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Abstract. In standard implementations of the Gröbner basis algorithm, the origi-
nal polynomials are homogenized so that each term in a given polynomial has the
same degree. In this paper, we study the effect of homogenization on the proof
complexity of refutations of polynomials derived from Boolean formulas in both
the Polynomial Calculus (PC) and Nullstellensatz systems. We show that the PC
refutations of homogenized formulas give crucial information about the complex-
ity of the original formulas. The minimum PC refutation degree of homogenized
formulas is equal to the Nullstellensatz refutation degree of the original formu-
las, whereas the size of the homogenized PC refutation is equal to the size of
the PC refutation for the originals. Using this relationship, we prove nearly lin-
ear (Ω(n/logn) vs. O(1)) separations between Nullstellensatz and PC degree,
for a family of explicitly constructed contradictory 3CNF formulas. Previously, a
Ω(n1/2) separation had been proved for equations that did not correspond to any
CNF formulas, and a log n separation for equations derived from kCNF formulas.

1 Introduction

Buchberger’s algorithm is a very popular technique from algebraic geometry, which
is used to find a Gröbner basis for a family of polynomial equations over variables
x1, . . . , xn.

Buchberger’s algorithm can be applied to solve SAT. Starting with an initial boolean
formula in conjunctive normal form, C = C1 ∧ C2 ∧ . . . ∧ Cm, convert each clause
Ci into an equivalent polynomial equation (over some field F ), and add the additional
equations x2

i − xi = 0 to force 0/1 solutions. The corresponding family of polynomial
equations will have a solution over F if and only if C is satisfiable. Conversely, C is
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unsatisfiable if and only if 1 is in the ideal generated by these polynomials, and hence is
in the Gröbner basis.

Buchberger’s algorithm has many unspecified aspects, such as a term order, and the
order in which S-remainders are computed. Any specification of these parameters yields
a valid Gröbner basis algorithm, but the running time can vary highly depending on these
issues. Many heuristics and modifications have been suggested and implemented to make
the algorithm simpler or faster. However, typically the algorithm is applied in the context
of infinite fields, and thus the heuristics commonly considered may be meaningless or
counter-productive in our setting. We are interested in understanding which heuristics
work well and why in our setting. One basic heuristic is homogenization. The original
system of polynomials is replaced by an equivalent system that is homogeneous, i.e., all
terms of a polynomial in the system have the same degree. For systems of polynomials
derived from Boolean tautologies, we show that homogenization basically creates a
hybrid between two well-studied proof systems, Nullstellensatz (HN) and Polynomial
Calculus (PC).

The Nullstellensatz (HN) and Polynomial Calculus (PC) proof systems, first defined
in [BIK+96, CEI96], are algebraic proof systems for refuting systems of unsolvable
polynomial equations. They have been extensively studied in the past several years,
due to their connections to standard proof systems, [Pit97, BIK+97] and NP-search
classes, as well as Buchberger’s algorithm. The two common complexity measures
for proofs in these systems are degree and size. We show that the size of PC proofs is
preserved under homogenization. However, the degree can increase dramatically. In fact,
the degree of PC proofs for the homogenized polynomials is exactly that of HN proofs
for the original polynomials. Using this characterization, we are able to derive an almost
optimal separation for PC and HN degrees. We give explicit 3-CNF contradictions whose
translations have O(1) degree PC proofs, but require Ω(n/ log n) degree HN proofs.
Previously, a Ω(n1/2) separation had been proved for a system of Boolean polynomials
that did not correspond to any CNF ([CEI96, Bus97]), and a log n separation for equations
derived from kCNF formulas [BP96].

It follows, from the first result, that if our term order uses only the degree of the ho-
mogenizing variable as a tie-breaker, homogenization is guaranteed not to substantially
change the time of Buchberger’s algorithm for Satisfiability. However, the second result
indicates this might not be the case for degree-respecting term orders, as are used in
standard implementations.

2 Background

2.1 Gröbner Bases

The theory of Gröbner bases requires an ordering on the terms of the polynomial ring in
which we operate. In this case, we choose an arbitrary ordering on the variables and use
any induced order on the terms (such as lex, grlex, etc). We use the following definition
and theorem, which are both standard to the theory of Gröbner bases (deg(f) is the
degree of f , LT is the largest term under the ordering, and LCM is the least common
multiple):



928 J. Buresh-Oppenheim et al.

Definition 1. A finite subset G of an ideal I (over a polynomial ring R) is called a
Gröbner basis if it generates I , and if the set {LT(g) | g ∈ G} generates the monomial
ideal LT(I) = {LT(f) | f ∈ I}.

