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1. INTRODUCTION

Number-on-forehead communication protocols are a fascinating model of com-
putation where k collaborating players are trying to evaluate a function f :
({0, 1}n)k → {0, 1}. The players are all-powerful, but the input to f is par-
titioned into k pieces of n bits each, x1, . . . , xk ∈ {0, 1}n, and xi is placed,
metaphorically, on the forehead of player i. Thus, each player only sees (k−1)n
of the k · n input bits. In order to compute f , the players communicate by
writing bits on a shared blackboard, and the complexity of the protocol is the
number of bits that are communicated (i.e., written on the board). This model
was introduced in Chandra et al. [1983] and has found applications in a sur-
prising variety of areas, including circuit complexity [Håstad and Goldmann
1991; Nisan and Wigderson 1993], pseudorandomness [Babai et al. 1992], and
proof complexity [Beame et al. 2007].

In this model, a protocol is said to be efficient if it has complexity logO(1) n.
Correspondingly, Pcc

k , RPcc
k , BPPcc

k and NPcc
k are the number-on-forehead com-

munication complexity analogs of the standard complexity classes [Babai et al.
1986] (see also Kushilevitz and Nisan [1997]). For example, RPcc

k is the
class of functions having efficient one-sided-error randomized communication
protocols. One of the most fundamental questions in number-on-forehead com-
munication complexity, and the main question addressed in this article, is
to separate these classes. Beame et al. [2007] give an exponential separa-
tion between randomized and deterministic protocols for k ≤ nO(1) players
(in particular, RPcc

k �= Pcc
k for k ≤ nO(1)). The breakthrough work by Sherstov

[2009; 2008a] sparked a flurry of exciting results in communication complex-
ity [Chattopadhyay 2007; Lee and Shraibman 2008; Chattopadhyay and Ada
2008], which gave an exponential separation between nondeterministic and
randomized protocols for k < log log n players (in particular, NPcc

k �⊂ BPPcc
k for

k < log log n). Our main result is to improve the latter separation to larger
values of k.

THEOREM 1.1 (NPcc
k �⊂ BPPcc

k FOR k = δ · log n). For every δ < 1, sufficiently
large n and k = δ · log n, there is an explicit function f : ({0, 1}n)k → {0, 1} such
that: f can be computed by k-player nondeterministic protocols communicat-
ing O(log n) bits, but f cannot be computed by k-player randomized protocols
communicating no(1) bits.

We note that the number of players k = δ · log n in Theorem 1.1 is
state-of-the-art: it is a major open problem in number-on-forehead commu-
nication complexity to find an explicit n-bit function that cannot be computed
by k = log2 n players communicating O(log n) bits. We also note that Theorem
1.1 in particular implies an exponential separation between nondeterministic
and deterministic protocols (hence, NPcc

k �⊂ Pcc
k for k = δ log n players). Similar

separations follow from Beame et al. [2007], but only for nonexplicit functions.
We also address the challenge of exhibiting functions computable by un-

bounded fan-in constant-depth circuits (also called AC0 circuits) that require
high communication for k-player protocols, which is relevant to separating
various circuit classes [Håstad and Goldmann 1991; Razborov and Wigderson
ACM Transactions on Computation Theory, Vol. 1, No. 2, Article 5, Pub. date: September 2009.
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1993; Beame and Huynh-Ngoc 2008b]. Previous results [Chattopadhyay 2007]
give such functions for k < log log n. We offer a slight improvement and achieve
k = A log log n for any (possibly large) constant A, where the depth of the cir-
cuit computing the function depends on A.

THEOREM 1.2 (AC0 �⊂ BPPcc
k FOR k = A · log log n). For every A > 1 there is

a B such that for large enough n and k = A · log log n there is a function
f : ({0, 1}n)k → {0, 1} which satisfies the following: f can be computed by cir-
cuits of size nB and depth B, but f cannot be computed by k-player randomized
protocols communicating no(1) bits.

1.1 Techniques

In this section we discuss the technical challenges presented by our theorems
and how we have overcome them. Our work builds on a recent line of research
in communication complexity that was sparked by the work of Sherstov [2009;
2008a] and is surveyed in Sherstov [2008b].

For concreteness, in our discussion below we focus on the problem of separat-
ing nondeterministic from deterministic (as opposed to randomized) protocols,
a goal which involves all the main difficulties.

Until recently, it was far from clear how to obtain communication lower
bounds in the number-on-forehead model for any explicit function f with ef-
ficient nondeterministic protocols. The difficulty can be described as follows.
The standard method for obtaining number-on-forehead lower bounds is what
can be called the “correlation method” [Babai et al. 1992; Chung and Tetali
1993; Raz 2000; Viola and Wigderson 2008].1 This method goes by showing
that f has exponentially small (2−n�(1)

) correlation with efficient (deterministic)
protocols, and this immediately implies that f does not have efficient protocols
(the correlation is with respect to some probability distribution which in gen-
eral is not uniform). The drawback of this method is that, although for the con-
clusion that f does not have efficient protocols it is clearly enough to show that
the correlation of f with such protocols is strictly less than one, the method
actually proves the stronger exponentially small correlation bound. This is
problematic in our setting because it is not hard to see that every function that
has an efficient nondeterministic protocol also has noticeable (≥ 2− logO(1) n) cor-
relation with an efficient (deterministic) protocol, and thus this method does
not seem useful for separating nondeterministic from deterministic protocols.

In recent work, these difficulties were overcome to obtain a lower bound
for a function with an efficient nondeterministic protocol: the Set-Disjointness
function [Lee and Shraibman 2008; Chattopadhyay and Ada 2008]. The start-
ing point is the work by Sherstov [2009; 2008a] who applies the correlation
method in a more general way for the 2-player model in order to overcome
these difficulties. This generalized correlation method is then adapted to han-
dle more players (k � 2) in Lee and Shraibman [2008] and Chattopadhyay and

1This method is sometimes called the “discrepancy method.” We believe that lower bound proofs
are easier to understand when presented in terms of correlation rather than discrepancy, cf. Viola
and Wigderson [2008].
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Ada [2008]. The high-level idea of the method is as follows. Suppose that we
want to prove that some specific function f does not have efficient protocols.
The idea is to come up with another function f ′ and a distribution λ such that:
(1) f and f ′ have constant correlation, say f and f ′ disagree on at most 1/10
mass of the inputs with respect to λ, and (2) f ′ has exponentially small (2−n�(1)

)
correlation with efficient protocols with respect to λ. The combination of (1)
and (2) easily implies that f also has correlation at most 1/10 + 2−n�(1)

< 1 with
efficient protocols, which gives the desired lower bound for f . This method is
useful because for f ′ we can use the correlation method, and on the other hand
the correlation of f with efficient protocols is not shown to be exponentially
small, only bounded away from 1 by a constant. Thus it is conceivable that f
has efficient nondeterministic protocols, and in fact this is the case in Lee and
Shraibman [2008] and Chattopadhyay and Ada [2008] and in this work.

