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Abstract. It is known that constant-depth Frege proofs of some tau-
tologies require exponential size. No such lower bound result is known
for more general proof systems. We consider tree-like sequent calculus
proofs in which formulas can contain modular connectives and only the
cut formulas are restricted to be of constant depth. Under a plausible
hardness assumption concerning small-depth Boolean circuits, we prove
exponential lower bounds for such proofs. We prove these lower bounds
directly from the computational hardness assumption. We start with a
lower bound for cut-free proofs and “lift” it so it applies to proofs with
constant-depth cuts. By using the same approach, we obtain the fol-
lowing additional results. We provide a much simpler proof of a known
unconditional lower bound in the case where modular connectives are
not used. We establish a conditional exponential separation between
the power of constant-depth proofs that use different modular connec-
tives. We show that these tree-like proofs with constant-depth cuts
cannot polynomially simulate similar dag-like proofs, even when the
dag-like proofs are cut-free. We present a new proof of the non-finite
axiomatizability of the theory of bounded arithmetic IΔ0(R). Finally,
under a plausible hardness assumption concerning the polynomial-time
hierarchy, we show that the hierarchy G∗

i of quantified propositional
proof systems does not collapse.
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1. Introduction

Restricted proof systems have attracted a lot of attention, in large
part due to their role in automated theorem provers. For exam-
ple, Haken (1985) showed that the pigeonhole principle, a simple,
natural, and ubiquitous tautology, requires exponential-size reso-
lution proofs. This means that any theorem prover that works by
constructing a resolution proof — and that is virtually all propo-
sitional theorem provers — will require exponential time to prove
the pigeonhole principle, no matter how efficient it is at finding a
proof.

Various extensions of resolution have also been investigated and
shown to be limited in a similar way. For example, constant-
depth Frege proofs, which we call AC0-Frege proofs because of
their relation to the circuit class AC0, are also unable to prove the
pigeonhole principle in subexponential size (Ajtai 1988; Kraj́ıček
et al. 1995; Pitassi et al. 1993). And cutting planes have no
subexponential-size proof of a certain basic principle concerning
colorings of undirected graphs (Haken & Cook 1999; Pudlák 1997).

To this day, however, no lower bound result is known for any
proof system more general than AC0-Frege. For example, a natural
extension of AC0-Frege is to permit the use of modulo r connec-
tives in the proofs, for some constant r. We call this proof system
ACC0[r]-Frege, once again because of its relation to the circuit
class ACC0[r]. No lower bound is known for ACC0[r]-Frege.

The pigeonhole principle lower bound for AC0-Frege was
obtained by an ingenious new model theoretic technique, together
with an adaptation of the combinatorial argument used to prove
that AC0 circuits require exponential size to compute the parity
function (Furst et al. 1984; H̊astad 1986; Yao 1985). It is also
known that when p and q are distinct primes, ACC0[q] circuits re-
quire exponential size to compute the modulo p function (Smolen-
sky 1987). Therefore, it is natural to hope that the technique
behind that circuit lower bound might be useful in proving a lower
bound for ACC0[q]-Frege proofs. Unfortunately, attempts to prove
the corresponding proof complexity lower bound have been unsuc-
cessful, despite considerable effort.
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On the other hand, the lower bounds for the cutting planes
proof system were obtained by using circuit lower bounds directly,
not the underlying techniques. This approach relies on the fact that
the cutting planes proof system has the interpolation property:
small cutting planes proofs of tautologies of a certain type yield
small circuits computing a function related to the tautology. A
lower bound on the size of these circuits then implies a lower bound
on the size of the proofs. Unfortunately, AC0-Frege and all of its
extensions, including ACC0[q]-Frege, probably do not have the
interpolation property, as this would imply that Blum integers can
be factored in time 2nε

for arbitrary small ε (Bonet et al. 2004).
The initial goal of this research was to discover another way

of obtaining proof complexity lower bounds by using circuit lower
bounds directly. The hope was that this would result in new lower
bounds for systems such as ACC0[q]-Frege.

Our work lead us to consider a related proof system. Let PK�[r]
denote tree-like sequent calculus proofs in which formulas contain
conjunctions, disjunctions, negations, and modulo r connectives of
unbounded arity. Then restrict the cut formulas to be of constant
depth. We call this system constant-depth PK�[r]. This is a nat-
ural proof system that has at least one advantage over the usual
definition of constant-depth Frege systems: it is complete for all
tautologies, not just constant-depth formulas.

Note that the power of constant-depth PK�[r] is closely related
to the power of ACC0[r]-Frege: over constant-depth tautologies,
the two systems are polynomially equivalent. This means that for
any constant-depth tautology, there is a polynomial relationship
between the size of the smallest constant-depth PK�[r] proof and
the size of the smallest ACC0[r]-Frege proof.

The main result of this paper is a lower bound for constant-
depth PK�[r]. The lower bound is conditional on a plausible
hardness conjecture concerning ACC0[r] circuits and uses the con-
jectured hardness result (directly) as a black box.

To prove the lower bound, we start with a lower bound for cut-
free PK�[r] and “lift” it to get a lower bound for constant-depth
PK�[r], as follows. Let S be a tautology that requires exponential-
size cut-free PK�[r] proofs. Two common examples are the
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propositional pigeonhole principle (Haken 1985) and the Statman
tautologies (Statman 1978). Extend the tautology by replacing
each of the variables in S by an AND-OR formula expressing an
NC1 function f that is hard to approximate by ACC0[r] circuits.
Each of these formulas is over a separate subset of the original
propositional variables. We call this tautology S(f). We then es-
sentially show that the cut formulas, which are ACC0[r] formulas,
are unable to help the proof figure out the value of the f formulas
contained in the S(f) tautology. In a sense, the proof then reduces
to a cut-free proof of S, which we know requires exponential size.

Our lower bound result applies to any tautology S that satis-
fies certain natural conditions. We observe that these conditions
guarantee an exponential lower bound for cut-free PK�[r] and then
prove that these conditions imply a lower bound for constant-depth
PK�[r]. The pigeonhole principle and the Statman tautologies sat-
isfy these conditions.

As far as we know, this is the first known lower bound re-
sult for an extension of AC0-Frege under a complexity assumption
seemingly weaker than NP not closed under complementation. In
addition, note that size-s constant-depth PK�[r] proofs of PHP(f)
imply size-s ACC0[r]-Frege proofs of the pigeonhole principle.
Therefore, our new lower bound is a necessary condition for a lower
bound on the size of ACC0[r]-Frege proofs of the pigeonhole prin-
ciple.

As mentioned above, our lower bound is conditional on a plausi-
ble hardness conjecture concerning ACC0[r] circuits. This conjec-
ture is similar to a known hardness result for AC0 circuits: there
is a polynomial-size NC1 function that AC0 circuits of depth d
and subexponential size cannot compute correctly on more than a
1/2+1/2n1/(d+1)

fraction of the inputs (H̊astad 1986). In contrast, in
the case of ACC0[r] circuits, the strongest hardness result known
is much weaker: if r is a prime power, then there is a polynomial-
size NC1 function that ACC0[r] circuits of depth d and subexpo-
nential size cannot compute correctly on more than a 1/2 + o(1)
fraction of the inputs (Smolensky 1987, 1993). It is natural to
conjecture that a strong hardness result also holds for ACC0[r]
circuits, with no restriction on r: there is a polynomial-size NC1
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function that ACC0[r] circuits of depth d and subexponential size

cannot compute correctly on more than a 1/2+1/2n1/(d+1)
fraction

of the inputs. Our lower bound result for constant-depth PK�[r]
is conditional on this conjecture.

In addition to our main lower bound result, we obtain several
additional results. First, our lower bound technique can be applied
to other proof systems. For example, let PK� denote the restric-
tion of PK�[r] where modular connectives are not allowed. Because
constant-depth PK� and AC0-Frege are polynomially equivalent
over constant-depth tautologies, it is known that constant-depth
PK� proofs of the pigeonhole principle have exponential size. By
our technique, we obtain a much simpler proof of the fact that
constant-depth PK� proofs of PHP(MOD2) must have exponen-
tial size.

Second, we establish a conditional exponential separation be-
tween the power of constant-depth proofs that use different mod-
ular connectives. In particular, we show that if p is a prime that
does not divide r, then, under the assumption that some function
in ACC0[p] is hard to approximate by ACC0[r] circuits, there ex-
ists a tautology that has polynomial-size constant-depth PK�[p]
proofs but requires exponential-size constant-depth PK�[r] proofs.

Third, it is known that depth-(d + 1) tree-like ACC0[r]-Frege
proofs can polynomially simulate depth-d (dag-like) ACC0[r]-
Frege proofs (Kraj́ıček 1995). By applying our lower bound re-
sult to the Statman tautologies, and by using the fact that these
tautologies have polynomial-size cut-free PK proofs, we show that
such a simulation is not possible in the case of constant-depth
PK[r] proofs: constant-depth PK�[r] proofs cannot even polyno-
mially simulate cut-free PK proofs. In particular, this implies that
lower bounds for constant-depth PK[r] do not follow automatically
from lower bounds for constant-depth PK�[r].

Finally, we apply our approach to sequent calculus style proof
systems for quantified Boolean formulas. The system G introduced
by Kraj́ıček & Pudlák (1990) and given in its present form by Cook
& Morioka (2005) is a proof system for reasoning about quantified
Boolean formulas. The system G∗

i is the tree-like subsystem of
G obtained by restricting the cut rule to formulas with at most
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i alternations of quantifiers. For each i, the G∗
i proof system is

essentially a nonuniform version of Buss’s well-studied bounded
arithmetic system Si

2. We show that the G∗
i hierarchy does not

collapse, under a hardness assumption about the polynomial-time
hierarchy.

The rest of the article is organized as follows. In Section 2, we
provide definitions and background, including a precise definition
of the proof systems and of the pigeonhole principle and Stat-
man tautologies. In Section 3, we define a class of tautologies and
show that these tautologies require exponential-size cut-free tree-
like proofs. In Section 4, we state our main result, the conditional
lower bound for proof systems such as constant-depth PK�[r]. We
also provide an overview of the lower bound proof. In Section 5,
we prove the lower bound. In Sections 6 and 7, we present appli-
cations of our main result. In addition to the results mentioned
earlier, we prove a hierarchy theorem for constant-depth PK�[r]
proofs and we give a new proof of the non-finite axiomatizability
of IΔ0(R). We conclude, in Section 8, with open problems.

This paper extends and generalizes results that appeared in
earlier papers by Maciel & Pitassi (2006) and Nguyen (2007).

2. Definitions and background

In this section, we define several propositional proof systems based
on the sequent calculus, as well as the pigeonhole principle and
Statman tautologies, and establish some basic results concerning
these proof systems and these tautologies. We also define related
circuit classes and state known and conjectured hardness results
for these classes.

2.1. The propositional sequent calculus. The propositional
proof systems we consider in this paper are all variants of the
sequent calculus for AND, OR, NOT, and modular connectives.
(In Section 7.2, we will consider the sequent calculus for quanti-
fied propositional logic.) Formulas are defined as usual by using
Boolean variables and the connectives ¬,∨,∧, and ⊕b

r. We allow
∨,∧, and ⊕b

r to have unbounded arity. For example, ∨(A1, . . . , An)
denotes the logical OR of the multiset consisting of A1, . . . , An,
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similarly for the AND and modular connectives. Thus, commu-
tativity of the connectives is implicit. The formulas ∧() and ∨()
will be used as true and false values and often represented by �
and ⊥.

The fact that connectives have unbounded arity does not rule
out the possibility that some occurrences of connectives may have
arity two or that formulas may contain adjacent layers of identi-
cal connectives, as in ∨(∨(A1, A2),∨(A3, A4)). Binary connectives
will often be written in the usual infix notation as in A ∨ B. In
addition, we will use square brackets, as in [A1 ∨ · · · ∨An], to em-
phasize the fact that A1 ∨ · · · ∨ An denotes a formula consisting
of n− 1 binary connectives, not the formula consisting of a single
connective ∨(A1, . . . , An). As usual, binary OR’s and AND’s are
left associative so that, for example, [A1 ∧A2 ∧A3 ∧A4] represents
the formula (((A1 ∧ A2) ∧ A3) ∧ A4).

