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EXPONENTIAL LOWER BOUNDS AND INTEGRALITY GAPS FOR
TREE-LIKE LOVÁSZ–SCHRIJVER PROCEDURES∗
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Abstract. The matrix cuts of Lovász and Schrijver are methods for tightening linear relaxations
of zero-one programs by the addition of new linear inequalities. We address the question of how
many new inequalities are necessary to approximate certain combinatorial problems, and we solve
certain instances of Boolean satisfiability. Our first result is a size/rank tradeoff for tree-like Lovász–
Schrijver refutations, showing that any refutation that has small size also has small rank. This allows
us to immediately derive exponential-size lower bounds for tree-like refutations of many unsatisfiable
systems of inequalities where, prior to our work, only strong rank bounds were known. Unfortunately,
we show that this tradeoff does not hold more generally for derivations of arbitrary inequalities. We
give a very simple example showing that derivations can be very small but nonetheless require
maximal rank. This rules out a generic argument for obtaining a size-based integrality gap from
the corresponding rank-based integrality gap. Our second contribution is to show that a modified
argument can often be used to prove size-based integrality gaps from rank-based integrality gaps.
We apply this method to prove size-based integrality gaps for several prominent examples where,
prior to our work, only rank-based integrality gaps were known. Our third contribution is to prove
new separation results. Using our machinery for converting rank-based lower bounds and integrality
gaps into size-based lower bounds, we show that tree-like LS+ cannot polynomially simulate tree-like
cutting planes, and that tree-like LS+ cannot polynomially simulate resolution.
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plexity
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1. Introduction. The method of semidefinite relaxations has emerged as a pow-
erful tool for approximating NP -complete problems. Central among these techniques
are the lift-and-project methods of Lovász and Schrijver [26] (called LS and LS+) for
tightening a linear relaxation of a zero-one programming problem. For several opti-
mization problems, a small number of applications of the semidefinite LS+ Lovász–
Schrijver operator transforms a simple linear programming relaxation into a tighter
linear program that better approximates the zero-one program and yields a state-of-
the-art approximation algorithm. For example, one round of LS+, starting from the
natural linear program for the independent set problem, gives the Lovász theta func-
tions [25]; one round starting from the natural linear program for the max cut problem
gives the famous Goemans–Williamson relaxation for approximating the maximum
cut in a graph [18]; and three rounds gives the breakthrough Arora–Rao–Vazirani
relaxation for the sparsest cut problem [6, 32]. Moreover, linear and semidefinite pro-
gramming (SDP) methods are widely viewed as a catch-all approach for solving other
approximation problems. To back this up, very recent work [7, 28] shows that for a
general family of constraint satisfaction problems, the optimal approximation factor
(which is actually unknown!) will be equal to the integrality gap obtained after a small
number of rounds of matrix cut operators (under the unique games conjecture).
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EXPONENTIAL LOWER BOUNDS AND INTEGRALITY GAPS 129

Due to the importance and seemingly ubiquitous nature of this family of algo-
rithms, there has been a growing body of research aimed at ruling out low-rank LS+
approximation algorithms for prominent approximation problems. These results prove
that a very large family of semidefinite programs (those obtained by optimizing over
a low-rank LS+ polytope) will fail to achieve a good approximation by proving an
integrality gap (that is, exhibiting a nonintegral point lying in the polytope, whose
value is off from the integral optimal by a certain approximation factor). Such in-
tegrality gaps are important as they show that one of the most promising family
of algorithms for solving these problems will not succeed in polynomial time. At
present there are rank-based integrality gaps for LS and LS+ for many important
problems, including max-k-SAT, max-k-LIN, and vertex cover. (For example, see
[5, 16, 29, 30, 33, 11, 17, 2, 13, 8].)

While these results rule out a large collection of SDP algorithms, they do not
rule out all polynomial-time SDP algorithms. For example, it is certainly conceivable
that there are inequalities that one might add that are natural for the problem at
hand, but that are not derivable by low-rank LS+ from the initial set of inequalities.
Such programs would not be ruled out by rank-based integrality gaps. Exponential
(or even superpolynomial) size-based integrality gaps are the ultimate negative result
as they show that any polynomial-time procedure based on LS (or LS+) will fail to
efficiently find an approximate solution (via standard rounding schemes.) In contrast,
rank-based lower bounds only rule out algorithms that generate low-rank tightenings
of the initial polytope.

In this paper we study the tree-size of the LS+ derivation needed to yield good
approximations to optimization problems, that is, the size of the LS+ derivation
when the derived inequalities are arranged in the nodes of the tree. Tree proofs are
an important special case of general proofs (which can be directed acyclic graphs)
for a couple of reasons. First, this measure (tree-size) is stronger than rank, as low-
rank derivations can be converted into small tree-like derivations. Second, algorithms
based on tree-like derivations are implementable in practice because they have low
storage: since the derivation is tree-like, previously derived inequalities do not have
to be saved. Indeed, many successful SAT solvers as well as algorithms for Bayesian
inference are algorithms that search for tree-like resolution refutations.

We point out that lower bounds for LS+ are incomparable to PCP-based lower
bounds since on the one hand they are unconditional, but on the other hand they rule
out only a specific (but important) class of algorithms. As discussed above, there is an
abundance of rank-based lower bounds and integrality gaps; however, with respect to
the stronger size measure, very little has been known: Itsykson and Kojevnikov [23],
building on results from [19, 20, 21, 22]), proved exponential-size lower bounds for
tree-like LS+ derivations of certain unsatisfiable formulas (the Tseitin formulas). A
series of works by Beame, Pitassi, and Segerlind [9] and Lee and Shraibman [24] shows
that there are unsatisfiable formulas that require exponentially large tree-like proofs
of infeasibility, even for systems far more powerful than LS+. For integrality gaps,
there were no size bounds at all. Our paper is largely inspired by the results of [23].
Can we prove size bounds for other unsatisfiable formulas? What about size-based
integrality gaps? Finally, what is the connection between size and rank?

1.1. Summary of results. Our first result is a size/rank tradeoff for tree-like
LS0, LS, LS+ refutations, showing that tree-like refutations can be converted into
somewhat balanced refutations. More precisely, we prove the following. Suppose that
I is a system of inequalities with a tree-like LS+ (or LS, LS0) refutation of size S.
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130 TONIANN PITASSI AND NATHAN SEGERLIND

Then there is a refutation of I of rank at most O(
√

n lnS). In particular, if I has a
polynomial-size refutation, then it has a refutation of rank O(

√
n logn). This tradeoff

allows us to immediately derive exponential-size lower bounds for tree-like refutations
for several unsatisfiable systems of inequalities where, prior to our work, only rank
bounds were known (random 3-CNF formulas and random systems of mod 2 equa-
tions). In other words, our lower bounds show that a large class of algorithms (those
based on constructing tree-like LS+ proofs) cannot solve SAT exactly in subexponen-
tial time. We note that this result is unconditional and rules out a broader class of
algorithms than those ruled out by rank bounds.

The main idea behind our size/rank tradeoff is to define a new measure of com-
plexity for a tree-like proof called the variable rank. We view a proof as a tree where
we label nodes with inequalities and edges with variables that are “lifted on” in this
derivation step. The rank of a proof is thus the longest path in the proof, whereas
the variable rank is the largest number of distinct variable labels over all paths. Our
key insight is to show that for any refutation, the variable rank equals the rank. This
allows us to apply well-known methods for balancing the proof by iteratively applying
restrictions to kill off long paths. We show that our tradeoff is optimal by exhibiting
a family of formulas where our size/rank tradeoff is tight.

Next we try to attack the more interesting problem of proving superpolynomial-
size bounds for any LS+ algorithm for approximating an optimization problem. This
class of algorithms, say for max-k-SAT, is defined as follows. Begin with the natural
polytope corresponding to an instance of max-k-SAT. Apply any sequence of LS+
cuts to the initial polytope to obtain a new refined polytope. The size of the refined
polytope is the number of cuts used to derive it from the initial polytope. The tree-
size is the number of cuts used where we require that the underlying derivation is a
tree. For a maximization problem, the refined polytope has an integrality gap of k
if there is a solution with value at least k times OPT; for a minimization problem,
the integrality gap is k if there is a solution with value OPT/k. For example, for
vertex cover, we would like to show that any subexponential-size tree LS+ algorithm
has an integrality gap of 2. The most natural way to show this is to prove a stronger
size/rank tradeoff for LS+ that holds for derivations of arbitrary inequalities (instead
of just for refutations, which are derivations of 0 ≥ 1).

Unfortunately, we prove that this tradeoff does not hold more generally for deriva-
tions of arbitrary inequalities. We present a very simple example showing that deriva-
tions can be very small, but nonetheless require maximal rank. This rules out a generic
argument for obtaining size-based integrality gaps from the corresponding rank-based
integrality gaps. Despite our lack of a general tree-size/rank tradeoff for derivations
of arbitrary linear inequalities, our second main contribution is to show that a modi-
fied argument can often be used to prove size-based integrality gaps from rank-based
integrality gaps. We illustrate this method by proving size-based integrality gaps for
several optimization problems: We show that for max-k-SAT, every polytope that is
obtained by applying an LS+ tightening of subexponential tree-size has an integrality
gap of 1+ 1

2k−1
. Similarly we prove a size-based integrality gap of 2−ε for max-k-LIN,

and 7/6 for vertex cover.
Our third main contribution is to prove new separation results in proof complexity.

Using our new machinery for converting rank-based lower bounds and integrality gaps
into size-based lower bounds (combined with several new ideas), we show that tree-
like LS+ cannot polynomially simulate tree-like cutting planes, and that tree-like LS+

cannot polynomially simulate resolution. This shows in particular that low-rank LS+
cannot polynomially simulate resolution.
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2. Matrix-cut proof systems.

2.1. Lovász–Schrijver systems. There are several cutting plane proof systems
defined by Lovász and Schrijver, collectively referred to as matrix cuts [26]. In these
proof systems, we begin with a system of linear inequalities over the variables X . We
will present dual definitions for these systems: In the “proof-theoretic” one, we start
with a system of linear inequalities and describe precise “cut” rules for obtaining new
inequalities from previous ones. In the “model-theoretic” definition, we will begin with
a polytope defined as the set of solutions to the initial system of linear inequalities,
and at each round, we will describe a new tightened polytope defined as the set of
vectors in the original polytope that have a “protection matrix” associated with them.

2.1.1. Proof-theoretic view.
Definition 2.1. Given a system of inequalities over {0, 1}n defined by aTi X ≥ bi

for i = 1, 2, . . . ,m, an inequality cTX − d is called an N+-cut if

cTX − d =

m∑
i=1

n∑
j=1

αi,j(a
T
i X − bi)Xj +

m∑
i=1

n∑
j=1

βij(a
T
i X − bi)(1 −Xj)

+

m∑
i=1

γi(a
T
i X − bi) +

n∑
j=1

λj(X
2
j −Xj) +

∑
k

(gk + hT
kX)2,

where αi,j , βi,j ≥ 0, λj ∈ R for i = 1, . . . ,m, j = 1, . . . , n, and for each k, gk ∈ R,
hk ∈ R

n. An N+-cut is an N -cut if k = 0. (That is, we cannot use squares of
arbitrary linear inequalities.) An N -cut is an N0-cut if the equality holds when we
view XiXj as distinct from XjXi, 1 ≤ i < j ≤ n. For each of the above cuts, we say
that the inequality aTi ≥ bi is a hypothesis of a lifting on the literal Xj (or 1−Xj) if
αij > 0 (or βij > 0).

Definition 2.2. A Lovász–Schrijver (LS) derivation of aTX ≥ b from a set of
linear inequalities I is a sequence of inequalities g1, . . . , gq such that each gi either
is an inequality from I or follows from previous inequalities by an N -cut as defined
above, and such that the final inequality is aTX ≥ b. Similarly, an LS0 derivation
uses N0-cuts and LS+ uses N+-cuts. An elimination of a point x ∈ R

n from I is a
derivation from I of an inequality cTX ≥ d such that cTx < d. A refutation of I is a
derivation of 0 ≥ 1 from I.

Definition 2.3. Let P be one of the proof systems LS, LS0, or LS+. Let Γ be
a P-derivation from I, viewed as a directed acyclic graph. The derivation Γ is tree-
like if each inequality in the derivation, other than the initial inequalities, is used at
most once. The size of Γ is the total bit size of representing all inequalities, with all
coefficients in binary notation. The rank of Γ is the depth of the underlying directed
acyclic graph. For a set of Boolean inequalities I, the P-size (P-tree-size, P-rank)
of I is the minimal size (tree-size, rank) over all P refutations of I. Define LSr

0(I)
(LSr(I), LSr

+(I)) to be the set of all linear inequalities with LS0 (LS, LS+) derivations
from I of rank at most r.

Definition 2.4. Let OPT be an optimization problem, of maximizing a linear
equation (over a set of Boolean or integer-valued variables), subject to a set of linear
inequalities, I. The integrality gap of OPT is the maximum ratio between the solution
quality of the integer program and its relaxation. Typically, this integrality gap trans-
lates into the approximation ratio of the algorithm obtained by rounding the solution
returned by the linear programming relaxation. For example, the vertex cover problem
can be formulated naturally as an integer linear program; its relaxation removes the
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132 TONIANN PITASSI AND NATHAN SEGERLIND

restriction that the variables are integral. The integrality gap for this standard vertex
cover linear program is known to be 2.

Similarly, for an optimization problem defined from a set of linear inequalities I,
the integrality gap with respect to LSr (or LSr

0 or LSr
+) is defined to be the maximum

ratio between the solution quality of the integer program, and the solution provided by
the relaxed polytope obtained by applying r rounds of LS cuts (or LS0 or LS+ cuts).

Lemma 2.5 (closure under restrictions). Let Γ be an LS0 (LS, LS+) derivation
of cTX ≥ d from hypotheses I. Let ρ be a restriction to the variables of X. Then Γ‖ρ
is an LS0 (LS, LS+) derivation of

(
cTX ≥ d

) ‖ρ from the hypotheses I‖ρ.

2.1.2. Model-theoretic view.
Definition 2.6. Let I = {aTi X ≥ bi | i = 1, . . . ,m} be a system of linear

equalities in the variables X1, . . . , Xn. Define the polytope of I as PI = {x ∈ R
n | ∀i ∈

[m], aTi x ≥ bi}.
Following the usual conventions, we will change the setting slightly by working

with a convex cone rather than a convex set. Our object of interest is the convex set
PI ⊆ [0, 1]n. We first convert it into the homogenized cone KI ⊆ R

n+1, defined as
follows.

Definition 2.7. Let I be a set of inequalities in {X1, . . . , Xn} that includes the
inequalities 0 ≤ Xi ≤ 1 for all i ∈ [n]. We define KI = {x ∈ R

n+1 | ∀i ∈ [m],
aTi x− bix0 ≥ 0} to be the polyhedral cone given by the homogenization of I.

