
general theorem in detail in Section 3.

A direct corollary of our theorem is that, remarkably, it
is possible to answer nearly exponentially many adaptively
chosen statistical queries (in the size of the data set n).
Equivalently, this reduces the sample complexity of answering
m queries from linear in the number of queries to poly-
logarithmic, nearly matching the dependence that is necessary
for non-adaptively chosen queries.

Theorem 1. There exists an algorithm that given a dataset
of size at least n ≥ n0, can answer any m adaptively chosen
statistical queries so that with high probability, each answer
is correct up to tolerance τ , where:

n0 = O

(
(logm)3/2

√
log |X |

τ7/2

)
.

In this bound log |X | should be viewed as roughly the dimen-
sion of the domain. For example, if the underlying domain
is X = {0, 1}d, the set of all possible vectors of d-boolean
attributes, then log |X | = d.

Unfortunately, this algorithm for answering queries is not
computationally efficient (it has running time linear in the
size of the data universe |X |, which is exponential in the
dimension of the data). Still we show that it is possible to
quadratically improve on the näıve empirical-mean-based
approach by using a simple and practical algorithm that
perturbs the answer to each query with independent noise.

Theorem 2. There exists a computationally efficient al-
gorithm for answering m adaptively chosen statistical queries,
such that with high probability, the answers are correct up to
tolerance τ , given a data set of size at least n ≥ n0 for:

n0 = O

(√
m(logm)3/2

τ5/2

)
.

A natural question raised by our results is whether there is
an efficient algorithm that can answer an exponential number
of adaptively chosen queries. This question was addressed
in [16, 25] who show that under standard cryptographic
assumptions no algorithm can improve on the upper bound
achieved by our simple algorithm: any algorithm that can
answer more than ≈ n2 adaptively chosen statistical queries
must have running time exponential in log |X |.

This lower bound implies that practical algorithms that can
answer an exponential number of arbitrarily and adaptively
chosen queries are unlikely to exist. Yet we show that there
is an alternative way to apply our techniques to answer an
exponentially large number of queries efficiently. In this
application the analyst splits the dataset into a training set

and a holdout set. The analyst can then perform any analysis
on the training dataset, but can only access the holdout set
via queries to our reusable holdout algorithm. The reusable
holdout algorithm allows the analyst to validate her models
and statistics against the holdout set. More formally, the
analyst can pick any function φ : X → [0, 1]. If the empirical
mean of φ evaluated on the training set is close to the true
expectation P[φ], in other words φ does not overfit to the
training set, then the reusable holdout confirms that there
is no overfitting (but provides no additional information).
Otherwise, the algorithm returns an estimate of P[φ], that
answers the statistical query for φ.

We describe a specific instantiation of reusable holdout
referred to as Thresholdout. The number of queries that
Thresholdout can answer is exponential in the size of the
holdout set n as long as the number of times that the analyst
overfits (to the training set) is at most quadratic in n. The
analysis of Thresholdout is based on known techniques in
differential privacy and our transfer theorem. In Section 4
we describe Thresholdout and its guarantees in detail. We
then illustrate the properties of Thresholdout using a simple
classification algorithm on synthetic data. The classifier
produced by the algorithm overfits the data when the holdout
set is reused in the standard way, but does not overfit if used
with our reusable holdout.

In [10] we describe additional algorithms for validating
results of adaptive queries against the holdout that are based
on description length. Our application of this simple and
classical technique differs from its standard uses to derive
generalization. It leads to algorithms with guarantees that
are incomparable to those achieved via differential privacy.

2.1 Related Work
The classical approach in theoretical machine learning to

ensure that empirical estimates generalize to the underlying
distribution is based on the various notions of complexity of
the set of functions output by the algorithm, most notably the
Vapnik-Chervonenkis (VC) dimension (see [23] for a textbook
introduction). If one has a sample of data large enough to
guarantee generalization for all functions in some class of
bounded complexity, then it does not matter whether the
data analyst chooses functions in this class adaptively or non-
adaptively. Our goal, in contrast, is to prove generalization
bounds without making any assumptions about the class from
which the analyst can choose query functions. In this case
the adaptive setting is very different from the non-adaptive
setting.