The modular connective ⊕b
r, for 0 ≤ b < r, is interpreted to

be true if the sum of its arguments is congruent to b modulo r.
In what follows, we will omit the r subscript and simply write ⊕b

when there is no confusion possible.
The proof systems operate on sequents, which are multisets of

formulas of the form A1, . . . , Ar −→ B1, . . . , Bt. The intended
meaning of the sequent Γ −→ Δ is that the conjunction of the
formulas in Γ implies the disjunction of the formulas in Δ. Note
that the empty sequent (−→) is invalid.

Two sequents Γ −→ Δ and Γ′ −→ Δ′ are equal if Γ = Γ′ and
Δ = Δ′ (as multisets). In other words, if each formula that appears
on one side of a sequent also appears on the same side of the other
sequent, and with the same frequency. In contrast, Γ −→ Δ and
Γ′ −→ Δ′ are said to be similar if Γ = Γ′ and Δ = Δ′ as sets, that
is, if each formula that appears on one side of one sequent also
appears on the same side of the other sequent but perhaps with a
different frequency. For example, A,A −→ B and A −→ B,B are
similar but not equal.

A proof of a sequent S is a tree of sequents such that the root
of the tree is S, the leaves of the tree are initial sequents and every
non-leaf sequent in the tree follows from its children by one of the
inference rules. Thus, our proofs are tree-like. Dag-like sequent
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calculus proofs can also be defined in an analogous manner: the
proof is now a directed acyclic graph (dag) of sequents such that
the root is S, the leaves are initial sequents, and every non-leaf
sequent in the dag follows from its children by one of the inference
rules.

The initial sequents (or axioms) are of the following form:

A −→ A −→ ∧() ∨ () −→ −→ ⊕0
r() ⊕b

r () −→
where A is a formula, and 1 ≤ b < r.

The rules of inference are as follows. First, we have simple
structural rules such as weakening (formulas can always be added
to the left or to the right of a sequent) and contraction (two copies
of the same formula on the same side of a sequent can be replaced
by one).

An instance of weakening in which the formula introduced was
already present in the sequent (as in Γ −→ A,Δ derives Γ −→
A,A,Δ) will be called an expansion. We will later use the following
fact: two sequents are similar if and only if they can be derived
from each other using only contractions and expansions.

After the structural rules, we have the cut rule:

Γ, A −→ Δ Γ −→ A,Δ
cut

Γ −→ Δ
.

The formula A is called the cut formula.
The remaining rules are the logical rules, which are shown in

Figure 2.1. These rules allow us to introduce each connective on
either side of sequents. In these rules, A is an individual formula,
F,G stand for a multisets of formulas, and (A,F ) is short for {A}∪
F . Note that as is customary, while our connectives ∧, ∨, and
⊕b

r have unbounded arity, their introduction rules are binary rules.
(The fact that they are binary is not important, but it is important
that each rule has only a finite number of active formulas.) The
rules for the modular connectives are adapted from Beame et al.
(1996).

In this article, we will often need to perform derivations that
introduce binary connectives. For example,

A,B,Γ −→ Δ

(A ∧B),Γ −→ Δ
.
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Figure 2.1: Logical rules

Strictly speaking, the AND-left rule does not allows us to perform
this derivation in one step (because the antecedent in the AND-
left rule would require ∧(B) rather than B). To simplify both our
upper and lower bound arguments, we add to our proof systems
logical rules that allow the direct introduction of binary AND’s
and OR’s. These rules are shown in Figure 2.2.

Definition 2.1. Let F = {(Γn −→ Δn) : n ∈ N} be a family of
sequents. Then, P = {Pn : n ∈ N} is a family of PK�[r] proofs
for F if, for every n, Pn is a valid (tree-like) proof of (Γn −→ Δn).
If modular connectives are not used in P , then we say that P is
a family of PK� proofs for F . If the proofs are permitted to be
dag-like instead of just tree-like, then we say that P is a family of
PK[r] or PK proofs, respectively.

Figure 2.2: Additional rules for binary connectives
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As usual, a formula can be represented as a tree whose leaves
are the literals of the formula (variables and negated variables) and
whose inner nodes are the connectives. The depth of a formula is
then the maximum number of blocks of connectives of the same
type along any path from the root to a leaf.

The depth of a proof is sometimes defined as the maximum
depth of any formula that occurs in it. For example, an ACC0[r]-
Frege proof is simply a PK[r] proof in which every formula has
constant depth, similarly for AC0-Frege and PK.

In this article, however, we are mainly interested in proofs in
which only the depth of the cut formulas is limited.

Definition 2.2. A depth-d PK�[r] proof is one in which all the
cut formulas have depth at most d. We call these d-PK�[r] proofs.
A constant-depth PK�[r] proof is a d-PK�[r] proof, for some con-
stant d, similarly, for PK�, PK[r] and PK.

We will only consider tautologies consisting of AND-OR for-
mulas. These tautologies will contain connectives of unbounded
arity. Two tautologies we will consider are the pigeonhole princi-
ple and Statman tautologies. These will be defined later in this
section. Because the sequent calculus is cut-free complete, the
proof systems d-PK�[r] and d-PK� are complete for all tautolo-
gies while ACC0[r]-Frege and AC0-Frege are complete only for
constant-depth tautologies.

The size of a formula is the number of literals and connectives
it contains. The size of a sequent is the total size of its formulas.
The size of a proof is the total size of all the sequents it contains
and that size is normally expressed in terms of the size of the
conclusion. For example, if F is a family of sequents of size tn,
then a polynomial-size PK�[r] proof of F would have size t

O(1)
n .

Definition 2.3. Let P1 and P2 be two propositional proof sys-
tems. Then, P1 simulates P2 if whenever a tautology has a P2

proof of size s, then the tautology also has a P1 proof of size at
most sO(1). In addition, P1 p-simulates P2 if there is a polynomial-
time function F that given a P2 proof outputs a P1 proof of the
same tautology.
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The power of constant-depth PK�[r] is closely related to the
power of ACC0[r]-Frege when we consider only tautologies of con-
stant depth:

Theorem 2.4. Consider the following proof systems: constant-
depth PK�[r], constant-depth PK[r], and ACC0[r]-Frege. If a
constant-depth tautology has a proof of size s in any of these proof
systems, then it has a proof of size at most sO(1) in the other
two. In other words, constant-depth PK�[r], PK[r], and ACC0[r]-
Frege proof p-simulate one another with respect to constant-depth
tautologies, similarly for constant-depth PK�, constant-depth PK,
and AC0-Frege.

Proof. First, a constant-depth PK�[r] proof is simply a special
case of a constant-depth PK[r] proof.

Second, all the formulas in a constant-depth PK[r] proof must
be either subformulas of the conclusion or formulas that will be
the target of a cut. Therefore, in a constant-depth PK[r] proof
of a constant-depth tautology, all the formulas must have constant
depth, which implies that such a constant-depth PK[r] proof is
actually an ACC0[r]-Frege proof.

Finally, any ACC0[r]-Frege proof of size s and depth d can be
transformed into a tree-like ACC0[r]-Frege proof of size sO(1) and
depth d + 1 (Kraj́ıček 1994). Such a proof is a special case of a
constant-depth PK�[r] proof. �

In this article, we are mainly interested in the d-PK�[r] and
d-PK� proof systems, but our main theorem will be more general:
it will apply to any version of PK�[r] or PK� in which the cuts are
limited to a set C. We denote these proof systems by PK�[r](C)
and PK�(C). For example, d-PK� = PK�(C) when C is the set of
depth-d AND-OR formulas.

One final note: the addition of the rules for binary connectives
(Figure 2.2) does not significantly alter the power of the proof
systems we consider in this paper. The reason is simple: each
of these rules can be easily simulated in three steps by using the
original rules. In addition, lower bounds for proof systems that
include these extra rules obviously imply lower bounds for proof
systems that include only the original rules.
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2.2. Closure under restrictions. Throughout this paper, we
will apply partial truth assignments (also called restrictions) to
sequents and proofs. In this section, we show that if S is a sequent
that has a small proof and we apply a partial truth assignment to
S and then simplify S, then the resulting sequent also has a small
proof. In fact, we will show how that proof can be obtained by
adapting the original proof of S.

First, we define precisely what we mean by applying a partial
truth assignment to a sequent and then simplifying it.

Definition 2.5 (Restriction of a formula). Let f be a formula
and ρ a partial truth assignment to the variables of f . Then, f |ρ,
the restriction of f by ρ, is defined inductively as follows.

(i) If f is a variable, then f |ρ is either the value assigned to that
variable or the variable itself, in case the variable is given no
value by ρ.

(ii) If f = ¬A, then consider ¬(A|ρ), the result of replacing A
by A|ρ in f . If A|ρ = �, then f |ρ = ⊥. If A|ρ = ⊥, then
f |ρ = �. Otherwise, f |ρ = ¬(A|ρ).

(iii) If f = ∨(F ), where F is a multiset of formulas, then consider
∨(F ′), the result of replacing each argument B in F by its
restriction B|ρ. If F ′ contains �, then f |ρ = �. Remove
every ⊥ from F ′. If F ′ is empty, then f |ρ = ⊥. If exactly one
B|ρ is left in F ′, then f |ρ = B|ρ. Otherwise, f |ρ = ∨(F ′).

(iv) If f = ∧(F ), then f |ρ is defined in a similar way but with ⊥
and � interchanged.

(v) If f = ⊕b
r(F ), then consider ⊕b

r(F
′) with F ′ defined as before.

Remove every ⊥ from F ′. If any B|ρ = �, remove it from
F ′ and subtract 1 from b (modulo r). If F ′ is empty and
b = 0, then f |ρ = �. If F ′ is empty and b �= 0, then f |ρ = ⊥.
Otherwise, f |ρ = ⊕b

r(F
′).

We then extend this definition to sequents as follows.
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Definition 2.6 (Restriction of a sequent). Let S = Γ −→ Δ
be a sequent and ρ a partial truth assignment. Then, S|ρ, the
restriction of S by ρ, is defined as follows. Consider Γ′ −→ Δ′,
the result of replacing every formula A in S by its restriction A|ρ.
If Γ′ contains ⊥ or Δ′ contains �, then S|ρ is the axiom −→ �.
Otherwise, remove every � from Γ′ and every ⊥ from Δ′. Then,
S|ρ is Γ′ −→ Δ′.

We now show that if a sequent has a small proof, then all of
its restrictions also have small proofs. The proof of this result uses
the fact that we do not remove duplicate formulas in defining the
restriction of a sequent. (Later, we will show that the same result
holds for the quantified proof system G.)

Definition 2.7 (Closure under restrictions). A proof system P
is closed under restrictions if for any tautology S and any partial
truth assignment ρ, if S has a P proof of size t, then S|ρ has a P
proof of size at most t.

Lemma 2.8. All of the proof systems defined above are closed un-
der restrictions.

Proof. Suppose that P is one of these proof systems. To prove
the lemma, we will show that if ρ is any restriction, then any P
proof P can be transformed into a P proof P ′ whose sequents are
the restrictions of the sequents of the original proof.

Let P ′ be the result of replacing every sequent S in P by its
restriction S|ρ. We must show that P ′ is a valid proof.

If S is an initial sequent, then it is easy to verify that S|ρ is
also an initial sequent. For example, suppose that S is x −→ x
and that ρ sets x to ⊥. Then, S|ρ is −→ �.

Now suppose that S is the result of an inference in P . The
argument splits into cases depending on the rule used to infer S.

Suppose that S is inferred by an application of the OR-left rule
from S1 and S2:

S1 S2

S
=

A,Γ −→ Δ ∨ (F ),Γ −→ Δ

∨(A,F ),Γ −→ Δ
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where A is a formula and F is a multiset of formulas. We will show
that S|ρ can be inferred from S1|ρ and S2|ρ, which we know have
replaced S1 and S2 in P ′.