Although a framework similar to this is already proposed in previous
papers, for example, Razborov [2003], it is the work by Sherstov [2009;
2008a] that finds a way to successfully apply it to functions f with efficient
nondeterministic protocols. For this, two main ideas are introduced in
Sherstov [2009, 2008a], and generalized to the number-on-forehead setting in
Lee and Shraibman [2008] and Chattopadhyay and Ada [2008]. (We present
them specialized for our needs; see Sherstov [2008b] for a broader view.) The
first is to consider a special class of functions f := Lift(OR, φ) with efficient
nondeterministic protocols. These are obtained by combining the “base” func-
tion OR on m bits with a “selection” function φ as described next. It is con-
venient to think of f = Lift(OR, φ) as a function on (k + 1)n bits distributed
among k+1 players as follows: Player 0 receives an n-bit vector x, while Player
i, for 1 ≤ i ≤ k, gets an n-bit vector yi. The selection function φ takes as
input y1, . . . , yk and outputs an m-bit subset of {1, . . . , n}. We view φ as select-
ing m bits of Player 0’s input x, denoted x|φ(y1, . . . , yk). Lift(OR, φ) outputs the
value of OR on those m bits of x:

Lift(OR, φ)(x, y1, . . . , yk) := OR(x|φ(y1, . . . , yk)).

The second idea is to apply to such a function f := Lift(OR, φ) a certain
orthogonality principle to produce a function f ′ that satisfies the points (1) and
(2) above. The structure of f = Lift(OR, φ)(x, y1, . . . , yk) is crucially exploited
to argue that f ′ satisfies (2), and it is here that previous works require k <
log log n [Chattopadhyay 2007; Lee and Shraibman 2008; Chattopadhyay and
Ada 2008].

So far we have rephrased previous arguments. We now discuss the main
new ideas in this article.

Ideas for the Proof of Theorem 1.1. To prove Theorem 1.1 we start by noting
that regardless of what function φ is chosen, Lift(OR, φ) has an efficient non-
deterministic protocol: Player 0 simply guesses an index j that is one of the
indices chosen by φ (she can do so because she knows the input to φ) and then
any of the other players can easily verify whether or not x j is 1 in that position.
In previous work [Lee and Shraibman 2008; Chattopadhyay and Ada 2008], φ
is the bitwise AND function, and this makes Lift(OR, φ) the Set-Disjointness
ACM Transactions on Computation Theory, Vol. 1, No. 2, Article 5, Pub. date: September 2009.



Separations between Multiparty Communication · 5: 5

function. By contrast, in this work we choose the function φ uniformly at ran-
dom and we argue that, for almost all φ, Lift(OR, φ) does not have efficient
randomized protocols, whenever k is at most δ log n for a fixed δ < 1.

The argument just presented gives a nonexplicit separation, due to the
random choice of φ. To make it explicit, we derandomize the choice of φ.
Specifically, we note that the previous argument goes through as long as φ
is 2k-wise independent, that is, as long as φ comes from a distribution such
that for every 2k fixed inputs ȳ1, . . . , ȳ2k ∈ ({0, 1}n)k the values φ(ȳ1), . . . , φ(ȳ2k

)
are uniform and independent (over the choice of φ). Known constructions of
such distributions [Alon et al. 1986; Chor and Goldreich 1989] only require
about n · 2k = nO(1) random bits, which can be given as part of the input.
Two things should perhaps be stressed. The first is that giving a descrip-
tion of φ as part of the input does not affect the lower bound in the previous
paragraph which turns out to hold even against protocols that depend on φ.
The second is that, actually, using 2k-wise independence seems to add the con-
straint k < 1/2(log n); to achieve k = δ log n for every δ < 1 we use a distribution
on φ that is almost 2k-wise independent [Naor and Naor 1993].

Ideas for the Proof of Theorem 1.2. To prove Theorem 1.2 we show how to
implement the function given by Theorem 1.1 by small constant-depth circuits
when k is A log log n for a fixed, possibly large, constant A. In light of the
above discussion, this only requires computing a 2k-wise independent function
by small constant-depth circuits, a problem which is studied in Gutfreund and
Viola [2004] and Healy and Viola [2006]. Specifically, dividing up φ in blocks
it turns out that it is enough to compute 2k-wise independent functions g :
{0, 1}t → {0, 1}t where t is also about 2k. When k = A log log n, g is a (2k =
logA n)-wise independent function on logA n bits, and Healy and Viola [2006]
shows how to compute it with circuits of size nB and depth B where B depends
on A only—and this dependence of B on A is tight even for almost 2-wise
independence. This gives Theorem 1.2. Finally, we note that Healy and Viola
[2006] give explicit (aka uniform) circuits, and that we are not aware of an
alternative to Healy and Viola [2006] even for nonexplicit circuits.

Subsequent Work. Subsequent to our work, Beame and Huynh-Ngoc [2008a]
extend our main results (Theorem 1.1 and Theorem 1.2) by proving the sepa-
ration in Theorem 1.1 under the stronger requirement that the function f is
computable by explicit (unbounded fan-in) circuits of depth 4 (albeit they can
only handle �(1) · log n players, as opposed to δ · log n for any δ < 1 in our
results).

Organization. The organization of the article is as follows. In Section 2,
we give necessary definitions and background. We present the proof of our
main result Theorem 1.1 in two stages. First, in Section 3 we present a non-
explicit separation obtained by selecting φ at random. Then, in Section 4 we
derandomize the choice of φ in order to give an explicit separation and prove
Theorem 1.1. Finally, in Section 5 we prove our result about constant-depth
circuits, Theorem 1.2.
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2. PRELIMINARIES

Correlation. Let f, g : X → R be two functions, and let μ be a distri-
bution on X . We define the correlation between f and g under μ to be
Corμ( f, g) := Ex∼μ[ f (x)g(x)]. Let G be a class of functions g : X → R (e.g.,
efficient communication protocols). We define the correlation between f and G
under μ to be Corμ( f,G) := maxg∈G Corμ( f, g). Note that, whenever G is closed
under complements, which will always be the case in this article, this corre-
lation is nonnegative. Whenever we omit to mention a specific distribution
when computing the correlation, an expected value or a probability, it is to be
assumed that we are referring to the uniform distribution, which we denote
by U .

