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Abstract

In this paper we prove an exponential lower bound on

the size of bounded-depth Frege proofs for the pigeon-

hole principle (PHP). We also obtain an ~(log log rz)-

depth lower bound for any polynomial-sized Frege proof

of the pigeonhole principle. Our theorem nearly com-

pletes the search for the exact complexity of the PHP,

as Sam Buss has constructed polynomial-size, log n-

depth Frege proofs for the PHP. The main lemma in our

proof can be viewed as a general H&.stad-style Switch-

ing Lemma for restrictions that are partial matchings.

Our lower bounds for the pigeonhole principle improve

on previous superpolynomial lower bounds.

1 Introduction

In the last ten years, there has been significant progress

in proving lower bounds for bounded-depth boolean cir-

cuits. One main technique for proving these results is

the bottom-up method of restrictions, first described in

[FSS], and later improved by Yao M, H&tad [H] and

others, The strongest of these techniques is H&tad’s

Switching Lemma, which states that with high proba-

bility, a random restriction allows us tore-write an OR

of small ANDs as an AND of small ORS.
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A major drawback of this lemma and related ones is

that they only apply when there is very little depen-

dency between variables. There are many graph-based

problems where the dependency between variables is too

great to apply H&tad’s Lemma, and there is no known

reduction from a known hard problem in ACO to one of

these problems. One graph-based problem for which a

H&stad-style switching lemma has been shown is that of

deciding whether or not a graph contains a clique on a

small number of nodes (Lynch [Ly], Beame [Be]). How-

ever, the restrictions needed in that case still have very

limited dependency.

In this paper, we prove a new switching lemma which

applies to restrictions for which there is a great deal of

dependency, namely those that represent partial match-

ings. A key feature that makes this more difficult is that

after our restrictions are applied, the converted formula

is only equivalent to the original one for certain classes

of assignments.

We use this switching lemma to obtain the main re-

sult of this paper—an exponential bound on the size of

bounded-depth Frege proofs for the pigeonhole princi-

ple. Frege systems are the typical propositional proof

systems found in introductory textbooks. Besides their

int crest to logicians, they also arise in computer sci-

ence due to their relationship to Resolution and other

backtracking algorithms. Backtracking is a general tech-

nique to solve search problems in exponential-size do-

mains. The fasteat known algorithms for many NP-

complete problems use backtracking techniques. Back-

tracking is also commonly used as a heuristic for many

problems in artificial intelligence, particularly in auto-

matic theorem-proving.

In a backtracking algorithm, one is searching a large

space to find an element with a certain property P, The

algorithm divides the space into those elements satisfy-

ing some property Q and those not satisfying Q. (This

is called “branching on Q.”) Of course, to be useful,
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Q should be chosen so that the assumption P A Q nar-

rows thesearch space significantly, asdoes PA~. The

algorithm continues to recurse until the search space is

empty or asolution is found.

When run on a search space with no solutions, the

transcript of a backtracking algorithm is a simple proof

by contradiction that ~ is a tautology. This kind

of proof is equivalent to that allowed in a Frege sys-

tem. Thus, lower bounds on the complexity of Frege

proofs show inherent limits on the backtracking tech-

nique. Since backtracking is a natural approach to

solving problems like 3-Satisfiabilit y, exponential lower

bounds on Frege systems can be viewed as saying that

a large class of natural approaches to solving IVP-

complete problems cannot run in sub-exponential worst-

case time. Our bounds only apply to constant depth

Frege systems, so the corresponding bound on back-

tracking algorithms applies to algorithms branching on

properties that can be expressed in ACO. This cov-

ers many suggested backtracking algorithms, but the

moral for automatic theorem proving may be to develop

heuristics to see when the proposition to be proved is of

the type requiring a counting argument, in which case

the heuristic should branch on formulas involving count-

ing.

The complexity of Frege proofs of the pigeonhole prin-

ciple has been studied extensively by many people in the

last 20 years, beginning with an early paper by Tseitin

[T]. In 1985, Haken [Ha] proved that any Resolution

proof of the pigeonhole principle must have exponential

size. The next major breakthrough was made by Ajtai

[Ajt] who used nonstandard model theory to prove that

any constant-depth Frege proof of the pigeonhole prin-

ciple must have superpolynomial-size. Because Resolu-

tion is a particular depth-2 Frege system, Ajtai’s proof

yields a superpolynomial lower bound for Resolution as

a special case. More recently, [BPU] obtained a new

proof of Ajtai’s theorem which eliminates the use of

nonstandard models. While their techniques were more

direct and more accessible, their improved bound was

still barely superpolynomial. Then, using a different

family of tautologies, an exponential lower bound on

the size of constant-depth Frege proofs was established

by Krajitek [K]. However, the hard examples used in

Krajitek’s proof do not have a fixed depth, independent

of the depth of the Frege system in question, as the pi-

geonhole tautologies do. In addition, the examples are

not as natural as the pigeonhole principle.