We will now define the various LS operators, N , N+, and N0, such that if K is a
cone, then N+(K), N(K), and N0(K) are also cones.

Definition 2.8 (protection matrices). Let y ∈ R
n+1 be given with y0 = 1, and

let K ⊆ R
n+1 be a cone. Let ei be the unit vector, which is 1 in entry i. An LS0

protection matrix for y with respect to K is a matrix Y ∈ R
(n+1)×(n+1) such that (1)

Y e0 = diag(Y ) = Y T e0 = y (the top row, leftmost column, and diagonal of Y are y);
(2) for all i = 0, . . . , n, Y ei ∈ K and Y (e0 − ei) ∈ K (the ith column and (y minus
the ith column) are in K); (3) if yi = 0, then Y ei = 0, and if yi = y0, then Y ei = y.
If Y is also symmetric, then Y is said to be an LS protection matrix. If Y is also
positive semidefinite, then Y is said to be an LS+ protection matrix.

Definition 2.9 (N Operator). Let K ⊆ R
n+1 be a cone. Define N0(K) to be set

of y ∈ R
n+1 such that there exists an LS0 protection matrix for y with respect to K.

We define N(K) and N+(K) analogously. The sets N0(K), N(K), and N+(K)
are easily seen to be cones, and therefore the construction can be iterated. Induc-
tively define N0

0 (K) = K and N r+1
0 (K) = N0(N

r
0 (K)). Define N r(K) and N r

+(K)
similarly. After applying the N operator iteratively to tighten the cone we will then
want to project back to X0 = 1 in order to get to the “tightened” polytope: let
K‖X0=1 = {x ∈ R

n | (1, x1, . . . , xn) ∈ K}.

2.1.3. Equivalence between the two views. The connection between the N0,
N , and N+ operators, which work on cones in R

n+1, and the syntactic definition of
the LS0, LS, and LS+ deduction systems is summarized in the following fundamental
theorem of Lovász and Schrijver, stating that the polytope obtained after r rounds of
the cut rule is equal to the polytope obtained after r iterations of the corresponding
N operators, projected onto X0 = 1.

Theorem 2.10 (see [26]). Let I be a set of inequalities in {X1, . . . , Xn} that
includes the inequalities 0 ≤ Xi ≤ 1 for all i ∈ [n]. Then PLSr

0(I)
= N r

0 (KI)‖X0=1,
PLSr(I) = N r(KI)‖X0=1, and PLSr

+(I) = N r
+(KI)‖X0=1.
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Corollary 2.11. Let I be a set of inequalities in {X1, . . . , Xn} that includes
the inequalities 0 ≤ Xi ≤ 1 for all i ∈ [n], and let KI ⊆ R

n+1 be the polyhedral cone
given by the homogenization of I. The following statements are equivalent: (1) There
exists a rank ≤ r LS refutation of I. (2) Every point of N r(KI) satisfies 0 ≥ X0.
(3) N r(KI)‖X0=1 is empty. Also, there exists an LS elimination of x ∈ R

n from I
of rank at most r if and only if ( 1x ) 	∈ N r(KI). Analogous statements relate LS0 with
N0, and LS+ with N+.

Definition 2.12. Let x ∈ [0, 1]n. Supp(x) are those coordinates i such that xi is
equal to 0 or 1. E(x) are the other coordinates j such that xj is not integral. Clearly
[n] = Supp(x) ∪E(x).

Definition 2.13 (protection vectors). Let x ∈ R
n be given, and let Y be an

LS0 protection matrix for ( 1x). For each i = 0, . . . , n, let yi be the bottom n entries
of the (n+ 1)-dimensional column vector Y ei, so that Y ei = (xi

yi ). For i ∈ E(x), let

PVi,1(Y ) denote the vector yi/xi and let PVi,0(Y ) denote the vector (x− yi)/(1−xi).
For i ∈ Supp(x), let PVi,0(Y ) = PVi,1(Y ) = x. These 2n vectors are collectively
known as the protection vectors for x from Y .

The following lemma shows that if some x ∈ K fails to make it into the next
round of LS+ tightening, then any candidate protection matrix Y for x will fail in the
sense that one of the 2n alleged protection vectors will fail to be in K.

Lemma 2.14. Let I = {aT1 X ≥ b1, . . . , a
T
mX ≥ bm} be a system of inequalities.

Let cTX ≥ d be an inequality obtained by one round of LS+ from I. Let x ∈ R
n be

given such that cTx < d. Let Y be a matrix for ( 1x ) in the sense that it satisfies the
definition of a protection matrix with the possible exception of property (2). Then there
exists an i ∈ [m] and a j ∈ [n] so that either (i) aTi X ≥ bi is used as the hypothesis
for a lifting inference on Xj, xj 	= 0, and aTi PVj,1(Y ) < bi, or (ii) aTi X ≥ bi is used
as the hypothesis for a lifting inference on 1−Xj, xj 	= 1, and aTi PVj,0(Y ) < bi.

Proof. Express all inequalities in homogenized form: each aTi X ≥ bi becomes
(ui)

T ( 1
X ) ≥ 0, with ui = (−bi

ai
), and cTX ≥ d becomes hT ( 1

X ) ≥ 0 with h = (−d
c ).

Because the coefficients of the nonlinear monomials all cancel out, there is a
skew-symmetric matrix A ∈ R

(n+1)×(n+1) and a positive semidefinite matrix B ∈
R

(n+1)×(n+1) so that

heT0 =
m∑
i=1

n∑
j=1

αi,juie
T
j +

m∑
i=1

n∑
j=1

βi,jui(e0 − ej)
T +

n∑
j=1

λjej(e0 − ej)
T +A+B.

For matricesM,N , letM•N equal
∑

i,j Mi,j ·Ni,j . We have heT0 •Y = cTx−d < 0.
Therefore

0 > heT0 • Y =
∑
i,j

αi,juie
T
j • Y +

∑
i,j

βi,jui(e0 − ej)
T • Y

+
∑
j

λjej(e0 − ej)
T • Y +A • Y +B • Y

≥
∑
i,j

αi,ju
T
i Yj +

∑
i,j

βi,j

(
uT
i Y0 − uT

i Yj

)
+
∑
j

λj(Y0,j − Yj,j) + 0 + 0

=
∑
i,j

αi,ju
T
i Yj +

∑
i,j

βi,ju
T
i (Y0 − Yj) .

Therefore, there exist some i ∈ [m] and j ∈ [n] so that αi,ju
T
i Yj+βi,ju

T
i (Y0−Yj) < 0.

In the case that xj = 0, by Definition 2.8, Yj = 0 and Y0 − Yj = ( 1x). 0 >
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αi,ju
T
i Yj + βi,ju

T
i (Y0 − Yj) = βi,ju

T
i (

1
x ). Therefore, βi,j > 0 (so there is some lift

upon 1−Xj) and 0 > −bi + aTi x = −bi + aTi (PVj,0(Y )).
In the case that xj = 1, by Definition 2.8, Yj = ( 1x ) and Y0 − Yj = 0. 0 >

αi,ju
T
i Yj + βi,ju

T
i (Y0 − Yj) = αi,ju

T
i (

1
x ). Therefore, αi,j > 0 (so there is some lift

upon Xj) and 0 > −bi + aTi x = −bi + aTi (PVj,1(Y )).
Now consider the case with 0 < xj < 1. By Definition 2.8, we may choose y ∈ R

n

so that Yj = (xj

y ). Substituting (xj

y ) for Yj yields αi,j(−bixj+aTy)+βi,j(−bi(1−xj)+

aTi (x−y)) < 0. If 0 > αi,j(−bixj+aTi y), then αi,j > 0 (so −bi+aTi X ≥ 0 is used as the
hypothesis for some lift on Xj), and also 0 > −bi + aTi (y/xj) = −bi + aTi (PVj,1(Y )).
Similarly, if 0 > βi,j(−bi(1−xj)+aTi (x−y)), then βi,j > 0 (so −bi+aTi X ≥ 0 is used
as the hypothesis for some lift on (1 − Xj)), and 0 > −bi + aTi ((x − y)/(1 − xj)) =
−bi + aTi (PVj,0(Y )).

We will use the following form of Theorem 2.10, stating that if x is in N(K),
then there is a protection matrix Y for x such that all integral bits of x are preserved
in all 2n protection vectors, and, furthermore, the protection vector PV (Y )i,ε that
corresponds to lifting on xε

i also has its ith bit set to ε.
Lemma 2.15. Let x ∈ R

n, and let K ⊆ R
n+1 be a cone that satisfies 0 ≤ Xi ≤ X0

for all i ∈ [n]. Let ( 1x ) ∈ N0(K) (N(K), N+(K)). Then there exists an LS0 (LS, LS+)

protection matrix Y for ( 1x ) with respect to KI such that for each i ∈ [n], ε ∈ {0, 1},
Supp(x) ∪ {i} ⊆ Supp(PVi,ε(Y )).

Proof. Let x ∈ R
n and let K ⊆ R

n+1 be a cone that satisfies 0 ≤ Xi ≤ X0 for all
i ∈ [n]. Let ( 1x ) ∈ N0(K) (N(K), N+(K)). Then we want to show that there exists

an LS0 (LS, LS+) protection matrix Y for ( 1x ) with respect to KI such that for each
i ∈ [n], ε ∈ {0, 1}, Supp(x) ∪ {i} ⊆ Supp(PVi,ε(Y )).

From the definitions it is clear that for all i ∈ [n], ε ∈ {0, 1}, i ∈ Supp(PVi,ε(Y )).
It is left to show that Supp(x) ⊆ Supp(PVi,ε(Y )).

Let Y be a protection matrix for ( 1x) with respect to K. Y is said to be support
extending if for all i ∈ [n] and for all j ∈ [n], yj = 1 → (Y ei)j = yi and yj = 0 →
(Y ei)j = 0. Note that LS and LS+ protection matrices are always support extending
because of symmetry, but the definition is restrictive for LS0 protection matrices.
We will show that support-extending protection matrices always exist, even for LS0.
That is, we show that if y = ( 1x) ∈ N0(K), then there exists a support-extending LS0
protection matrix for y.

Let F = {z ∈ K | ∀i ∈ [n], (yi = 1 → zi = z0), (yi = 0 → zi = 0)}. This is a face
of K because K satisfies the inequalities 0 ≤ Xi ≤ X0. Of course y ∈ N0(K) ∩ F ,
and by Lemma 3.6 from [15] N0(K)∩F = N0(K ∩F ), so y ∈ N0(K ∩F ). Therefore,
there exists an LS0 protection matrix Y for y with respect to K ∩ F . By definition,
Y is also a protection matrix for y with respect to K. Furthermore, because Y is a
protection matrix for y with respect to K ∩ F , for each i ∈ [n], Y ei ∈ K ∩ F . Of
course, membership in F guarantees that for all i ∈ [n], for all j ∈ [n], if yj = 1, then
(Y ei)j = (Y ei)0 = yi, and if yj = 0, then (Y ei)j = 0 as desired.

Finally, by definition it is not hard to see that if Y is a support-extending
protection matrix for ( 1x ) with respect to K, then for each i ∈ [n], ε ∈ {0, 1},
Supp(x) ⊆ Supp(PVi,ε(Y )). This completes the proof.

Finally, we will use the Farkas lemma, which is a kind of “completeness theorem”
for linear programming.

Lemma 2.16. Let I = {aTi X ≥ bi | i = 1, . . . ,m} be a system of inequalities
so that for all x satisfying each inequality in I, x also satisfies cTx ≥ d. Then there
exists α1, . . . , αm, each αi ≥ 0 such that cTX − d =

∑m
i=1 αi(a

T
i X − bi).
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2.2. Gomory–Chvatal cutting planes systems. Another prominent matrix
cut system defined in the literature is the Gomory–Chvatal (GC) matrix-cut system,
defined below.

Definition 2.17 (GC cutting planes). Let ai be a real vector of dimension n
and let x be a vector of n Boolean variables. The rules of GC cutting planes are
as follows: (1) (Linear combinations) From aT1 x − b1 ≥ 0, . . . , aTnx − bn ≥ 0, derive∑k

i=1(λia
T
i x − λibi) ≥ 0, where λi are positive rational constants. (2) (Rounding)

From aTx − λ ≥ 0 derive aTx − λ� ≥ 0, provided that the coordinates of a are
integers. Without loss of generality, we can assume that a rounding operation is
always applied after every application of rule (1), and thus we can merge (1) and (2)
into a single rule, called a GC cut. A GC cutting planes refutation for a system of
inequalities, f = f1, . . . , fm, is a sequence of linear inequalities g1, . . . , gq, such that
each gi either is an inequality from f , is an axiom (x ≥ 0 or 1 − x ≥ 0), or follows
from previous inequalities by a GC cut, and the final inequality gq is 0 ≥ 1. The size
of a refutation is the sum of the sizes of all gi, where the coefficients are written in
binary notation.

3. Tree-size versus rank. The high-level strategy for our size/rank tradeoff is
very similar to that used by Clegg, Edmonds, and Impagliazzo, showing a relationship
between degree and size for the polynomial calculus [14]. We first outline this general
approach, and then explain the obstacles in using this approach and how we over-
come them. As an example, we will outline how to transform a polynomial-size tree
refutation into a low-rank refutation. Consider the skeleton of the proof tree where
nodes are labeled with inequalities and edges are labeled with the literal that is being
lifted upon (multiplied by). If we can hit the proof with a restriction such that each
long path contains at least one literal set to false, then this will result in a low-rank
proof under the restriction. However, the low-rank refutation will only be a refutation
under the restriction and thus we must continue recursively and argue that there is
also a low-rank restriction under all other settings to the restricted variables. This
will be possible since the size of the restriction will be small. Finally, we will combine
all of the low-rank refutations (one for each assignment to the restricted variables) in
order to obtain a low-rank refutation of the entire formula.

In our actual argument, we will select the restriction and recursion somewhat
differently than described above, but the intuition is similar. Rather than selecting
the whole restriction at once to kill all long paths simultaneously, we will select one
variable setting at a time. We will always choose the next variable to set greedily,
by picking the variable that can be set to kill off the largest number of long paths.
We argue that when the variable is set to kill off the largest number of long paths
(call this the first case), the number of long paths drops by a large fraction, and when
the variable is given the opposite value (call this the second case), the total number
of variables is reduced by 1. In the first case, we will argue inductively that we can
obtain a low-rank r − 1 refutation, and in the second case, a rank r refutation, and
finally argue that they can be combined to obtain a rank r refutation.

When applying this argument we run into trouble because a path can be long
without mentioning a lot of distinct literals on the edges of the path. A proof is called
regular if for every path in the proof, a variable occurs in at most one edge labeling
along the path. If the proof is regular, then we can apply the above argument.
Unfortunately, the proof might be highly irregular, potentially making it impossible
to apply the restriction argument. An extreme example would be a refutation tree
containing two very long paths, one that mentions a literal xi repeatedly, and another
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that mentions ¬xi repeatedly, thereby making it impossible to kill off both long paths
simultaneously.