An important and related line of work [6, 20, 24] establishes
connections between the stability of a learning algorithm and
its ability to generalize. Stability is a measure of how much
the error of a function output by a learning algorithm is
perturbed by changes to its input dataset. It is known that
certain stability notions are necessary and sufficient for gener-
alization [24]. Unfortunately, the stability notions considered
in these prior works do not compose in the sense that running
multiple stable algorithms sequentially and adaptively may
result in a procedure that is not stable. Differential privacy
is stronger than these previously studied notions of stability,
and in particular enjoys strong composition guarantees. This
provides a calculus for building up complex algorithms that
satisfy stability guarantees sufficient to give generalization.
Our work can thus be interpreted as showing that differential
privacy plays the role of stability in the multi-step adaptive



analysis setting.
There is a very large body of work designing differentially

private algorithms for various data analysis tasks, some of
which we leverage in our applications. See [8] for a short
survey and [12] for a textbook introduction to differential
privacy.

For differentially private algorithms that output a hypoth-
esis it has been known as folklore that differential privacy
implies stability of the hypothesis to replacing (or remov-
ing) an element of the input dataset. Such stability is long
known to imply generalization in expectation (e.g. [24]). Our
technique can be seen as a substantial strengthening of this
observation: from expectation to high probability bounds
(which is crucial for answering many queries), from pure to
approximate differential privacy (which is crucial for our im-
proved efficient algorithms), and beyond the expected error
of a hypothesis.

Building on our work, Blum and Hardt [5] showed how to
reuse the holdout set to maintain an accurate leaderboard in
a machine learning competition that allows the participants
to submit adaptively chosen models in the process of the
competition (such as those organized by Kaggle Inc.).

Finally, in a recent follow-up work, Bassily et al. give
an alternative mechanism for using an approximately dif-
ferentially private algorithm to answer statistical and more
general types of queries [2]. Further, the link between gen-
eralization and approximate differential privacy we make in
our transfer theorem has been strengthened quantitatively
by Nissim and Stemmer [21]. Both of these results lead to
bounds on the number of samples that are needed to guaran-
tee generalization that improve on our theorems by a factor
of O(

√
log(m)/τ).

3. DIFFERENTIAL PRIVACY AND GENER-
ALIZATION

Our results rely on a strong connection we make between
differential privacy and generalization. At a high level, we
prove that if M is a differentially private algorithm then
the empirical average of a function that it outputs on a
random dataset will be close to the true expectation of the
function with high probability over the choice of the dataset
and the randomness of M. More formally, for a dataset
S = (x1, . . . , xn) and a function φ : X → [0, 1], let ES [φ] =
1
n

∑n
i=1 φ(xi) denote the empirical average of φ. We denote

a random dataset chosen from Pn by S. Standard Chernoff-
Hoeffding concentration inequalities for sums of independent
random variables imply that for any fixed function φ, the
empirical average ES [φ] is strongly concentrated around its
expectation P[φ]. However, this statement is no longer true
if φ is allowed to depend on S (which is what happens if we
choose functions adaptively, using previous estimates on S).
However for a hypothesis output by a differentially privateM
on S (denoted by φ =M(S)), we show that ES [φ] is close
to P[φ] with high probability. Before making our statements
formal we review the definition of differential privacy [11].

Definition 3. A randomized algorithm M with domain
Xn is (ε, δ)-differentially private if for all O ⊆ Range(M)
and for all pairs of datasets S, S′ ∈ Xn that differ in a single
element:

Pr[M(S) ∈ O] ≤ eε · Pr[M(S′) ∈ O] + δ,

where the probability space is over the coin flips of the algo-

rithm M. The case when δ = 0 is sometimes referred to as
pure differential privacy, and in this case we may say simply
that M is ε-differentially private.

The concentration bounds we obtain for pure differential
privacy are almost as strong as those given by the standard
Chernoff-Hoeffding concentration inequalities.

Theorem 4. Let M be an ε-differentially private algo-
rithm that outputs a function from X to [0, 1]. For a random
variable S distributed according to Pn we let φ = M(S).
Then

Pr [|P[φ]− ES [φ]| > ε] ≤ 6 · e−ε
2n.