Our new exponential lower bound has several inter-

esting consequences. As a corollary, we show that any

polynomial-sized Frege proof of the pigeonhole princi-

ple must have depth ~(log log n). Our theorem nearly

completes the search for the exact complexity of the

pigeonhole principle, as Sam Buss [Bu] has constructed

polynomial-sized, logarithmic depth Frege proofs for the

pigeonhole principle.

Constant-depth lower bounds are related to the power

of weak systems of arithmetic (see [PW], [Bu]). This re-

lationship together with our exponential lower bound for

the propositional pigeonhole principle shows that rela-

tivized Bounded Arithmetic, S2( f ), cannot prove the

pigeonhole principle for f.

To see why this question is of interest in logic, con-

sider the following two proof sketches that every non-

zero residue modulo a prime has an inverse. Let p be

a prime, and let O < a ~ p – 1. Then if we consider

the map F. : {O, ...p - 1} ~ {O, ..p - 1} defined by

F.(b) = ab mod p, it is easy to see that Fa is 1 – 1.

Therefore, (using the pigeonhole principle), it must also

be onto, and so 1 must be in the image. Therefore,

there exists a number b, O < b s p – 1, such that

ab = 1 mod p. In the second proof, we would prove

by induction on the length of numbers a, b that Euclid’s

Algorithm for extended gcd finds integers c, d so that

ca + db = gcd(a, b). Then applying this algorithm to a

andp, we get ca+dp= 1, so ca= 1 modp.

Both of the above proofs are simple, and only use

basic facts of arithmetic. Both are constructive in the

sense of intuitionistic logic. However, the first is com-

binatorially “non-constructive” in that it is based on a

counting argument which yields no better way of find-

ing the proven object than via exhaustive search. The

second has “algorithmic content”, and yields a good

method for finding the object proven to exist. In thk

case, a counting argument was not necessary, and could

be replaced by a more constructive computational argu-

ment. Our result can be phrased as saying that there is

no generic procedure for converting a counting argument

involving exponentially large but finite sets into an ar-

gument which only involves concepts in the polynomial-
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time hierarchy (relative to the object being counted).

Thus, in general, one cannot automatically convert such

an argument into a more algorithmic one, although in

any particular case, this might be possible using special

properties of the sets being counted.

In contrast with this negative result, Paris, Wilkie

and Woods [P WW] showed that the weak pigeonhole

principle, WPlfPn, is provable in Sz(f)ti

(PHP. states that there is no 1-1 map from

[n + 1] to [n], while WPHPn states that there is

no 1-1 map from [2n] to [n].) As a corollary, they

show that WPHPn has quasi-polynomial size, constant-

depth Frege proofs.

It is not hard to extend our results to weakening of

the pigeonhole principle that state the nonexistence of

1-1 mappings from sets of size n + c to n (the lower

bound is only minimally affected by c.) However, it is

still an open problem whether WPHPfi hss constant-

depth proofs of polynomial size. We can also extend

our result quite easily to another weaker version of the

pigeonhole principle, which states that there is no 1-1

and onto map from [n+ 1] to [n].

The main results of this paper were obtained indepen-

dently, and first appeared in [PBIl, and [KPW]. In this

paper, we will first state and prove the common switch-

ing lemma, and then present two different proofs of the

exponential lower bound. In section 2, we give some pre-

liminary definitions. In Section 3, we state and prove

the main combinatorial lemma. We present the proof

appearing in [PBI]; an alternate proof can be found in

[KPW]. In sections 4 and 5 we present the lower bound

proof appearing in [PBI], and in section 6, we present

the lower bound proof appearing in [KPW].

2 Definitions

The variables over D = Do UD1are{P~j : ic Do, j~

D1 }. A map over D is defined to be a conjunction of

the form AI’, where I’ is a set of variables over D such

that distinct variables in I’ have distinct left subscripts

and distinct right subscripts. Maps describe bisections

between subsets of Do and subsets of D1. The size of

a map A 1“ is II’]; if the size of a map is bounded by

t, it is said to be a t-map. An OR of maps is called

a map disjunction. The mapsize of a map disjunction

is the size of the largest map in the disjunction; if all

the maps are of size at most t, then it will be called

a t-disjunction.A truth assignment p over D is any

total assignment of {O, 1} to the variables over D. Let

D’ = D{ U D{ ~ D. A truth assignment p over D is 1-1

over D’ if for all i G D! there is a unique j G D1 such

that Pij = 1 and for all j c D! there is a unique i c Do

such that Pij = 1.