Communication Complexity. In the number-on-forehead multiparty model
for communication complexity [Chandra et al. 1983], k players are trying to
collaborate to compute a function f : X1 × . . .× Xk → {−1, 1}. For each i, player
i knows the values of all of the inputs (x1, . . . , xk) ∈ X1 × . . . × Xk except for xi

(which conceptually is thought of as being placed on Player i’s forehead). The
players exchange bits according to an agreed-upon protocol, by writing them on
a public blackboard. A protocol specifies what each player writes as a function
of the blackboard content and the inputs seen by that player, and whether the
protocol is over, in which case the last bit written is taken as the output of the
protocol. The cost of a protocol is the maximum number of bits written on the
blackboard.

In a deterministic protocol, the blackboard is initially empty. A randomized
protocol is a distribution on deterministic protocols such that for every input a
protocol selected at random from the distribution errs with probability at most
1/3. In a nondeterministic protocol, an initial guess string is written on the
blackboard at the beginning of the protocol (and counted towards communica-
tion) and the players are trying to verify that the output of the function is −1
(representing true) in the usual sense: There exists a guess string where the
output of the protocol is −1 if and only if the output of the function is −1. The
communication complexity of a function f under one of the above types of pro-
tocols is the minimum cost of a protocol of that type computing f . In line with
Babai et al. [1986], a k-player protocol computing f : ({0, 1}n)k → {−1, 1} is con-
sidered to be efficient if its cost is at most poly-logarithmic, logO(1) n. Equipped
with the notion of efficiency, one has the number-on-forehead communication
complexity classes BPPcc

k and NPcc
k that are analogues of the corresponding

complexity classes.
Definition 2.1. We denote by �k,c the class of all deterministic k-player

number-on-forehead communication protocols of cost at most c.
The following immediate fact allows us to derive lower bounds on the ran-

domized communication complexity of f from upper bounds on the correlation
between f and the class �k,c [Kushilevitz and Nisan 1997, Theorem 3.20].

FACT 2.2. If there exists a distribution μ such that Corμ( f,�k,c) ≤ 1/3, then
every randomized protocol (with error 1/3) for f must communicate at least
c bits.
ACM Transactions on Computation Theory, Vol. 1, No. 2, Article 5, Pub. date: September 2009.
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In order to obtain upper bounds on the correlation between f and the class
�k,c, we use the following result, which is also standard. Historically, it was
first proved by Babai et al. [1992] using the notion of discrepancy of a func-
tion. It has since been rewritten in many ways [Chung and Tetali 1993; Raz
2000; Ford and Gál 2005; Viola and Wigderson 2008]. The formulation we use
appears in Viola and Wigderson [2008], except that there, one also takes two
copies of x; it is easy to modify the proof in Viola and Wigderson [2008] to
obtain the following lemma.

LEMMA 2.3 (STANDARD BNS ARGUMENT). Let f : X × Y1 × · · · × Yk → R.
Then,

CorU ( f,�k+1,c)2k ≤ 2c·2k · E (y0
1,...,y

0
k)∈Y1×···×Yk

(y1
1,...,y

1
k)∈Y1×···×Yk

⎡
⎣

∣∣∣∣∣∣Ex∈X

⎡
⎣ ∏

u∈{0,1}k

f (x, yu1
1 , . . . , yuk

k )

⎤
⎦

∣∣∣∣∣∣
⎤
⎦ .

We later write y for (y1, . . . , yk).

Degree. The ε-approximate degree of f is the smallest d for which
there exists a multivariate real-valued polynomial g of degree d such that
maxx | f (x) − g(x)| ≤ ε. We will use the following result of Nisan and Szegedy
[1994]; see Paturi [1992] for a result that applies to more functions.

LEMMA 2.4 ([NISAN AND SZEGEDY 1994]). There exists a universal con-
stant γ > 0 such that the (5/6)-approximate degree of the OR function on
m bits is at least γ · √

m.

The following key result shows that if a function f has ε-approximate degree
d then there is another function g and a distribution μ such that, under μ, g is
orthogonal to degree-d polynomials and it has correlation ε with f . Sherstov
[2008a] gives references in the mathematics literature and points out a short
proof by duality.

LEMMA 2.5 (ORTHOGONALITY LEMMA). If f : {0, 1}m → {−1, 1} is a func-
tion with ε-approximate degree d, there exist a function g : {0, 1}m → {−1, 1}
and a distribution μ on {0, 1}m such that:

(i) Corμ(g, f ) ≥ ε; and
(ii) for every T ⊆ [m] with |T| ≤ d and every function h : {0, 1}|T| → R,

Ex∼μ[g(x) · h(x|T)] = 0,

where x|T denotes the m bits of x indexed by T.

3. NONEXPLICIT SEPARATION

In this section we prove a nonexplicit separation between nondeterministic
and randomized protocols. As mentioned in the introduction, we restrict our
attention to analyzing the communication complexity of certain functions con-
structed from a base function f : {0, 1}m → {−1, 1}, and a selection function φ.
The base function we will work with is the OR function, which takes on the
value -1 if and only if any of its input bits is 1.

ACM Transactions on Computation Theory, Vol. 1, No. 2, Article 5, Pub. date: September 2009.
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We now give the definition of the function we prove the lower bound for, and
then the statement of the lower bound.

Definition 3.1 (Lift function). Let φ be a function that takes as input k
strings y1, . . . , yk and outputs an m-element subset of [n]. Let f be a func-
tion on m bits. We construct a lifted function Lift( f, φ) as follows. On input
(x ∈ {0, 1}n, y1, . . . , yk), Lift( f, φ) evaluates φ on the latter k inputs to select a
set of m bits in x and returns the value of f on those m bits. Formally,

Lift( f, φ)(x, y1, . . . , yk) := f (x|φ(y1, . . . , yk)),

where for a set S = {i1, . . . , im} ⊆ [n], x|S denotes the substring xi1 · · · xim of x
indexed by the elements in S, where i1 < i2 < . . . < im.

The inputs to Lift( f, φ) are partitioned among k+1 players as follows: Player
0 is given x and, for all 1 ≤ i ≤ k, Player i is given yi.

The following is the main theorem proved in this section.

THEOREM 3.2. For every δ < 1 there are constants ε, α > 0 such that for
sufficiently large n, for k = δ ·log n, and for m = nε , the following holds. There is a
distribution λ such that if we choose a random selection function φ : ({0, 1}n)k →([n]

m

)
, we have:

Eφ

[
Corλ

(
Lift(OR, φ),�k+1,nα )] ≤ 1/3.

3.1 Overview of the Proof

We obtain our lower bound on the randomized communication complexity of
Lift(OR, φ) using an analysis that follows Chattopadhyay and Ada [2008]. In
their article, Chattopadhyay and Ada [2008] analyze the Set-Disjointness func-
tion, and for that reason, their selection function φ must be the AND function.
In our case, we allow φ to be a random function. While our results no longer ap-
ply to Set-Disjointness, we still obtain a separation between randomized and
nondeterministic communication (BPPcc

k and NPcc
k ) because, no matter what

selection function is used, Lift(OR, φ) always has an efficient nondeterministic
protocol.