This statement also holds more broadly for an important class
of low sensitivity functions. These are functions of a dataset
that for some sensitivity ∆ satisfy: |f(S)− f(S′)| ≤ ∆ for
all datasets S, S′ ∈ Xn that differ in a single element. Note
that the sensitivity of the empirical average of any function
with range [0, 1] on a dataset of size n is at most 1/n.

We outline the proof idea of this result in Section 3.1
below. A similar concentration result can also be obtained
for (ε, δ)-differentially private algorithms although it is not
quite as strong and requires a substantially different and
more involved proof. Our result for this case (see [9]) has
been recently strengthened using a new proof technique by
Nissim and Stemmer [21].

Theorem 4 implies that |P[φ] − ES [φ]| ≤ τ holds with
high probability whenever φ is generated by a differentially
private algorithmM. This might appear to be different from
what we need in our application since there the queries are
generated by an arbitrary (possibly adversarial) adaptive
analyst and we only have control over the query answering
algorithm. The connection comes from a crucial property
of differential privacy, known as its post-processing guaran-
tee: Any algorithm that can be described as the (possibly
randomized) post-processing of the output of a differentially
private algorithm is itself differentially private (see e.g. [12]).
Hence, although we do not know how an arbitrary analyst
is adaptively generating her queries, we do know that if the
only access she has to S is through a differentially private
algorithm, then her method of producing query functions
must be differentially private with respect to S. We can
therefore, without loss of generality, think of the query an-
swering algorithm and the analyst as a single algorithm M
that is given a random data set S and returns a differentially
private output query φ =M(S).

We also note that the bound in Theorem 4 gives the
probability of correctness for each individual answer to a
query, meaning that the error probability is for each query
and not for all queries at the same time. The bounds we
state in Theorems 1 and 2 hold with high probability for
all m queries and to obtain them from the bounds in this
section, we apply the union bound.

All we are missing now to get an algorithm for answering
adaptively chosen statistical queries is an algorithm that
satisfies the following two conditions:

1. The algorithm can answer every query φ with a value
that is close (up to error α) to the empirical average of
φ on the dataset.

2. The algorithm is differentially private.

The problem of providing accurate answers to a large number
of queries for the average value of a function on the dataset



has been the subject of intense investigation in the differ-
ential privacy literature. Such queries are usually referred
to as (fractional) counting queries or linear queries in this
context. This allows us to obtain statistical query answer-
ing algorithms by using various known differentially private
algorithms for answering counting queries. Specifically, our
Theorem 1 relies on the algorithm in [15] that uses the mul-
tiplicative weights update algorithm to answer the queries.
Our Theorem 2 relies on the basic Laplace noise mechanism
and strong composition properties of differential.

In the resulting algorithm α should be viewed as bound-
ing the empirical error, ε should be viewed as bounding the
generalization error and τ = α + ε as bounding the total
error. Notice that the standard approach of using empirical
averages has the optimal empirical error – it has α = 0.
However, it is not ε-differentially private for any ε and, as
we pointed out earlier, does not provide any guarantee on
the generalization error. At the opposite end, an algorithm
which answers queries with a constant, independent of the
data, has optimal generalization error, but horrible empirical
error. Differentially private algorithms for answering count-
ing queries allow us to explicitly trade off empirical error α
with generalization error ε to obtain a strong bound on the
total error τ .

3.1 Max-information
Intuitively, one way to ensure that the function output

by an algorithm M generalizes is to guarantee that the
function does depend too much on the input dataset S. We
demonstrate that this intuition can be captured via the
notion of max-information that we introduce.

Definition 5. Let X and Y be jointly distributed random
variables. The max-information between X and Y , denoted
I∞(X;Y ), is the the minimal value of k such that for every
x in the support of X and y in the support of Y we have
Pr[X = x | Y = y] ≤ 2k · Pr[X = x].

It follows immediately from Bayes’ rule that I∞(X;Y ) =
I∞(Y ;X). In our use (X,Y ) is going to be a joint distri-
bution (S,φ) on (dataset, function) pairs. The dataset S
is drawn from distribution Pn that corresponds to n points
drawn i.i.d. from P. Random variable φ represents the
function generated by the analyst while interacting with S
through our mechanism. Importantly, the analyst may ar-
rive at the function after observing the evaluations of other
functions on the same dataset S. Now with each possible
function φ in the support of φ we associate a set of “bad”
datasets R(φ). We later choose R(φ) to mean the empirical
value ES [φ] is far from the true value P[φ], that is φ overfits
to S. Maximum information gives a bound on the probability
that S falls in R(φ).