If Y is a map or a set of variables, then v(Y) denotes

the set of vertices in Do U D1 that are indexed by the

variables in Y.

We will now define a probability space of partial 1-1

functions on D, where D = DOUD1, and IDOI = IDII+l.

The probability space %3: is the set of all quadruplets

p=< i, SO, Sl, T >, where i G Do, So s Do \{i}, S1 G

D1 and ISOI = lS11. First, i E Do is chosen uniformly

and at random. The set So is chosen as follows. For

each x c Do \ {i}, choose x G SO with probability P

and z @ So with probability y 1 — p. After all elements,

SO, in DO have been selected, the set S1 is obtained

by selecting exactly ISOI elements of D1 uniformly and

at random. The third component in the triple, T, is a

uniformly chosen bijection from D1 /S1 to Do/So. The

quadruplet < i, So, S1, r > will sometimes be referred to

as< S,~>, where S= So US1. Ifp=<i, So, Sl, r>

then we will sometimes refer to i as spare(p).

Every p =< S, r > in R: determines a unique

restn”ction, r, of the variables over D as follows.

{

* ifi ES AjES

T(Pij) = 1 ifi$s Aj$SAr(j)=i

O otherwise

In this way, the distribution 7Z; defines a probability

distribution of restrictions. If r is a random restriction

obtained by choosing a random p according to %+$’, we

will refer to both the restriction and the random partial

1-1 function by p.

In order to prove the Switching Lemma (Lemma 3.2),

we will first state a couple of useful properties of our

distributions.

Lemma 2.1. Let SO ~ Do, SI c Dl, ISOI = ISII.

Let D’ = D \ (SO U S1 ). Then the subdistribution of

R; restricted to those p such that p(So U S1) = * is

equivalent to the distribution 77,:’. similarly if A is any
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map defined on exactly those variables in So U S1, then

the subdistribution of 7?; restricted to those p such that

p(A) = 1 is equivalent to the distribution X$’.

For a Boolean formula F and an element p G 7?.:, F

restricted by p will be denoted by F tp.

There is an alternative experiment which can be used

to obtain the same distribution on the variables. The

probability space P; is the set of all pairs < r, S1 >,

where ~ is a randomly chosen permutation from D1 into

Do, and S1 is a subset of D1. The set S1 is chosen as fol-

lows. For each z c D1, choose z E SI with probability

p and z @S1 with probability 1 – p. Each p =< rr, S1 >

in P: determines a unique restriction of the variables

over D as follows.

{

* ifm(j)=i AjGS1

@j) = 1 ifn(j)=i Aj@Sl

O otherwise

The following lemma states that the experiments 7? and

P each define the same distribution of restrictions.

Lemma 2.2. The distributions ‘R; and P: define the

same probability distributions over restrictions.

Proof. For each element p =< i, So, S1, z >G %?;,

there is an associated unique set of elements PI =<

1#, S; > from P:, which yields the same assignment to

the variables Pij. Namely, an element p’ =< x’, S! x

P: is associated with p =< i, SO,SI, x >E R: if the

permutation, # on D/(So U S1) is identical to r and

s; = S1. Each element of %?,; is associated with the

same number of elements from P;; further, the prob-

ability y over ‘R of choosing a particular element, p, is

equal to the probability y over P of choosing an element

in the set associated with p. Thus, the induced prob-

ability y distributions on the setting of the variables, Pij

are identical. B

2.1 1-1 Decision Trees

A 1-1 decision tree over domain D = Do U D1 is defined

as follows. It is a rooted tree where each interior node

TJis labelled by a query i E DO or j E D1 and each

edge is labelled by some pair [i, j] where i G Do and

j c D1. Leaves are labelled with either “O” or “l”. For

each interior node v labelled by i c Do (j c D1 ), there

is exactly one out-edge labelled [i, j] for each j G D1

(i c Do) that does not appear in any edge label on the

path from the root to v. The label of an interior node

v may not appear in any edge label on the path from

the root to v. Thus the set of edge labels on any path

defines a map.

A 1-1 decision tree T over D represents a function f

over domain D if for all leaf nodes v E T, if we let c

be the map defined by the path in T from the root to v

then for all truth assignments a over D that are 1-1 on

v(u) and consistent with a, f(a) is equal to the label of

v. For a boolean function f over domain D, we define

d~( f ) to be the minimum height of all 1-1 decision trees

computing f.

If p is a partial 1-1 restriction over D and T is a 1-1

decision tree over D, then define TIP to be the decision

tree obtained from T by removing all paths which have

a label that has been set to “O” by p, and contracting

all edges whose labels are set to “l” by p.