At a more technical level, the results of Chattopadhyay and Ada [2008] re-
quire k < log log n because of the relationship between n (the size of player 0’s
input) and m (the number of bits the base function OR gets applied to.) For
their analysis to go through, they need n > 22k ·mO(1). In our case, n = 2k ·mO(1)

is sufficient, and this allows our results to be non-trivial for k ≤ δ log n for any
δ < 1.

As mentioned earlier, we will start with the base function OR on m input
bits, m = nε  n. We lift the base function OR in order to obtain the lifted
function Lift(OR, φ). Recall that Lift(OR, φ) is a function on (k + 1)n inputs
with small nondeterministic complexity, and is obtained by applying the base
function (in this case the OR function) to the selected bits of Player 0’s input,
x. We want to prove that for a random φ, Lift(OR, φ) has high randomized
communication complexity.
ACM Transactions on Computation Theory, Vol. 1, No. 2, Article 5, Pub. date: September 2009.
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We start with a result of Nisan and Szegedy [1994], who prove a lower
bound on the approximate degree of the OR function. By Lemma 2.5 this
implies that there exists a function g (also on m bits) and a distribution μ
such that the functions g and OR are highly correlated over μ and, further-
more, g is orthogonal to low-degree polynomials. Now we lift the function
g in order to get the function Lift(g, φ), and we define λ to be a distribu-
tion over all (k + 1)n-bit inputs that chooses the yi’s uniformly at random
and x also uniformly at random except on the bits indexed by φ(y1, . . . , yk)
which are selected according to μ. Since g and OR are highly correlated with
respect to μ, it is not hard to see that the lifted functions Lift(OR, φ) and
Lift(g, φ) are also highly correlated with respect to λ. Therefore, to prove
that Lift(OR, φ) has low correlation with c-bit protocols it suffices to prove
that Lift(g, φ) has. To prove this, we use the correlation method. This in-
volves bounding the average value of Lift(g, φ) on certain k-dimensional cubes
(cf. Lemma 2.3). For this, we need to analyze the distribution of the 2k sets
that arise from evaluating φ on the 2k points of the cube. Specifically, we are
interested in how much these 2k sets are “spread out,” as measured by the size
of their union. If the sets are not spread out, we use in Lemma 3.4 the fact
that g is orthogonal to low-degree polynomials to bound the average value of
Lift(g, φ) on the cubes. This step is similar to [Sherstov 2009; Chattopadhyay
2007; Lee and Shraibman 2008; Chattopadhyay and Ada 2008]. The main
novelty in our analysis is that since we choose φ at random, we can
prove good upper bounds (Lemma 3.6) on the probability that the sets are
spread out.

3.2 Proof of Theorem 3.2

Let m := nε for a small ε > 0 to be determined later. Combining Lemma 2.4
and 2.5, we see that there exists a function g and a distribution μ such that:

(i) Corμ(g, OR) ≥ 5/6; and
(ii) for every T ⊆ [m], |T| ≤ γ

√
m and h : {0, 1}|T| → R, Ex∼μ[g(x)h(x|T)] = 0.

Define the distribution λ on {0, 1}(k+1)n as follows. For x, y1, . . . , yk ∈
{0, 1}n, let

λ(x, y1, . . . , yk) :=
μ(x|φ(y1, . . . , yk))

2(k+1)n−m
,

in words we select y1, . . . , yk uniformly at random and then we select the bits
of x indexed by φ(y1, . . . , yk) according to μ and the others uniformly.

It can be easily verified that Corλ(Lift(g, φ), Lift(OR, φ)) = Corμ(g, OR) ≥
5/6. Consequently, for every φ and c,

Corλ(Lift(OR, φ),�c) ≤ Corλ(Lift(g, φ),�c) + 2 · Pr
λ

[Lift(OR, φ) �= Lift(g, φ)]

≤ Corλ(Lift(g, φ),�c) + 1/6, (1)

ACM Transactions on Computation Theory, Vol. 1, No. 2, Article 5, Pub. date: September 2009.



5: 10 · M. David et al.

since Prλ[Lift(OR, φ) �= Lift(g, φ)] = (1 − Corλ(Lift(g, φ), Lift(OR, φ)))/2 ≤ 1/12.
So, we only have to upper bound Corλ(Lift(g, φ),�c), and this is addressed next.
We have, by the definition of λ and then Lemma 2.3, for every φ,

Corλ(Lift(g, φ),�c)2k
= 2m·2k

CorU (μ(x|φ(y1, . . . , yk))g(x|φ(y1, . . . , yk),�c)2k

≤ 2(c+m)2k
Ey 0,y1

⎡
⎣

∣∣∣∣∣∣Ex

⎡
⎣ ∏

u∈{0,1}k

μ(x|φ(yu1
1 , . . . , yuk

k ))g(x|φ(yu1
1 , . . . , yuk

k ))

⎤
⎦

∣∣∣∣∣∣
⎤
⎦ , (2)

where for a ∈ {0, 1}, y a stands for (ya
1, . . . , ya

k). Our analysis makes extensive
use of the following notation.

Definition 3.3. Let S = (S1, . . . , Sz) be a multiset of m-element subsets of [n].
Let the range of S, denoted by

⋃S, be the set of indices from [n] that appear in
at least one set in S. Let the boundary of S, denoted by ∂S, be the set of indices
from [n] that appear in exactly one set in the collection S.

For u ∈ {0, 1}k, define Su = Su(y0, y1, φ) = φ(yu1
1 , . . . , yuk

k ). Let S = S(y 0, y1, φ)
be the multiset (Su : u ∈ {0, 1}k). We define the number of conflicts in S to be
q(S) := m · 2k − | ⋃S|.

Intuitively, | ⋃S| measures the range of S, while m2k is the maximum pos-
sible value for this range. We use the following three lemmas to complete our
proof. The first Lemma 3.4 deals with the case where the multiset S has few
conflicts. In this case, we argue that one of the sets Su ∈ S has a very small
intersection with the rest of the other sets, which allows us to apply Property
(ii) of g and μ to obtain the stated bound. A variant of Lemma 3.4 appears
in Chattopadhyay and Ada [2008].

LEMMA 3.4. For every y 0, y1 and φ, if q(S(y0, y1, φ)) < γ · √
m · 2k/2, then

Ex

⎡
⎣ ∏

u∈{0,1}k

μ(x|Su(y0, y1, φ))g(x|Su(y0, y1, φ))

⎤
⎦ = 0.