Consider how the restriction acts on these sequents. If A|ρ = �,
then A|ρ is removed from S1|ρ and ∨(A,F )|ρ is removed from S|ρ.
In that case, we have that S|ρ = S1|ρ and those two sequents
can be collapsed in P ′. If A|ρ = ⊥, then A|ρ is removed from
∨(A,F )|ρ, which implies that S|ρ = S2|ρ and those two sequents
can be collapsed in P ′.

Now, let F ′ be the result of replacing each B in F by its re-
striction B|ρ. If F ′ contains �, then ∨(F )|ρ is removed from S2|ρ
and ∨(A,F )|ρ is removed from S|ρ, which implies that S|ρ = S2|ρ
and those two sequents can be collapsed in P ′. Remove every ⊥
from F ′. If F ′ is empty, then ∨(A,F )|ρ = A|ρ, which implies that
S1|ρ = S|ρ. If F ′ contains a single B|ρ, then ∨(F )|ρ = B|ρ and
∨(A,F )|ρ = ∨(A|ρ, B|ρ), which implies that S|ρ can be inferred
from S1|ρ and S2|ρ by using the OR-left2 rule. If |F ′| ≥ 2, then S|ρ
can be inferred from S1|ρ and S2|ρ by an application of the OR-left
rule.

The cases where S is inferred in P by using other rules can be
handled in a similar way. The details are left to the reader.

Note that P ′ does not contain any connectives that were not
already present in P , and thus the size of P ′ is no greater than the
size of P . In addition, if P is tree-like, then so is P ′. The depth of
any formula in P ′, including the cut formulas, is no greater than
the depth of the corresponding formula in P . Therefore, since P
is one of the proofs systems defined earlier, the fact that P is a P
proof implies that P ′ is also a P proof. This proves the lemma. �

2.3. Hard propositional formulas. As mentioned in the in-
troduction, the main result of this paper is a lower bound that
applies to every tautology that satisfies certain conditions. The
pigeonhole principle and Statman tautologies, which we define in
this subsection, are good examples of such tautologies.

The pigeonhole principle with m pigeons and n holes, for
m > n, intuitively states that if m pigeons are placed into n
holes, then (at least) one hole must receive more than one pigeon.
This tautology can be expressed as the following sequent, which we
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denote by PHPm
n :

−→
n∧

j=1

¬p1j, . . . ,

n∧

j=1

¬pmj, p11 ∧ p21, p11 ∧ p31, . . . , p(m−1)n ∧ pmn.

When m is much larger than n, typically when m ≥ 2n, we refer to
this tautology as the weak pigeonhole principle. The casem = n+1
is usually what is meant simply by the pigeonhole principle. We
will use PHPn to denote the corresponding tautology PHPn+1

n .
Exponential lower bounds have been proved on the size of AC0-

Frege proofs of the pigeonhole principle (form = n+1) (Ajtai 1988;
Kraj́ıček et al. 1995; Pitassi et al. 1993). By Theorem 2.4, this also
implies an exponential lower bound on the size of constant-depth
PK and constant-depth PK� proofs of the pigeonhole principle.

Statman’s tautologies express a form of strong induction. The
tautology for strong induction up to n has variables pi, qi, i ≤ n,
and is given by the following sequent, which we denote Statmann:

(2.9) −→ (¬p1∧¬q1), [γ1∧¬p2∧¬q2], . . . , [γn−1∧¬pn∧¬qn], γn,

where
γi = [(p1 ∨ q1) ∧ · · · ∧ (pi ∨ qi)].

For example, Statman2 is the sequent

−→ (¬p1 ∧ ¬q1), [(p1 ∨ q1) ∧ ¬p2 ∧ ¬q2], [(p1 ∨ q1) ∧ (p2 ∨ q2)].

It is easy to see that the Statman sequents are tautologies. Let
Ai = pi ∨ qi. Then, Statmann essentially states that if it is not
the case that Ai is true for all i, then there is j such that Ak is true
for all k < j but Aj is false. This is clearly a tautology: simply let
j be the smallest i for which Ai is false.

The Statman sequents are known to require exponential-size
cut-free PK� proofs (Buss 1988; Clote & Kranakis 2002; Statman
1978). This lower bound will be proved in Section 3. It is the basic
lower bound that we will “lift” in order to obtain the main result
of this paper.

In contrast, it is also known that the Statman sequents have
polynomial-size cut-free PK proofs, as well as polynomial-size PK�

proofs in which cut formulas of depth 1 are allowed. We will use
these proofs later in this paper.
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Theorem 2.10 (Buss (1988); Clote & Kranakis (2002); Statman
(1978)). The sequent Statmann has a cut-free PK proof of size
polynomial in n.

Proof. We construct a cut-free PK proof inductively. It will
be clear from our construction that the proof has size polynomial
in n. For n = 1, we have the following proof of Statman1:

p1 −→ p1
weakening

p1 −→ p1, q1
NEG-right−→ ¬p1, p1, q1

q1 −→ q1
weakening

q1 −→ p1, q1
NEG-right−→ ¬q1, p1, q1
AND-right−→ (¬p1 ∧ ¬q1), p1, q1

OR-right−→ (¬p1 ∧ ¬q1), (p1 ∨ q1)

For the inductive step, suppose that we have a proof of
Statmann−1:

−→ (¬p1 ∧ ¬q1), . . . , [γn−2 ∧ ¬pn−1 ∧ ¬qn−1], γn−1.

The following is a proof of Statmann:

1. Apply NEG-right to pn −→ pn:

−→ ¬pn, pn.

2. Apply weakening to (1) and AND-right2 with Statmann−1:

−→ (¬p1∧¬q1), . . . , [γn−2∧¬pn−1∧¬qn−1], [γn−1∧¬pn], pn.

3. Apply NEG-right to qn −→ qn:

−→ ¬qn, qn.

4. Apply weakening to (3) and AND-right2 with (2):

−→ (¬p1 ∧ ¬q1), . . . , [γn−2 ∧ ¬pn−1 ∧ ¬qn−1],

[γn−1 ∧ ¬pn ∧ ¬qn], pn, qn.
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5. Apply OR-right to (4):

−→ (¬p1 ∧ ¬q1), . . . , [γn−2 ∧ ¬pn−1 ∧ ¬qn−1],

[γn−1 ∧ ¬pn ∧ ¬qn], (pn ∨ qn).

6. Apply weakening to Statmann−1 and AND-right2 with (5):

−→ (¬p1 ∧ ¬q1), . . . , [γn−1 ∧ ¬pn ∧ ¬qn], [γn−1 ∧ (pn ∨ qn)].

This last sequent is Statmann as desired. �

Theorem 2.11. The sequent Statmann has a polynomial-size
1-PK� proof.

Proof. Start by deriving Γi −→ γi, for 1 ≤ i ≤ n, where

Γi = {(p1 ∨ q1), . . . , (pi ∨ qi)}.
Then, consider the following sequents:

−→ (¬p1 ∧ ¬q1), (p1 ∨ q1)

Γi−1 −→ [γi−1 ∧ ¬pi ∧ ¬pi], (pi ∨ qi) (2 ≤ i ≤ n)

Γn −→ γn.

The first two groups can be derived in a way similar to some of the
sequents in the proof of Theorem 2.10. The sequent Statmann

can then be obtained from these sequents by repeated cuts on the
formulas (pi ∨ qi), starting with i = n. �

2.4. Constant-depth Boolean circuits. In this article, we
will consider the standard Boolean circuit classes AC0, ACC0[r],
for constant r, and NC1. AC0 and ACC0[r] circuits are of con-
stant depth and consist of gates of unbounded fan-in. AC0 circuits
allow only AND, OR, and NOT gates. ACC0[r] also permit MODr

gates. These gates output 1 when the sum of their inputs is di-
visible by r. NC1 circuits are of logarithmic depth but allow only
NOT and binary AND and OR gates.

It is known that AC0 and ACC0[qk] circuits of subexponential
size cannot compute the MODp function if p and q are distinct
primes (H̊astad 1986; Smolensky 1987). In addition, these circuits
cannot approximate MODp very well:
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Theorem 2.12 (H̊astad 1986). If C is a depth-d AC0 circuit of

size 2n1/(d+1)
, then, for sufficiently large n, C cannot compute MODp

correctly on more than a (p−1)/p+1/2n1/(d+1)
fraction of the inputs.

Theorem 2.13 (Smolensky 1987, 1993). Suppose that p and q
are distinct primes. If C is a depth-d ACC0[qk] circuit of size

2o(n1/2d), then, for sufficiently large n, C cannot compute MODp

correctly on more than a (p− 1)/p+ o(1) fraction of the inputs.

In other words, these circuits cannot compute the MODp func-
tion much better than the constant circuit 0. In the case of AC0

circuits, MODp can be computed correctly on at most an exponen-
tially small fraction of additional inputs. In the case of ACC0[qk]
circuits, the result is weaker: the fraction of additional inputs is
only known to be decreasing. In particular, it is not known whether
this result can be improved to a polynomially small fraction.

However, it is natural to conjecture that the stronger result
of Theorem 2.12 also holds for ACC0[qk], when q is prime, and
even for ACC0[r], with no restriction on r. More precisely, some
of the results in this paper are conditional on the following two
conjectures. We say that a Boolean function is balanced if evaluates
to 0 and 1 on the same number of inputs.

Conjecture 2.14. Let p be a prime number that does not divide
r. There exists a balanced polynomial-size ACC0[p] function f

such that if C is a depth-d ACC0[r] circuit of size 2n1/(d+1)
, then,

for sufficiently large n, C cannot compute f correctly on more than
a 1/2 + 1/2n1/(d+1)

fraction of the inputs.

Conjecture 2.15. There exists a balanced polynomial-size NC1

function f such that if C is a depth-d ACC0[r] circuit of size

2n1/(d+1)
, then, for sufficiently large n, C cannot compute f correctly

on more than an 1/2 + 1/2n1/(d+1)
fraction of the inputs.

The first conjecture implies the separation of the ACC0[r] cir-
cuit classes for various r. When p = 2, MOD2 is a reasonable
candidate for a hard function.

The second conjecture is weaker since the hard function f is
only required to be in NC1. It is well known that a function has a
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polynomial-size NC1 circuit if and only if it has a polynomial-size
AND-OR formula. Therefore, the second conjecture states that
there is a balanced polynomial-size AND-OR formula that is hard
to approximate by ACC0[r] circuits.

3. Basic lower bound for Statman’s sequents

In the previous section, we saw that the Statman sequents have
polynomial-size cut-free PK proofs. Those proofs were clearly not
tree-like because in the induction step, the sequent Statmann−1

was used more than once.
In this section, we will show that this is necessary: any cut-

free PK� proof of the Statman sequents must be of exponential
size (Buss 1988; Clote & Kranakis 2002; Statman 1978). We then
define a class of tautologies and point out that this lower bound
applies to all of these tautologies. The proof of this lower bound
will provide the backbone for the proof of the main result of this
paper.

Theorem 3.1 (Statman lower bound). Any cut-free PK� proof
of the sequent Statmann has size at least 2n.

We will use the following lemma in the proof of the theorem.
Note that Statmann is of the form

−→ (A1 ∧B1), (A2 ∧B2), . . . , (An+1 ∧Bn+1)

where, for i ≤ n,

Ai = [(p1 ∨ q1) ∧ · · · ∧ (pi−1 ∨ qi−1) ∧ ¬pi]

Bi = ¬qi
and

An+1 = [(p1 ∨ q1) ∧ · · · ∧ (pn−1 ∨ qn−1)]

Bn+1 = pn ∨ qn.

Lemma 3.2. Consider the sequent Statmann, which is of the
form

−→ (A1 ∧B1), (A2 ∧B2), . . . , (An+1 ∧Bn+1).
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Suppose that T is similar to Statmann and that T ′ is the result
of modifying T by replacing one of the formulas Ai ∧ Bi by either
Ai, ∧(Ai), Bi, or ∧(Bi). Then, there exists a partial truth assign-
ment ρ such that T ′|ρ is similar to Statmann−1, modulo a possible
renaming of the variables.