We get around this problem by arguing that in any refutation, if there is a long
path, then there must exist another long regular path. More precisely, the rank of
a tree refutation is the length of the longest path, and we define the variable rank
of the tree refutation to be the maximum number of variables that are mentioned
on a single path. (If the proof is regular, then these two notions of rank are equal.)
Theorem 3.2 shows that rank and variable rank are equal. Note that we do not show
that, for any refutation tree, we can convert it into a regular refutation tree of the
same rank. Nonetheless by controlling the irregularities in the proof, we can make the
argument outlined above go through. We show that rank and variable rank are equal
in subsection 3.1, and we use this to prove the tree-size/rank tradeoff in subsection 3.2.

3.1. Variable rank. Variable rank measures how many distinct variables must
be lifted upon along some path in a derivation.

Definition 3.1 (variable rank). Let I be a set of linear inequalities over the
variables X1, . . . , Xn, and let Γ be a tree-like LS+ derivation from I. Label the edges
of the tree by the literal that is being lifted on in that inference. Let π be a path from
an axiom to the final inequality. The variable rank of π is the number of distinct
variables that appear as lift variables in the edges of π. The variable rank of Γ is the
maximum variable rank of any path from an axiom to the final inequality in Γ. We
will define variable rank for different types of objects. For a single inequality, it is
the minimum variable rank for deriving the inequality. That is, the variable rank of
cTX ≥ d with respect to I, vrankI(cTX ≥ d), is defined to be the minimal variable
rank of any derivation of cTX ≥ d. If there is no such derivation, then the variable
rank is defined to be ∞. On the other hand, for a system of inequalities I, it means
the variable rank for refuting the system I. That is, the variable rank of I, vrank(I),
is defined to be vrank(0 ≥ 1). Finally, the variable rank of a vector x ∈ [0, 1]n with
respect to I, vrankI(x), is the minimum variable rank with respect to I of an inequality
cTX ≥ d such that cTx < d.

Theorem 3.2. Let I be a set of inequalities; then for LS0, LS, and LS+, for any
x, vrankI(x) = rankI(x).

Proof. Let x ∈ [0, 1]n. Clearly vrankI(x) ≤ rankI(x). We will prove the other
direction by induction on rankI(x). We will show that for any x, if x has rank r, then
any elimination of x must have a path that lifts on at least r distinct variables from
E(x). (Recall that E(x) are those indices/coordinates of x that take on nonintegral
values.) For r = 0 the proof is trivial.

For the inductive step, let x be a vector such that rankI(x) ≥ r + 1. Let Γ be
a minimum variable rank elimination of x that is frugal in the sense that x satisfies
every inequality of Γ except for the final inequality. Let the final inference of Γ derive
the inequality cTX − d.

By Lemma 2.15, there is a protection matrix Y for ( 1x ) with respect to N r
+(PI)

satisfying the properties of the lemma. By Lemma 2.14, there exist i ∈ [m] and j ∈ [n]
so that either aTi X ≥ bi is the hypothesis of an Xj lifting and aTi PV1,j(Y ) < bi, or
aTi X ≥ bi is the hypothesis of a 1−Xj lifting and aTi PV0,j(Y ) < bi.

Suppose that the lifting is on Xj (the case of 1 − Xj is exactly the same). We
now want to argue that j is not in Supp(x). Suppose j ∈ Supp(x). Then PV0,j(Y ) =
PV1,j(Y ) = x. But this implies that aTi x < bi so Γ is not frugal, as we could have
removed this last inference. Thus, we can assume that j is not in Supp(x). Now let
y = PVj,1(Y ). Because Y is a protection matrix for ( 1x ) with respect to N r

+(KI),
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y = PVj,1(Y ) ∈ N r
+(KI). Therefore y has rank r and by the induction hypothesis,

this implies that this derivation of aTi X ≥ bi must have some long path that lifts on
at least r variables from E(y). Consider this long path plus the edge labeled Xj from
aTi X ≥ bi to cTX ≥ d. We want to show that this path lifts on r+1 distinct variables
from E(x). First, let S be the set of r distinct variables from E(y) that label the
long path in the derivation of aTi X ≥ bi. By Lemma 2.15, these r variables are also
in E(x). Now consider the extra variable Xj labeling the edge from aTi X ≥ bi to
cTX ≥ d. We have argued above that j is in E(x) but not in E(y), and therefore Xj

is distinct from S. Thus altogether we have r + 1 distinct variables from E(x) that
are mentioned along this long path, completing the inductive step.

3.2. A tight tradeoff for rank and tree-size. In what follows, let I denote
the set of inequalities {aT1 X ≥ b1, . . . , a

T
mX ≥ bm}.

Theorem 3.3. For any set of inequalities I with no zero-one solution, in each
of the systems LS0, LS, and LS+, let rank(I) denote the minimal rank refutation
of I, and let ST (I) denote the minimal tree-size refutation of I. Then rank(I) ≤
2
√
2n lnST (I).
Lemma 3.4. Let I be a system of inequalities over variables Xi, i ∈ [n]. For

every i ∈ [n], if there is a refutation of I‖Xi=0 of rank r, then there is ε > 0 and a
derivation of Xi ≥ ε from I of rank at most r. Similarly, if there is a refutation of
I‖Xi=1 of rank r, then there is ε > 0 and a derivation of (1−Xi) ≥ ε from I of rank
at most r.

Proof. Let I be system of inequalities over the variables X1, . . . , Xn, such that I
includes 0 ≤ Xi ≤ 1 for each i ∈ [n]. We will prove the following stronger statement.
For every i ∈ [n], and every inequality cTX ≥ d, if there is a derivation of (cTX ≥
d)‖Xi=0 from I‖Xi=0 of rank r, then there is ε ≥ 0 and a derivation of cTX+ εXi ≥ d
of rank at most r. Similarly, if there is a derivation of (cTX ≥ d)‖Xi=1 from I‖Xi=1

of rank r, then there is ε ≥ 0 and a derivation of cTX + ε(1 − Xi) ≥ d of rank at
most r.

We present the case of Xi = 0 for the LS system; the case of Xi = 1 and the
LS0 and LS+ systems are entirely analogous. Let I, i ∈ [n], and let cTX ≥ d be
given as in the statement of the lemma. Suppose that there is a rank r derivation of
(cTX ≥ d)‖Xi=0 from I‖Xi=0. As a consequence, we have that there is a rank ≤ r
derivation of cTX ≥ d from I ∪ {Xi = 0}, and therefore, by Theorem 2.10, for all
x ∈ (N r(KI ∩ {Xi = 0})) ‖X0=1, c

TX ≥ d. On the other hand,

(N r(KI ∩ {Xi = 0})) ‖X0=1 = (N r(KI) ∩ {Xi = 0}) ‖X0=1

= (N r(KI)‖X0=1) ∩ {Xi = 0}
= PLSr(I) ∩ {Xi = 0}
= PLSr(I) ∩ {Xi ≤ 0}.

The third equality above follows by Theorem 2.10, and the last equality fol-
lows because Xi ≥ 0 is implied by PLSr(I). Now applying the affine Farkas lemma,
Lemma 2.16, there exist α1, . . . , αm, with each αj ≥ 0, ε ≥ 0, and inequalities
aTj X − bj ≥ 0, each derivable from I within rank r, so that

∑m
j=1 αj(a

T
j X − bj) +

ε(−Xi) = cTX − d, and thus
∑m

j=1 αj(a
T
j X − bj) = cTX + εXi − d. Therefore

cTX + εXi − d can be derived in LS rank ≤ r from I.
Now to complete the proof of Lemma 3.4, suppose that there is a refutation of

I‖Xi=0 of rank at most r. That is, there is a derivation of 0 ≥ 1 from I‖Xi=0 of rank
at most r. By the more general statement proven above, this implies that there is a
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rank at most r derivation of aXi ≥ 1 from I. If a > 0, we multiply by 1/a and have
Xi ≥ 1/a > 0. If a = 0, there is a derivation of 0 ≥ 1 from I—we add Xi ≥ 0 to this
to obtain Xi ≥ 1. The case for I‖Xi=1 is analogous.

Lemma 3.5. For all systems of inequalities I, all positive integers r, and all
ε, δ > 0, if there is a rank ≤ r − 1 derivation from I of Xi ≥ ε and a rank ≤ r
derivation from I of 1 −Xi ≥ δ, then there is a rank ≤ r refutation of I. If there is
a rank ≤ r − 1 derivation from I of 1 −Xi ≥ ε and a rank ≤ r derivation from I of
Xi ≥ δ, then there is a rank ≤ r refutation of I.

Proof. The two cases are nearly identical; for brevity we do the first case only.
By hypothesis, there is a rank ≤ r − 1 derivation of Xi ≥ ε. From this we may infer
(1 −Xi)Xi ≥ ε(1 −Xi); multilinearize by adding a multiple of X2

i −Xi = 0 and we
have 0 ≥ ε(1 − Xi). Multiply through by 1/ε and we have Xi ≥ 1. By hypothesis,
there is a rank ≤ r derivation of 1 − Xi ≥ δ. Adding these two formulas, we have
1 ≥ 1 + δ, which yields 0 ≥ 1 after multiplying by the positive scalar 1/δ.

Proof of Theorem 3.3. Let S ∈ N be given. Let d =
√
2n lnS, and let a =

(1− d/2n)−1 = (1 −√
lnS/2n)−1.

Let I be a set of inequalities in n variables, and let Γ be a refutation of I. We
prove by induction on n and b that if I is a system of inequalities in at most n
variables that has a refutation with less than ab paths of variable rank at least d, then
rank(I) ≤ d+ b.

The claim trivially holds for all b when d ≥ n, because every refutation that
uses at most n variables has rank at most n. (In particular, this implies the claim
when n = 1.) In the base case, b = 0 and there are no paths in Γ of variable rank
more than d, and thus by Theorem 3.2, rank(I) ≤ d. For the induction step, let
F be the set of paths in Γ of variable rank at least d, and suppose that |F | < ab.
Because there are 2n literals making at least d|F | appearances in the |F | many long
paths, there is a literal X (here X is Xi or 1 − Xi for some i ∈ [n]) that appears
in at least d

2n |F | of the long paths. Setting X = 0, Γ‖X=0 is a refutation of I‖X=0

with at most
(
1− d

2n

) |F | < ab−1 many long paths. By the induction hypothesis,
rank(I‖X=0) ≤ d+ b− 1. By Lemma 3.4, there is ε ≥ 0 and a derivation of 1−X ≥ ε
from I of rank at most d+b−1. On the other hand, Γ‖X=1 is a refutation with at most
|F | < ab many long paths, and in n− 1 many variables. By induction on the number
of variables, rank(I‖X=1) ≤ d+ b. By Lemma 3.4, there is δ ≥ 0 and a derivation of
X ≥ δ from I of rank at most d+ b. Therefore by Lemma 3.5, rank(I) ≤ d+ b. This
concludes the proof that if |F | < ab, then rank(I) ≤ d+ b.

Because |F | < |Γ| = aloga(S), we set b = loga S, which can be seen to be less than
or equal to

√
2n lnS. Thus rank(I) ≤ 2

√
2n lnS as desired.

Corollary 3.6. For the LS0, LS, and LS+ systems, for any set of inequal-
ities I in n variables with no zero-one solution, let rank(I) denote the minimal
rank refutation and let ST (I) denote the minimal tree-size refutation of I. Then

ST (I) > e(rank(I))
2/8n.

It is interesting to note that we actually prove a stronger lower bound where size
is measured to be the number of inequalities in the proof, and not just the bit size.

Up to logarithmic factors, the tradeoff for rank and tree-size is asymptotically
tight for LS0 and LS refutations. This follows from well-known bounds for the propo-
sitional pigeonhole principle: On the one hand, it is shown in [21] that LS refutations
of PHPn+1

n require LS rank Ω(n), but on the other hand, there are tree-like LS0
refutations of PHPn+1

n of size nO(1); cf. [27]. (Note that the number of variables
underlying the propositional pigeonhole principle, PHPn+1

n , is O(n2).)
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Theorem 3.7. For each n ∈ N, there is a CNF F on N = Θ(n2) many variables
such that rank(F ) = Ω

(√
(N/ logN) · lnST (F )

)
.

The propositional pigeonhole principle has an LS+ refutation of rank one [21], so
that example does not show the tradeoff to be asymptotically tight for LS+. Deter-
mining whether or not the tradeoff is asymptotically tight for LS+ is an interesting
open question.

3.3. No tradeoff for arbitrary derivations in LS0 and LS. Theorem 3.3
shows that for LS or LS+ refutations, strong enough rank lower bounds automatically
imply tree-size lower bounds. But what about derivations of arbitrary inequalities?
Somewhat counterintuitively, a similar tradeoff does not apply for LS or LS0 deriva-
tions of arbitrary inequalities, nor for the elimination of points from a polytope. It
is an interesting open problem to determine whether or not such a tree-size/rank
tradeoff for arbitrary derivations holds for LS+.

Theorem 3.8. For sufficiently large n, there exists a system of inequalities I
over the variables {X1, . . . , Xn} and an inequality aTX ≤ b such that (1) any LS
derivation of aTX ≤ b from I requires rank Ω(n), and (2) there is a tree-like LS0

derivation of aTX ≤ b from I of polynomial size.
Proof. Let I be the following system of inequalities: For each 1 ≤ i < j ≤ n,

there is Xi +Xj ≤ 1. Let aTX ≤ b be the inequality
∑n

i=1 Xi ≤ 1. We show that
deriving aTX ≤ b from I requires rank Ω(n). This is just a reduction from the well-
known rank lower bound for LS refutations of PHPn

n−1 [21]. Let r be the minimum
rank derivation of

∑n
i=1 Xi ≤ 1 from I. In the n to n− 1 pigeonhole principle, there

are clauses Xi,j + Xi′,j ≤ 1 (for all i, i′ ∈ [n] with i 	= i′, and all j ∈ [n − 1]), and∑n−1
j=1 Xi,j ≥ 1 (for all i ∈ [n]). In rank r we can derive

∑n
i=1 Xi,j ≤ 1 for each

j ∈ [n − 1]. Summing up over all j gives
∑n−1

j=1

∑n
i=1 Xi,j ≤ n − 1. On the other

hand, there is a rank zero derivation of
∑n

i=1

∑n−1
j=1 Xi,j ≥ n from the inequalities

of PHPn
n−1. Thus we have a rank r refutation of PHPn

n−1. Because the LS rank of
PHPn

n−1 is Ω(n), it follows that r = Ω(n). Lastly, it is not hard to show by induction

on k that there is a polynomial tree-size LS0 derivation of
∑k

i=1 Xi ≤ 1 from I.
It is interesting to note that for any ε, the system I ∪ {∑n

i=1 Xi ≥ 1 + ε} has a
rank one LS0 refutation.