Theorem 6. For k = I∞(S;φ), Pr[S ∈ R(φ)] ≤ 2k ·
maxφ Pr[S ∈ R(φ)].

The proof follows easily by first decomposing the event S ∈
R(φ) into events, S ∈ R(φ) & φ = φ for all φ. Namely,

Pr[S ∈ R(φ)] =
∑
φ

Pr[S ∈ R(φ) & φ = φ].

Since

Pr[S ∈ R(φ) & φ = φ] = Pr[S ∈ R(φ) | φ = φ] · Pr[φ = φ],

we can apply the definition of max-information and obtain
that Pr[S ∈ R(φ) | φ = φ] ≤ 2k Pr[S ∈ R(φ)]. Substituting
this bound back into the decomposition gives the desired
result:

Pr[S ∈ R(φ)] ≤
∑
φ

2k · Pr[S ∈ R(φ)] · Pr[φ = φ]

≤ 2k ·max
φ

Pr[S ∈ R(φ)].

Our theorem is completely general in the sense that the
random variable φ does not have to be supported on functions
over X and could instead assume values in any other discrete
domain. For example, such output could be a set of features
of the data to be used for a subsequent supervised learning
task. For our main application φ refers to a function, and we
denote the set of datasets on which the empirical estimator
has error greater than τ as

Rτ (φ) = {S ∈ Xn : ES [φ]− P[φ] > τ} . (1)

By Hoeffding’s bound we know that maxφ Pr[S ∈ Rτ (φ)] ≤
exp(−2τ2n). This gives the following immediate corollary.

Corollary 7. If I∞(S;φ) ≤ log2 e · τ2n, then Pr[S ∈
Rτ (φ)] ≤ exp (−τ2n).

To apply this corollary all we need is to show that pure
differential privacy implies a sufficiently strong bound on
max information I∞(S;φ).

Theorem 8. Let M be an ε-differentially private algo-
rithm. Let S be any random variable over n-element input
datasets for M and let Y be the corresponding output distri-
bution Y =M(S). Then I∞(S;Y ) ≤ log2 e · εn.

The proof of this theorem follows from observing that, any
two datasets S and S′ differ in at most n elements. Therefore,
applying the guarantee of differential privacy n times, we
obtain that for every y,

Pr[Y = y | S = S] ≤ eεn Pr[Y = y | S = S′].

Since there must exist a dataset y such that Pr[Y = y | S =
S′] ≤ Pr[Y = y] we can conclude that for every S and every
y it holds that Pr[Y = y | S = S] ≤ eεn Pr[Y = y]. This
yields the desired bound I∞(S;Y ) = I∞(Y ;S) ≤ log2 e · εn.

From Theorem 8 and Corollary 7 we see that ensuring
τ2-differential privacy over the entire interaction with the
dataset strictly controls the probability that the adversary
can choose a function that overfits to the dataset. This is
somewhat worse than the claim in Theorem 4 which requires
τ -differential privacy. In [10] we show that by consider-
ing a simple relaxation of max-information, referred to as
approximate max-information, it is possible to prove the
stronger bound on max-information of differentially private
algorithms for datasets consisting of i.i.d. samples. Interest-
ingly, it is not hard to show that algorithms whose output has
short description length (in bits) also have low approximate
max-information. Thus approximate max-information unifies
generalization bounds obtained via (pure) differential privacy
and description length. In addition, composition properties
of approximate max-information imply that one can easily
obtain generalization guarantees for adaptive sequences of al-
gorithms, some of which are differentially private, and others
of which have outputs with short description length.



4. THE REUSABLE HOLDOUT
In this section, we describe a practical application of our

framework, which gives a method for safely reusing a holdout
set many times. In this application the analyst splits the
dataset into a training set and a holdout set. An advantage
of this approach is that the data analyst will have full, un-
restricted access to the training set and can use it in any
way that she desires. The holdout set can only be accessed
through a reusable holdout algorithm. The goal of this algo-
rithm is to validate the results of analyses performed on the
training set.