Proof (of Theorem 3.1). It will be easier to prove the lower
bound for all sequents that are similar to Statmann. We will prove
a lower bound on the number of sequents in the proof, which, of
course, is a lower bound on the size of the proof. The proof is by
induction on n.

The base case, for n = 1, is obvious since any sequent similar
to Statman1 cannot be an axiom.

For the induction step, suppose that the lower bound holds for
all sequents similar to Statmann−1. Consider a cut-free PK� proof
of a sequent S similar to Statmann. Once again, S cannot be an
axiom. So S must be derived by either a contraction, weakening,
or an AND-right rule. In addition, moving up the proof from the
root S, we must eventually reach a sequent T derived by either an
AND-right rule or by an instance of weakening that is not just an
expansion. (Recall that an expansion is an instance of weakening
that introduces another copy of a formula that is already present
in the sequent.)

Consider the weakening case and suppose that T is derived
from T ′. The sequent T must be similar to Statmann. This
implies that T ′ is similar to Statmann except for the fact that one
of the Ai ∧Bi formulas is missing. It is not hard to see that such a
sequent cannot be a tautology, which implies that the weakening
case cannot occur.

Therefore, T is derived from two sequents T ′ and T ′′ by an
AND-right rule. But then, by the lemma, there are partial truth
assignments ρ′ and ρ′′ such that T ′|ρ′ and T ′′|ρ′′ are both similar
to Statmann−1. By induction, these restrictions require proofs
of size at least 2n−1. Therefore, by Lemma 2.8, T ′ and T ′′, each
requires a proof of that size, which implies that the total size of
the proof of S is at least 2n, as desired. �

We now prove the lemma.
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Proof (of Lemma 3.2). Recall that Statmann is the sequent

−→ (¬p1 ∧ ¬q1), [γ1 ∧ ¬p2 ∧ ¬q2], . . . , [γn−1 ∧ ¬pn ∧ ¬qn], γn

where

γn = [(p1 ∨ q1) ∧ · · · ∧ (pn ∨ qn)].

Suppose that T is similar to Statmann. There are two cases to
consider depending on which formula is broken up.

The first case is when an occurrence of [γi−1 ∧ ¬pi ∧ ¬qi] is
broken up, for some i ≤ n. This means that T ′ is an expansion
of Statmann with one occurrence of [γi−1 ∧ ¬pi ∧ ¬qi] replaced by
one of the following: ¬qi, ∧(¬qi), (γi−1 ∧ ¬pi), or ∧(γi−1 ∧ ¬pi). In
all cases, let ρ set both pi and qi to �.

In T ′|ρ, if j < i, then every occurrence of [γj−1 ∧ ¬pj ∧ ¬qj] is
unchanged. If j > i, then (pi ∨ qi) is deleted from every occurrence
of [γj−1 ∧ ¬pj ∧ ¬qj]. The formula (pi ∨ qi) is also deleted from
every occurrence of γn. In addition, any remaining occurrence of
[γi−1 ∧ ¬pi ∧ ¬qi] is deleted from T ′|ρ. For j > i, rename every
pj and qj as pj−1 and qj−1, respectively. The sequent T ′|ρ is now
similar to Statmann−1.

The second case is when an occurrence of γn is broken up. Then,
T ′ is similar to Statmann but with one occurrence of γn replaced
by one of the following: (pn ∨ qn), ∧(pn ∨ qn), γn−1, or ∧(γn−1). In
the first two subcases, let ρ set both pn and qn to ⊥. Then, T ′|ρ is
similar to Statmann−1.

In the remaining two subcases, let ρ set both pn and qn to �.
Then, the every occurrence of [γn−1 ∧ ¬pn ∧ ¬qn] is deleted from
T ′|ρ and that sequent is similar to Statmann−1. �

The lower bound of Theorem 3.1 can be generalized to apply
to all tautologies that satisfy the following set of conditions:

Definition 3.3 (Statman property). We say that a sequent S
has the Statman property of order n if it satisfies the following
conditions:

(i) S is of the form −→ Γ where Γ is not empty and consists of
nonempty conjunctions.
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(ii) Removing from S every occurrence of any of these conjunc-
tions results in an invalid sequent.

(iii) If n ≥ 2, then for all sequents T similar to S the following
condition holds. For any formula ∧(F ) of T (for a multiset of
formulas F ) and for any A ∈ F , let T ′ be obtained from T by
replacing simultaneously all occurrences of ∧(F ) by either A
or ∧(F ′), where F ′ is F with one occurrence of A removed.
Then there is a partial truth assignment ρ such that T ′|ρ
has the Statman property of order n− 1, modulo a possible
renaming of the variables.

We say that a family of sequents {Sn} has the Statman property
if, for every n, Sn has the Statman property of order n.

This definition is for sequents that have all their formulas on
the right. All of our tautologies will have that form but this is
only done for convenience. The Statman property, as well as all
the results presented later in this paper, can be generalized to
sequents that have formulas on both sides. In that case, the ∨
connective would play on the left the role that the ∧ connective
plays on the right.

The following lemma will be useful and follows directly from
the definition.

Lemma 3.4. If S has the Statman property of order n, then every
sequent similar to S also has the Statman property of order n.

It is easy to verify that the Statman sequents have the Statman
property. This can be proved by induction on n with the third
condition following from Lemmas 3.2 and 3.4.

It is also easy to see that our proof of Theorem 3.1 applies not
just to the Statman sequents but to all sequents that have the
Statman property.

Theorem 3.5. If S has the Statman property of order n, then
any cut-free PK� proof of S requires size 2n.

As mentioned earlier, the proof of this lower bound will provide
the backbone for the proof of the main result of this paper. In a
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sense, the lower bound for cut-free proof systems will be lifted to
apply to proof systems with limited cuts. The lower bound will
apply to certain extensions of any tautology that has the Statman
property. We therefore end this section by noting that the pi-
geonhole principle also has the Statman property. (Note that the
lower bound of Theorem 3.5 was already known to apply to the
pigeonhole principle.)

Lemma 3.6. The pigeonhole principle has the Statman property.

Proof. Recall that PHPn is the sequent

−→
n∧

k=1

¬p1k, . . . ,
n∧

k=1

¬p(n+1)k, p11 ∧p21, p11 ∧p31, . . . , pnn ∧p(n+1)n.

The proof of the lemma is by induction on n. For every n ≥ 1,
it is clear that PHPn is of the form specified in Definition 3.3.
It is also easy to see that if any of the conjunctions of PHPn is
removed, then we can find an assignment that falsifies all of the
remaining conjunctions. In particular, this establishes that PHP1

has the Statman property of order 1.
Now suppose that n ≥ 2. All that remains to show is that Part

3 of the definition holds for PHPn. Suppose that T is similar to
PHPn. We will consider two cases, depending on which formula
is broken up.

First, suppose that this formula is a conjunction associated
with a pigeon i, saying that pigeon i is not mapped to any hole.
In this case, in T ′, that formula will be replaced by either ¬pir

or
∧

k �=r ¬pik, for some hole r. Suppose it is ¬pir. Let ρ set pir

to true, all other pik to false, and all other pjr to false. In other
words, ρ maps pigeon i to hole r, and nowhere else, and no other
pigeon goes to hole r. Then, T ′|ρ becomes similar to the pigeonhole
principle with one less pigeon (pigeon i) and one less hole (hole r).
The inductive hypothesis and Lemma 3.4 imply that T ′|ρ has the
Statman property of order n − 1. The partial truth assignment
that works for the case of

∧
k �=r ¬pik is similar: it sends pigeon i to

some hole other than r.
Second, suppose that the formula that is broken up is of the

form (pir ∧ pjr), saying that two pigeons i and j are both mapped
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to the same hole r. In this case, in T ′, (pir ∧ pjr) will be replaced
by either pir, ∧(pir), pjr, or ∧(pjr). Suppose it is pir. Let ρ be
the restriction that maps pigeon j to r and nowhere else, and no
other pigeon goes to hole r. Then, T ′|ρ once again becomes similar
to the pigeonhole principle with one less pigeon and one less hole.
The other cases are handled similarly. �

4. Main lower bound result
and overview of proof

The Statman lower bound of the previous section is for cut-free
PK�. We now want to “lift” this lower bound so that it holds
for stronger proof systems. Let C be a set of formulas. Our main
theorem is a lower bound for systems of the form PK�[r](C) and
PK�(C). Recall that these are versions of PK�[r] and PK� in
which the cuts are limited to C. For example, d-PK� = PK�(C)
where C is the set of depth-d AND-OR formulas.

Theorem 3.5 essentially says that a sequent S with the Statman
property is hard for cut-free proofs. We will obtain sequents that
are hard for proofs with C cuts by replacing each variable in S
by a formula that is hard for C. For technical reasons, we restrict
ourselves to functions that are balanced.

Definition 4.1. Let f(x1, . . . , xm) be a balanced Boolean func-
tion on m variables. Let C be a set of circuits and let σ and ε
be functions of m. Then, f is (σ, ε)-hard with respect to C if the
following holds. Suppose that B(x1, . . . , xm, y1, . . . , yk) is any con-
junction of circuits that are either in C or are negations of circuits
in C, with k ≥ 0. If the total size of B is at most 2σ(m), then when
f is viewed as a function of x1, . . . , xm, y1, . . . , yk, neither B nor
¬B compute f correctly on more than a 1/2+ ε(m) fraction of the
inputs.

For example, let C be the set of depth-d AND-OR formulas. By
Theorem 2.12, the parity function is (σ, ε)-hard with respect to C
where σ(m) = m1/(d+1) and ε(m) = 1/2m1/(d+1)

.
As another example, let q be prime and let C be the set of

depth-d formulas with AND, OR, NOT, and MODqk connectives.
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By Theorem 2.13, the parity function is (σ, ε)-hard for C where
σ = m1/(d+1) and ε = o(1). In addition, Conjecture 2.15 asserts
there is a balanced polynomial-size NC1 function that is (σ, ε)-hard

for C where now σ = m1/(d+1) and ε = 1/2m1/(d+1)
.

Definition 4.2. Let S be a sequent with variables p1, . . . , pn, and
f a formula on m variables. Then, S(f) denotes the sequent ob-
tained from S by replacing each variable pi by f(xi

1, x
i
2, . . . , x

i
m) for

a new set of variables xi
1, x

i
2, . . . , x

i
m.

We are now ready to state our main theorem. Let P be either
the PK�[r] or PK� proof systems and let C be a set of formulas.
Suppose that S has the Statman property of order n and that f is
(σ, ε)-hard for C. We will prove a lower bound of 2n on the size of
any P(C) proof of S(f).

In applications, this lower bound is useful only if 2n is at least
superpolynomial in the size of S(f). Therefore, informally, the
functions σ and ε must satisfy the following requirement: for suf-
ficiently large n, there exists m such that

1. m is not too large, so that 2n is superpolynomial in the size
of S(f), and

2. m is not too small, so that Condition (4.4) below holds.

Theorem 4.3 (Main Theorem). Let S be a sequent with the Stat-
man property of order n and let k denote the number of variables
in S. Let P be either the PK�[r] or PK� proof systems. Let f be
a Boolean formula in m variables and suppose that, as a Boolean
function, f is balanced and (σ, ε)-hard for some set C of formulas
that is closed with respect to subformulas and restrictions. Sup-
pose that m is such that

(4.4) m > 3k + n2, σ(m) ≥ n, ε(m) <
1

2n24k
.

Then, the sequent S(f) requires P(C) proofs of size 2n.