Theorem 1. [CO92] For G a basis for I and g1, g2 ∈ G, let

S(g, g′) =
LCM(LT(g),LT(g′))

LT(g)
g − LCM(LT(g),LT(g′))

LT(g′)
g′.

G is a Gröbner basis for I if and only if for all g, g′ ∈ G, there exist {af}f∈G ⊂ R,
such that

S(g, g′) =
∑

f∈G

aff

and deg(aff) ≤ deg(S(g, g′)) for all f ∈ G.

S(g, g′) is called the S-polynomial ofg andg′. The S-remainder, writtenS(g, g′) mod
G, is the remainder of S(g, g′) divided by (the elements of) G (listed in some fixed or-
der). Informally the above theorem states that if G is a basis for I , then G is Gröbner if
and only if, for all g, g′ ∈ G, the S-remainder of g and g′ is zero. This theorem gives rise
to the following algorithm, commonly called Buchberger’s algorithm, for constructing
a Gröbner basis. The input to the algorithm is a set of polynomials F = (f1, . . . , fs).
Initially, the basis (called G) contains F . At each step, we select a pair of polynomials
in G, compute their S-remainder and, if it is non-zero, we add it to G. The algorithm
terminates when all pairs of polynomials in G have S-remainders of zero.

This algorithm is a cornerstone of computational algebraic geometry. Many heuristics
have been invented and analyzed for improving the runtime. However, in most appli-
cations, the algorithm is applied to infinite fields, and thus it is not clear whether these
heuristics make sense in our setting, where the underlying field is finite and solutions
are 0/1 valued.

We also mention a well-known lemma for computing S-remainders:

Lemma 1. [CO92] Let g and g′ be two polynomials such that

gcd(LT(g),LT(g′)) = 1.

The S-remainder of g and g′ is 0.

2.2 Homogeneous Gröbner Bases

Let F be a finite set of polynomials. Let IF be the ideal generated by F , and let IF (d)
be the subset of the ideal consisting of all those polynomials in IF of degree at most
d. For solving instances of SAT, we are interested in knowing whether or not IF (0) is
empty.

It is natural to consider a truncated version of the Gröbner basis algorithm where we
ignore all S-polynomials of degree greater than d. We will let [d]−Grobner(F ) denote
the output of this truncated version of the algorithm applied to F . It would be nice if
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[d]−Grobner(F ) had all of the nice properties of a Gröbner basis for those polynomials
in IF (d). In particular, we would like the largest terms of [d]−Grobner(F ) to generate
the largest terms of IF (d). However, in general this is not the case since S-remainders
of high degree can lead to new basis elements of very low degree.

On the other hand, the truncated Gröbner basis algorithm does have this nice prop-
erty when applied to homogeneous polynomials. For our purposes, a polynomial P is
homogeneous if every term in P has the same degree. If every polynomial in F is homo-
geneous, it can easily be seen that all non-zero S-polynomials will also be homogeneous,
and all polynomials output by the Gröbner basis algorithm will be homogeneous. More-
over, to test a particular polynomial f for membership in IF , it suffices to compute
[d] − Grobner(F ), where deg(f) = d.

Because of this and other nice properties, common implementations of the Gröbner
basis algorithm begin by homogenizing F , if it is not already homogeneous. To do this,
a new variable Z is introduced, that is last in the variable ordering. Before running the
algorithm, each initial equation fi ∈ F is modified (by multiplying each term by a power
of Z) so that each term in fi has degree equal to deg(fi).

The trade-off ensues from the fact that, in the homogenized setting, the polynomials
in the ideal may have higher degree than their corresponding polynomials in the non-
homogenized setting (i.e. there could be extra factors ofZ increasing their degree. We will
see that, while a non-homogenized PC-proof consists of testing for elements in IF (0),
we must check for membership of Zc, for some a priori unknown constant c, to prove
the homogenized case.) In this paper we analyze the complexity of the homogenized
versus non-homogenized approach, applied to equations derived from 3CNF formulas.