We describe a specific instantiation of reusable holdout,
referred to as Thresholdout, that validates values of statistical
queries and is based on the “Sparse Vector” technique from
differential privacy (e.g. Chapter 3 of [12]). Specifically, for
every function φ : X → [0, 1] given by the analyst, the
algorithm checks if the empirical average of φ on the training
set is close to the true mean of φ (up to some tolerance τ).
If the values are close the algorithm does not provide any
additional information to the analyst. Only if φ overfits the
training set does the algorithm provide a valid estimate of
the true expectation of φ. The result is that for all of the
queries that the analyst asks, she has correct estimates of
the true expectation – either our algorithm certifies that the
estimate from the training set is approximately correct, or
else it provides a correct estimate using the holdout set. The
analysis of the algorithm shows that the number of samples
needed by Thresholdout depends only logarithmically on
the total number of queries asked by the data analyst as
long as the total number of queries that overfit the training
set (and have to be answered using the holdout set) is not
too large. As a result, this simple and computationally
efficient algorithm can potentially answer an exponential (in
n) number of queries.

More formally, Thresholdout is given access to the training
dataset St and holdout dataset Sh and a budget limit B. It
allows any query of the form φ : X → [0, 1] and its goal is to
provide an estimate of P[φ]. To achieve this the algorithm
gives an estimate of ESh [φ] in a way that prevents overfitting
of functions generated by the analyst to the holdout set.
In other words, responses of Thresholdout are designed to
ensure that, with high probability, ESh [φ] is close to P[φ]
and hence an estimate of ESh [φ] gives an estimate of the
true expectation P[φ]. Given a function φ, Thresholdout
first checks if the difference between the average value of
φ on the training set St (or ESt [φ]) and the average value
of φ on the holdout set Sh (or ESh [φ]) is below a certain
threshold T + η. Here, T is a fixed number such as 0.01
and η is a Laplace noise variable whose standard deviation
needs to be chosen depending on the desired guarantees. If
the difference is below the threshold, then the algorithm
returns ESt [φ]. If the difference is above the threshold, then
the algorithm returns ESh [φ] + ξ for another Laplacian noise
variable ξ. Each time the difference is above threshold the
“overfitting”budget B is reduced by one. Once it is exhausted,
Thresholdout stops answering queries. In Fig. 1 we provide
the pseudocode of Thresholdout.

We now state the formal generalization guarantees that
the entire execution of Thresholdout enjoys. They are based
on the privacy guarantees of the “Sparse Vector” technique
given in Chapter 3 of [12] and the generalization properties of
differential privacy. For pure differential privacy we rely on
Thm. 4 and for (ε, δ)-differential privacy we use the bound

Algorithm Thresholdout
Input: Training set St, holdout set Sh, noise rate σ, budget
B, threshold T .
Set T̂ ← T + γ for γ ∼ Lap(2 · σ)
Query step: Given a function φ : X → [0, 1], do:

1. If B < 1 output “⊥”

2. Else sample ξ ∼ Lap(σ), γ ∼ Lap(2·σ), and η ∼ Lap(4·σ)

(a) If |ESh [φ]− ESt [φ]| > T̂ + η, output ESh [φ] + ξ and

set B ← B − 1 and T̂ ← T + γ.

(b) Otherwise, output ESt [φ].

Figure 1: The details of Thresholdout algorithm

in [21].

Theorem 9. Let β, τ > 0 and m ≥ B > 0. We set
T = 3τ/4 and σ = τ/(96 ln(4m/β)). Let S denote a holdout
dataset of size n drawn i.i.d. from a distribution P and St
be any additional dataset over X . Consider an algorithm
that is given access to St and adaptively chooses functions
φ1, . . . ,φm while interacting with Thresholdout which is given
datasets S, St and values σ,B, T . For every i ∈ [m], let ai
denote the answer of Thresholdout on function φi : X → [0, 1].
Further, for every i ∈ [m], we define the counter of overfitting

Zi
.
= |{j ≤ i : |P[φj ]− ESt [φj ]| > τ/2}| .

Then

Pr [∃i ∈ [m],Zi < B & |ai − P[φi]| ≥ τ ] ≤ β

whenever n ≥ n0 for

n0 = O

(
ln(m/β)

τ2

)
·min{B,

√
B ln(ln(m/β)/τ)}.