Lemma 2.3 Let f be a boolean function over D and

let T be a 1-1 decision tree representing f over D. If

p is a partial 1-1 restriction over D, then T 1P is a 1-1

decision tree for f tp over D lP.

Note that if T represents f over D then the tree T’ ob-

tained by by switching the 1’s and O’s labelling the leaves

of T represents = f. Also, given a 1-1 decision tree T over

D of height d, we can obtain a d-disjunction maps(T)

over D whose maps consist of the labels of all the paths

in T that end in leaves labelled 1. Notice that T repre-

sents maps(T). Furthermore note that for any partial

1-1 restriction p over D, maps(TtP) = maps(T) rP, The

lemmas in the next section actually is a switching lemma

in the sense of Hfistad because it will allow us to obtain

a map disjunction that approximates the negation of

f by representing f by a 1-1 decision tree T and then

taking rnaps(T’).

Where it is convenient, we shall assume that an order-

ing is given for each of Do and D1. Whenever we write

a real number where an integer is required, we mean the

integer part of the real number (floor). When we assert

an inequality involving n, we shall often assume tacitly

that n is sufficiently large.
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3 The Switching Lemma

In this section we will assume that D“ = DOUD1, where

lD~I=lDfl+l = n+ 1, and the underlying probability

distribution will be 7? (as defined in section 2). All other

D, Di, D’i will be bipartitions which are contained in

D“: D = DO UDI, IDoI = IDII + 1, and Do ~ D~,

D1 GD~.

Let K ~ D = Do U D1. Then %OjD [K] is the set of

all minimal partial 1-1 maps over D which involve all

of the elements of K. A map u G PrOjL) [K] induces

a restriction; we will refer to a interchangeably as a

restriction and as a map.

We define the compleie 1-1 tree for K ~ D over D

inductively as follows. If K consists of a single node

k G DO (k c DI), then label the root “k ~ Do” (“k c

Dl” ), and create n edges adjacent to the root, labelled

by [k, j], for all j E D1 (~, k] for all j E Do). Otherwise,

K = K’ U {k} ~ D. Assume that we have created the

complete tree for K’; we will now extend it to a complete

tree for K. This is done by extending each leaf node VI as

follows. Let pl be the path from the root to vl. The edge

labelings along PI define a partial 1-1 map invcdving all

elements of K’. If this partial map does not include

k, then label V1by k, and add new edges leading out

of V1, one for every possible mapping for k that results

in a 1-1 map extending the partial 1-1 map along pf.

Otherwise, if k is involved in the partial 1-1 map, leave

Vr unlabeled. Note that each path of the complete tree

over K will be labelled by some a c PrOjDIK].

Lemma 3.1 Let ~ be a boolean function over the

variables Pij, i G Do, j E Dl, where IDo I = ID1 I + 1.

For every K Q DO U D1, there exists a restriction, u c

ProjDIK] such that dD(f) S IuI -1- ~Dr. (ft.).

Proof. The proof is very similar to that of Beame and

Hbtad [BH]. Fix K ~ D. We start with the complete

1-1 tree for K. As noted above the paths of this tree

correspond exactly to elements of ProjD [K]. Let Va be

the leaf node corresponding to the path labelled by u c

PrOjD [K]. For each a, we replace the leaf node, v., by a

subtree that is a 1-1 decision tree for ~ta over D to. The

resulting tree clearly represents ~ over D. The depth of

the resulting tree for K is at most rnaza {Iul + dDl& (~1~

)}. H

If ,f is a map disjunction defined over a set D and p is

a restriction on D then we will use the notation 6($)P)

for dD tp(f !@). We now state the main combinatorial

lemma.

Lemma 3.2. (Switching Lemma) Let ~ be an r-

disjunction over D = DO U DI, ]Do] = ID1[ = rn + 1,

DO ~ D!, D1 ~ D?. Choose p at random from %!:.

For s ~ O and p(m – s) ~ r we have

Pr[6(frP) ~ s] < CY”,

where a >0 satisfies (1+ 9p4n3/a2)r = 5/4.

Fact: a < 8p2n312r112.

The proof of the switching lemma, like that of H&tad,

proceeds by induction on the number of clauses in j. We

work along the clauses one by one: if p falsifies a par-

ticular clause, then we are left with essentially the same

problem as before; if p does not falsify the clause then,

it is much more likely that p satisfies the clause (and

thus ensurea that the whole formula is set to true) than

p leaves any variable in the clause unset. There are

significant complications however in dealing with our

partial 1-1 restrictions as opposed to fully independent

ones. Once we know that a variable (edge) is unset we

have information that biases incident variables towards

being unset. Furthermore there is the subtler problem

that having some variables set to O may bias other vari-

ables towards being unset. Both of these complicate the

application of the inductive argument in the case that a

given clause is not falsified. We handle the first problem

by considering not only all possible assignments to the

unset variables in the clause (as in H&4ad’s proof) but

also to all variables that are incident to those unset vari-

ables. We get around the second problem by showing

that, although setting variables to O may make a given

variable more likely to be unset, it cannot bias the total

number of unset variables to be larger and this turns

out to be sufficient for our purposes.