Lemma 3.5 gives a bound in terms of the number of conflicts in S which only
uses the fact that μ is a probability distribution. A slightly weaker version of
this lemma appeared originally in Chattopadhyay and Ada [2008]. Indepen-
dently of our work, Chattopadhyay and Ada have subsequently also derived
the stronger statement we give in the following.

LEMMA 3.5. For every y 0, y1 and φ:

Ex

⎡
⎣ ∏

u∈{0,1}k

μ(x|Su(y0, y1, φ))

⎤
⎦ ≤ 2q(S(y 0,y1,φ))

2m·2k .

Lemma 3.6 is the key place where we exploit the fact that φ is chosen at
random to obtain an upper bound on the probability of having a given number
of conflicts in S.
ACM Transactions on Computation Theory, Vol. 1, No. 2, Article 5, Pub. date: September 2009.
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LEMMA 3.6. For every q > 0 and uniformly chosen y0, y1, φ:

Pr
y 0,y1,φ

[q(S(y0, y1, φ)) = q] ≤
(

m3 · 22k

q · n

)q

.

Before proving these Lemmas, we complete the proof of our main theorem.
We have the following derivation. For a uniformly chosen φ:

Eφ

[
Corλ(Lift(g, φ),�c)

]2k ≤ Eφ

[
Corλ(Lift(g, φ),�c)2k

]

≤ 2(c+m)2k · Ey 0,y1,φ

⎡
⎣

∣∣∣∣∣∣Ex

⎡
⎣ ∏

u∈{0,1}k

μ(x|Su)g(x|Su)

⎤
⎦

∣∣∣∣∣∣
⎤
⎦ (by Equation (2))

= 2(c+m)2k ·
∑
q≥0

Pr
y 0,y1,φ

[q(S) = q] · Ey 0,y1,φ

⎡
⎣

∣∣∣∣∣∣Ex

⎡
⎣ ∏

u∈{0,1}k

μ(x|Su)g(x|Su)

⎤
⎦

∣∣∣∣∣∣
∣∣q(S) = q

⎤
⎦

≤ 2(c+m)2k ·
∑

q≥ γ
√

m2k
2

Pr
y 0,y1,φ

[q(S) = q] · Ey 0,y1,φ

⎡
⎣

∣∣∣∣∣∣Ex

⎡
⎣ ∏

u∈{0,1}k

μ(x|Su)g(x|Su)

⎤
⎦

∣∣∣∣∣∣
∣∣q(S) = q

⎤
⎦

(by Lemma 3.4)

≤ 2(c+m)2k ·
∑

q≥ γ
√

m2k
2

Pr
y 0,y1,φ

[q(S) = q] · Ey 0,y1,φ

⎡
⎣

∣∣∣∣∣∣Ex

⎡
⎣ ∏

u∈{0,1}k

μ(x|Su)

⎤
⎦

∣∣∣∣∣∣
∣∣q(S) = q

⎤
⎦

(because |g| = 1)

≤ 2(c+m)2k ·
∑

q≥ γ
√

m2k
2

Pr
y 0,y1,φ

[q(S) = q] · 2q

2m2k = 2c·2k ·
∑

q≥γ
√

m2k/2

Pr
y0,y1,φ

[q(S) = q] · 2q

(by Lemma 3.5)

≤ 2c·2k ·
∑

q≥ γ
√

m2k
2

(
m3 · 22k

q · n

)q

· 2q

(by Lemma 3.6)

≤ 22k(c−n�(1)).

For the last bound, we use standard manipulations along with the facts that
k = δ log n for δ < 1 and m = nε for a sufficiently small ε.

Therefore, if c is a small enough power of n, we have Eφ[Corλ(Lift(g, φ),
�c)] ≤ 1/6. Combining this with Equation (1), we obtain:

Eφ[Corλ(Lift(OR, φ),�c)] ≤ 1/6 + 1/6 = 1/3.

It is left to prove the lemmas. For this, the reader may want to recall
Definition 3.3.

PROOF OF LEMMA 3.4. We write Su for Su(y0, y1, φ) and S for S(y 0, y1, φ).
Let r(S) = | ⋃S| be the size of the range of S, and let b (S) = |∂S| be the size
of the boundary of S. Note that r(S) − b (S) ≤ q(S) because every j ∈ ∪S \ ∂S

ACM Transactions on Computation Theory, Vol. 1, No. 2, Article 5, Pub. date: September 2009.



5: 12 · M. David et al.

occurs in at least 2 sets in S, thus contributes at least 1 to q(S). Furthermore,
r(S) + q(S) = m2k. Then,

∑
u∈{0,1}k |Su ∩ ∂S| = b (S) ≥ r(S) − q(S) = m2k −

2q(S) > (m − γ
√

m)2k. By the pigeonhole principle, there exists v such that
|Sv ∩ ∂S| > m − γ

√
m. We can write

Ex

⎡
⎣ ∏

u∈{0,1}k

μ(x|Su)g(x|Su)

⎤
⎦= Ex|Sv

⎡
⎢⎢⎢⎣μ(x|Sv)g(x|Sv)Ex|[n]\Sv

⎡
⎢⎢⎢⎣

∏
u∈{0,1}k

u�=v

μ(x|Su)g(x|Su)

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎦ .

Let T = Sv \ ∂S. So |T| ≤ γ
√

m. Let h = Ex|[n]\Sv

[∏
u�=v μ(x|Su)g(x|Su)

]
.

Since h depends only on x|T, by property (ii) of g and μ, Ex|Sv
[μ(x|Sv)g(x|Sv)

h(x|T)] = 0.

PROOF OF LEMMA 3.5. We write Su for Su(y0, y1, φ) and S for S(y 0, y1, φ).
We see that

Ex

⎡
⎣ ∏

u∈{0,1}k

μ(x|Su)

⎤
⎦ = Ex|⋃S

⎡
⎣ ∏

u∈{0,1}k

μ(x|Su)

⎤
⎦ ,

as each μ(x|Su) only depends on the bits of x in
⋃S. For 0 ≤ j ≤ 2k − 1,

let S j be the sub-multiset of S consisting of the sets up to and including Sj,
S j = (S0, . . . , Sj). We have S = S2k−1 and define S−1 = ∅. For 0 ≤ j ≤ 2k − 1, let
G j = Ex|⋃S j[

∏ j
i=0 μ(x|Si)] and let H j(x|Sj \ ∂S j) := Ex|Sj∩∂S j[μ(x|Sj)], which note

is a quantity that depends on the bits of x in Sj \ ∂S j, i.e. on x|(Sj \ ∂S j). Letting
G−1 := 1, observe that, for 0 ≤ j ≤ 2k − 1,

G j = Ex|⋃S j−1

⎡
⎣

⎛
⎝ j−1∏

i=0

μ(x|Si)

⎞
⎠ H j(x|Sj \ ∂S j)

⎤
⎦ ≤ G j−1 · max

x|(Sj\∂S j)
(H j).