Finally, known bounds for the pigeonhole principle show that for LS0 and LS,
there is no tree-size/rank tradeoff for eliminations of points.

Theorem 3.9. For sufficiently large n ∈ N, there exist a set of inequalities In
over X1, . . . , Xn and a point x ∈ [0, 1]n such that there is a polynomial size tree-like
LS0 derivation of x from In, but any LS elimination of x requires rank Ω(n).

Proof. As in the proof of Theorem 3.8, let I be the following system of inequalities:
For each 1 ≤ i < j ≤ n, there is xi + xj ≤ 1. By the argument of the proof of
Theorem 3.8, all derivations of

∑n
i=1 xi ≤ 1 from I require rank r0 = Ω(n). Therefore,

by the affine Farkas lemma, Lemma 2.16, for all r < r0 there exists z ∈ N r(PI) such
that

∑n
i=1 zi > 1. Let x be such a point belonging to N (r0−1)(PI). On the other

hand, there is a tree-like LS0 derivation of
∑n

i=1 xi ≤ 1 from I of size nO(1). Upon
deriving

∑n
i=1 xi ≤ 1, the point x is eliminated.

4. Tree-size lower bounds and integrality gaps. In this section, we will
derive tree-size lower bounds and integrality gaps for a variety of formulas and opti-
mization problems, including random 3-CNF formulas, random mod 2 equations, and
the Tseitin formulas.
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140 TONIANN PITASSI AND NATHAN SEGERLIND

Definition 4.1. Suppose that F is a set of clauses. Then PF is defined to be the
polytope bounded by the inequalities that represent the clauses of F , together with the
inequalities 0 ≤ Xi ≤ 1. Suppose that F is a set of mod 2 equations over n variables.
That is, each equation in F is of the form

∑
i∈S Xi ≡ a (mod 2), where S ⊆ [n] and

a ∈ {0, 1}. Then each such equation can be represented by the conjunction of 2|S|−1

clauses, each of which can be represented as a linear inequality, and we define PF as
the polytope bounded by these inequalities and by the inequalities 0 ≤ Xi ≤ 1.

Definition 4.2 (random and mod 2 formulas). There are 2
(
n
k

)
linear, mod

2 equations over n variables that contain exactly k different variables; let Mk,n
m be

the probability distribution induced by choosing m of these equations uniformly and
independently. There are 2k

(
n
k

)
clauses over n variables that contain exactly k differ-

ent variables; let N k,n
m be the probability distribution induced by choosing m of these

clauses uniformly and independently. Finally, the Tseitin formula on an odd-sized
graph G = (V,E), TS(G), has variables xe for all edges e ∈ E. For each v ∈ V there
is one corresponding equation:

∑
e,v∈e xe = 1 mod 2.

For this and subsequent sections, we will need the notion of graph expansion.
Definition 4.3 (edge expansion). Let e(V1, V2) be the number of edges (v1, v2)

with vi ∈ Vi. The edge expansion of a graph G = (V,E) is

min
S⊆V

0<|S|≤|V |/2

e(S, V \ S)
|S| .

Definition 4.4 ((r, c)-expander). A bipartite graph from V to U is an (r, c)-
expander if, for all subsets X ⊂ V where |X | ≤ r, we have Γ(X) ≥ c|X |. The
expansion of a set X ⊆ V , e(X), is the value |Γ(X)|/|X |.

Definition 4.5 ((r, c)-boundary expander). Let G be a bipartite graph from V to
U . The boundary of a set X ⊂ V , ∂X, is defined as ∂X = {u ∈ U : |Γ(u)∩X | = 1}.
G is an (r, c)-boundary expander if for all subsets X ⊂ V , where |X | ≤ r, we have
|∂X | ≥ c|X |. The boundary expansion of a set X ⊂ V is the value |∂X |/|X |.

The following fact relates bipartite expansion with boundary expansion.
Fact 4.6. If G is a bipartite graph from V to U where V has maximal degree d

and if G is an (r, c)-expander, then G is an (r, 2c− d)-boundary expander.
Notation. At times, we will describe a bipartite graph G(A) by its adjacency ma-

trix A ∈ {0, 1}m×n. By the expansion of A, we mean the expansion of the underlying
graph G(A).

4.1. Tree-size lower bounds for unsatisfiable formulas. We begin by ob-
serving the following theorem, which follows immediately by combining our tree-
size/rank tradeoff from the previous section with known rank bounds [11] for sparse
and expanding unsatisfiable formulas to deduce exponential tree-size lower bounds.

Theorem 4.7.

1. For all odd n sufficiently large, there exists a G on n nodes and degree Δ such
that any LS+ refutation of PTS(G) requires tree-size 2Ω(n/Δ).

2. Let k ≥ 5. There exists c such that for all constants Δ > c, for F ∼ Mk,n
Δn,

with probability 1− o(1), all LS+ refutations of PF require tree-size 2Ω(n).

3. Let k ≥ 5. There exists c such that for all constants Δ > c, for C ∼ N k,n
Δn,

with probability 1− o(1), all LS+ refutations of PC require tree-size 2Ω(n).
The above proofs rely on the fact that for k ≥ 5, the boundary expansion is

greater than 2. In a subsequent paper, Alekhnovich, Arora, and Tourlakis prove
linear rank bounds for random 3-CNFs [2]. This immediately yields the corresponding
exponential tree-size lower bounds for random 3-CNF formulas.
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EXPONENTIAL LOWER BOUNDS AND INTEGRALITY GAPS 141

4.2. Tree-size integrality gaps for expanding instances. As discussed in
subsection 3.3, we cannot appeal to Theorem 3.3 to obtain tree-size based integrality
gaps because this theorem holds for refutations but not for more general derivations.
Nonetheless, we can obtain integrality gaps for subexponential tree-size LS and LS+
relaxations by using similar ideas.

For max-k-SAT and max-k-LIN, we will actually manage to use Theorem 3.3
directly to prove integrality gaps. For vertex cover, we will demonstrate how to
use the ideas behind the proof of Theorem 3.3 to obtain size-based integrality gaps
based on rank-based integrality gaps using a more hand-tailored approach. This is
completely analogous to using a hand-tailored random restriction argument to prove
resolution lower bounds in cases where the general size-width tradeoff for resolution
cannot be applied.

Recall that the high level idea of the proof of Theorem 3.3 is to hit an alleged
small proof with a restriction to kill off all high-rank paths, and then figure out how
to patch together the low-rank derivations (one where xi = 1 and one where xi = 0)
in a low-rank way. For derivations it is no longer possible to argue that we can patch
together the low-rank derivations, but we can bypass this step as follows: Begin with
an alleged small-size derivation of some inequality g from I. Find a “nice” restriction
ρ such that (i) ρ kills off all high rank paths, and (ii) ρ has the property that g‖ρ still
requires high rank.

Definition 4.8 (max-k-SAT and max-k-LIN). The problem max-k-SAT (max-
k-LIN) is the following: Given a set of k-clauses (mod 2 equations), determine the
maximum number of clauses (equations) that can be satisfied simultaneously. Given a
set of k-mod-2 equations F = {f1, . . . , fm} over variables X1, . . . , Xn, add a new set
of variables Y1, . . . , Ym. For each fi:

∑
j∈Ii

Xj ≡ a (mod 2), let f ′
i be the equation

Yi +
∑

j∈Ii
Xj ≡ a+ 1 (mod 2).

Let F ′ be the set of f ′
i ’s. If Yi is 1, then f ′

i is satisfied if and only if fi is satisfied.
Hence we want to optimize the linear function

∑m
i=1 Yi subject to the constraints F ′.

Convert these mod 2 equations into linear constraints and call the resulting linear pro-
gram LF . In the same way, we can obtain a maximization problem, LC , corresponding
to a set of k clauses C.

Theorem 4.9. Let k ≥ 5. For any constant ε > 0, there are constants Δ, β > 0
such that if F ∼ Mk,n

Δn, then the integrality gap of any size s ≤ 2βn tree-like LS+

relaxation of LF is at least 2 − ε with high probability. Similarly, for any k ≥ 5 and
any ε > 0, there exist Δ, β > 0 such that if C ∼ N k,n

Δn, then the integrality gap of any

size s ≤ 2βn round relaxation of LC is at least 2k

2k−1 with high probability.
Proof. The following theorem, proven by [11], proves integrality gaps for sublinear

rank relaxations. We want to extend this theorem to apply to tree-size as well.
Theorem 4.10 (Theorem 5.1 from [11]). Let k ≥ 5. For any constant ε > 0,

there are constants Δ, β > 0 such that if F ∼ Mk,n
Δn, then the integrality gap of any βn

round LS+ relaxation of LF is at least 2 − ε with high probability. Similarly, for any
k ≥ 5 and any ε > 0, there exist Δ, β > 0 such that if C ∼ N k,n

δn , then the integrality

gap of any βn round LS+ relaxation of LC is at least 2k

2k−1
with high probability.

We cannot apply this theorem using our rank/tree-size tradeoff since the above
statement involves integrality gaps rather than unsatisfiable formulas. But fortunately
their theorem is proven using a main theorem (stated below), which establishes lower
bounds for mod 2 equations as a function of the underlying expansion; we will be able
to use the main theorem directly to prove integrality gaps for tree-size.

In order to state their main theorem, we need a couple of notions. Let F be
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142 TONIANN PITASSI AND NATHAN SEGERLIND

a set of inequalities or mod 2 equations. Let GF be the bipartite graph from the
set F to the set of variables, where each equation is connected to the variables it
contains. For w ∈ {0, 1/2, 1}n, an equation f ∈ F is fixed with respect to w if
w sets all the variables of f to 0/1 and f is satisfied by w. Let GF (w) be the
subgraph of GF induced by the set of variables set to 1/2, and the set of nonfixed
equations.

Theorem 4.11 (see [11]). Let ε > 0 and let w ∈ {0, 1/2, 1}n. If GF (w) is an
(r, c)-boundary expander, then it has LS+ rank at least r(c − 2).

We present the proof for LF ; an analogous argument works for LC . Given F ∼
Mk,n

Δn, we want to show that there is no derivation of
∑

Yi < m (where m is the
number of mod 2 equations) via a polynomial-size tree derivation from the original
equations F ′. Consider a new constraint g =

∑m
i=1 Yi ≥ m. The set of constraints

F ′ ∪ g is unsatisfiable with F ∼ Mk,n
Δn. In fact, for Δ ≥ (8 − 4ε+ ε2)/ε2, a Chernoff

bound and a union bound show that with high probability no Boolean assignment
satisfies more than a 1/(2− ε) fraction of F ′’s equations.

First, we will prove (1): the unsatisfiable system of inequalities F ′ ∪ {g} requires
large tree-size refutations. We do this by applying the tree-size/rank tradeoff of
Theorem 3.3. For the rank bound, we will show that the assignment z where all Yi’s
are set to 1 and all Xi’s are set to 1/2 survives for Ω(n) many rounds of LS+ lift-
and-project. This assignment clearly satisfies all inequalities in F ′ ∪ {g}. Now, when
we consider the equations restricted to the nonintegral values, it is just the original
equations of F . With probability 1−o(1) over F ∼ Mk,n

Δn, the associated graph GF is
an (αn, 2 + δ)-boundary expander for some α, δ > 0 that depend on Δ. Let β = αδ.

Hence by Theorem 4.11, rankF∪{g}(z) = Ω(n), and therefore rank(F ∪ {g}) = Ω(n).
By Theorem 3.3, we can conclude that the extended system F ′ ∪ g requires tree-size
2Ω(n) to refute in LS+.

Now, we want to show (2): (1) implies the same tree-size lower bound for deriving∑m
i=1 Yi ≤ m − ε from F ′ for all ε > 0. To see this, suppose that we can derive∑m
i=1 yi ≤ m − ε from the original equations F ′ for some ε > 0 using tree-size S.

Then we can derive the empty polytope from F ′ ∪ g by summing
∑m

i=1 yi ≤ m − ε
with g to yield 0 ≥ ε. Thus S = 2Ω(n).

Now suppose that P is a set of inequalities derivable from F ′ via an LS+ tree
derivation of size at most 2βn. (2) implies that for all ε > 0,

∑m
i=1 Yi ≤ m− ε is not

implied by P . Thus, there exists an assignment α to the underlying variables of F ′

such that α satisfies P , and (
∑m

i=1 Yi)(α) ≥ m, thus proving that the integrality gap
of P is 2− ε.

4.3. Tree-size integrality gap for vertex cover. Our final result in this
section is a generalization of the rank bound of [29] for the vertex cover problem
to a tree-size lower bound.

Given a 3XOR instance F over {X1, . . . , Xn} with m = Δn equations, we define
the graph GF as follows. GF has N = 4m vertices, one for each equation of F and for
each assignment to the three variables that satisfies the equation. We think of each
vertex as being labeled by a partial assignment to three variables. Two vertices u and
v are connected if and only if the partial assignments corresponding to u and v are
inconsistent. The optimal integral solution for F is equal to the largest independent
set in GF . Note that N/4 is the largest possible independent set in GF , where we
choose one node from each 4-clique.

The vertex cover and independent set problems on GF are encoded in the usual
way, with a variable YC,η for each node (C, η) of GF , where C corresponds to a

D
ow

nl
oa

de
d 

05
/1

4/
13

 to
 1

28
.1

00
.3

.6
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EXPONENTIAL LOWER BOUNDS AND INTEGRALITY GAPS 143

3XOR equation in F , and η is a satisfying assignment for C. Its polytope is denoted
V C(GF ).

Theorem 4.12. For all ε > 0, there exist Δ, c > 0 such that for sufficiently large
n, there exists F , a system of at most Δn many 3XOR equations over {X1, . . . , Xn}
such that any tree-like LS+ tightening of V C(GF ) with integrality gap at most 7/6− ε
has size at least 2cn.

In order to prove the final theorem from this section, Theorem 4.12, we will need
some preliminary lemmas and facts.

The following lemma was proven in [29].
Lemma 4.13. Let F be a (k, 1.95)-expanding 3XOR instance such that any two

equations of F share at most one variable, and let GF be the corresponding graph.
The point (3/4, . . . , 3/4) is in the polytope generated after k−4

44 rounds of LS+ lift-
and-project applied to V C(GF ).

The following lemma, also proven in [29], shows that there are instances of 3XOR
satisfying the hypotheses of Lemma 4.13.

Lemma 4.14. For every c < 2, ε > 0, there exist α,Δ > 0 such that for every
n ∈ N there is a 3XOR instance F of mod 2 equations on n variables with m = Δn
equations such that (i) no more than (1/2 + ε)m equations of F are simultaneously
satisfiable; (ii) any two equations of F share at most one variable; and (iii) F is
(αn, c)-expanding.

The above lemmas combine to give the following lower bound.
Theorem 4.15 (see [29]). For every ε > 0, there exists cε > 0 such that for

infinitely many n, there exists a graph G with n vertices such that the ratio between
the minimum vertex cover of size G and the optimum solution produced by any rank
cεn LS+ tightening of V C(G) is at least 7/6− ε.