The hypothesis of the main theorem is satisfied, for example,
when S is Statmann, P is PK�, C is the set of depth-d AND-
OR formulas (so that P(C) is d-PK�) and f is a polynomial-size
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AND-OR parity formula. In this case, k = 2n, σ(m) = m1/(d+1),

ε(m) = 1/2m1/(d+1)
, so condition (4.4) is satisfied for any sufficiently

large n by letting m = 2n2(d+1). Then, the size N of S(f) is

nO(d) and 2n ≥ 2N1/O(d)
, which is not only superpolynomial but

exponential in N .
We end this section with an overview of the proof of the main

theorem. The complete proof will be given in the next section.
Suppose that S has the Statman property of order n and let P,

C, f , and m satisfy the conditions of the theorem. In particular, f
is hard with respect to C. Recall that S must have the form −→ Γ
where each formula in Γ is a nonempty conjunction. To keep things
simple, suppose that all the formulas of S(f) are distinct and that
the contraction rule is not used. Now, suppose, by contradiction,
that π is a small P(C) proof of S(f).

First, note that S(f) is not an axiom. So S(f) must be derived
by either weakening, an AND-right rule or a cut on a C formula.
The first two cases can be handled in essentially the same way as
in the Statman lower bound (Theorem 3.1). So we will focus on
the third case in this overview.

Suppose that S(f) is derived from g −→ Γ(f) and −→ g,Γ(f)
by a cut on g ∈ C. In this context, we call g a side formula. It
could be that one of those two sequents is easy to prove. A trivial
example is when g = ∨(). In that case, g −→ Γ(f) can be derived
from the axiom ∨() −→ by weakening. But then the validity of
−→ g,Γ(f) would essentially depend on Γ(f) since g = ∨() is false
for every possible truth assignment. So −→ g,Γ(f) should be just
as hard to prove as the original sequent −→ Γ(f).

In general, with respect to Γ(f), we say that an assignment is
critical for g −→ Γ(f) if it satisfies g and critical for −→ g,Γ(f) if
it falsifies g. Clearly, at least half the assignments will be critical
for one of those two sequents. Suppose it is −→ g,Γ(f). Then, the
fact that g does not approximate f very well will allow us to show
that every truth assignment to the variables of Γ can be achieved
by a large number of critical truth assignments to the variables of
−→ g,Γ(f).

For example, consider any variable p of Γ. In Γ(f), p is replaced
by f . Since f is hard for g, at least 1/4 of the assignments that
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falsify g satisfy f and at least 1/4 of the assignments that falsify g
falsify f . We will later see how to extend this to all the variables
of Γ.

Intuitively, what all this seems to indicate is that cuts on C
formulas do not help in a proof of S(f). This intuition will be
formalized as follows. From the root of π, follow all paths until
one of the following is reached: an axiom, a sequent where the first
occurrence of one of the formulas of S(f) is introduced by weaken-
ing, or a sequent where one of the formulas of S(f) is introduced
by an AND-right rule (but not necessarily the first occurrence).
This defines a subtree π′ of π in which all sequents are of the form
Λ −→ Δ,Γ(f) with all the formulas in Λ and Δ belonging to C.

Generalizing the earlier definitions, we say that the formulas
in Λ and Δ are side formulas (with respect to Γ(f)) and that an
assignment is critical for a sequent of this form if is satisfies all
side formulas on the left and falsifies all side formulas on the right.

All assignments are critical for the root sequent S(f). In
addition, critical assignments are preserved as we go up π′ from
the root: if T is derived from T ′ and T ′′, then every assignment
critical for T is also critical for at least one of T ′ and T ′′. This is
essential because of the soundness of the inference rules.

Now, if π′ has at least 2n leaves, then we are done: we have
shown that π is large. Otherwise, a 1/2n fraction of all assign-
ments is critical for some leaf L of π′. Note that this is a large
number of assignments since, by Condition (4.4), the total number
of assignments is at least 2kn2

.
We can now use on L essentially the same argument that was

used in the proof of the Statman lower bound. For example, sup-
pose that L is derived from L′ and L′′ by an application of one of
the AND-right rules that introduces a formula of Γ(f). The fact
that L is of the form Λ −→ Δ,Γ(f) implies that L′ must be of the
form Λ −→ Δ,Γ′(f) where Γ′ contains all the formulas of Γ but
with some ∧(F ) replaced by either A or ∧(F ′), and similarly for
L′′:

L′ L′′

L
=

Λ −→ Δ,Γ′(f) Λ −→ Δ,Γ′′(f)

Λ −→ Δ,Γ(f)
.
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In addition, all the partial truth assignments that are critical for L
(with respect to Γ(f)) are also critical for L′ and L′′ (with respect
to Γ′(f) and Γ′′(f), respectively).

Because −→ Γ has the Statman property of order n, there is
a partial truth assignment ρ′ to the variables of −→ Γ such that
(−→ Γ′)|ρ′ = (−→ Ψ′) has the Statman property of order n − 1.
As explained earlier, the fact that f is hard with respect to the
side formulas allows us to achieve ρ′ with a large number of critical
truth assignments to the variables of L′. In particular, as we will
show later, there is a partial truth assignment τ ′ to the variables
of L′ that is consistent with ρ′ and such that L′|τ ′ = (Λ|τ ′ −→
Δ|τ ′ ,Ψ′(f)) still has a large number of critical assignments (with
respect to Ψ′(f)).

The same holds for L′′: there is a partial truth assignment τ ′′

to the variables of L′′ such that L′′|τ ′′ = (Λ|τ ′′ −→ Δ|τ ′′ ,Ψ′′(f)),
where −→ Ψ′′ has the Statman property of order n − 1, and such
that L′′|τ ′′ has a large number of critical assignments (with respect
to Ψ′′(f)). The large number of critical assignments of both L′|τ ′

and L′′|τ ′′ allows us to repeat the argument on these sequents and
inductively show that each of these sequents requires a proof of
size 2n−1. Therefore, as in the Statman lower bound, π must be of
size 2n.

As we said earlier, in the next section, we will turn this overview
into a complete proof of the main theorem. This will require care-
ful calculations of numbers of critical assignments. We will also
address the possibility that contractions may be used in the proof.

5. Proof of Main theorem

First, we precisely define the concepts of side formula and critical
assignment.

Definition 5.1. Let L be a sequent of the form Λ −→ Δ,Γ. With
respect to Γ, the formulas of Λ and Δ are called side formulas and
we say that a truth assignment is critical for L (still with respect
to Γ) if it satisfies all the side formulas in Λ and falsifies all the
side formulas in Δ.
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In order to prove Theorem 4.3, we will need a few lemmas. Note
that in order for these lemmas to hold, we will need to ensure that
f is balanced.

Lemma 5.2. Let f(x1, . . . , xm) be a balanced Boolean formula in
m variables and suppose that f is (σ, ε)-hard for some set C of for-
mulas that is closed with respect to restrictions. Let B(x1, . . . , xm)
be a conjunction of formulas that are either in C or are negations
of formulas in C. Suppose that the size of B is no greater than
2σ(m) and that a fraction of at least 2ε(m) truth assignments sat-
isfy B. Then, among all the assignments that satisfy B, at least
1/4 satisfy f and at least 1/4 falsify f .

Proof. Let r be the fraction of truth assignments that satisfy
B. Then, r ≥ 2ε(m). Suppose that among the truth assignments
that satisfy B, there is a fraction s that satisfies f . We will show
that s ≥ 1/4. Because f is balanced, a similar proof shows that a
1/4 fraction of all assignments satisfying B falsify f .

The assignments on which ¬B computes f correctly are those
that satisfy either ¬B ∧ f or B ∧¬f . Those assignments represent
a (1/2− rs)+ r(1− s) fraction of all assignments. Since f is (σ, ε)-
hard with respect to C, ¬B computes f correctly on no more than
a 1/2 + ε(m) fraction of all assignments. Therefore,

1

2
− rs+ r(1 − s) ≤ 1

2
+ ε(m).

Since ε(m) ≤ r/2, it follows that s ≥ 1/4. �

Lemma 5.3. Let f be a balanced Boolean formula in m variables
and suppose that f is (σ, ε)-hard for some set C of formulas that
is closed with respect to restrictions. Let S be a sequent of the
form Λ −→ Δ,Γ where Γ contains at least one occurrence of f .
Suppose all the side formulas (with respect to Γ) are in C and that
their total size is at most 2σ(m). Suppose that the fraction t of
assignments that are critical for S is at least 4ε(m). Then, for each
truth value v, there is an assignment τ to the variables of f such
that f(τ) = v and S|τ has at least a fraction t/4 of assignments
that are critical.
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Proof. Let W be the assignments to the variables of S other
than x1, . . . , xm, the variables of f . Each assignment in W has 2m

extensions to all the variables in S. Let W1 be those assignments
in W that have a fraction of at least t/2 extensions that are critical
for S. Together, all the assignments W − W1 can be extended to
at most 1/2 of all critical assignments. Therefore, at least 1/2 of
all critical assignments are extensions of assignments in W1.

Consider an arbitrary σ ∈ W1. Since t/2 ≥ 2ε(m) and since
C is closed under restrictions, we can apply Lemma 5.2 to S|σ to
get that at least 1/4 of the critical extensions of σ give f value v.
Therefore, at least 1/8 of all critical assignments give f value v.
In other words, at least t/8 of all assignments to the variables of
S are critical and give f value v.

On the other hand, among all the assignments to the variables
of f , at most 1/2 give f the value v. As a result, there is an
assignment τ to the variables of f that sets f to v and has a
fraction of at least t/4 extensions that are critical. This implies
that at least t/4 of the assignments of S|τ are critical. �

Lemma 5.4. Let f be a balanced Boolean formula in m variables
and suppose that f is (σ, ε)-hard for some set C of formulas that
is closed with respect to restrictions. Let S be a sequent of the
form Λ −→ Δ,Γ where Γ contains multiple occurrences of f over
distinct sets of variables xi

1, . . . , x
i
m, for 1 ≤ i ≤ k. Suppose all the

side formulas (with respect to Γ) are in C and that their total size
is at most 2σ(m). Suppose that the fraction t of assignments that
are critical for S is at least 4kε(m). Then, for any k truth values
v1, . . . , vk, there is an assignment τ to all the variables xi

j so that
f(xi

1, . . . , x
i
m)|τ = vi, for 1 ≤ i ≤ k, and S|τ has at least a fraction

t/4k of assignments that are critical.

Proof. By induction on k using Lemma 5.3. �

We are now ready to prove our main theorem. For the sake of
the inductive argument, we will prove a more general result.

Theorem 5.5. Let P be either the PK�[r] or PK� proof systems,
f(x1, . . . , xm) be a balanced Boolean formula that is (σ, ε)-hard for
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some set C for formulas that is closed with respect to subformulas
and restriction. Let k, n be such that they satisfy condition (4.4)
of Theorem 4.3, i.e.,

m > 3k + n2, σ(m) ≥ n, ε(m) <
1

2n24k
.

Suppose that −→ Γ has the Statman property of order r ≤ n and
that the number j of variables in −→ Γ is no greater than k. Let T
be a sequent of the form Λ −→ Δ,Γ(f) where Λ and Γ are in C and
the total size of Λ and Γ is at most 2r. Suppose that the fraction of
all truth assignments to the variables of T that are critical (with
respect to Γ(f)) is at least

1

4k−j2(r+1)+(r+2)+···+n

(where the sum (r+ 1) + (r+ 2) + · · · +n is 0 if r = n). Then, any
P(C) proof of T must have size at least 2r.

By letting r = n and T = S(f), we get our main theorem.

Proof (of Theorem 5.5). First note that if T has no variables,
then it is easy to show that r must be 1. In addition, since T
contains at least one nonempty conjunction, T must have size at
least 2. So we now assume that j ≥ 1.

The proof is by induction on r.

Inductive basis: r = 1. The sequent T cannot be an axiom
because Γ(f) contains at least one conjunction that does not belong
to C and therefore cannot appear on the left. This implies that the
proof contains at least two sequents.

Induction step: r ≥ 2. Suppose that the lower bound holds for
r − 1. We prove it for r.

Let π be a proof of T and let α be the fraction of assignments
that are critical for T . Consider the subtree π′ of π that is obtained
by starting at the root and following all paths in π until one of the
following is reached:

◦ an axiom,

◦ a sequent derived by an instance of weakening that introduces
the first occurrence of one of the formulas of Γ(f), or
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◦ a sequent derived by an AND-right rule that introduces one of
the formulas of Γ(f) (but not necessarily the first occurrence
of that formula).