To obtain a bound on max(H j), consider an arbitrary partition of [m] into two
sets E, F. Let ν be a distribution on [m], and let ρ(x|E) = Ex|F[ν(x)]. Then,
ρ(x|E) =

∑
x|F 2−|F|ν(x) = 2−|F| ∑

x|F ν(x) ≤ 2−|F| = 2|E|−m, simply using the
fact that ν is a probability distribution. Thus, maxx|(Sj\∂S j)(H j) ≤ 2|Sj\∂S j|−m.
Inductively,

Ex

⎡
⎣2k−1∏

i=0

μ(x|Si)

⎤
⎦ = G2k−1 ≤ 2

∑2k−1
j=0 |Sj\∂S j|

2m2k .

Consider some index z ∈ ⋃S. Suppose this index appears in l sets Sj1 , . . . , Sjl
from S, with j1 < · · · < jl. Then, this index contributes exactly l − 1 to the
expression

∑2k−1
j=0 |Sj \ ∂S j|, once for every j = j2, . . . , jl (for j = j1, z ∈ ∂S j

because no set before Sj contains z). Since this holds for every index z, we see
that

∑2k−1
j=0 |Sj \ ∂S j| = q(S) and therefore Ex[

∏
u∈{0,1}k μ(x|Su)] ≤ 2q(S)−m2k

.
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PROOF OF LEMMA 3.6. The multiset S is given by the sets Su = φ(yu1
1 , . . . ,

yuk
k ) for u ∈ {0, 1}k. The probability over the choice of the y’s that for some

i, y0
i = y1

i , is at most k/2n. When this event does not occur, the 2k points
at which φ gets evaluated are all distinct. Since φ is chosen at random,
the 2k outputs of φ are 2k uniformly and independently random m-element
subsets of [n]. We now upper bound the probability of having q conflicts in
this case.

We write Q for q(S). Let Si = (S1, . . . , Si) and let S0 = ∅. Let Qi be the
number of conflicts obtained while picking Si, after having picked Si−1, and let
Ri be the range of Si. Formally, Qi = |Si ∩ (∪Si−1)| and Ri = | ∪ Si|. It is easy to
see that Q =

∑2k

i=1 Qi. Then,

Pr[Q = q] =
∑

q1+···+q2k = q

Pr[∀i, Qi = qi] =
∑

q1+···+q2k = q

∏
i

Pr[Qi = qi|∀ j < i, Q j = q j].

By the nature of the experiment, the probability of obtaining qi conflicts while
picking Si depends only on the range of the sets picked before, thus Pr[Qi =
qi|∀ j < i, Q j = q j] = Pr[Qi = qi|Ri−1 = (i − 1)m − ∑

j<i q j]. Let C(q, r) denote the
probability that, when picking an m-element subset of [n] we obtain exactly
q conflicts, conditioned on the fact that the range of elements picked so far is
exactly r. By standard calculations, one can show that, as long as 2km3 ≤ n
(which holds for sufficiently small m = nε), C(q, r) ≤ (m2k

q

)
(4m/n)q. Plugging

this into the expression above, Pr[Q = q] ≤ (
4em222k/qn

)q.
Taking into account the probability that the 2k strings yu1

1 , . . . , yuk
k are all

distinct, we obtain

Pr
y 0,y1,φ

[q(S) = q] ≤ k
2n +

(
4 · e · m2 · 22k

q · n

)q

≤
(

m3 · 22k

q · n

)q

,

where the last inequality is a loose bound which is sufficient for our purposes.
The bound holds because we can assume that q ≤ m · 2k (otherwise the prob-
ability is 0) and note that m · 2k = n1−�(1), for a sufficiently small m = nε , and
therefore the second summand in the left-hand side of the inequality above is
greater than the first.

4. EXPLICIT SEPARATION

In this section we prove our main Theorem 1.1. We proceed as follows. First,
we prove a derandomized version of Theorem 3.2 from the previous section.
This derandomized version is such that the distribution on φ can be generated
using only n random bits r. Then, we observe how including the random bits r
as part of the input gives an explicit function for the separation, thus proving
Theorem 1.1. As we mentioned in the introduction, the idea is that the only
property of the distribution over φ that the previous construction was using is
that such a distribution is 2k-wise independent. That is, the evaluations of φ
at any 2k points, fixed and distinct, are jointly uniformly distributed, over the
choice of φ (cf. the proof of Lemma 3.6). The most straightforward way to obtain
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5: 14 · M. David et al.

explicit constructions from our previous results is thus to replace a random φ
with a 2k-wise independent distribution, and then include a description of φ
as part of the input. However, this raises some technicalities, one being that
the range of our φ was a size-m subset of [n], and it is not immediate how to
give constructions with such a range. We find it more simple to use a slightly
different blockwise approach as we describe next.

We think of our universe of n bits as divided in m := nε blocks of b := n1−ε

bits each, where as before ε is a sufficiently small constant. We consider func-
tions φ(y1, . . . , yk) whose output is a subset of [n] containing exactly one bit per
block. That is, φ(y1, . . . , yk) ∈ [b ]m. The building block of our distribution is the
following result about almost t-wise independent functions. We say that two
distributions X and Y on the same support are ε-close in statistical distance if
for every event E we have | Pr[E(X )] − Pr[E(Y )]| ≤ ε.

LEMMA 4.1 (ALMOST t-WISE INDEPENDENCE [NAOR AND NAOR 1993]).
There is a universal constant a > 0 such that for every t, b (where b is a power
of 2) there is a polynomial-time computable map

h : {0, 1}t × {0, 1}a·t·log b → [b ]

such that for every t distinct x1, . . . , xt ∈ {0, 1}t, the distribution
(h(x1; r), . . . , h(xt; r)) ∈ [b ]t, over the choice of r ∈ {0, 1}a·t·log b , is (1/b )t-close in
statistical distance to the uniform distribution over [b ]t.