Proof. Let ε > 0 be given. Apply Lemma 4.14 and take α,Δ > 0, t sufficiently
large (to demonstrate that the theorem holds for arbitrary large graphs), and a 3XOR
instance F overX1, . . . , Xt with m = Δt many equations so that GF is (αt, 1.95) edge
expanding, at most (1/2 + ε)m equations of F are simultaneously satisfiable, and no
two equations of F share more than one variable.

Note that for any 3XOR instance F , an independent set in GF that contains m0

nodes corresponds to an assignment that satisfies m0 equations of F . Therefore, given
a maximal size independent set, S, in GF , the remaining 4m − |S| vertices form a
vertex cover. Thus, the minimum vertex cover size for GF is ≥ 4m − m(1/2 + ε).
On the other hand, by Lemma 4.13, the all 3/4 point remains after αt−4

44 rounds of

LS+ lift-and-project from V C(GF ). Thus, the integrality gap for N
αt−4

4
+ (V C(GF ))

is at least 4m−m(1/2+ε)
(3/4)4m = 7

6 − ε
3 ≥ 7

6 − ε. The number of vertices in GF is 4Δt, so

cε ≤ αt−4
44(4Δt) suffices for the theorem statement.

We will improve Lemma 4.13 by proving a 7/6 − ε integrality gap not only for
small rank LS+ tightenings of vertex cover but also for small tree LS+ tightenings
of vertex cover. The basic idea is to apply a random restriction ρ = ρX ∪ ρY , with
ρX to the X variables of the 3XOR instance and ρY to the Y variables of the inde-
pendent set instance, so that the following hold: (i) The independent set constraints
for GF become the independent set constraints of GF‖ρX

after applying ρY , i.e.,

V C(GF )‖ρY = V C(GF‖ρX
). (ii) F‖ρX retains the expansion properties needed to

apply Lemma 4.13. (iii) In an LS+ derivation from V C(GF ), any path that lifts on
Ω(n) variables will have some lifting-literal falsified by ρY with probability at least
1− 2−Ω(n).
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Regarding the issue of relating the ρX and ρY assignments, given a partial as-
signment ρX to the X ’s, we simply define ρY via

ρY (YC,η) =

⎧⎨
⎩

1 if η is a subassignment of ρX ,
0 if η is inconsistent with ρX ,

YC,η otherwise.

It is immediate upon inspection that for any ρX that does not falsify any equation of
F , with ρY defined as above, V C(GF )‖ρY = V C(GF‖ρX

) (up to renaming variables

YC,η in which ρX and η are consistent, but ρX sets at most two variables of C).
We now take an alternative view to point (iii), in which we replace the goal of

“falsifying some literal of a long path” with the goal of satisfying a 3-DNF in the X
variables. We construct the 3-DNF on a literal-by-literal basis: For a negative literal
1 − YC,η let φ−

C,η be the 3-DNF stating that “ρX satisfies η”; that is, let xi, xj , xk

denote the variables of equation C, and set φ−
C,η to be x

η(i)
i ∧ x

η(j)
j ∧ x

η(k)
k . For a

positive literal YC,η, let φ
+
C,η be the 3-DNF stating “ρX satisfies C by satisfying some

η′ 	= η”; that is, let xi, xj , xk denote the variables of equation C, let β1, β2, β3 denote

the three assignments that satisfy C but are not η, and set φ+
C,η to be

∨3
l=1 x

βl(xi)
i ∧

x
βl(xj)
j ∧x

βl(xk)
k . For a path π in an LS+ derivation, let φπ denote the 3-DNF obtained

by taking the disjunction of φ+
C,η, for each YC,η that is used positively in some lift of

π, and of φ−
C,η for each YC,η that is used negatively in some lift of π. We clearly have

that if φπ‖ρX = 1, then ρY falsifies some lift-literal of π.
We are now faced with the task of constructing a restriction to the X variables

that will preserve the expansion properties of the 3XOR instance, but will satisfy the
3-DNF φπ with overwhelming probability when π is a long path. This was solved
by Alekhnovich in his analysis of Res(k) refutations of random 3XOR instances [1].
We now revisit the definitions and results of [1] and show why they may be applied.
The primary difference between our restriction and that of [1] is that we focus on the
preservation of edge expansion, as opposed to boundary expansion. All that is needed
about these closure operators is that they guarantee expansion after their application,
and that the number of equations eliminated is bounded by a constant times the
number of variables set. The correctness of the random restriction lemma of [1] does
require that the initial system of equations have constant boundary expansion. This
applies in our use because by Fact 4.6 an (r, η)-edge expander is an (r, 2η−d)-boundary
expander, and we apply the restriction lemma to an (αn, 1.98)-edge expander with 3
variables per equation.

Definition 4.16 (expansion closure operator, after [3, 1]). Let A ∈ {0, 1}m×n

be an (r, η)-edge expander, let δ ∈ (0, 1) be given, and let J ⊆ [n] be given. Define the
relation �e

J on subsets of [m] as

I1 �e
J I2 ⇐⇒ |I2| ≤ (r/2) ∧

∣∣∣NA(I2) \
(⋃

i∈I1
Ai ∪ J

)∣∣∣ < δ · η|I2|.(1)

Define the δ expansion closure of J , eclδA(J), via the following iterative procedure:
Initially let I = ∅. As long as there exists I1 so that I �e

J I1, let I1 be the lexicograph-
ically first such set, replace I by I ∪ I1, and remove all rows in I1 from the matrix
A. Set eclδA(J) to be the value of I after this process stops. When the matrix A is
clear from the context, we drop the subscript. Let the δ-cleanup of A after removing
J , CLδ

J(A), be the matrix that results by removing all rows of eclδ(J) and all columns
of J ∪⋃

i∈eclδA(J) Ai from A.
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The intuition behind the above definition is as follows: in the graph obtained
by removing variables in J , if one removes I1 and its neighbors, then I2 becomes
nonexpanding.

Lemma 4.17 (see [3, 1]). Let A ∈ {0, 1}m×n, δ ∈ (0, 1), and J ⊆ [n] be given. If
CLδ

J (A) is nonempty, then CLδ
J(A) is an (r/2, δ · η)-edge expander.

Lemma 4.18 (after [3, 1]). Let A ∈ {0, 1}m×n be an (r, η)-edge expander, let

δ ∈ (0, 1) be given, and let J ⊆ [n] be given. If |J | < r(1−δ)η
2 , then |eclδA(J)| < |J|

(1−δ)η .

Lemma 4.19 (see [1]). Let A ∈ {0, 1}m×n be an (r, η)-edge expander, and let
J ⊆ [n] be given. For all I0 ⊆ [m], if NA(I0) ⊆ J , then I0 ⊆ eclA(J).

Lemma 4.20 (folklore; cf. [1]). Let Ax = b be a system of equations so that A is
an (r, β)-boundary expander with β > 0. For every I ⊆ [m] with |I| ≤ r, AIx = bI is
satisfiable.

Definition 4.21 (random restriction). Fix δ, γ ∈ (0, 1). Let A ∈ {0, 1}m×n

be an (r, β)-boundary expander, and let b ∈ {0, 1}m be given. Let D(A, r, β, δ, γ) be
the distribution on partial assignments to the variables X1, . . . , Xn generated by the

following experiment: Uniformly select a subset S0 ⊆ {X1, . . . , Xn} of size rβ(1−δ)γ
2 .

Let I = eclδA(S0). Let S = S0 ∪ {Xj | ∃i ∈ I, Ai,j = 1}. The restriction ρ is a
uniformly selected assignment to the variables of S that satisfies AIX = bI .

In the above definition, take note that |S0| ≤ rβ(1−δ)γ
2 ≤ r

2 , so that by Lemma 4.18,

|I| = |eclδA(S0)| < |S0|
η(1−δ) ≤ r(1−δ)βγ

2η(1−δ) ≤ r(1−δ)ηγ
2η(1−δ) = γr/2 < r/2. Therefore, by

Lemma 4.20, the system of equations AIX = bI is satisfiable.
Below is the random restriction lemma of [1]. We defer the definition of “normal

form” until after the statement.
Definition 4.22. Let F be a DNF, and let S be a set of variables. If every term

of F contains a variable from S, then we say that S is a cover of F . The covering
number of F , c(F ), is the minimum cardinality of a cover of F .

Lemma 4.23 (see [1]). Let A ∈ {0, 1}m×n be an (r, β)-boundary expander such
that each column of A contains at most d ones. Let b ∈ {0, 1}m be arbitrary. There
exists a > 0 (dependent only on β, γ, and δ and decreasing in β) such that for any
k-DNF F so that F is in normal form,

Prρ∈D(A,r,β,δ,γ)[F‖ρ 	= 1] < 2−c(F )/dak

.

The notion of normal form used in [1] depends upon another definition of “clo-
sure.”

Definition 4.24 (closure operator, after [4, 1]). Let A ∈ {0, 1}m×n and J ⊆ [n]
be given, and let I ⊆ [m]. Define Ji(A) to be the set of indices k ∈ [n] such that
Ai,k = 1. (Thus Ji(A) describes the set of variables that occur in the ith equation.)
Define the closure of J , clA(J), via the following iterative procedure: Initially let
I ⊆ [m] = ∅. As long as there exists I1 so that ∂A(I1) ⊆ J ∪⋃

i∈I Ji(A), let I1 be the
lexicographically first such set, replace I by I ∪ I1, and remove all rows in I1 from the
matrix A. Set clA(J) to be the value of I after this process stops. When the matrix A
is clear from the context, we will drop the subscript. Let t be a term. We define cl(t)
to be cl(V ars(t)). We say that t is locally consistent if the formula t∧[Acl(t)X = bcl(t)]
is satisfiable. A DNF F is said to be in normal form if every term t ∈ F is locally
consistent.

Lemma 4.25. Let F be an instance of 3XOR, written as AX = b, where A is an
(r, η)-edge expander with r ≥ 2 and η > 1.5. Let π a set of literals over the variables
{YC,η | (C, η) ∈ V (GF )}. The formula φπ is in normal form.

D
ow

nl
oa

de
d 

05
/1

4/
13

 to
 1

28
.1

00
.3

.6
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

146 TONIANN PITASSI AND NATHAN SEGERLIND

Proof. Let t be a term of φπ. By definition, t is of the form x
η(xi)
i ∧x

η(xj)
j ∧x

η(xk)
k ,

where C is an equation of F , whose variables are xi, xj , and xk, and η is an assignment
to these three variables satisfying C. By Definition 4.24, we clearly have that equation
C belongs to clA(t) = clA(vars(C)). However, the closure process cannot proceed past
the second step, because the edge expansion of A guarantees that all other equations
C′ contain at least one variable not in vars(C), so that N(C′) 	⊆ vars(t)∪ vars(C) =
vars(C). Therefore, clA(t) = {C}. Because η is an assignment to {xi, xj , xk} that

satisfies C, we have that t = x
η(xi)
i ∧ x

η(xj)
j ∧ x

η(xk)
k and the equation C can be

simultaneously satisfied.
We now address how to bound the maximum number of equations in which each

variable can occur.
Lemma 4.26 (after [1]). Let ε, α,Δ > 0 and n ∈ N be given. Let F be a system

of m = Δn many 3XOR equations that satisfies the following: (i) No more than
(1/2+ ε)m of the equations of F are simultaneously satisfiable. (ii) No two equations
of F share more than one variable. (iii) F is (αn, 1.99)-edge expanding.

There is a 3XOR instance F ′ in the X variables satisfying the following: (i) No
more than a (1/2 + ε) fraction of the equations of F ′ are simultaneously satisfiable.
(ii) No two equations of F ′ share more than one variable. (iii) F ′ is (αn/2, 1.98)-edge
expanding. (iv) No variable appears in more than 3000Δ

α equations. (v) F ′ has at most
Δn many equations.

Proof. Let A be an equation/variable incidence matrix for F . Define J to be the

set of αn
1000 columns of the largest Hamming weight in A; by Lemma 4.18 |ecl 199

200

A (J)| <
200|J | ≤ 200(.001r) ≤ r/5 = αn/5. Therefore, CLδ

J(A) has at least Δn−αn/5 many
rows, and at least n− 3αn/5 many columns. Furthermore, by Lemma 4.17, CLδ

J(A)
is an (αn/2, 199

200 · 199
1000 )-edge expander, which implies that it is an (αn/2, 1.98)-edge

expander.
By Lemma 4.20, we may choose an assignment ρ to the variables of ecl

199
200

A (J)

that satisfies every equation of ecl
199
200

A (J). Let F ′ = F‖ρ. F ′ is nonempty because F
is unsatisfiable, and F ′ is not falsified because any falsified equation would belong to

ecl
199
200

A (J). The equation/variable incidence matrix of F ′ is a submatrix of CLδ
J(A),

and as such is an (αn/2, 1.98)-edge expander. Furthermore, as a restriction of F , no
two equations of F ′ share more than one variable, and at most a (1/2+ ε) fraction of
the equations of F ′ are simultaneously satisfiable.

Finally, every variable of F ′ can appear in at most 3000 equations of F ′. If more
than αn

1000 of the variables occurred in more than 3000Δ
α equations, the total number of

variable occurrences would exceed 3000Δ
α · αn

1000 = 3Δn, but this cannot happen since
every one of the Δn equations contains three variables.

Lemma 4.27. Let F be a 3XOR instance over the X variables such that every
X variable appears in at most d equations of F . Let π be a set of literals in the Y

variables, such that each literal is over a distinct variable. Then c(φπ) ≥ |π|
4d .

Proof. Each term of φπ has the form x
η(xi)
i ∧ x

η(xj)
j ∧ x

η(xk)
k where some equation

C of F is in the variable xi, xj , xk and η is one of the four assignments to those
three variables that satisfies C. Because each X variable can belong to at most
d many equations, each X variable can belong to at most 4d terms of φπ . Thus

c(φπ) ≥ |π|
4d .

We are finally ready to prove Theorem 4.12.
Proof of Theorem 4.12. Choose ε0, γ > 0 so that ε0+γ/2 = 3ε. Apply Lemma 4.14,

and choose Δ, α > 0, and then, taking n sufficiently large to show that the claim holds
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for arbitrarily large instances, let F ′ be a system of Δn many 3XOR equations on n
variables such that GF ′ is an (αn, 1.99)-edge expander, no two equations of F ′ share
more than one variable, and at most Δn(1/2+ ε0) equations of F

′ are simultaneously
satisfiable.

Apply Lemma 4.26 to obtain F so that the following hold: (i) No more than a
(1/2 + ε0) fraction of the equations of F are simultaneously satisfiable. (ii) No two
equations of F share more than one variable. (iii) F is (αn/2, 1.98)-edge expanding.
(iv) No variable appears in more than 3000Δ

α equations. (v) The number of equations

in F is at most Δn. Set d = 3000Δ
α , set δ = 195

198 , and let a be the parameter of
Lemma 4.23 with δ = 195

198 , γ as defined previously, and β equal to the boundary
expansion of GF (and thus β ≥ 0.96).