In part because C is closed with respect to subformulas, it is
not hard to see that all the sequents in π′ are of the form Λ′ −→
Δ′,Γ′(f), where all the formulas in Λ′ and Δ′ belong to C and
where −→ Γ′ is similar to −→ Γ. In addition, all the partial
truth assignments that are critical for T are preserved as we go
up π′ (with respect to the appropriate Γ′(f)). In particular, every
assignment that is critical for T is critical for at least one leaf of π′.

If π′ has size at least 2r, then so does π, and we are done.
Otherwise, there must be a leaf L = (ΛL −→ ΔL,ΓL(f)) of π′

for which a fraction of at least α/2r assignments are critical (with
respect to ΓL(f)).

This leaf L cannot be an axiom, for the same reason that T
was not an axiom in the inductive basis.

So suppose that L is obtained from some sequent L′ by a weak-
ening that introduces the first occurrence of one of the formulas of
ΓL(f):

L′

L
=

ΛL −→ ΔL,Γ
′
L(f)

ΛL −→ ΔL,ΓL(f)
,

where Γ′
L is just like ΓL but with one formula missing. The

sequent −→ ΓL has the Statman property because it is similar
to −→ Γ. Therefore, −→ Γ′

L is not a tautology and there is
a truth assignment ρ′ that falsifies this sequent. The total size
of the side formulas in L′ (with respect to Γ′

L(f)) is at most
2r ≤ 2n ≤ 2σ(m). The fraction of assignments that are critical
for L′ is at least α/2r > 4jε(m) since ε(m) < 1/(2n2

4k). We can
therefore apply Lemma 5.4: there is a partial truth assignment τ ′

that is consistent with ρ′ and such that the number of critical as-
signments of L′|τ ′ is at least 2jmα/(2r4j). This number is at least
1 since m > 3k + n2. The existence of such a critical assignment
and the fact that τ ′ falsifies −→ Γ′

L(f) implies that L′ is not a
tautology. Therefore, L could not have been derived from L′ by
weakening.
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The only other possibility is that L is obtained by an AND-right
rule that introduces one of the formulas of ΓL(f):

L′ L′′

L
=

ΛL −→ ΔL,Γ
′
L(f) ΛL −→ ΔL,Γ

′′
L(f)

ΛL −→ ΔL,ΓL(f)
,

where each of Γ′
L(f) and Γ′′

L(f) is just like ΓL(f) but with one of
the formulas ∧(F ) replaced by either A or ∧(F ′).

We now show every proof of L′ contains at least 2r−1 sequents.
Because −→ ΓL is similar to −→ Γ, it has the Statman property of
order r and there is a partial truth assignment ρ′ to the variables of
−→ ΓL such that (−→ Γ′

L)|ρ′ = (−→ Ψ′) has the Statman property
of order r − 1. Let j′ ≤ j be the number of variables of −→ Ψ′,
which means that ρ′ sets j− j′ variables in −→ ΓL. As before, the
total size of the side formulas in L′ (with respect to Γ′

L(f)) is at
most 2σ(m) and the fraction of assignments that are critical for L′

is at least 4jε(m). So we can again apply Lemma 5.4: there is a
partial truth assignment τ ′ that is consistent with ρ′ and such that
the fraction of assignments critical for

L′|τ ′ = (ΛL|τ ′ −→ ΔL|τ ′ ,Ψ′(f))

is at least
α

2r4j−j′ =
1

4k−j′2r+(r+1)+···+n
.

Since both C and P(C) are closed with respect to restrictions, the
inductive hypothesis implies that every proof of either L′|τ ′ or L′

contains at least 2r−1 sequents.
The same argument can be used to show every proof of L′′ also

contains at least 2r−1 sequents. This implies that π contains at
least 2r sequents. �

6. Applications to propositional proof systems

In this section, we apply our main theorem (Theorem 4.3) to obtain
a variety of results concerning propositional proof systems. Most
of these results are conditional on the circuit hardness results con-
jectured in Section 2.4. First, we obtain lower bounds for constant-
depth PK�[r] and constant-depth PK� proofs. Second, we obtain
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separation results for constant-depth PK�[r] proofs that use dif-
ferent modular connectives. Third, we show that constant-depth
PK�[r] proofs cannot p-simulate cut-free PK proofs. Finally, we
prove a hierarchy theorem for constant-depth PK�[r] proofs.

6.1. Lower bounds for constant-depth tree-like proofs.
Our first application of the main theorem is a conditional expo-
nential lower bound for d-PK�[r]. As mentioned earlier, as far
as we know, this is the first known lower bound result for an ex-
tension of AC0-Frege under a complexity assumption seemingly
weaker than NP not closed under complementation.

Theorem 6.1. Suppose that Conjecture 2.15 is true and let f
be a balanced polynomial-size AND-OR formula that is hard to
approximate by depth-d ACC0[r] circuits of size 2n1/(d+1)

. For suf-
ficiently large n and for m = (5n2)d+1, any d-PK�[r] proof of either

PHPn(fm) or Statmann(fm) has size at least 2N1/O(d)
, where N

is the size of the tautology.

The proof is essentially just a matter of verifying that the two
tautologies satisfy the conditions of the main theorem.

Proof (Proof Sketch). Conjecture 2.15 says that f is (σ, ε)-hard
for ACC0[r] circuits of depth d, where

σ(m) = m
1

d+1 , ε(m) = 1/2m
1

d+1
.

For PHPn, we have k = (n + 1)n, while for Statmann, k = 2n.
Thus, it is straightforward to verify that Condition (4.4) of Theo-
rem 4.3 is satisfied. Theorem 6.1 then follows from Theorem 4.3 by
using the fact that both PHPn and Statmann have the Statman
property of order n. In particular, the size N of the sequent (i.e.,
either PHPn(fm) or Statmann(fm)) is a polynomial in n and m,

so n = N1/O(d), and hence the lower bound 2n = 2N1/O(d)
. �

Note that in this lower bound result, m depends on d. This
implies that we have a different family of tautologies for each depth
d. A stronger result would provide a single family of tautologies
that is hard for any d-PK� proof (for every depth d). Such a result
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follows from our main theorem but the lower bound on the size of
the proofs is slightly weaker:

Theorem 6.2. Let f be as in Theorem 6.1. Let α(n) be un-
bounded and nondecreasing. Let m = nα(n). Then, for sufficiently
large n, any d-PK�[r] proof of either PHPn(fm) or Statmann(fm)

has size at least 2N1/O(α(N))
, where N is the size of the tautology.

This is no longer an exponential lower bound, but it is still very
large and certainly much larger than quasi-polynomial. For exam-
ple, with α(n) = log log n, we get a lower bound of 2N1/O(log log N)

.
We can also use our main theorem to obtain an uncondi-

tional exponential lower bound for d-PK�. As mentioned earlier,
constant-depth PK� and AC0-Frege are polynomially equivalent
with respect to constant-depth tautologies and it is already known
that constant-depth AC0-Frege proofs of the pigeonhole principle
have exponential size (Ajtai 1988; Kraj́ıček et al. 1995; Pitassi et al.
1993). Therefore, constant-depth PK� proofs of the pigeonhole
principle also have exponential size. Our main theorem provides a
much simpler proof of this lower bound.

First, note that for every p, the MODp function can be ex-
pressed by a polynomial-size AND-OR formula. Let MODb

p be the
formula defined recursively as follows:

MODb
p(x1, . . . , xm)

=

p−1∨

a=0

(
MODa

p(x1, . . . , xm/2) ∧ MODb−a
p (xm/2+1, . . . , xm)

)
.

Then, MODp is simply MOD0
p. Let MODp,m denote the MODp

formula over m variables.

Theorem 6.3. For sufficiently large n and for m = (5n2)d+1, any
d-PK� proof of either PHPn(MOD2,m) or Statmann(MOD2,m)

has size at least 2N1/O(d)
, where N is the size of the tautology.

6.2. Separations between constant-depth tree-like proofs
with different modular connectives. The lower bound on the
size of d-PK�[r] proofs of PHP(fm) is interesting in part because
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it is a necessary step toward a lower bound on the size of d-PK�[r]
proofs of PHP. But by focusing on the extensions of the Statman
tautology, we can obtain separation results for the d-PK�[r] and
d-PK� systems.

Theorem 6.4. Let MOD2 be the polynomial-size AND-OR for-
mula described in the preceding subsection. Consider the tautology
Statmann(MOD2,m) with m = (5n2)d+1. Let N denote the size of
this sequent. Then, the following holds:

(i) Statmann(MOD2,m) has a 3-PK�[2] proof of size polynomial
in N .

(ii) For sufficiently large n, any d-PK� proof of

Statmann(MOD2,m) has size at least 2N1/O(d)
.

Proof (Sketch). The lower bound is from the previous subsec-
tion. A small 3-PK�[2] proof of Statmann(MOD2,m) can be con-
structed in two stages. First, prove (by a cut-free proof) that the
AND-OR formula MOD2 is equivalent to a formula consisting of a
single ⊕0

2 connective. Second, prove Statmann(⊕0
2) by using the

proof of Theorem 2.11, but now the cut formulas have depth 2, so
the proof is 2-PK�[2]. Finally, prove Statmann(MOD2,m) from
Statmann(⊕0

2) by using the fact that MOD2 is equivalent to ⊕0
2.

We need to cut on the formulas of Statmann(⊕0
2), which are of

depth 3. �

We can also prove a conditional separation of d-PK�[p] from
d′-PK�[r] when p is a prime that does not divide r, for some d′.
The separating sequents cannot mention the connectives ⊕r or ⊕p.
Therefore, we need to use the formula MODp from the preceding
section to express the polynomial-size ACC0[p] function from Con-
jecture 2.14 as an AND-OR formula. The next theorem is proved
in the same way as the previous one.

Theorem 6.5. Suppose that p is a prime number that does
not divide r and that Conjecture 2.14 is true. Let f be a
polynomial-size AND-OR formula that expresses a balanced depth-
k, polynomial-size ACC0[p] function that is hard to approximate
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by depth-dACC[r] circuits of size 2n1/(d+1)
. Consider the tautology

Statmann(fm) with m = (5n2)d+1. Let N denote the size of this
sequent. Then, the following holds:

(i) Statmann(fm) has a (k+2)-PK�[p] proof of size polynomial
in N .

(ii) For sufficiently large n, any d-PK�[r] proof of

Statmann(fm) has size at least 2N1/O(d)
.

6.3. Tree-like versus dag-like proofs. The lower bounds
in the previous subsections are for the tree-like proof systems
d-PK�[r] and d-PK�. We would obviously like to extend these
lower bounds to the corresponding dag-like proof systems. One
way would be to show that the tree-like proofs can p-simulate
the dag-like proofs. Our lower bounds for the tree-like systems
would then immediately translate into lower bounds for the dag-
like systems. And this is precisely the case with constant-depth
Frege proofs: depth-(d+ 1) tree-like ACC0[r]-Frege proofs can p-
simulate depth-d dag-like ACC0[r]-Frege proofs, and similarly for
AC0-Frege (Kraj́ıček 1995).

Unfortunately, we can combine our lower bounds and the cut-
free PK proof of the Statman tautologies (Theorem 2.10) to show
that d-PK�[r] proofs cannot even p-simulate cut-free PK proofs.

Theorem 6.6. There is a tautology of size N that has
polynomial-size cut-free PK proofs but requires d-PK� proofs of
size at least 2N1/O(d)

, for sufficiently large N . If Conjecture 2.15 is
true, then there is a tautology of size N that has polynomial-size
cut-free PK proofs but requires d-PK�[r] proofs of size at least

2N1/O(d)
, for sufficiently large N .