We obtain Lemma 3.2 from the somewhat stronger

Lemma 3.5 by setting F = Obut first we prove a couple

of technical lemmas.

Lemma 3.3. Let D = DOUD1

1 = rn+l and U ~ D such that

such that IDoI = IDII+

lUnDol = Ivnllll = k.
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If pm ~ k, for p chosen at random from %?;, < ‘W)k—(2pm/k)’
– k!(m~l)

P?fp(u) = *] <2.
(2p2m)k(m + 1- k)!

(m+l)! ‘

Proof. Let UO= U rl DO and U1 = U fl DI. We consider

the choice of p ~ %?,: using the equivalent distribution

P;. Thus p is chosen by selecting a random permuta-

tion x : D1 ~ Do and a set S1 c D1 of starred endpoints

chosen by selecting elements of D1 independently with

probability p. We split up the probability that p(U) = *

into separate csses depending on the image T(U1 ) of U1

in Do.

If IT(U1 ) \ Uol = i then we divide the probability base

on whether or not spare(p) ● UO. Now Pr[spare(p) ~

Uo] = i/(m + 1 – k) in this case since m(U1) has already

been ruled out. Given that spare(p) c U., the prob-

ability that p(U) = * is pk+i - 1, otherwise it is Pk+i.

Thus if IT(U1) \ UOI = i we have a total probability that

p(u) = * of

k+i-1 i

(

i
P +P k+~ 1

m+l–k rn+ l-k )

k+i + Pk+i-l (1-p)i
= P

m+l–k

< p~+i +pk+i-1
(1-p)k

m+l–k

< pk+i + pk+~-1
pm – pk

m+l–k
~ 2PW

since pm ~ k and i s k.

There are (m~l) possible sets tT(UI), all of which are

equally likely, and (’”’+:-k) (~) of these have IT(U1 ) \

UOI= i. Thus

k (m+}-k)(:)Zpk+iP?fp(u) = *] = ~
i=O (“?’)

2pkk k”.
Z() k!$p’

< k!(m~l) i=o i s

~~ ~)kk-i(pm)i
s k!(m: ) ~=o

2(pk)~ k
~ ~) (y)’

= k!(m~l) ~=o

2(pk)k
—[(pm/k) + 1]~= k!(~;l)

= 2(2p2m)’

k!(m:l)

Proof. The proof is by downward induction on k.

For k = n, the lemma holds, Now assume that the

lemma holds for k. Consider ~~=~_l ~j bj. Either

bk_l > ab_l or bk-1 < CZk_l. In the first case, by

the induction hypothesis, we know that ~~=b ~jbj ~

zy=k~jaj, thus because h-l z ak-1, w; also have

~~=k-1 ~jbj ? x~=k-l ~j~j. In the second case, let
d = ab_l – bk_l. Because ~~=k_l bj 2 z~=k-1 Uj, we

have that ~~=k bj > ~~=k aj +6. Applying the induc-

tive hypothesis, with ak = ak + 6, we have:

n n

~~~jbj ~ ~Cijaj i- CYk(ak-1 - bk-1) + ~k-1bk-1

j=k-1 j=k

n n

Lemma 3.5. Let $ be an r-disjunction over D = DO U

D1, IDoI = IDII+l = m+l, DO < D$, D1 G D?,

and let F be an arbitrary function over Dn. Let p be

a random restriction chosen according to %?;. Then for

s~Oandp(m –s)~r we have

where a >0 satisfies (1 + 9p4n3/a2)r = 5/4.

Proof. The proof proceeds by induction on the total

number of maps in f.

Base Case. There are no maps in f. In this case f is
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identically O and therefore f is represented by the tree

consisting of thesingle node Iabelled O. Hence 8(ftP)=

O and the lemma holds.

Induction Step. Assume that the lemma holds for all

map disjunctions with fewer maps than the map dis-

junction off. We will write f as fl V fz V..., where each

fi is a map off. We will analyze the probability by

considering separately the cases in which p does or does

not force the map fl to be O. The failure probability,

the probability that 6(f lP) z s, is an average of the

failure probabilities of these two cases. Thus

The first term in the maximum is Pr[6(f lP) ~ s I (FV

fl) IP= O]. Let f’ be f with map fl removed; then

Pr[6(f Ip) ~ s I (F v fl) tp= o] = Pr[8(f’ tp) 2

s [ (f’ V fl ) lP= O]. Because f‘ has one less map than f,

this probability is no greater than a’, by the inductive

hypothesis.

Now we will estimate the second term in the maxi-

mum. Let T be the set of variables appearing in the

first map, fl. By hypothesis, size(T) ~ r. We will an~

lyze the cases based on the subset Y of the variables in

T to which p assigns *; we use the notation x(~) = Y

to denote the event that the variables in T which are

assigned * by ~ are exactly those in Y. Then

Consider the case in which Y = 0. In this case the

value of fl is forced to 1 by p. It follows that f is forced

to 1 and hence 6(f) = O so the term corresponding to

Y = @has probability O. The sum then becomes

~ pd~(ftp) 2 s A *(Pz’) = y I Ft,= o A f~t,# 01,
Y~T,

Y#O

which is equal to

z

P?’[6(ftp) > s I

Y~T,
Fr,= O A fl rP# O A *(~)= Y] (1)

Y#O

X pr[x(p~) = Y I Ftp= O A fl lP# O]. (2)

We will first bound the latter term, (2), in each of

these products. Given that fl rP# O, the probability

that x(~) = Y is equal to the probability that p(Y) =

* A P(T \ Y) = 1. Thus term (2) is no greater than

Pr[p(Y) = *Ap(T\Y) = 1 I Ftp= O A fllP# O]

<Pr~(Y) = * I Ftp= O A p(T\Y) = 1 Ap(Y) # O]

Let F’ be F V G where G lP= O if and only if p sets all

variables in T \ Y to 1; then the above probability is

equal to Pr~(Y) = * I F’tp= O A p(Y) # O].

Claim A. Pr~(Y) = * I F’tp= O A p(Y) # O]

< P?’[p(Y) = * I p(Y) # o].

Proof of Claim A. As in previous proofs, we will prove

claim A by showing that

Pr[F’fp= O I p(y)=* A P(Y) #O]

~ Pr[F’rP= O I p(y) # O].

This proves the claim because for arbitrary events A

andl?, Pr[A113A C]<~r[Al C7] sPr[~lAAL’]s

Pr[B I C]. Fix a particul?t.r p“ such that p*(Y) = *.

Then p* represents an equivalence class of p’s such that

p(Y) # O. An element p 6 %?: is in the equivalence class

of p* if and only if p is identical to p* except for the vari-

ables of Y, which maybe assigned the value 1 instead of

*. Note that each such equivalence class is disjoint, has

the same size, and the union of all equivalence classes is

equal to the set of all p which satisfy p(Y) # O. Now,

consider a particular p“. If F’ /p. is forced to O, then so

is F’ 1P,for every p in the equivalence class of p*. Thus

the claim holds.

From Claim A it follows that the term (2) is at most

Pr[p(Y) = * I p(Y) # O]. Since pm ~ r ~ IYl, by

Lemma 3.3,

P?’[p(Y) =*] ~
2(2p2m)lyl(m + 1 – IYI)!

(m+ 1)! ‘

Also,

P?’~(Y) # o] ~ P?’p(Y) = 1]

(1- P)lu

= (m+ l)m..(m - IYI + 2)
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= (1 -py’l(?n + 1- [Y[)!

(m-t- 1)! “

Therefore,

()2p% ‘y’
Pr[p(Y) = * I p(Y) # o] < 2. ~

< 2. (3p%n)l~l

< 2. (3p%)lyl.

Now we look at the first term, (1), in each product.

Suppose that 21Y ] ~ s. For each fixed Y, we will analyze

the probability above by applying Lemma 3.1 with K =

v(Y) and D = DIP. By this lemma, if fi(f!P) ~ s then

there is some a E Proj~rP [v(Y)], such that ~(~rpI_ ((f!~