For each ρ in the support of D(A, (α/2)n, β, δ, γ), as per Definition 4.21, let the
point wρ be defined by

wρ
C,η =

⎧⎪⎨
⎪⎩

1 if ρY (YC,η) = 1,

0 if ρY (YC,η) = 0,
3
4 otherwise.

For each ρ, if ρY (YC,η) = 1, then ρ(YC,η′) = 0 for all η 	= η′, so
∑

(C,η)∈V (GF ) w
ρ
C,η ≤

3m. On the other hand, each such ρ satisfies at most γ(α/2)n/2 ≤ γm/2 many
equations of F , so the minimum size vertex cover in GF‖ρ

has size at least
(
7
2 − ε0

)
m−

γm/2. Therefore, the integrality gap of each wρ is at least
( 7

2−ε0)m−γm/2

3m =
7
2−ε0−γ/2

3
= 7

6 − ε.

Set R = (α/4)n−4
44 . Assume for the sake of contradiction that there is a tree-

like LS+ tightening of V C(GF ) with integrality at most 7
6 − ε and tree-size at most

S =
√
2R/4d3a+1 − 1. Call this forest of derivations Γ. Choose a restriction ρ according

to the distribution D(A, (α/2)n, β, δ, γ).
Let π be a path in the derivation Γ from a formula to one of its ancestors that

contains at least R many distinct variables as lift variables. By Lemma 4.25, φπ is in
normal form, and by Lemma 4.27, c(φπ) ≥ R

4d . Therefore, we may apply Lemma 4.23:

Prρ[φπ‖ρ 	= 1] < 2−R/4d3a+1

. There are at most S2 = 2R/4d3a+1 − 1 such paths in Γ,
so by the union bound, there exists a ρ in the support of D(A, (α/2)n, β, δ, γ), so that
ρY falsifies a literal on every path of Γ of variable rank ≥ R.

Because the integrality gap of wρ is at least 7/6 − ε and the tightening Γ has
integrality gap at most 7/6−ε, we may choose an inequality cTX ≥ d that is derived in
Γ such that that cTwρ < d. Because every path in Γ of variable rank at least R has one
of its lifting literals falsified, there is a variable rank < R derivation of

(
cTY ≥ d

) ‖ρY

from V C(GF )‖ρY = V C(GF‖ρ
). Because cTwρ < d and wρ agrees with ρY on the

variables set by ρY , w
ρ also falsifies

(
cTY ≥ d

) ‖ρY . So the variable rank needed to

eliminate wρ from V C(GF )‖ρY is < R = (α/4)n−4
44 . Thus by Theorem 3.2, wρ can

be eliminated from V C(GF )‖ρY with rank < (α/4)n−4
44 . Let u be the all 3/4’s vector

indexed by the variables of V C(GF )‖ρY . Because V C(GF )‖ρY = V C(GF‖ρ
), the

elimination of wρ from V C(GF )‖ρY with rank < (α/4)n−4
44 can be transformed into a

elimination of u from V C(GF‖ρ
) with rank < (α/4)n−4

44 . However, by Lemma 4.17,
F‖ρ is an (αn/4, 1.95)-expander. Furthermore, any two of its equations share at most

one variable. So by Lemma 4.13, u requires rank at least (α/4)n−4
44 to eliminate from

V C(GF‖ρ
)—a contradiction.
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We have shown that any tree-like LS+ tightening of V C(GF ) with integrality at
most 7/6− ε has tree-size greater than

S =
√
2R/4d3a+1 − 1 =

√
2(

(α/4)n−4
44 )/4d3a+1 − 1 = 2Ω(n).

5. Separations between proof systems. In this section, we show that tree-
like LS+ refutations can require an exponential-size increase to simulate several other
proof systems. In the first subsection, we prove that tree-like LS+ cannot efficiently
simulate Gomory–Chvatal (GC) cutting planes, and in the next subsection, we prove
that small rank LS+ cannot simulate resolution. The proofs of the following theorems
involve first proving new rank bounds, and then use the machinery developed in
sections 3 and 4 to obtain size bounds from rank bounds.

5.1. Separation between tree-like LS+ and cutting planes.
Theorem 5.1. Tree-like LS+ does not polynomially simulate tree-like GC cutting

planes.
In order to prove Theorem 5.1, showing that tree-like LS+ cannot p-simulate tree-

like GC cutting planes, we will establish a tree-size lower bound for LS+ refutations
of certain counting mod 2 principles. The counting principles that we use are a more
complicated version of the ordinary count two principle stating that there can be no
partition of a universe of size 2n+ 1 into pieces of size exactly two, defined below.

Definition 5.2 (count formulas). For each n ∈ N, Count2n+1
2 is the CNF

consisting of the following clauses over the variables {xe | e ∈ (
[2n+1]

2

)}: For each

v ∈ [2n+ 1],
∨

e�v xe. For each e, f ∈ (
[2n+1]

2

)
with e ∩ f 	= ∅, ¬xe ∨ ¬xf .

Unfortunately, the rank bounds for the Count2n+1
2 principles are of the form Ω(n),

but the number of variables is Θ(n2), so we cannot directly apply the tree-size rank
tradeoff to Count2n+1

2 to obtain superpolynomial tree-size lower bounds. Instead we
will consider a more complicated version of the count two principle, which we will
call TG-Count , and our plan is as follows. We will begin with the well-known Tseitin
principle on a sparse graph G; it is good for us because it is similar in proof complexity
to the mod 2 counting principle, but it has only linearly many variables.

Linear rank bounds for LS+ can be proven for the Tseitin principle on a sparse ex-
pander graph by observing that this principle has linear degree bounds in the stronger
static positivestellensatz proof system, which imply linear rank bounds for LS+. We
then use a reduction from Tseitin to the count two principle from [12], which shows
that from a low degree static positivestellensatz refutation of TG-Count , we can obtain
a low degree static positivestellensatz refutation of the Tseitin principle. Thus it fol-
lows that TG-Count requires linear rank in LS+. Now using our rank-tree-size tradeoff
for LS+, it follows that TG-Count requires exponential-size tree-like LS+ proofs. Fi-
nally, it is not hard to show that TG-Count has polynomial-size tree-like GC cutting
planes proofs, thus establishing that tree-like LS+ cannot polynomially simulate GC
cutting planes. We formalize this argument below.

Definition 5.3 (static positivestellensatz). Let {f1, . . . , fm} be a system of
polynomials over R. A static positivestellensatz refutation of {f1, . . . , fm} is a set of

polynomials {g1, . . . , gm} and {h1, . . . , hl} such that
∑m

i=1 figi = 1 +
∑l

i=1 h
2
i . The

degree of the refutation is the maximum degree of any figi or h2
i .

Definition 5.4 (Tseitin principle). The Tseitin principle on a graph G = (V,E)
is specified as follows. The underlying variables are xe for all e ∈ E. For each vertex
v there is a corresponding constraint that specifies that the mod 2 sum of all variables
xe, where e ranges over all edges incident with v, is 1. We will specify the constraints
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by a set of inequalities if we are interested in LS+ proofs, or by a set of polynomial
equations if we are interested in static positivestellensatz proofs. (In either case, each
constraint is specified with 2O(d) inequalities or polynomial equations, where d is the
degree of the graph.)

Theorem 5.5 (see [23]). For all n sufficiently large, there is a 6-regular graph,
Gn, on 2n+1 vertices such that any static positivestellensatz refutation of the Tseitin
principle on Gn requires degree Ω(n).

There is a natural reduction from the Tseitin principle to the count two principle
[12]: Start with an instance of the Tseitin principle on a d-regular graph G = (V,E)
with 2n+ 1 vertices. For the purposes of the reduction, we will view the undirected
graph as directed, with a pair of directed edges replacing each undirected edge. Let
the underlying variables of the (directed) Tseitin principle be xe for all e ∈ E. The
associated count two principle will be defined on a universe U of size m, m = (2n+
1) + 2d(2n+ 1), as follows. The underlying elements of U will consist of one element
corresponding to each vertex i in V , and two elements corresponding to each directed
edge e = (i, j) in E. We will denote the element corresponding to vertex i by (i) and
the elements corresponding to the edge e = 〈i, j〉 by (i, j, 1) and (i, j, 2).

The elements in U associated with node i will be (i) plus all elements (i, k, ∗)
(that is, the 2d elements corresponding to outgoing edges from i plus the element
corresponding to node i). The elements in U associated with the pair of nodes i, j
will be the 2 elements corresponding to the directed edge 〈i, j〉 plus the 2 elements
corresponding to the directed edge 〈j, i〉.

The idea behind the reduction is as follows. Suppose that there is an assignment,
α, to the Tseitin variables that satisfies all of the underlying mod 2 equations. Then
we will define an associated matching on U as follows. Consider a node i in G and
the d labeled edges (i, j1), (i, j2), . . . , (i, jd) leading out of i, where j1 < j2 < · · · < jd.
Suppose that the values of these edges given by α are a1, a2, . . . , ad, ai ∈ {0, 1}. Then
for each l, 1 ≤ l ≤ d, if al = 0, then we match (i, jl, 1) with (i, j1, 2); otherwise if
al = 1, then we match (i, jl, 1) with (jl, i, 1).

This gives us d 2-partitions so far. Note that the number of remaining, ungrouped
elements associated with node i is a1+a2+ · · ·+ad+1, which is congruent to 0 mod 2
since (a1 + · · ·+ ad) mod 2 = 1.

We then group these remaining, ungrouped elements associated with i, two at a
time, in accordance with the following ordering. Ungrouped elements from (i, j1, ∗) are
first followed by ungrouped elements from (i, j2, ∗) and so on, and lastly the element
(i). It should be intuitively clear that if we started with an assignment satisfying all
of the mod 2 Tseitin constraints, then the associated matching described above will
be a partition of U into groups of size 2. (See [12] for more details.)

Given a graph G, the formula TG-Count denotes the mod 2 counting principle
defined over the universe U as given by the reduction just described. When G has
degree d, the degree of the polynomial equations expressing TG-Count will be d, and
the number of variables is at most 2dn+dn+n

(
d
2

)
. (See [12] for a formal description of

TG-Count .) Buss et al. [12] prove the following theorem, which shows that the above
reduction can be formalized with low degree static positivestellensatz refutations. This
is not too surprising since the reduction itself, as well as the underlying reasoning
behind the correctness of the reduction, is all local.

Theorem 5.6 (see [12]). Let G be a graph of degree d. If there is no degree
max(dr, d) static positivestellensatz refutation of the Tseitin principle, then there is
no degree r static positivestellensatz refutation of TG-Count.

The theorem below shows that degree lower bounds for static positivestellensatz
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150 TONIANN PITASSI AND NATHAN SEGERLIND

refutations implies rank lower bounds for LS+.
Theorem 5.7 (see [23]). Let G be a degree d graph. If there is no degree 2r+3d

static positivestellensatz refutation of TG-Count, then there is no rank r LS+ refuta-
tion of TG-Count.

From Theorems 5.5, 5.7, and 5.6 we see that rank of TG-Count is Ω(n), and
because TG-Count has O(n) many variables, we may apply Theorem 3.3 to conclude
the following.

Corollary 5.8. For all n sufficiently large, there is a graph Gn on 2n+1 vertices
and degree 6 such that any tree-like LS+ refutation of TG-Count requires size 2Ω(n).

On the other hand, it is not hard to show that TG-Count has GC cutting plane
refutations of polynomial size.

Lemma 5.9. Let Gn be a family of graphs on 2n+1 vertices, with constant degree
d. Then TG-Count has polynomial-size tree-like GC cutting plane refutations.

Proof. There is a standard cutting plane derivation of
∑

e�v xe ≤ 1 using the
inequalities xe + xf ≤ 1. It has rank Θ(n) and tree-size polynomial in n. Summing
over all of these gives

∑

e∈([2n+1]
2 )

2xe =
∑

v∈[2n+1]

∑
e�v

xe ≤ 2n+ 1.

Apply a single GC cut to this and we have

∑
v∈[2n+1]

∑
e�v

xe ≤ 2n.

On the other hand, summing over all of the inequalities
∑

e�v xe ≥ 1 yields

∑
v∈[2n+1]

∑
e�v

xe ≥ 2n+ 1.

Proof of Theorem 5.1. The above lemmas easily imply our theorem.

5.2. Tree-like LS+ cannot simulate resolution.
Theorem 5.10. Tree-like LS+ refutations cannot p-simulate either DAG-like

resolution or DAG-like LS+.
To prove the above theorem, we will use the GTn family of formulas. Intuitively

the GTn principle states that in any total ordering of a finite set of size n, there must
exist a minimal element.

Definition 5.11 (GT Formula). For n ≥ 1, the formula GTn is a CNF on the
variables Xi,j for i, j ∈ n, i 	= j. The clauses of GTn are as follows:

• (Xi,j defines an ordering on the vertices) For each 1 ≤ i < j ≤ n, (Xi,j∨Xj,i)
and (¬Xi,j ∨ ¬Xj,i).

• (Transitivity) For each i, j, k, (¬Xi,j ∨ ¬Xj,k ∨Xi,k).
• (There is no minimum) For each i, (∨j 	=iXj,i).

Let E = {(i, j) ∈ [n]2 | i 	= j}, so we can think of the variables as Xu,v, indexed by
(u, v) ∈ E. The CNF GTn is translated into a system of linear inequalities in the
usual manner.

The bulk of our work will be to prove the following lower bound showing that tree-
like LS+ refutations must be large. This theorem combined with Stalmark’s efficient
resolution refutations of GTn [31] will imply Theorem 5.10.
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Theorem 5.12. There exists c > 0 such that for all n, every tree-like LS+

refutation of GTn has size at least 2cn.
The first thing we do is strengthen the rank bound of [11] to apply to LS+, not

just LS0. As in that work, the rank bound is based upon protecting vectors that
correspond to so-called scaled partial orders.

Definition 5.13 (scaled partial orders). A partial order ≺ on [n] is said to be
t-scaled if there is a partition of [n] into sets A1, . . . , At such that ≺ is a total ordering
within each Ai, but elements from different Ai’s are incomparable. For each u ∈ Ai,
we say that Ai is the class of u with respect to ≺. We say that ≺ is at least t-scaled
if ≺ is t′-scaled for some t′ ≥ t, and that ≺ is at most t-scaled if ≺ is t′-scaled for
some t′ ≤ t. A scaled partial order is a t-scaled partial order for some t.

We say that (i, j) and (l, k) are equivalent with respect to ≺, written (i, j) ≡ (l, k),
if i ≺ j and l ≺ k, or if j ≺ i and k ≺ l, or if there exist r, s such that r 	= s, i, l ∈ Ar,
and j, k ∈ As. We say that (i, j) and (l, k) are opposing with respect to ≺, written
(i, j) ⊥ (l, k), if i ≺ j and k ≺ l, or if j ≺ i and l ≺ k, or if there exist r, s such that
r 	= s, i, l ∈ Ar, and j, k ∈ As.