Proof (Sketch). The sequent that separates cut-free PK and
d-PK� is Statmann(MOD2,m) as in Theorem 6.4. A polynomial-
size cut-free PK proof of this sequent is easily obtained by modify-
ing the proof given in Theorem 2.10. The lower bound for d-PK�

proofs is given in Theorem 6.4.
The second part is proved similarly. �
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6.4. Hierarchy theorems. It is known that the AC0-Frege
hierarchy is infinite in the sense that AC0-Frege proofs of depth
d cannot p-simulate AC0-Frege proofs of depth d + 1 (Kraj́ıček
1994). In this section, by combining our lower bounds with the
1-PK� proof of the Statman tautologies (Theorem 2.11), we show
that the constant-depth PK�[r] hierarchy is also infinite, under the
assumption that Conjecture 2.14 holds.

First, for every p, we show that the MODp function has (ex-
ponential size) constant-depth AND-OR formulas. As explained
earlier, this also shows that every ACC0[p] function has a constant-
depth AND-OR formula.

Lemma 6.7. For each d ≥ 2, there is an AND-OR formula
MODp,d,m of depth d, size mp(d−1)m1/(d−1)

with an OR at the top
that computes MODp(x1, . . . , xm).

Proof (Sketch). Divide the input 
x = (x1, . . . , xm) into k =
m1/(d−1) blocks 
y1, . . . , 
yk each containing m/k variables. Then,
MODp(
x) can be computed with a DNF formula of size kpk−1 from
the various MODb

p(
yj) with b = 0, . . . , p − 1 and j = 1, . . . , k.
(There are pk−1 terms, each of size k.) Then, repeat recursively
d− 1 times, using either CNF or DNF formulas as appropriate, so
that the total depth ends up being d and not 2(d− 1). �

We use the formula MODp,2d+4,m from the lemma for the next
theorem. The size of this formula is

mp(2d+3)m
1

2d+3
.

We choose depth 2d+4 because we must have m = O(n2d+2). With
this setting, the lower bound 2n is still superpolynomial in the size
of MODp,2d+4,m (and hence also superpolynomial in the size of the
sequent). In the following theorem, we assume that Conjecture 2.14
is true. We start with a balanced function f that is computable by
a polynomial-size depth-k ACC0[p] circuit that is hard to approx-
imate by ACC0[r] circuits, as stated by the conjecture. Each gate
in the ACC0[p] can be computed by a depth-(2d + 4) AND-OR
formula, as shown by the lemma. So the whole circuit is computed
by a depth-k(2d+ 4) AND-OR formula.
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Theorem 6.8. Suppose that p is a prime that does not divide
r and that Conjecture 2.14 is true. Let fk(2d+4) be the depth-
k(2d + 4) AND-OR formula given by the lemma that expresses a
balanced depth-k, polynomial-size ACC0[p] function that is hard

to approximate by depth-d ACC[r] circuits of size 2n1/(d+1)
. Con-

sider the tautology Statmann(fk(2d+4),m) with m = (5n2)d+1. Let
N denote the size of this sequent. Then, the following holds:

(i) Statmann(fk(2d+4),m) has a PK�[r] proof of depth k(2d+ 4)
and size polynomial in N .

(ii) For sufficiently large n, any d-PK�[r] proof of

Statmann(fk(2d+4),m) has size at least 2(c log N)1+1/(2d+2)

(for some c > 0), which is superpolynomial in N .

Proof. The lower bound follows from the Main theorem (The-
orem 4.3) just like the other lower bounds of this section. The
upper bound is obtained by using the 1-PK� proof of the Stat-
man tautologies (Theorem 2.11) and the fact that the cut for-
mulas in that proof are all of the form pi ∨ qi. When using this
proof for Statmann(fk(2d+4),m), the depth of these cuts becomes
k(2d+4). (Note that the sequent Statmann(fk(2d+4),m) itself is of
depth k(2d+ 4) + 2.)

For the lower bound, as noted before the theorem, the size N
of Statmann(fk(2d+4),m) is a polynomial in n and

mp(2d+3)m
1

2d+3
.

Therefore, logN = O(n
2d+2
2d+3 ), so n > (c logN)

2d+3
2d+2 for some c > 0.

�

At the beginning of this subsection, we mentioned that it was
known that AC0-Frege proofs of depth d cannot p-simulate AC0-
Frege proofs of depth d + 1. The sequents that witness the sepa-
ration are of depth at most d. (They must be for the AC0-Frege
proofs of depth d to have any chance of proving them.) Based
on the ideas in the proof of Theorem 2.4, this implies that these
sequents show that d-PK� proofs cannot p-simulate (d + 1)-PK�

proofs.
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By using our new lower bounds, we can give a simpler proof
of the fact that the constant-depth PK� hierarchy is infinite. The
reason we use depth 2d + 4 here is the same as for the previous
theorem:

Theorem 6.9. Let MOD2,2d+4 be one of the AND-OR for-
mulas given by the Lemma 6.7. Consider the tautology
Statman(MOD2,2d+4,m) with m = (5n2)d+1. Let N denote the
size of this sequent. Then, the following hold:

(i) Statman(MOD2,2d+4,m) has a PK� proof of depth 2d+4 and
size polynomial in N .

(ii) For sufficiently large n, any d-PK� proof of

Statman(MOD2,2d+4,m) has size at least 2(c log N)1+1/(2d+2)

(for some c > 0), which is superpolynomial in N .

6.5. Other propositional proof systems. We briefly mention
that our main theorem can be used to obtain results similar to
those in this section but for other propositional proof systems.
For example, the system PTK can be defined by adding threshold
connectives and corresponding axioms and rules to the PK system.
Constant-depth PTK proofs can then be defined like constant-
depth PK proofs or constant-depth PK[r] proofs by limiting only
the depth of the cuts. It is easy to verify that the proof of our main
theorem applies to PTK� proofs and that the various applications
of this section also apply to constant-depth PTK� proofs, assuming
a conjecture similar to Conjecture 2.15, that there is a polynomial-
size NC1 function that is hard to approximate by TC0 circuits.

7. Applications beyond propositional
proof systems

In this section, we apply our general lower bound result and tech-
nique to obtain results that apply to other proof systems. First,
we present a new proof of the non-finite axiomatizability of the
bounded arithmetic theory IΔ0(R). Then, we prove a conditional
hierarchy theorem for the quantified propositional proof systems
G�

i .



cc (2013) Lifting lower bounds for tree-like proofs 41

7.1. Non-finite axiomatizability of IΔ0(R). We derive from
Theorem 6.9 another proof of the fact that the relativized theory
IΔ0(R) is not finitely axiomatizable (an earlier proof is given in
Kraj́ıček et al. 1991). We will present our argument for the two-
sorted version of IΔ0(R), i.e., ΣB

0 (V0), the ΣB
0 consequences of

V0. (The full theory V0 is associated with AC0 and serves as the
base theory for the development in Cook & Nguyen 2010.)

The high-level idea of the proof is as follows. Suppose for a con-
tradiction that ΣB

0 (V0) is finitely axiomatizable. Then, by com-
pactness, it can be axiomatized by a finite set of induction axioms
and probably some other basic axioms. Let d ∈ N be a com-
mon bound on the depth of all these axioms. By the Paris-Wilkie
propositional translation, each theorem of ΣB

0 (V0) translates into
a family of tautologies with polynomial-size d-PK� proofs. Now,
it is easy to see that the uniform version of the separating proposi-
tional sequents in Theorem 6.9 belongs to ΣB

0 (V0), and this gives
a contradiction.

We refer to Cook & Nguyen (2010, Chapter 5) for basic defini-
tions of V0. In short, there are two sorts of variables: the number
variables x, y, z, . . . range over natural numbers N, and the set (or
string) variables X,Y, Z, . . . are meant to be finite subsets of N.
When presented as input to computing machines, set variables are
given as binary strings while number variables are given in unary
notation (and thus play only an auxiliary role). The underlying
language L2

A is

L2
A = [0, 1,+, ·, |X|; ≤,=1,=2,∈]

where 0, 1,+, ·,≤,=1 are number functions and relations, |X| is the
length (with number value) of the string X which serves also as an
upper bound for the elements of X, ∈ is the membership relation,
and =2 is equality for sets. We often omit the subscripts in =1,=2

and also write X(t) for t ∈ X (we think of X(i) as the i-th bit in
the string representation of X). Note that the only string terms
are string variables.

The bounded quantifiers are of the forms ∃x ≤ t, ∀x ≤ t,
∃X ≤ t, and ∀X ≤ t, where for the string quantifiers, the bound-
ing terms t bound the lengths of the string variables. ΣB

0 formulas
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are formulas with only bounded number quantifiers that may con-
tain free string variables. The theory V0 is axiomatized by a set
2-BASIC of defining axioms for L2

A together with comprehension
axioms for ΣB

0 formulas, i.e., axioms of the form

∃Y ≤ b∀y < t(Y (y) ↔ ϕ(y, Y ))

for a ΣB
0 formula ϕ that might contain other free variables. It is

known that V0 is a conservative extension of IΔ0. Moreover, V0

is ΣB
0 -conservative over the theory Ṽ0 which is defined in the same

way as V0 but with the comprehension axioms replaced by the
induction axioms over ΣB

0 formulas:

[ϕ(0) ∧ ∀x, ϕ(x) ⊃ ϕ(x+ 1)] ⊃ ∀zϕ(z)

(where ϕ(z) is a ΣB
0 formula that may contain other free variables).

In other words, Ṽ0 can be axiomatized by the ΣB
0 consequences

of V0.
We refer to Cook & Nguyen (2010, Chapter 7) for the transla-

tion of a first-order formulas into a family of propositional formulas.
Basically, to translate a first-order formula ϕ(
x, 
X), we give each
number variable x a value m ∈ N and each string variable X a
length n, and translate the bit X(i) of X into a propositional vari-
able pX

i , for 0 ≤ i ≤ n − 2. (Other bits of X get constant values:
X(n− 1) = � and X(i) = ⊥ for i ≥ n.) The result is denoted by

ϕ(
x, 
X)[
m;
n].

It is known that ΣB
0 theorems of Ṽ0 translate into families of

tautologies that have polynomial-size constant-depth PK� proofs
(Cook & Nguyen 2010, Chapter 7). This is done by translating Ṽ0

anchored (or free-cut free) proofs by translating their formulas as
described above.

Now we give a uniform (i.e., first-order) version of the propo-
sitional sequents that separate d-PK� from (2d + 4)-PK� (Theo-
rem 6.9). This is constructed using the following uniform version
of the propositional formula MOD2,d,m from Lemma 6.7: Under

the setting a = 2m1/(d−1)
, |X| = m + 1, the first-order formula

Parityd(a,X) below translates into MOD2,d,m (the parameter a is
only to make sure that the length of X is not too large).
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Lemma 7.1. There is a constant d0 ∈ N so that for every d ≥
d0, there is a ΣB

0 formula Parityd(a,X) of depth d (counting
both quantifiers and Boolean connectives) such that for m ∈
N, the propositional formula Parityd(a,X)[2m1/(d−1)

;m + 1] is
MOD2,d,m(pX

0 , p
X
1 , . . . , p

X
m−1).

Proof. The formula Parityd(a,X) expresses the fact that there
are u, v such that (u plays the role of m, and v plays the role of
m1/(d−1))

(a) u = v(d−1) and a = 2(d−1)v, and

(b) |X| = u+1 and the string X(0), X(1), . . . , X(u−1) contains
an odd number of �.

Condition (a) is fulfilled by using the fact that the relation y =
2x can be expressed by a ΣB

0 formula (and the constant d0 accounts
for the depth of this formula). Condition (b) can be expressed by
a ΣB

0 formula by the same arguments as for Lemma 6.7. �
Now we define the first-order version of Statman’s sequent. For

d ≥ d0, let

Sd = −→ ϕd(a, b,X, Y ), ψd(a, b,X, Y ),

where ϕd(a, b,X, Y ) and ψd(a, b,X, Y ) are defined (see below) so
that ϕd(a, b,X, Y ) translates into
(
(¬p1 ∧¬q1)∨ [γ1 ∧¬p2 ∧¬q2]∨· · · ∨ [γn−1 ∧¬pn ∧¬qn]

)
(MOD2,d,m)

and ψd(a, b,X, Y ) translates into

[(p1 ∨ q1) ∧ · · · ∧ (pn ∨ qn)](MOD2,d,m).