2.3 Algebraic Proof Systems

In this paper, we consider two particular algebraic proof systems (i.e. systems under
which clauses of an unsatisfiable logical formula are translated into algebraic equations
which are then proven to be contradictory). The first is the Hilbert Nullstellensatz (HN)
system and the second, the Polynomial Calculus (PC) system. Both rely on the fact that
given a contradictory set of polynomials, Q1, . . . , Qm ∈ K[X] for some field K, those
polynomials generate the unit ideal in the ring K[X]. In other words, the equations do
not have a solution in the algebraic closure of K if and only if 1 is in the ideal generated
by Qi(x). There are several ways of characterizing the elements of this ideal in terms
of linear combinations of the generators. Such a demonstration that 1 is in the ideal is
thus a proof of the unsolvability of the equations Qi. The Nullstellensatz and Polynomial
Calculus systems are based on two such characterizations. The standard versions of both
assume the variables are Boolean, that is, they take x2 − x as axiomatic. However, the
homogenizing variable will not be Boolean, so we need to consider the extensions of
these systems to non-Boolean systems.

Under HN, a proof or refutation is given by exhibiting a sum,
∑m

i=1 PiQi = 1, for any
{Pi}m

i=1 ⊂ K[X]. The degree of this derivation, then, is max{deg(PiQi) | 1 ≤ i ≤ m}.
Its size is

∑m
i=1 size(Pi) where size(Pi) is the number of monomials in the polynomial

Pi. The HN degree of a set of contradictory polynomials is the degree of the minimum-
degree HN proof.
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A PC derivation of Q ∈ K[X] from Q1, . . . , Qn ∈ K[X] is a sequence of polyno-
mials P1, . . . , Pm = Q, where each Pi is either

1. Qj for some j.
2. mPj for j < i and m a term in K[X].
3. aPj + bPl for j, l < i and a, b ∈ K.

The size of this derivation is l. Its degree is max{deg(Pi) | 1 ≤ i ≤ l}. The PC degree
of Q from a set of polynomials is the degree of the minimum-degree PC derivation of Q
from those polynomials. If no such derivation exists (i.e. Q /∈ 〈Q1, . . . , Qm〉), then the
PC degree of Q is ∞. A PC proof or refutation of a set of contradictory polynomials is
a PC derivation of 1 from those polynomials. A PC refutation of a set of contradictory
polynomials homogenized by Z is a PC derivation of Zc for any integer c ≥ 0. The
PC degree of a set of contradictory, non-homogenized polynomials is the degree of the
minimum-degree proof of those polynomials. The PC degree of a set of contradictory,
homogenized polynomials is the minimum over all c of the PC degree of Zc from those
polynomials. Notice that, since a PC proof allows cancellation of terms at each step, its
degree is always at most the HN-degree for the same set of polynomials.

3 Relationships between Complexity Measures

The following theorem shows that the homogenized PC degree and the HN-degree are
basically the same.

Theorem 2. Let {q1, . . . , qm} ⊂ K[x1, . . . , xn]. Let {Q1, . . . , Qm} ⊂
K[X1, . . . , Xn, Z] be the homogenizations of the above polynomials. Then, Zk ∈
〈Q1, . . . , Qm〉 iff {q1, . . . , qm} has a degree k Hilbert Nullstellensatz (HN) refutation.

Proof. First assume {q1, . . . , qm} has a degree k HN refutation: f = Σpiqi = 1, for
some {p1, . . . , pm} ⊂ K[x1, . . . , xn] such that max deg(piqi) = k. Let fα be the terms
of f with multidegree α = (d1, . . . , dn) and Σdi = d. Clearly fα = 0 for all non-trivial
α. Now let F = ΣZk−deg(pq)PiQi, where Pi is the homogenization of pi. Now, the
terms of fα have become the terms of multidegree α′ = (d1, . . . , dn, k − d). Thus, for
non-trivial α, Fα′ = 0. For α = 0, fα = 1, so Fα′ = Zk. Hence, F = Zk.

Now assume Zk ∈ 〈Q1, . . . , Qm〉. Then we have ΣpiQi = Zk for some
{p1, . . . , pm} ⊂ K[X1, . . . , Xn, Z]. But we can remove all the terms from pi such
that deg(piQi) ≥ k since they must all cancel. Let’s say this yields p′

i. Then we set
Z = 1 on both sides of the equation, so we have Σ(p′

i|Z=1)qi = 1 where each term in
the sum has degree k. Hence {q1, . . . , qm} has a degree k HN refutation.