PROOF OF LEMMA 4.1. Naor and Naor [1993, Section 4] give an explicit
construction of N random variables over {0, 1} such that any k of them are
δ-close to uniform (over {0, 1}k) and the construction uses O(log N+k+log(1/δ))
random bits.2 We identify [b ] with {0, 1}log b and use their construction for
N := 2t · log b , k := t · log b , and δ := (1/b )t. We consider the N random variables
as divided up in 2t blocks of log b bits each. On input x ∈ {0, 1}t, our function
h will output the log b random variables from the x-th block, which, again, we
are going to identify with an element in [b ]. Since we set k = t · log b , and
for distinct x1, . . . , xt the distribution of (h(x1; r), . . . , h(xt; r)) is the distribution
of t · log b distinct random variables in {0, 1}, we have by the result in Naor
and Naor [1993] that (h(x1; r), . . . , h(xt; r)) is (δ = (1/b )t)-close to the uniform
distribution on [b ]t. To conclude, we only need to verify the amount of random-
ness required. Indeed, as we mentioned before, the construction in Naor and
Naor [1993] uses O(log N + k + log(1/δ)) random bits, which by our choice of
parameters is O(t + log log b + t · log b + t · log b ) = O(t · log b ).

We now define our derandomized distribution on φ. This is the concate-
nation of m of the previously mentioned functions using independent random
bits, a function per block. Specifically, for each of the m blocks of b bits, we are
going to use the function h, where t := k · 2k · (1 + log b ). Jumping ahead, the

2In fact, Naor and Naor [1993, Lemma 4.2] achieve a doubly-logarithmic dependence on N, but
this improvement, which arises from combining the previous bound with a construction from Chor
and Goldreich [1989] and Alon et al. [1986], is irrelevant to this work.
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large input length t is also chosen so that the probability (over the choice of
the y’s) that we do not obtain 2k distinct inputs drops down exponentially with
2k, which is needed in the analysis. On input y1, . . . , yk and randomness r, we
break up each yi in m blocks and also r in m blocks. The value of φ in the j-th
block depends only on the j-th blocks of the yi’s and on the j-th block of r.

Definition 4.2 (Derandomized distribution on φ). We’re given parameters n,
m = nε , b = n1−ε , k = δ · log n. Let l := 2k · (1 + log b ), t := l · k. Let a be the
universal constant from Lemma 4.1. Let

φ : {0, 1}m·t × {0, 1}m·a·t·log b → [b ]m

be defined as follows. On input (y1, . . . , yk) ∈ {0, 1}m·t and randomness r ∈
{0, 1}m·a·t·log b , think of each yi ∈ {0, 1}m·l as divided in m blocks of l bits each,
that is, (yi = (yi)1 ◦ · · ·◦ (yi)m), and r as divided in m blocks of a· t· log b bits each,
i.e. (r = r1 ◦ · · · ◦ rm). The j-th output of φ in [b ] is then

φ(y1, . . . , yk; r) j := h((y1) j, . . . , (yk) j︸ ︷︷ ︸
l·k=t bits

; rj︸︷︷︸
a·t·log b bits

) ∈ [b ].

The distribution on φ is obtained by selecting a uniform r ∈ {0, 1}m·a·t·log b and
then considering the map

y1, . . . , yk → φ(y1, . . . , yk; r) ∈ [b ]m.

Note that, Definition 4.2, the input length of each yi is m · l which up to
polylogarithmic factors is nε · 2k = n1−�(1), for a sufficiently small ε depending
on δ.

THEOREM 4.3. For every δ < 1 there are constants ε, α > 0 such that for
sufficiently large n, k := δ · log n, and m = nε, the following holds.

There is a distribution λ such that if φ : {0, 1}m·t → [b ]m is distributed ac-
cording to Definition 4.2 we have:

Eφ[Corλ(Lift(OR, φ),�k+1,nα

)] ≤ 1/3.

PROOF OF THEOREM 4.3. The proof follows very closely that of Theorem
3.2. A minor difference is that now the yi’s are over m · l bits as opposed to
n in Theorem 3.2, but the definition of the distribution λ in Theorem 3.2 im-
mediately translates to the new setting—λ just selects the yi’s at random. The
only other place where the proofs differ is in Lemma 3.6, which is where the
properties of φ are used. Thus we only need to verify the following Lemma.

LEMMA 4.4. For every q > 0 and φ distributed as in Definition 4.2:

Pr
y0,y1,φ

[q(S(y0, y1, φ)) = q] ≤
(

m2 · 22k

q · b

)q

=
(

m3 · 22k

q · n

)q

.

PROOF OF LEMMA 4.4. For the multiset S = S(y 0, y1, φ) define the number
of conflicts in the j-th block, denoted q(S) j, as 2k minus the number of distinct
elements in the j-th block – thus q(S) =

∑
j q(S) j. If q(S) = q then there must
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exist q1, . . . , qm summing up to q such that for every j, q(S) j = q j. As by con-
struction the distribution (q(S)1, . . . , q(S)m) (over the choice of the y’s and φ) is
a product distribution, we have:

Pr
y 0,y1,φ

[q(S) = q] =
∑

q1,...,qm:∑
j q j=q

∏
j≤m

Pr
y0,y1,φ

[q(S) j = q j]. (3)

We now bound Pry 0,y1,φ[q(S) j = q j] for any fixed j. Thus we are interested in
the size of ⋃

u∈{0,1}k

{φ(yu1
1 , . . . , yuk

k ; r) j} ⊆ [b ].

By construction, this depends only on the j-th blocks (of l = 2k(1 + log b ) bits) of
the y’s and on the j-th block of r. Specifically,

⋃
u∈{0,1}k

{φ(yu1
1 , . . . , yuk

k ; r) j} =
⋃

u∈{0,1}k

{h((yu1
1 ) j, . . . , (yuk

k ) j; rj)} ⊆ [b ].

The probability over the choice of the y’s that the 2k strings (given by the 2k

choices of u ∈ {0, 1}k)

((yu1
1 ) j, . . . , (yuk

k ) j) ∈ {0, 1}t

are not all distinct is at most, by a union bound, k/2l = 2log k−2k(log b+1) ≤ (1/b )2k
.

When they are all distinct, the 2k elements

Xu := h((yu1
1 ) j, . . . , (yuk

k ) j; rj) ∈ [b ]

(given by the 2k choices of u ∈ {0, 1}k) are by Lemma 4.1 (1/b )t-close to being
uniform and independent in [b ] (over the choice of r), where recall t ≥ 2k. If
the Xu’s were exactly uniform and independent over [b ] then it is not hard to
see that the probability (over r) that q(S) j = q j would be at most

(2k

q j

)
(2k/b )qj,

a bound which can be obtained by noting that if q(S) j = q j then there must
exist q j distinct i ∈ {0, 1}k such that Xi ∈ {X1, . . . , Xi−1}. Since the Xu’s are
((1/b )t ≤ (1/b )2k

)-close to being uniform and independent, the probability (over
r) that q(S) j = q j is at most (1/b )2k

+
(2k

q j

)
(2k/b )qj. Overall,

Pr
y 0,y1,φ

[q(S) j = q j] ≤ (1/b )2k
+ (1/b )2k

+
(

2k

q j

)
(2k/b )qj ≤

(
2k

q j

)
(3 · 2k/b )qj,

where the last inequality holds when q j > 0 – which is the case to which we are
going to restrict – also using the fact that q j ≤ 2k – otherwise the probability
is 0.
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Therefore, combining the previous bound with Equation (3), we obtain

Pr
y 0,y1,φ

[q(S) = q] ≤
∑

q1,...,qm:∑
j q j=q

∏
j≤m

Pr
y 0,y1,φ

[q(S) j = q j]

≤
∑

q1,...,qm:∑
j q j=q

∏
j≤m:0<qj≤2k

(
2k

q j

)
(3 · 2k/b )qj

= (3 · 2k/b )q
∑

q1,...,qm:∑
j q j=q

∏
j≤m:0<qj≤2k

(
2k

q j

)

= (3 · 2k/b )q
(

m · 2k

q

)
≤

(
3 · 2k

b
· e · m · 2k

q

)q

≤
(

m2 · 22·k

b · q

)q

.