The translation of Sd is not exactly Statmann(MOD2,d,m) because
here we put the first n formulas in Statmann(MOD2,d,m) in a
disjunction. However, we will be able to argue that it has the
same lower bound 2n as Statmann(MOD2,d,m).

Now we describe Sd in more detail. First, we want ψd(a, b,X, Y )
to translate into

(7.2)
n∧

i=1

(MOD2,d,m(xi
1, x

i
2, . . . , x

i
m) ∨ MOD2,d,m(yi

1, y
i
2, . . . , y

i
m)).
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For each i, we have distinct sets of propositional variables
−→
xi and−→

yi . So we will view X and Y as arrays of strings by using the
pairing function 〈i, j〉. The i-th row of X is denoted by X [i] and
can be defined by a ΣB

0 formula. Thus, define

ψd(a, b,X, Y ) ≡ ∀i ≤ b(Parityd(a,X
[i]) ∨ Parityd(a, Y

[i])).

It can be verified that the propositional translation

ψd(a, b,X, Y )[2m1/(d−1)

, n; 〈n,m+ 1〉, 〈n,m+ 1〉]

has the form (7.2) above.
The formula ϕd can be defined in the same way and we omit

the details here. The next lemma follows from our discussion so
far.

Lemma 7.3. Under the setting a = 2m1/(d−1)
, b = n, |X| = |Y | =

〈n,m + 1〉 the sequent Sd translates into Statman′
n(MOD2,d,m),

where Statman′
n is the sequent (cf. (2.9)):

−→ (¬p1 ∧ ¬q1) ∨ [γ1 ∧ ¬p2 ∧ ¬q2] ∨ · · · ∨ [γn−1 ∧ ¬pn ∧ ¬qn],

[(p1 ∨ q1) ∧ · · · ∧ (pn ∨ qn)].

Now we argue that the sequent Statman′
n(MOD2,2d+4,m) also

requires large d-PK� proofs.

Lemma 7.4. For m = (5n2)d+1, any d-PK� proof of the sequent
Statman′

n(MOD2,2d+4,m) has size at least 2n/n.

Proof. For readability, we argue that any cut-free proof of
Statman′

n must have size at least 2n/n by transforming proof of
Statman′

n into proof of Statmann with an increase of at most n
multiplicative factor in size. The theorem can be proved by the
same argument.

Any proof of Statman′
n can be transformed into a proof of

Statmann as follows. Simply replace every occurrence of

(7.5) (¬p1 ∧ ¬q1) ∨ [γ1 ∧ ¬p2 ∧ ¬q2] ∨ · · · ∨ [γn−1 ∧ ¬pn ∧ ¬qn]
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by the list

(¬p1 ∧ ¬q1), [γ1 ∧ ¬p2 ∧ ¬q2], . . . , [γn−1 ∧ ¬pn ∧ ¬qn].

Note that these can only appear in the antecedents. Now any
contraction on (7.5) is simulated by n contractions on the formulas
in the list. Also, we do ignore the ∨-right rules that introduce
disjunctions in (7.5). The proof of Statmann obtained this way is
of size at most n times the size of the original proof of Statman′

n

(because of the increase in the number of contractions). Since
Statmann requires proof of size at least 2n, Statman′

n requires
proof of size at least 2n/n. �

We have used a “lazy” argument for the above lemma, which
is sufficient for our application below. With a careful redefinition
of Statman property (to allow disjunction), the lower bound proof
of the main theorem (Theorem 4.3) goes through. It can then be
seen that Statman′

n has this property and hence requires d-PK�

proof of size 2n.

Theorem 7.6. Ṽ0 and ΣB
0 (V0) are not finitely axiomatizable.

Proof. It suffices to show that Ṽ0 is not finitely axiomatizable,
because Ṽ0 is axiomatized by the ΣB

0 consequences of V0. We
follow the outline given at the beginning of this section.

Suppose for a contradiction that Ṽ0 is axiomatized by a finite
set S of formulas. Because Ṽ0 can be axiomatized by 2-BASIC
and the set of all induction axioms for ΣB

0 formulas, by compact-
ness, we can assume that S consists only of 2-BASIC and a fi-
nite set of induction axioms for ΣB

0 formulas. Let d1 be a upper
bound for the depth (counting both bounded number quantifiers
and Boolean connectives) of the formulas in S. In other words,

theorems of Ṽ0 have Ṽ0-proofs where cut formulas have depth at
most d1. (This follows by considering free-cut free, or anchored,
proofs.)

It is shown in Cook & Nguyen (2010, Chapter 7) that Ṽ0 proofs
translate into polynomial-size constant-depth PK� proofs. Under
the current hypothesis, it can be seen that theorems of Ṽ0 translate
into families of tautologies with polynomial size d1-PK� proofs.



46 Maciel, Nguyen & Pitassi cc (2013)

By induction on b, it can be seen that V0 proves Sd for any d.
In particular, V0 proves S2d+4 where d = max{d0, d1} (d0 is the
constant from Lemma 7.1). Thus, the translations of S2d+4 have
polynomial-size d1-PK� proofs, contradicts Theorem 6.9. �

7.2. Extension to QBF proof systems. We now consider the
system G (Cook & Morioka 2005; Kraj́ıček & Pudlák 1990) which
is an extension of PK for quantified Boolean formulas. There are
quantifiers ∃,∀ with the following semantic interpretation.

∃xA(x) ⇔ A(⊥) ∨ A(�), ∀xA(x) ⇔ A(⊥) ∧ A(�).

Also, here, we restrict the Boolean connectives ∨, ∧ to have arity
2. Thus, formulas are defined inductively as follows:

(i) atomic formulas are Boolean constants ⊥ and �, and Boolean
variables pi and xi;

(ii) if A and B are formulas, then so are (A ∨ B), (A ∧ B), ¬A,
∃xiA and ∀xiA.

The structural rules, the cut rule, and the introduction rules
for ¬ (NEG-left and NEG-right) are as for PK. The introduction
rules for ∨, ∧, and the quantifiers are listed below:

A, B,Γ −→ Δ
AND-left

(A ∧ B), Γ −→ Δ

Γ −→ A, Δ Γ −→ B,Δ
AND-right

Γ −→ (A ∧ B), Δ

A, Γ −→ Δ B,Γ −→ Δ
OR-left

(A ∨ B), Γ −→ Δ

Γ −→ A, B,Δ
OR-right

Γ −→ (A ∨ B), Δ

A(B),Γ −→ Δ ∀-left∀xA(x),Γ −→ Δ

Γ −→ Δ, A(p) ∀-right
Γ −→ Δ,∀xA(x)

A(p),Γ −→ Δ ∃-left∃xA(x),Γ −→ Δ

Γ −→ Δ, A(B) ∃-right
Γ −→ Δ,∃xA(x)

.

Restriction: In the rules ∀-right and ∃-left, p must not occur in the
bottom sequent.
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For i ≥ 0, Σq
i (resp. Πq

i ) is the set of formulas that have a
prenex form where there are at most i alternations of quantifiers,
with the outermost quantifier being ∃ (resp. ∀). In particular, Σq

0

and Πq
0 both denote the set of quantifier-free propositional formu-

las. The system Gi is the subsystem of G in which all cut formulas
belong to Σq

i ∪ Πq
i . G�

i denotes tree-like Gi.
It is known that G�

i+1 and Gi are p-equivalent for Σq
i ∪ Πq

i for-
mulas, and Perron (2008) shows that Gi p-simulates G�

i+1 for all
quantified formulas. Here, we will show that under some complex-
ity, theoretic assumption G�

i does not simulate cut-free G. We
need to show that G is closed under restrictions (Definition 2.7).
First, we extend Definition 2.5 to define restrictions of quantified
formulas.

Definition 7.7 (Restriction of a quantified formula). The re-
striction f |ρ of a quantified formula f is defined as in Definition
2.5 with the following additional case:

(vi) If f = ∃xA and A|ρ does not contain any free occurrence of
x, then f |ρ = A|ρ. Otherwise, f |ρ = ∃x(A|ρ). Similarly for
f = ∀xA.

The result of applying restriction to a sequent of QBF is defined
as in Definition 2.6.

Lemma 7.8. G is closed under restrictions.

Proof. We extend the proof of Lemma 2.8. The additional
cases are the introduction rules for ∃ and ∨. Consider, for example,
the case of ∃-right:

S1

S
=

Γ −→ Δ, A(B)

Γ −→ Δ,∃xA(x)
.

First, suppose that all free occurrences of x is deleted from the
restriction A′ of A(x). Then, B is also deleted from (A(B))′. By
definition (∃xA(x))′ = A′. So in this case S ′ = S ′

1, and no further
derivation is required.

Now suppose that some free occurrence of x remains in (A(x))′.
Then, (A(B))′ has the form A′(B′), and S ′ can be obtained from
S ′

1 by the rule ∃-right with target formula B′. �



48 Maciel, Nguyen & Pitassi cc (2013)

The following theorem is proved in the same way as the results
in Section 6.

Theorem 7.9. Let i > j ≥ 0.

(i) Suppose that there is a Boolean function f that is definable
by a family fm of QBF formulas and that is (σ, ε)-hard for Σq

j

for some functions σ(m), ε(m) satisfying the following condi-
tion: For sufficiently large n there is m that meets Condition
(4.4) of Theorem 4.3, and such that 2n is superpolynomial
in the size of fm. Then G�

j does not simulate G� as well as
cut-free G.

(ii) Suppose that there is a function f as in (a), but now the fam-
ily fm defining f belongs to Σq

i . Then G�
j does not simulate

G�
i .

It is known that G�
0 p-simulates G0 for Σq

1 formulas in prenex
form (Morioka 2005). It is still consistent with our knowledge that
the hard formula for quantifier-free formulas in the hypothesis of
the theorem belongs to Σq

1. This is because the formulas in our
separating sequent are not in prenex form (although they are in
Σq

1).

8. Conclusion

In this paper, we have presented a general method for taking a
family of sequents that require large tree-like cut-free proofs, and
“lifting” them in order to obtain a family of sequents that are hard
for stronger classes of tree-like proof systems. An obvious open
problem is to prove similar lower bounds without the tree-like re-
striction. While the methods used in this paper cannot be adapted
straightforwardly, we nevertheless feel that our “lifting” approach
should be generalizable to non-tree-like systems. For non-tree-like
proofs, an obvious way to generalize our argument would be to start
with the basic lower bound technique for a dag-like cut-free system
(i.e., resolution), rather than starting with the basic lower bound
technique for tree-like cut-free proofs, and prove a result similar
to our main theorem, where the size-width/bottleneck-counting
technique used to obtain resolution lower bounds (Ben-Sasson &
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Wigderson 1999; Haken 1985) replaces the Statman lower bound
method.

Secondly, we would like to develop a new, general-purpose
method for obtaining AC0-Frege lower bounds for CNF formu-
las. For example, can we obtain a top–down strategy for the liar
game formulation of AC0-Frege for the PHP? Toward this end, we
would like to know whether inapproximability results are enough
to prove lower bounds for CNF formulas. For example, can we
reduce the AC0-Frege lower bound for some CNF formula to a
natural hardness assumption about AC0, such as the inapproxima-
bility of parity by AC0 circuits? The only known proofs require
structural information about AC0, such as the fact that under a
special family of restrictions, an AC0 function reduces to a local
function (a small-depth decision tree, or a function depending on
only a constant number of variables).

Thirdly, in our last application, we show that the G∗
i hierar-

chy does not collapse to G∗
1 unless SAT can be approximated by

polynomial-size circuits. In contrast, it has been known that the Si
2

hierarchy does not collapse to S1
2 unless the polynomial hierarchy

collapses. We would like to know how these assumptions compare
to one another. In particular, do polynomial-size circuits approxi-
mating SAT imply the collapse of the polynomial-time hierarchy?
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