For a scaled partial order ≺, let x≺ ∈ R
E be defined by

x≺
(i,j) =

⎧⎪⎨
⎪⎩

1 if i ≺ j,

0 if j ≺ i,
1
2 if i and j are incomparable with respect to ≺.

For i, j ∈ [n] such that i and j are incomparable with respect to ≺, let ≺(i,j)

denote the scaled partial order that refines ≺ by placing every element from the class
of i before every element of the class of j. If i ≺ j, then ≺(i,j)=≺, and if j ≺ i, then
≺(i,j)=≺R, where ≺R denotes the reversal of ≺.

Note that in the above definition, equivalence and opposing are not mutually
exclusive. Here is an easy fact about assignments from scaled partial orders.

Lemma 5.14. Let ≺ be a scaled partial order on [n]. For all (i, j) ≡ (l, k),
x≺
(i,j) = x≺

(l,k). For all (i, j) ⊥ (l, k), x≺
(i,j) = 1− x≺

(l,k).

Here are some easy facts about scaled partial orders.
Definition 5.15. Let Ps denote the least polytope containing {x≺ |≺ is at least

s-scaled}.
Lemma 5.16 (cf. [11]). When s ≥ 3, Ps ⊆ PGTn .
Definition 5.17. Let ≺ be a scaled partial order on [n]. Define the matrix Y ≺ ∈

R
{0}∪E×{0}∪E as follows: Y0,0 = 1, and for all (i, j) ∈ E, Y(i,j),0 = Y0,(i,j) = x(i,j).

For (i, j), (l, k) ∈ E,

Y ≺
(i,j),(l,k) =

⎧⎪⎪⎨
⎪⎪⎩

x≺
(i,j) if (i, j) ≡ (l, k),

0 if (i, j) ⊥ (l, k),

x≺
(i,j)x

≺
(l,k) otherwise.

Lemma 5.18. Let ≺ be a scaled partial order, let x = x≺, and let Y = Y ≺. For

each (i, j) ∈ E, if 0 < x(i,j) < 1, then PV(i,j),1(Y ) = x≺(i,j)

and PV(i,j),0(Y ) = x≺(j,i)

;
otherwise PV(i,j),0(Y ) = PV(i,j),1(Y ) = x.

Proof of Lemma 5.18. The cases for x(i,j) ∈ {0, 1} follow from the definition of
protection vectors, so consider (i, j) with x(i,j) = 1/2.
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By definition,

(PV(i,j),1(Y ))(l,k) = Y(l,k),(i,j)/x
≺
(i,j)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x≺
(i,j)/x

≺
(i,j) = 1 = x≺(i,j)

(l,k) if (i, j) ≡ (l, k),

0/x≺
(i,j) = 0 = x≺(i,j)

(l,k) if (i, j) ⊥ (l, k),

x≺
(l,k)x

≺
(i,j)/x

≺
(i,j) = x≺

l,k = x≺(i,j)

(l,k) otherwise,

(PV(i,j),0(Y ))(l,k) =
Y(l,k),0 − Y(l,k),(i,j)

1− x≺
(i,j)

=
x≺
(l,k) − Y(l,k),(i,j)

1− x≺
(i,j)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x≺
(l,k)

−x≺
(l,k)

1−x≺
(i,j)

= 0 = x≺(j,i)

(l,k) if (i, j) ≡ (l, k),

x≺
(l,k)

−0

1−x≺
(i,j)

= 1/2
1/2 = 1 = x≺(j,i)

(l,k) if (i, j) ⊥ (l, k),

x≺
l,k−x≺

(i,j)
x≺
(l,k)

1−x≺
(i,j)

= x≺
(l,k) = x≺(j,i)

(l,k) otherwise.

Lemma 5.19. For all at least (s + 1)-scaled partial orders ≺, the matrix Y ≺ is
an LS+ protection matrix for x≺ with respect to Ps.

Proof of Lemma 5.19. Let Y = Y ≺. Let y = ( 1
x≺ ).

We just check that the properties of Definition 2.8 hold:
1. That x≺ ∈ Ps: By hypothesis, ≺ is (s+ 1)-scaled, so x≺ ∈ Ps.
2. Y e0 = diag(Y ) = ( 1

x≺ ). By definition, Y0,0 = 1, Y0,(i,j) = y0y(i,j) = 1 ·x≺
(i,j) =

x≺
(i,j), and Y(i,j),(i,j) = x≺

(i,j).

3. For all (i, j) ∈ E, if x≺
(i,j) = 1, then Y e(i,j) = ( 1

x≺ ).

By definition, (Y e(i,j))0 = x≺
(i,j) = 1. For (l, k) ∈ E(x≺), we have

(Y e(i,j))(l,k) = Y(l,k),(i,j) =

⎧⎪⎪⎨
⎪⎪⎩

x≺
(l,k) = x≺

(i,j) if (i, j) ≡ (l, k),

0 = x≺
(l,k) if (i, j) ⊥ (l, k),

x≺
(l,k)x

≺
(i,j) = x≺

(l,k) · 1 = x≺
l,k otherwise.

4. For all (i, j) ∈ E, if x≺
(i,j) = 0, Y e(i,j) = 0. By definition, (Y e(i,j))0 = x≺

(i,j) =

0. For (l, k) ∈ E, we have

(Y e(i,j))(l,k) = Y(l,k),(i,j) =

⎧⎪⎪⎨
⎪⎪⎩

x≺
(l,k) = x≺

(i,j) = 0 if (i, j) ≡ (l, k),

0 if (i, j) ⊥ (l, k),

x≺
(l,k)x

≺
(i,j) = x≺

(l,k) · 0 = 0 otherwise.

5. That PV(i,j),0(Y ), PV(i,j),1(Y ) ∈ Ps for all other (i, j) ∈ E. This follows

immediately from Lemma 5.18 and the fact that both ≺(i,j) and ≺(j,i) are
s-scaled.
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6. The matrix Y is positive semidefinite.
Let y = ( 1

x≺ ). We define a disjoint family of subsets of E as follows: For each
r, s ∈ [t] with r 	= s, there is a set Cr,s = {(i, j) | i ∈ Ar, j ∈ As}. For each

1 ≤ r < s ≤ t let z(r,s) ∈ [−1, 1]n be defined via z
(r,s)
0 = 0, and for (i, j) ∈ E,

z
(r,s)
(i,j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
y(i,j) − y2(i,j) if (i, j) ∈ Cr,s,

−
√
y(i,j) − y2(i,j) if (i, j) ∈ Cs,r,

0 otherwise.

The calculation below reveals that

Y = yT y +

m∑
1≤r<s≤t

(z(r,s))T z(r,s).

This suffices to finish the proof of the claim, because a sum of positive semidef-
inite matrices is also positive semidefinite.
Checking the calculations: Let Z = yT y +

∑m
1≤r<s≤t(z

(r,s))T z(r,s).
Let (i, j) and (l, k) with (i, j) ≡ (l, k) be given. First consider the case when
x≺
(i,j) ∈ {0, 1}. This forces the arcs (i, j) and (l, k) not to cross two pieces of

the partition, and also forces x≺
(l,k) ∈ {0, 1}. Moreover, z

(r,s)
(i,j) = z

(r,s)
(l,k) = 0 for

all r, s.

Z(i,j),(l,k) = Z(i,j),(i,j) = y(i,j)y(l,k) = x≺
(i,j) · x≺

(l,k) = x≺
(i,j) = Y(i,j),(l,k).

Now consider the case when (i, j) ≡ (l, k) and x≺
(i,j) = 1/2 (so that both (i, j)

and (l, k) cross from some Ar to some As, without loss of generality r < s):

Z(i,j),(l,k) = y(i,j)y(l,k) + z
(r,s)
(i,j) z

(r,s)
(l,k)

= y(i,j)y(l,k) +
√
y(i,j) − y2(i,j)

√
y(l,k) − y2(l,k)

= 1/4 +
√
1/2− 1/4

√
1/2− 1/4 = 1/2 = x≺

(i,j) = Y(i,j),(l,k).

Let (i, j) and (l, k) with (i, j) ⊥ (l, k) be given. When x≺
(i,j) ∈ {0, 1}, (i, j)

and (l, k) do not cross two pieces of the partition, and that x≺
(l,k) = 1−x≺

(i,j).

Moreover, z
(r,s)
(i,j) = z

(r,s)
(l,k) = 0 for all r, s. So we have

Z(i,j),(l,k) = y(i,j)y(l,k) = x≺
(i,j)(1 − x≺

(i,j)) = 0 = Y(i,j),(l,k).

Now consider the case when (i, j) crosses from Ar to As and (l, k) crosses
from As to Ar and both x≺

(i,j) = x≺
(l,k) = 1/2.

Z(i,j),(l,k) = y(i,j)y(l,k) + z
(r,s)
(i,j) z

(r,s)
(l,k)

= y(i,j)y(l,k) −
√
y(i,j) − y2(i,j)

√
y(l,k) − y2(l,k)

= x≺
(i,j)x

≺
(l,k) −

√
x≺
(i,j) − (x≺

(i,j))
2
√
x≺
(l,k) − (x≺

(l,k))
2

= 1/4−
√
1/2− 1/4

√
1/2− 1/4 = 0 = Y(i,j),(l,k).

For all other (i, j), (l, k), we have that for all 1 ≤ r < s ≤ t, either z
(r,s)
(i,j) = 0

or z
(r,s)
(l,k) = 0, so that Z(i,j),(l,k) = y(i,j)y(l,k) = x≺

(i,j)x
≺
(l,k) = Y(i,j),(l,k).
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Lemma 5.20. Let s ∈ N+3 be given. For every n ≥ s, if ≺ is an at least s-scaled
partial order on [n], then rankGTn(x≺) ≥ s− 3.

Proof. We show by induction on s ∈ N + 3 that Ps ⊆ Ns−3
+ (PGTn). For s =

3, this is a consequence of Lemma 5.16, which tells us P3 ⊆ PGTn . Assume that
the claim holds for s. Let n ≥ s + 1 be given, and let ≺ be an arbitrary partial
order that is t-scaled with t ≥ s + 1. Consider the matrix Y ≺: By Lemma 5.19,
this is a protection matrix for x≺ with respect to Ps. However, by the induction
hypothesis, Ps ⊆ Ns−3

+ (PGTn), so Y ≺ is also a protection matrix for x≺ with respect

to Ns−3
+ (PGTn). Therefore, x≺ ∈ Ns−2

+ (PGTn). Because ≺ was an arbitrary t-scaled

partial order with t ≥ s+ 1, Ps+1 ⊆ Ns−2
+ (PGTn).

Corollary 5.21. For all n ≥ 3, the LS+ rank of GTn is at least n− 3.
Because there are n2 − n variables in GTn and the rank bound is only n− 3, the

lower bound obtained from the tree-size/rank tradeoff is a trivial constant bound. The
tree-size bound for LS+ refutations of GTn requires more work, using the machinery
developed to prove Corollary 5.21.

A measure of rank that corresponds to scaled partial orders. An obvious
approach to proving a tree-size lower bound for LS+ refutations of GTn would be to
apply a random restriction to the refutation and eliminate all paths of high variable
rank. A natural choice for such a restriction is to randomly choose S ⊆ [n] of size n/2
and place a random total order on those elements, thus creating an (n/2 + 1)-scaled
partial order ≺. The restricted refutation of GTn eliminates x≺, yet we would hope
that the restriction kills all paths of high variable rank. It turns out that this is not
the case. Suppose that the lift variables of a path are X1,2, X1,3, X1,4, . . .: This path
will not be killed unless 1 is placed into the set S, and that happens with probability
exactly one 1/2.

The idea behind the random restriction approach can be salvaged: It suffices to
kill the scaled partial order generated by a path. The path of the example actually
generates the scaled partial order 1, 2, 3, 4 . . . , and this can be killed by simply placing
some j ≺ i where i < j, and this happens with overwhelming probability. A notation-
ally cumbersome issue that arises is that we are now dealing with the scaled partial
order generated by a path, which depends not only on the set of literals lifted upon,
but also on the order in which the literals are lifted upon.

Definition 5.22. Let n be given. All refutations and inequalities in what follows
are over the variables of GTn.

Let Γ be an LS+ derivation of cTX ≥ d. Let ≺ be a scaled partial order on [n].
Let π be a path in Γ from an inequality to one of its ancestors (the ancestor is not
necessarily a hypothesis of the derivation).

The partial order of π extending ≺, ≺π, is either a scaled partial order on [n]
or a special null value corresponding to “inconsistency.” It is defined recursively as
follows: If π has length 0 (e.g., π begins and ends at the same inequality), then ≺π=≺.
Otherwise, let Xu,v (or 1 − Xv,u) be the lifting variable for the inference of the first
step in π, and let π0 be the remainder of π. If v ≺ u, then we say that π and ≺ are
inconsistent. Otherwise, ≺π= (≺(u,v))π0 .

We make a simple observation that follows by induction.
Lemma 5.23. Let Γ be an LS+ derivation of cTX ≥ d. Let ≺ be a scaled partial

order on [n]. Let π be a path in Γ from an inequality to one of its ancestors. If ≺ and
π are consistent, then ≺π refines ≺.

Definition 5.24. Let ≺ be a scaled partial order on [n]. For any single-step
LS+ derivation, a lift on Xu,v or 1−Xv,u is said to have cost 0 with respect to ≺ if
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u ≺ v, and a lift on Xu,v or 1 − Xv,u is said to be inconsistent with respect to ≺ if
v ≺ u; otherwise, a lift on Xu,v or 1−Xv,u is said to have cost 1 with respect to ≺.

Let π be a path in Γ from an inequality to one of its ancestors such that π is
consistent with ≺. The cost of π with respect to ≺, cost≺(π), is defined recursively as
follows: If π has length 0, then cost≺(π) = 0. Otherwise, let l be the lifting literal for
the inference of the first step in π, chose u, v ∈ [n] so that l = Xu,v or l = 1 −Xv,u,
and let π0 be the remainder of π. cost≺(π) = cost≺(l) + cost≺(u,v)(π0).

The following lemma is the analogue of a rank lower bound and shows in particular
that any derivation of GTn requires a path of high cost.

Lemma 5.25. Let n ∈ N be given, and let ≺ be an s-scaled partial order on [n].
Let Γ be an elimination of x≺ from GTn. Let t be such that every branch of Γ either is
inconsistent with ≺ or has cost at most t with respect to ≺. We have that s− t ≤ 2.