We can now prove the main theorem of this work.

THEOREM 1.1 (NPcc
k �⊂ BPPcc

k FOR k = δ · log n). (Restated.) For every δ < 1,
sufficiently large n and k = δ · log n, there is an explicit function f : ({0, 1}n)k →
{0, 1} such that: f can be computed by k-player nondeterministic protocols com-
municating O(log n) bits, but f cannot be computed by k-player randomized
protocols communicating no(1) bits.

PROOF OF THEOREM 1.1. Let f (x, (y1, r), y2, . . . , yk) := OR(x|φ(y1, . . . , yk; r)),
where φ is as in Definition 4.2. We partition an input (x, (y1, r), y2, . . . , yk) as
follows: Player 0 gets x, Player 1 gets the pair (y1, r), where r is to be thought
of as selecting which φ to use, and player i > 1 gets yi. Let p be the distribution
obtained by choosing r uniformly at random, and independently (x, y1, . . . , yk)
according to the distribution λ in Theorem 4.3.

It is not hard to see that f has a nondeterministic protocol communicat-
ing O(log n) bits: We can guess a bit position i and then the player that sees
(y1, r), y2, . . . , yk can verify that the position i belongs to φ(y1, . . . , yk; r), and
finally another player can verify that xi = 1.

To see the second item observe that:

Corp( f,�k+1,nα

) = max
π∈�k+1,nα

Er[E(x,y)∼λ[OR(x|φ(y; r)) · π(x, y, r)]]

≤ Er[ max
π∈�k+1,nα

E(x,y)∼λ[OR(x|φ(y; r)) · π(x, y, r)]] ≤ 1/3,

where the last inequality follows by Theorem 4.3. Again, the claim about ran-
domized communication follows by standard techniques, cf. Fact 2.2.

To conclude, we need to verify that we can afford to give r as part of the input
without affecting the bounds. Specifically, we need to verify that |(y1, r)| ≤ n.
Indeed, |(y1, r)| ≤ m·l+O(m·t·log b ) = m·2k(1+log b )+O(m·2k(1+log b )k·log b ),
which is less than n when k = δ log n for a fixed δ < 1, m = nε for a sufficiently
small ε, and n is sufficiently large (recall b · m = n, and in particular b ≤ n.)
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As is apparent from the proofs, and similarly to previous works [Sherstov
2008b], our lower bound Theorems 3.2 and 4.3 hold more generally for any
function of the form Lift( f, φ) for an arbitrary base function f . The communi-
cation bound is then expressed in terms of the approximate degree of f . In our
article, we focused on f = OR for concreteness. However, also note that the
choice of f = OR is essential in Theorem 1.1 in order for Lift( f, φ) to have a
cheap nondeterministic protocol.

4.1 Communication Bounds for Constant-Depth Circuits

In this section we point out how Theorem 4.3 from the previous section gives us
some new communication bounds for functions computable by constant-depth
circuits. Specifically, the next theorem, which was also stated in the intro-
duction, gives communication bounds for up to k = A · log log n players for
functions computable by constant-depth circuits (whose parameters depend on
A), whereas the previously known result of Chattopadhyay [2007] requires
k < log log n.

THEOREM 1.2 (AC0 �⊂ BPPcc
k FOR k = A · log log n). (Restated.) For every

A > 1 there is a B such that for large enough n and k = A · log log n there
is a function f : ({0, 1}n)k → {0, 1} which satisfies the following: f can be com-
puted by circuits of size nB and depth B, but f cannot be computed by k-player
randomized protocols communicating no(1) bits.

PROOF OF THEOREM 1.2. Use the function from the proof of Theorem 1.1.
This only requires computing (2k = logA n)-wise independent functions on
logO(A) n bits. (As mentioned before, although Theorem 4.3 uses the notion
of almost t-wise independence, for small values of k, such as those of interest
in the current proof, we can afford to use exact t-wise independence, that is, set
the distance from uniform distribution to 0). Such functions can be computed
by circuits of size nB and depth B, for a constant B that depends on A only.
To see this, one can use the standard constructions based on arithmetic over
finite fields [Chor and Goldreich 1989; Alon et al. 1986] and then the results
from Healy and Viola [2006, Corollary 6]. Equivalently, “scale down” Healy and
Viola [2006, Theorem 14] as described in Healy and Viola [2006, Section 3].

It is not clear to us how to prove a similar result for k = ω(log log n). This
is because our approach would require computing almost (2k = logω(1) n)-wise
independent functions on logω(1) n bits by nO(1)-size circuits of constant depth,
which cannot be done (even for almost 2-wise independence). The fact that
this cannot be done follows from the results in Mansour et al. [1993] or known
results on the noise sensitivity of constant-depth circuits [Linial et al. 1993;
Boppana 1997].

We point out that Theorem 1.2 can be strengthened to give a function that
has correlation 2−n�(1)

with protocols communicating no(1) bits. This can be
achieved using the Minsky-Papert function instead of OR. A similar correla-
tion bound is obtained in earlier works [Sherstov 2009; Chattopadhyay 2007]
but for fewer players.
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Finally, Troy Lee (personal communication, May 2008) has pointed out to us
that the analogous of our Theorem 1.2 for deterministic protocols can be eas-
ily obtained from the known lower bound for generalized inner product (GIP)
[Babai et al. 1992]. This is because it is not hard to see that for every con-
stant c there is a circuit of depth B = B(c) and size nB that has correlation at
least exp(−n/ logc n) with GIP—just compute the parity in GIP by brute force
on blocks of size logc n—but on the other hand low-communication k-party pro-
tocols have correlation at most exp(−�(n/4k)) with GIP [Babai et al. 1992].
However, this idea does not seem to give a bound for randomized protocols or
a correlation bound, whereas our results do.
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