) la) Z s - Iul. TO use this requires that we consider

all maps in Proj~f ~[v(Y)]. One difficulty is that D 1P is

itself a random variable dependent on p. We handle this

by considering all maps cr in PrO~D [v(Y)] and including

them only if p(a) = *. For notational convenience let

P(D, Y) = Projn[v(Y)]. When p(a) = *, (f lP) !.=

(flu) 1~and applying the definition of ~(ftp), the above
probability is no greater than:

z Pr[6((frc)rP) ~ s – Ia[ A p(m) = * I

KP(D, Y) FtP=O A fltp#O A *(~)=Y]

S ~ pr[~((ftu)tp)2s – Id I ~tp= o
C76P(D,Y)

A $lrp# O A *(@) = Y A P(O) = *]

x Pr[p(m) = i [

FtP= 0 A ~llp# O A *(PT) = Y]

= ~ Pr[d((fl.)tp) 2 s - 21Y[ I
UEP(D,Y)

FtP=O A@’’\Y)=l A P(u)=*]

X Pr[p(u) = * I

FtP=O A p(T\Y)=l A p(Y)=*]

The last inequality above holds because IuI < 21YI,

the events ~1 lP# O A *(pT ) = Y are equivalent to the

events p(Y) = * A p(T \ Y) = 1,and the condition

p(Y) = x is implied by p(u) = x. Recall that if Y is a

map, v(Y) ~ D denotes the set of underlying vertices

which are contained in the map. We will split up the

map CTinto two maps, U1 and uz, where a variable, Pij c

u is in al if both i ~ v(Y) and j E v(Y). Otherwise,

Pij E U2. Note that for every a c P7’OjL) [v(Y)], O <

[all < lY\. We further divide the above probability into

sums according to the size of al to get:

IY1

~ ~ M((ft.)t,) 2s - 21YI I Ft,= O
i=o UEP(D,Y),

101l=lY1–i
Ap(Z’\Y)=l A p(a)=*] (3)

,-, . .
x Pr[p(a) = * I FtP= O

Ap(T\Y)=l A p(Y)=*] (4)

For a fixed value of Y and u c P(D, Y), we estimate

the first term. Let f’ be ~ with fl removed and consider

the different possibilities for u. Let f‘ be f with the

variables in T \ Y set to 1. Let PI be F v G where

G lP= O if and only if p sets all variables in T \ Y to 1.

Then the first term is equal to

Since f‘ IC contains no variables which involve vertices

of v(a) we can let D’ = D – v(u) and conclude using

Lemma 2.1 that the above probability is no greater than

Pr[6((f’tO)tP) > s – 21YI I F’/p= O],

where the probability y is for a p chosen from %?:’. ‘Now,

if u = Y then f~ is satisfied by u and f 1Pis the constant

1 and this probability is O < CP-21YI. Otherwise, u #Y,

the map ~j is falsified by a, so f’ la has one fewer map

than the original f that we started with. Furthermore,

since Iul < 21YI and p(m – s) > r, p(rn – Ial – (s –

21YI)) > r and we can apply the inductive hypothesis

for D’ and f‘. It follows that the above quantity is no

greater than Q?-zlyl.

Since the above calculation gives the same upper

bound for term (3) for all values of u, we can pull this

quantity outside the sum to obtain:

lY1

CXS-21Y1~ ~ Pr[p(a) = . I FtP= ()

i=O UCP(D,Y),

lu,l=lY1-i
Ap(T\Y) = 1 A p(y) =*] (5)

Now we will estimate the inner summation for a fixed

value of i. As above, we replace the condition F /p=

O A p(T \ Y) = 1 by the single condition F’ !P= O. Also,

for a particular u, the event p(u) = * is equivalent to

the events p(ul ) = * A p(az) = *. Because p(ol ) = * is

implied by p(Y) = *, the inner summation is equivalent
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to

E Pr[p(az) = * I F’ tP= O A P(Y) = x].

UEF’(D,Y),

llJ,l=lY1-i

We would like to remove the conditioning on F’ lP= O

but it is not as simple as it was in Claim A. We have to

consider the terms in this sum in the aggregate rather

than individually. Let Ni be the number of u’s such

that Iul I = IY I – i. Then the above probability can be

rewritten as:

N,. Pr(02,p)~(a2) = * [ F’tP= O A p(Y)= *],

where the above probability is over all pairs (U2, p), such

that ICI I = IYI – i. For each U2, let u be the set of ver-

tices in C72which are not contained in v(Y). Note that

the number of domain vertices of u equals the number

of range vertices of u and is equal to i. Also note that

for U2 chosen at random, u is a uniformly distributed

set over D“ = D \ v(Y) having these properties. Ap-

plying Lemma 2.1 and letting W be the collection of all

sets over D“ having both domain and range size i, this

probability is equal to Ni . Pr(ti,P],~(u) = * I F’ lP= O],

where the probability is over all pairs (u, p), such that

u E K and p c l?;”. This probability can be further

divided according to #(p), the exact number of stars