Proof. We induct on the size of Γ. The induction hypothesis is as follows: “For
every Γ of size at most S, for all s, t ∈ N, if Γ that is an elimination of an x≺ from
GTn, where ≺ is an s-scaled partial order and every branch of Γ either is inconsistent
with ≺ or has cost at most t with respect to ≺, then there exists ≺∗ which refines
≺, such that ≺∗ is at least s − t scaled and x≺∗ 	∈ PGTn .” Lemma 5.25 then follows
from Lemma 5.16, because that guarantees that ≺∗ is at most 2-scaled and thus
s− t ≤ 2.

For the base case, |Γ| = 1, so Γ consists of a single inequality aTX ≥ b from GTn

such that aTx≺ < b. It immediately follows that x≺ 	∈ PGTn ; moreover, because ≺ is
s-scaled, for all t ≥ 0, ≺ is at least (s− t)-scaled.

Let S ∈ N be given and assume that the lemma holds for all eliminations of size
at most S. Let s ∈ N be given, and let ≺ be an s-scaled partial order on [n]. Let Γ
be an elimination of x = x≺ from GTn such that the size of Γ is S + 1, and let t be
an upper bound on the cost of every branch in Γ with respect to ≺. Let dTX ≥ c be
the final inequality of Γ, and consider its derivation:

c− dTX =

m∑
i=1

n∑
j=1

αi,j(bi − aTi X)Xj +

m∑
i=1

n∑
j=1

βi,j(bi − aTi X)(1−Xj)

+

n∑
j=1

λj(X
2
j −Xj) +

∑
k

(gk + hT
kX)2

with each αi,j , βi,j ≥ 0.
Let Y = Y ≺, as per Definition 5.17. By Lemma 2.14, there exists an i ∈ [m] and

a (u, v) ∈ E such that
1. aTi X ≥ bi is used as the hypothesis for a lifting inference on X(u,v) and

aTi PV(u,v),1(Y ) < bi and xu,v 	= 0;
2. aTi X ≥ bi is used as the hypothesis for a lifting inference on 1 − X(u,v) and

aTi PV(u,v),0(Y ) < bi and xu,v 	= 1.
Suppose that case 1 holds; the analysis under case 2 is essentially the same. Let

Γ∗ be the subderivation of aTi X ≥ bi. The size of Γ∗ is at most S, so the induction
hypothesis applies to Γ∗.

If xu,v = 1, then PV(u,v),1(Y ) = x, so that Γ∗ is an elimination of x = x≺. Notice
that in this situation we have that u ≺ v, so that ≺(u,v)=≺. Every path in Γ∗ from
aTi X ≥ bi to one of its ancestors that is consistent with respect to ≺ is the suffix of a
path in Γ from dTX ≥ c to one of its ancestors that is consistent with ≺, and therefore
has cost at most t with respect to ≺. Therefore, by the induction hypothesis, there
is ≺∗ refining ≺ such that ≺∗ is at least (s− t)-scaled and x≺∗ 	∈ PGTn .
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Now consider the case when xu,v 	= 1. Because case 1 guarantees that xu,v 	= 0,
we have that xu,v = 1/2, so that u and v are incomparable with respect to ≺. Set

y = PV(u,v),1(Y ) = x≺(u,v)

. Note that ≺(u,v) is (s − 1)-scaled and that it refines
≺. Furthermore, u and v are in different components of ≺, so that the lift upon
Xu,v has cost one with respect to ≺. Every path in Γ∗ from aTi X ≥ bi to one of its
ancestors that is consistent with respect to ≺(u,v) is the suffix of a path in Γ from
dTX ≥ c to one of its ancestors that is consistent with ≺, so every path in Γ∗ that
is consistent with respect to ≺(u,v) has cost at most t − 1 with respect to ≺(u,v).
Therefore, by the induction hypothesis, there is ≺∗ refining ≺(u,v) such that ≺∗ is
at least (s − 1) − (t − 1) = (s − t)-scaled and x≺∗ 	∈ PGTn . By the transitivity of
refinement, ≺∗ also refines ≺.

The following lemma is the random restriction lemma. It shows that for any
subexponential-sized proof Γ, there exists a restriction that is not too large and such
that all relevant paths in Γ under the restriction have low cost.

Lemma 5.26. There exists c > 0 so that for all n ≥ 6, if Γ is a refutation of GTn

and the size of Γ is at most 1
42

cn, then there exists a partial order ≺ on [n] that is
at least n/4-scaled, and such that all paths in Γ that are consistent with respect to ≺
have cost at most n/4− 3 with respect to ≺.

Proof. We generate ≺ at random as follows: Randomly generate V ⊆ [n] by
placing i ∈ [n] into V with independent probability 1/2. Select a total order for the
elements of V uniformly at random. All i ∈ [n]\V are incomparable with the elements
of V and with each other.

We reckon the cost of paths with respect to “the degenerate partial order” ≺D,
which satisfies, for all x, y ∈ [n], x 	≺D y. This suffices to prove the lemma, because
the cost of π with respect to ≺ can only exceed the cost of π with respect to the
degenerate partial order.

Let π be a path in Γ such that the cost of π with respect to the degenerate
partial order exceeds n/2 − 3. Let A1, . . . , At be the classes of ≺π, and note that
t ≤ n/2 + 3. Let ai = |Ai|. List the elements of Ai according to ≺π, ui,1, . . . , ui,ai .
For each j = 1, . . . , �ai/2 , the probability that ≺ places ai,2j before ai,2j−1 is clearly
1/8. For distinct j’s, these events are independent. Therefore the probability, for all
j = 1, . . . , �ai/2 , that ≺ and ≺π do not disagree on the relative order of ai,2j−1 and
ai,2j is at most (7/8)�ai/2. Because the sets A1, . . . , At are disjoint, the probability
that for all i = 1, . . . , t, ≺ and ≺π do not disagree on the relative order of any ai,2j−1

and ai,2j with j ∈ {1, . . . , �ai/2 } is at most
∏t

i=1(7/8)
�ai/2.

Let n2 be the number of u ∈ [n] such that u appears in a class Ai of ≺π with
|Ai| = 2. Let n≥3 be the number of u ∈ [n] such that u appears in a class Ai of ≺π

with |Ai| ≥ 3. We immediately have that
∏t

i=1 (7/8)
�ai/2 ≤ (7/8)

(1/2)n2+(2/3)n≥3 .
At most t − 1 elements of [n] can appear in singleton classes, and therefore at

least n/2− 3 items appear in classes of size two or more. Thus, n2 + n≥3 ≥ n/2− 3.

It follows that (7/8)
(1/2)n2+(2/3)n≥3 ≤ (7/8)

(1/2)(n/2−3)
.

Because the event that ≺π and ≺ are consistent implies that, for all i = 1, . . . , t,
≺ and ≺π do not disagree on the relative order of any ai,2j−1 and ai,2j with j ∈
{1, . . . , �ai/2 }, the probability that π is consistent with respect to ≺ is at most

(7/8)(1/2)(n/2−3). Choose c > 0 so that (7/8)(1/2)(n/2−3) < 2−cn for all n ≥ 6.
Let Γ be a refutation of GTn such that the size of Γ is at most (1/4)2cn. Choose ≺

by the distribution described above. By the union bound, the probability that there
exists a path π in Γ that has cost ≥ (n/4)− 3 with respect to the degenerate partial
order and is also consistent with respect to ≺ is at most 1/4. Because the expected
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size of |V | is n/2, the probability that |V | ≥ (3/4)n is at most 2/3 by Markov’s
inequality. Therefore, there exists ≺ which is at least n/4 scaled such that for all π
in Γ, if the cost of π with respect to the empty partial order ≥ (n/4)− 3, then π is
inconsistent with respect to ≺.

6. Discussion. Our results bound the size of the derivation tree needed for LS+
tightening of linear relaxations to obtain strong integrality gaps or to refute an unsat-
isfiable CNF. Another way to measure the size of an LS+ derivation is to arrange the
formulas as a directed acyclic graph. Derivations in this model are called DAG-like
(or simply unrestricted). The most important open question is to prove size lower
bounds for LS+ derivations in the unrestricted DAG-like model. Specifically, can our
size/rank tradeoff be extended to DAG-like LS+ refutations? We suspect that the
answer is negative.

Another interesting question is whether or not the tree-size/rank tradeoff for LS+
holds for derivations as well as refutations. A positive answer would simplify the task
of proving tree-size-based integrality gaps for LS+. However, we suspect that the
answer is negative and that one simply needs to find the right counterexamples. It
would also be nice to resolve the issue of whether or not deduction requires an increase
in rank for the LS+ system, and to determine if Theorem 3.3 is asymptotically tight
for LS+ refutations.

There are some integrality gaps known for low-rank LS+ and LS tightenings for
which we have not yet obtained tree-size-based integrality gaps, for example, set cover
[2] and max-cut [30]. We suspect that rank-based integrality gaps such as these can
be used to obtain tree-size-based integrality gaps in these cases as well.

Our methods extend to other zero-one programming systems as well. Here we
briefly explain how similar ideas can be used to prove a monomial size/degree tradeoff
for Sherali–Adams (SA) (and Lasserre) refutations. In particular, we can show that
any SA or Lasserre refutation involving S monomials requires degree O(

√
n logS).

The proof is easier than the tree-size/rank results presented here for LS+ and very sim-
ilar to similar monomial/degree and size/width tradeoffs in proof complexity [14, 10].

Suppose that P is a size S SA refutation of a system, I, of inequalities involving
n variables. Call a monomial in P wide if it has size greater than w =

√
n logS. We

want to show how to obtain a new refutation of I of small width. The proof proceeds
in three steps.

First, create a height h decision tree such that for each path of the tree, P |σ has
no wide monomials, where σ is the partial truth assignment corresponding to the path
in the tree, and P |σ is the proof obtained by applying the partial restriction σ to P .
Such a tree is easily obtained for h = O(

√
n logS) by repeatedly selecting the variable

that occurs in the most wide monomials, setting it to 0, and solving the recurrence
equation.

Second, observe that for all paths σ in the decision tree, Pσ is a derivation of
1 ≥ 0 from I|σ with no wide monomials.

The last step is to combine the proofs, P |σ for all paths σ in the tree, in order
to obtain a refutation of I, where now all monomials are not too wide. This step
involves some manipulations but the basic idea is to inductively apply the following
argument. Suppose that I is a set of inequalities, and let I ′ be I|x=1, and let I ′′ be
I|x=0. Further assume that we have SA proofs, P ′ and P ′′ of 1 ≥ 0 from I ′ and I ′′,
respectively. We want to combine these proofs in order to derive 1 ≥ 0 from I.

To do this, we multiply P ′ by x, and P ′′ by (1 − x); adding them together is a
derivation of 1 ≥ 0 from I as desired. Notice that the width of the derivation is one
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more than the maximum width of P ′ and P ′′. Applying this argument inductively,
we eventually obtain a low width derivation of 1 ≥ 0 from I.

It seems possible that this technique may also apply to achieve SA and Lasserre
integrality gaps for monomial size.
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proofs of unsatisfiability, in Proceedings of the Twenty-Eighth Annual ACM Symposium
on Theory of Computing, 1996, pp. 174–183.

[15] S. Dash, On the Matrix Cuts of Lovász and Schrijver and Their Use in Integer Programming,
Ph.D. thesis, Department of Computer Science, Rice University, Houston, TX, 2001.

[16] W. Fernandez de la Vega and C. Kenyon-Mathieu, Linear programming relaxations of
Maxcut, in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, 2007, pp. 53–61.

[17] K. Georgiou, A. Magen, T. Pitassi, and I. Tourlakis, Integrality gaps of 2 − o(1) for
vertex cover SDPs in the Lovász–Schrijver hierarchy, SIAM J. Comput., 39 (2010), pp.
3553–3570.

[18] M. Goemans and D. Williamson, Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming, J. ACM, 42 (1995), pp. 1115–1145.

[19] D. Grigoriev, Linear lower bound on degrees of positivstellensatz calculus proofs for the parity,
Theoret. Comput. Sci., 259 (2001), pp. 613–622.

[20] D. Grigoriev and E. Hirsch, Algebraic proof systems over formulas, Theoret. Comput. Sci.,
303 (2003), pp. 83–102.

[21] D. Grigoriev, E. Hirsch, and D. Pasechnik, Complexity of semi-algebraic proofs, Moscow
Math. J., 2 (2002), pp. 647–679.

D
ow

nl
oa

de
d 

05
/1

4/
13

 to
 1

28
.1

00
.3

.6
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EXPONENTIAL LOWER BOUNDS AND INTEGRALITY GAPS 159

[22] D. Grigoriev and N. Vorobjov, Complexity of null and positivestellensatz proofs, Ann. Pure
Appl. Logic, 113 (2001), pp. 153–160.

[23] D. Itsykson and A. Kojevnikov, Lower bounds of static Lovasz-Schrijver calculus proofs for
Tseitin tautologies, J. Math. Sci., 145 (2007), pp. 4942–4952.

[24] T. Lee and A. Shraibman, Disjointness is hard in the multiparty number-on-the-forehead
model, Comput. Complexity, 18 (2009), pp. 309–336.

[25] L. Lovász, On the Shannon capacity of a graph, IEEE Trans. Inform. Theory, 25 (1979),
pp. 1–7.

[26] L. Lovász and A. Schrijver, Cones of matrices and set-functions and 0-1 optimization, SIAM
J. Optim., 1 (1991), pp. 166–190.

[27] P. Pudlák, On the complexity of propositional calculus, in Sets and Proofs, Invited Papers from
Logic Colloquium ’97, Cambridge University Press, Cambridge, UK, 1999, pp. 197–218.

[28] P. Raghavendra, Optimal algorithms and inapproximability results for every CSP?, in Pro-
ceedings of the Fortieth Annual ACM Symposium on Theory of Computing, 2008, pp. 245–
254.

[29] G. Schoenebeck, L. Trevisan, and M. Tulsiani, A linear round lower bound for Lovasz-
Schrijver SDP relaxations of vertex cover, in Proceedings of the 2007 Electronic Collo-
quium on Computational Complexity, 2007, pp. 205–216.

[30] G. Schoenebeck, L. Trevisan, and M. Tulsiani, Tight integrality gaps for Lovasz-Schrijver
LP relaxations of vertex cover and max cut, in Proceedings of the Thirty-Ninth Annual
ACM Symposium on Theory of Computing, 2007, pp. 302–210.

[31] G. Stalmark, Short resolution proofs for a sequence of tricky formulas, Acta Informatica, 33
(1996), pp. 277–280.

[32] I. Tourlakis, New Lower Bounds for Approximation Algorithms in the Lovász-Schrijver Hi-
erarchy, Ph.D. thesis, Department of Computer Science, Princeton University, Princeton,
NJ, 2006.

[33] I. Tourlakis, New lower bounds for vertex cover in the Lovasz-Schrijver hierarchy, in Proceed-
ings of the Twenty-First Annual IEEE Conference on Computational Complexity, 2006,
pp. 170–182.

D
ow

nl
oa

de
d 

05
/1

4/
13

 to
 1

28
.1

00
.3

.6
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