Corollary 1. The degree of the Polynomial Calculus (PC) refutation for {Q1, . . . , Qm}
is equal to the degree of the HN refutation for {q1, . . . , qm}.

Proof. A PC refutation for {Q1, . . . , Qm} consists of deriving Zk for some k. Clearly the
degree of this derivation must be at leastk. But by the theorem, there is a degreek HN refu-
tation of {q1, . . . , qm}, so degPC(Q1, . . . , Qm) ≥ degHN (q1, . . . , qm). On the other
hand, if there is a degree k HN refutation of {q1, . . . , qm}, then {Q1, . . . , Qm} derive Zk

and we saw in the above proof that this can be done in degree k, so
degPC(Q1, . . . , Qm) ≤ degHN (q1, . . . , qm).
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The following theorem, proven in [BIK+97] shows that the degree of tree-like PC
refutations is very close to the degree of HN refutations.

Theorem 3. If there is a degree d HN refutation of Q, then there is a tree-like, degree d
PC refutation of Q. Conversely, if there is a tree-like, degree d, size S PC refutation of
Q, then there is a HN refutation of Q of degree O(d log S).

Lastly, we show that the size of a homogenized PC refutation is no larger than the
size of a PC refutation.

Theorem 4. Let q = {q1, . . . , qm} be a family of polynomial equations and let Q =
{Q1, . . . , Qm} be the homogenizations of the above polynomials, with Z being the new
variable introduced by homogenization. Then there exists an i such that if q has a size s
PC refutation, then QZi has a size O(s) PC refutation.

Proof. Let P be a PC refutation of q. We will show by induction on the number of lines
in P , |P |, that for all polynomials r, if there exists a size s proof of r from q, then there
exists an i and a size O(s) proof of RZi from Q, where R is the homogenization of r. For
the base case, suppose that r has a one line proof from q. Then r is an equation of q, so R
is an initial equation of Q and we are done. Assume the inductive hypothesis holds for l
lines, and now let r have an l+1-line proof from q. There are two cases to consider. The
first case is where r = xt, where t has an l-line proof from q. In this case, by induction
there exists i such that TZi has a small proof from Q. But then R = TZix is a proof
from Q and we are done. The other case is when r = r1 +r2, where r1 and r2 each have
short proofs from q. Without loss of generality, suppose that deg(r1) = deg(r2) + c.
Then R = R1 + R2Z

c. By induction, there exist i, j such that there are small proofs
of R1Z

i, and R2Z
j from Q. If j = c + i, we have (R1 − R2Z

c)Zi and we are done.
Otherwise, if j > c + i, multiply R1Z

i by Zδ where δ = j − c − i. Then we have
(R1 − R2Z

c)Zi+δ . Finally, if j < c + i, let δ = c + i − j and multiply R2Z
j by Zδ

and get (R1 − R2Z
c)Zi.

4 Lower Bound for HN-Degree

4.1 Tautologies on Graphs

The idea behind the tautologies first appeared in [RM97], and has also appeared in
subsequent papers [BEGJ98, BSW99]. We begin with a directed, acyclic graph, D,
where each node has constant indegree. This graph is viewed as a general implication
graph as follows: (1) there is one variable, X(v), corresponding to each vertex v in the
graph; (2) for each vertex v in S, the set of sources, the corresponding variable X(v)
is true; (3) for each non-source vertex v with parent vertices P (v), we have that if all
of the variables corresponding to vertices in P (v) are true, then X(v) is also true; (4)
finally, to make the tautology false, for some sink vertex t, X(t) is false.

Throughout this section, we will assume there is only one sink (if not, identify all
the sinks to one node). Also, we will abuse notation and use v for X(v). The meaning
should be clear from the context. Formally, we define the following clauses: for any
v /∈ S, we have the implication

∧
u∈P (v) u → v. Also, we have the axioms s for each
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s ∈ S. Finally, we insist on t̄. If the indegree of D is k, then the above formula is a
k + 1-CNF formula.

For algebraic proof systems, we fix a field K and convert the above implications into
equations in the ring K[X(V )] (we use the notation prod(U) to mean

∏
u∈U X(u) for

U a set of nodes):
v prod(P (v)) − prod(P (v)) = 0.

We also include equations restricting the variables to boolean values: v2 −v = 0. Again,
if the indegree of D is k, then these equations have degree k + 1.