Note that in the bound on n, the term O
(

ln(m/β)

τ2

)
is equal

(up to a constant factor) to the number of samples that
are necessary to answer m non-adaptively chosen queries
with tolerance τ and confidence 1− β. Further, this bound
allows m to be exponentially large in n as long as B grows
sub-quadratically in n (that is, B ≤ n2−c for a constant
c > 0).

We remark that the same approach also works for the
class of low sensitivity queries. In [10], we also give an
incomparable version of this algorithm with guarantees that
derive from description length arguments rather than from
differential privacy. The advantage of that variant is that its
use is not limited to low sensitivity queries.

4.1 Illustrative Experiments
We describe a simple experiment on synthetic data that

illustrates the danger of reusing a standard holdout set and
how this issue can be resolved by our reusable holdout. In
our experiment the analyst wants to build a classifier via
the following common strategy. First the analyst finds a
set of single attributes that are correlated with the class
label. Then the analyst aggregates the correlated variables
into a single model of higher accuracy (for example using
boosting or bagging methods). More formally, the analyst
is given a d-dimensional labeled data set S of size 2n and
splits it randomly into a training set St and a holdout set



Sh of equal size. We denote an element of S by a tuple
(x, y) where x is a d-dimensional vector and y ∈ {−1, 1} is
the corresponding class label. The analyst wishes to select
variables to be included in her classifier. For various values of
the number of variables to select k, she picks k variables with
the largest absolute correlations with the label. However,
she verifies the correlations (with the label) on the holdout
set and uses only those variables whose correlation agrees
in sign with the correlation on the training set and both
correlations are larger than some threshold in absolute value.
She then creates a simple linear threshold classifier on the
selected variables using only the signs of the correlations of
the selected variables. A final test evaluates the classification
accuracy of the classifier on both the training set and the
holdout set.

In the experiments we used an implementation of Thresh-
oldout that differs somewhat from the algorithm we analyzed
theoretically (given in Figure 1). Specifically, we set the pa-
rameters to be T = 0.04 and τ = 0.01. This is lower than the
values necessary for the proof (and which are not intended
for direct application) but suffices to prevent overfitting in
our experiment. Second, we use Gaussian noise instead of
Laplacian noise as it has stronger concentration properties
(in many differential privacy applications similar theoretical
guarantees hold for mechanisms based on Gaussian noise –
although not for ours).
No correlation between labels and data: In our first
experiment, each attribute is drawn independently from
the normal distribution N(0, 1) and we choose the class
label y ∈ {−1, 1} uniformly at random so that there is no
correlation between the data point and its label. We chose
n = 10, 000, d = 10, 000 and varied the number of selected
variables k. In this scenario no classifier can achieve true
accuracy better than 50%. Nevertheless, reusing a standard
holdout results in reported accuracy of over 63% for k = 500
on both the training set and the holdout set (the standard
deviation of the error is less than 0.5%). The average and
standard deviation of results obtained from 100 independent
executions of the experiment are plotted in Figure 2 which
also includes the accuracy of the classifier on another fresh
data set of size n drawn from the same distribution. We
then executed the same algorithm with our reusable holdout.
The algorithm Thresholdout was invoked with T = 0.04
and τ = 0.01 explaining why the accuracy of the classifier
reported by Thresholdout is off by up to 0.04 whenever the
accuracy on the holdout set is within 0.04 of the accuracy on
the training set. Thresholdout prevents the algorithm from
overfitting to the holdout set and gives a valid estimate of
classifier accuracy.
High correlation between labels and some of the vari-
ables: In our second experiment, the class labels are cor-
related with some of the variables. As before the label is
randomly chosen from {−1, 1} and each of the attributes is
drawn from N(0, 1) aside from 20 attributes which are drawn
from N(y · 0.06, 1) where y is the class label. We execute
the same algorithm on this data with both the standard
holdout and Thresholdout and plot the results in Figure 3.
Our experiment shows that when using the reusable holdout,
the algorithm still finds a good classifier while preventing
overfitting. This illustrates that the reusable holdout simul-
taneously prevents overfitting and allows for the discovery of
true statistical patterns.
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Figure 2: No correlation between class labels and data points. The plot shows the classification accuracy of the classifier on training,
holdout and fresh sets. Margins indicate the standard deviation.
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Figure 3: Some variables are correlated with the label.
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