The natural way to refute the above formula/equations is to begin at the source
vertices, and derive successively that each layer of vertices must be true, until finally we
can conclude that each sink vertex must be true. This gives us the desired contradiction
since there is some sink vertex that is false. For any graph D with indegree k, this
natural refutation can be formalized as a PC refutation of degree k + 1, and also as a
polynomial-size tree-like Resolution refutation. However, we show here that if the graph
is sufficiently complicated (it has high pebbling number), then any HN refutation must
have high degree.

Our lower bound strategy will be to take advantage of Corollary 1. That is, we
will implicitly describe a Gröbner basis for the above equations, and then prove that
the degree of this basis is at least as large as the pebbling number associated with the
underlying graph.

4.2 Gröbner Basis for Graph Tautologies

Consider the homogenized implications and restrictions (for each v):

v prod(P (v)) − Z prod(P (v)) = 0, v2 − vZ = 0.

Here Z is the variable added for homogenization. We also have the assertions (for each
source s):

s − Z = 0,

which will be considered implications saying that the empty set implies s, and (for one
sink t):

t = 0.

Let I be the ideal generated by these equations. In practise, the proof of our lower bound
is focused on implications. Hence, instead of deriving Zd (for some d), we simply try
to derive the equation

f = (t prod(S) − Z prod(S))Zd.

To see that this works and is still a proof, assume that we have derived Zd. Then clearly
we can derive f (or any other multiple of Zd). On the other hand, if we have derived f
then

−f + (Z − t)(
|S|∑

i=1

(si − Z)
|S|∏

j=i+1

sj) + t = Zd+|S|+1.

Although we have derived a higher power of Z than we assumed, the proof remains
valid. As for the degree of the proof, we use the concept of Z-degree:
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Definition 2. Let P ∈ K[X, Z] be a homogenized polynomial. We define the Z-degree
of P , zdeg(P ) to be the maximal m ∈ N such that P/Zm ∈ K[X, Z].

The Z-degree of f , then, is d and we shall consider this the de facto degree of the
proof. Notice that a lower bound for zdeg(f) is a lower bound for the power of Z which
we can derive and hence is a lower bound on the HN-degree. Now we are ready to explore
the Gröbner basis for our ideal. We first exhibit certain polynomials in the ideal:

Proposition 1. Let V1, V2 ⊂ V , u1, u2 ∈ V , d1, d2 ≥ 0 and assume that the implica-
tions

f1 = (u1 prod(V1) − Z prod(V1))Zd1 , f2 = (u2 prod(V2) − Z prod(V2))Zd2

are in I . If u1 ∈ V2, then let U = V1 ∪ V2 − {u1} and let d = max{d1, d2}. We can
then conclude that f3 = (u2 prod(U) − Z prod(U))Zd+1 is in I .

Proof. (Zd−d2 prod(V1 − V2))f2 − (u2 − Z)(Zd−d1 prod(V2 − V1 − {u1}))f1 =
(u2 prod(U) − Z prod(U))Zd+1 = f3.

Let V → u denote the formula stating that if all of the variables in V are true, then
u is also true. Informally the above proposition says that if we have a degree d1 PC
derivation of V1 → u1, and a degree d2 PC derivation of V2 → u2, where u1 ∈ V2,
then we can derive V1 ∪ V2 − {u1} → u2 in degree max(d1, d2) + 1 (notice that this
is still true for the degenerate case where V1 = ∅). Let G be the set of equations formed
recursively as follows:

1. G contains all of the generators of I .
2. For all implications f1 and f2 (see above) in G, f3 is in G.

G, then, is just the closure under applications of Proposition 1. It is not hard to
see that, invariably, the conclusion node of each implication is not included among the
hypothesis nodes, since the hypothesis nodes are all predecessors of the conclusion node
and the graph is acyclic. We shall use this fact in proving that G is a very fundamental
set:

Theorem 5. G is a Gröbner basis for I .

Proof. Clearly G is a basis since it contains all of the generators of I . We show that it
is Gröbner using Theorem 1 (recall that we defined Z to be last in the ordering of the
variables). Consider two implications,

f1 = (u1 prod(V1) − Z prod(V1))Zd1 ,

f2 = (u2 prod(V2) − Z prod(V2))Zd2 .

The S-remainder is

S(f1, f2) = ( prod(V1 ∪ V2 ∪ {u2} − {u1})Z − prod(V2 ∪ V1 ∪ {u1} − {u2})Z)Zd.

Here and throughout, we omit any cases of two polynomials with relatively prime
largest terms by Lemma 1. Hence there are three remaining possibilities for implications:
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1. u1 = u2: If u1 = u2, then the S-remainder becomes

( prod(V1 ∪ V2)Z − prod(V1 ∪ V2)Z)Zd.

But the two terms are clearly equal, so the S-remainder is 0.
2. u1 ∈ V2: Recall from above that u2 /∈ V1 since V1 consists of predecessors of u1,

u1 is a predecessor of u2 and the graph is acyclic. Consider the first term of the
S-remainder:

t1 = prod(V1 ∪ V2 ∪ {u2} − {u1})Zd+1.

But we know that

g = (u2 prod(V1 ∪ V2 − {u1}) − Z prod(V1 ∪ V2 − {u1}))Zd+1

is in G by definition. So t1 can be reduced to a lower-degree term:

t1 − g = prod(V1 ∪ V2 − {u1})Zd+2.

The second term is t2 = prod(V2 ∪V1 ∪{u1}−{u2})Zd+1. Since u2 /∈ V1, this is
the same as prod(V2 ∪ V1 ∪ {u1})Zd+1. Also, we have f1 ∈ G, so we can reduce
the second term:

t2 − prod(V2 − (V1 ∪ {u1}))Zd−d1+1f1 = prod(V1 ∪ V2 − {u1})Zd+2.

These two expressions are the same, so we have reduced S(f1, f2) to 0.
3. u1 6= u2, u1 /∈ V2 and u2 /∈ V1, but V1 ∩ V2 6= ∅: Now, the S-remainder is

( prod(V1 ∪ V2 ∪ {u2})Z − prod(V1 ∪ V2 ∪ {u1})Z)Zd.

Let t1 be the first term and t2 be the second. Then,

t1 − prod(V1 − V2)Zd+1−d2f2 = prod(V1 ∪ V2)Zd+2.

Similarly,

t2 − prod(V2 − V1)Zd+1−d1f1 = prod(V1 ∪ V2)Zd+2.

Again, we have reduced the S-remainder to 0.

This concludes the S-remainders for every pair of implications in G. We now consider
the S-remainders involving the boolean restrictions. Let h = u2 − uZ. Then,

S(h1, f2)= prod(V2∪{u2}−{u})uZd2+1−u prod({u}−{u2}−V2) prod(V2)Zd2+1.

Again we have cases:

1. u = u2: We can then assume that u /∈ V2, so the S-remainder becomes

u prod(V2)Zd2+1 − u prod(V2)Zd2+1 = 0.
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2. u ∈ V2 and u 6= u2: In this case, the S-remainder is

prod(V2 ∪ {u2})Zd2+1 − u prod(V2)Zd2+1.

If we call the first term t1 and the second t2, consider t1 −Zf2 = prod(V2)Zd2+2.
We can rewrite t2 as u2 prod(V2 − {u})Zd2+1. But then t2 − prod(V2 − {u})
Zd2+1h1 = u prod(V2 − {u})Zd2+2. But this is just prod(V2)Zd2+2 so we are
done.

Finally, we have the odd case of the equation t = 0.

1. Consider h1, where u = t. S(h1, t) = tZ, but t is in G, so it reduces to 0.
2. Similarly, we have f1, where u1 = t. S(f1, t) = tZd1+1, so again it reduces to 0.

We have now shown that all the S-remainders are 0 modulo G and can conclude (by
Theorem 1) that G is Gröbner .

4.3 Optimal Lower Bounds and Pebbling

Strong lower bounds for specific graphs will easily follow by showing that any HN
derivation can easily be converted into an efficient pebbling strategy for the correspond-
ing graph. Interesting connections between pebbling and propositional proofs were made
previously in [ET99, BSW99].

Definition 3. Let D = (V, E) be a directed, acyclic graph. A configuration is a subset
of V . A legal pebbling of a vertex v in D is a sequence of configurations, the first being
the empty set and the last being {v} and in which each configuration C ′ follows from
the previous configuration C by one of the following rules:

1. v can be added to C to get C ′ if all immediate predecessors of v are in C.
2. Any vertex can be removed from C to obtain C ′.

The complexity of a legal pebbling of v is the maximal size of any configuration
in the sequence. The pebbling number of a graph D with a single sink vertex s is the
minimal number n such that there exists a legal pebbling of s with complexity n.

Lemma 2. Let D be a directed, acyclic graph, and let QD be the corresponding un-
satisfiable system of homogeneous equations corresponding to the implication formula
associated with D. If QD has a degree d PC refutation, then D has pebbling complexity
O(d).

Proof. In Theorem 5, we gave a recursive characterization of the polynomials in the
Grobner basis. We’ll show by induction on the depth of a polynomial in this recursion,
that if (u prod(U)−Z prod(U))Zd is in the Groebner basis, then u can be pebbled from
U with d+k pebbles. The base case is the axioms v prod(P (v))−Z prod(P (v)), which
can always be pebbled with k pebbles (if k is the maximum in-degree of D). Otherwise,
(u prod(U) − Z prod(U))Zd, was derived from (v prod(V1) − Z prod(V1))Zd

1 , and
(u prod(V2) − Z prod(V2))Zd

2 , where d = max d1, d2 + 1, v ∈ V2, v /∈ V1 and
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U = V1 ∪V2 −{v}; these formulas having been already derived. Thus, by the induction
assumption, we can pebble v from V1 with d1 + k pebbles and u from V2 with d2 + k
pebbles. Then we can pebble u from U as follows. First, pebble v from V1 ⊆ U . Then,
leaving a pebble on v, pebble u from V2 ⊆ U ∪ {v}. The number of pebbles is at most
the larger of d1 + k and d2 + k + 1, which is at most d + k.

We note that the above lemma is not tight, as can be seen with the linear graph
corresponding to the induction principle. In this case, the pebbling number is 2, whereas
the degree is log n. We do, however, get the following result:

Theorem 6. There is a directed acyclic graph with constant in-degree that requires HN
degree Ω(n/logn).

Proof. [CPT77] exhibits a graph based on a construction by Valiant that has n nodes
and in-degree 2, but has pebbling measure Ω(n/logn). By the lemma, we are done.

5 Comparison with Resolution

The PC system gives rise to Buchberger’s algorithm to solve SAT as mentioned above.
The HN system gives rise to a simpler algorithm for SAT whereby one solves a system of
linear equations. That is, if we start with a system of equations Q (including x2 −x = 0
for all variables x), and we assume they have a degree d HN proof, then it can be found
as follows. Consider an alleged degree d proof,

∑
i PiQi = 1, where the polynomials

Pi are indeterminants, represented by vectors of variables, xt
i, where xt

i represents the
coefficient in front of term t in the polynomial Pi. Solving for the Pi’s amounts to solving
a sparse system of linear equations (in the variables xt

i), where we have one equation for
each term of degree at most d. This algorithm has runtime nO(d), and hence is efficient
if d is small ([CEI96] gives similar upper bounds for this algorithm and Buchberger’s
algorithm, although in the case of Buchberger’s algorithm, the parameter d might be
smaller).

Complete algorithms for SAT with the best empirical performance are Resolution
based, and typically are variations on the Davis-Loveland-Logeman (DLL) procedure.
Here we show that with respect to worst-case complexity, the algorithms are incompa-
rable.

Lemma 3. The graph tautologies mentioned above (with maximum pebbling number)
have polynomial-size Tree-like Resolution (DLL) proofs but require nearly linear degree
HN proofs.

Proof. To see that the graph tautologies always have small Tree-like Resolution proofs,
simply order the vertices of the graph in such a way that if v is a vertex with parents P (v),
then all vertices in P (v) appear before v in the ordering. Then a tree-like Resolution
proof can be constructed as a decision tree, where we query the vertices according to the
ordering described above. The height of the tree will be equal to the number of vertices,
but the width will be constant.
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Lemma 4. The Tseitin graph principles (mod p) have constant degree HN proofs in the
field GFp but require exponential-size Resolution proofs.

Proof. [Urq87] has shown that the Tseitin graph principles require exponential-size
Resolution proofs. To see that they have polynomial-size HN proofs, consider the clauses
that correspond to a particular vertex, expressing that the number of edges incident to
that vertex is odd. Each such clause converts into an initial equation, and the set of
equations assocated with a vertex v can be used to derive the equation stating that the
sum of the vertices incident to that vertex is 1 mod 2. Since the total number of variables
mentioned in these equations is constant, the HN degree of this derivation is constant.
Do this for every vertex, and then simply add up the resulting equations to derive 1 = 0.
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