that are assigned to D1 by p:

Ni . ~ Pr(u,p)k(u) = * I F’tP=O A #(P)=J
~=oX Pr(U,p)[#(P) = j I F’tp= 01.

Given that #(p) = j, for a randomly chosen u the event

p(u) = * is independent of F’ lP= O. Thus the above

probability is equal to

where we have dropped the subscript on the probability

in the second factor in each term since this probability

only depends on p. For all k ~ n, ~j2~ Pr[#(p) =

j [ F’ lP= O] equals Pr[#(p) ~ k I F’ lP= O], because

the events are disjoint. Similarly, ~~2k Pr[#(p) = j]

equals Pr[#(p) ~ k].

Claim B. For all k,

P?’[#(p) > k I F’tp= o] ~ Pr[#(p) ~ k].

Proof of Claim B. As in the proof of Claim A, we will

prove this inequality by showing that for all k, Pr[F’ lP=

Ol#(p) ~ k] s Pr[F’ !P= O]. Let F(C) = Pr[F’tP= O].

Then F(C) is a weighted average of F(A) and F(B),

where F(A) = Pr[F’ )P= o I #(P) 2 k] andf’(~) =
Pr[F’tP= O I #(p) < k]. We want to show that F(A) <

F(B), and then it follows that F(A) < F(C), as desired.

Let F(i) = Pr[F’ lP= O I #(p) = i]. Then F(A) is a

weighted average of terms {F(i), k < i ~ n}, and F(B)

is a weighted average of terms {F(i), 1 ~ i< k}. Thus,

it suffices to show that for all k, F(k) ~ F(k – 1). Here

we will consider p as being chosen from the alternative

experiment, P?; recall that p is a pair < m, S1 >, where

z is a permutation from all of D1 into Do, and S1 is

the subset of D1 which is set to x. We will divide the

probability according to the particular permutation, n,

chosen by p. Because each permutation is equally likely,

it suffices to prove the above inequality conditional on

the fact that the permutation is m. For all k, let the

sub distribution A: consist of those p = (z, S1) such that

ISI I = k, i.e. those p that were chosen by first choosing

~ and then choosing exactly k elements of D1 to be +.

We want to show that the probability that F’ is forced

to O over distribution A:- 1 is greater than or equal to

the probability that F! is forced to O over distribution

A:. Consider the collection C~ of sets S’l with ISI I = k,

such that p = (T, S1), and F’ )@= O; similarly let Ck_ ~

be those sets, S!, lS~l = k – 1 such that p’ = (m, S;)

forces F’ to O. For any set S~ C S1, if p = (T, S1) forces

F’ to zero, then p’ = (T, S!) also forces F’ to zero; in

particular, this holds for those subsets S~ of size k – 1.

Thus, for each set in ck there are k corresponding sets

in ck _ 1 which are akso forced to zero. Conversely, for

each set in Ck- 1, there are (n —k + 1) corresponding sets

in 6’k. The probability that a random p over A; forces

M“p’ to O equals A= ~thus the probability that a random

p’ over AR-l forces F’ to O is at least ~n_~~~l~i_ll.

Since lA~-l I is equal to ~, the probability that F’

is forced to O over A:- 1 is greater than or equal to the

probability that F’ is forced to O over At. E

Using Claim B and noting that Pr(U,P)~(u) =

* I #(P) = J < ~qu,p)bx~)= * I #(P) = j + 1]

for all ~ ~ O, we can apply Lemma 3.3 with crj =
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l+(u,,)b(u) = * I#(P)= ~1,aj =
O], and bj = Pr[#(p) = j] to show

ability is no greater than

n

Pr[#(p) = j I F’lp=

that the above prob-

Ni” ~ ~qu,,)b(~) = * I #(P)= ~1.W#(P) = J
j=O

which is equal to Ni . Pr(u,P)[p(u) = *I.
Since for each fixed value of u ~ If, the probability

that p(u) = * is the same, the above probability is equal

to Ni . Pr~(u) = *], where the probability is now over

the distribution 7?;”. Letting m’ = m - IYI and using

the fact that pm’ ~ p(m – s/2) ~ r ~ IY 1,we can apply

Lem2mm~3.4 to conclude that for u c ~, Pr~(u) =*] <

2.(P ‘) ’(m’+ l-iJ! <2. ~zp’y:(y$l-~~! .
(m’+ I)!

Recall that N; is equal to the number of u’s such that

Ian = Y – i. There are at most (l~l)2(lY[ – i)! choices

of al with Iul I = IY [ —i and for each such al there are

at most
((:7:3!)2

choices of U2. Thus there are a

total of at most (1~I)2(]Y] – i)! (-)2 choices of

a c P(D, Y) such that lull = IY( – i. ‘

Thus for all Y such that 21YI s s, using the expres-

sion in (5), we have

<25 (’:’)2(’y’-i)’((sI{l::)\)!)2
i=O ~ &-21Yl (2P2~)i(m – Iyl + 1—0!

(m- IYI+ 1)!

()IYl IYl 2([YI- ~)!(m - IYI + 1)*

52X ~

i=O x a~-zlyl (2pZn);

lY1 IY] 2
< za’-z’y’~ ( , ) (IY, -,),(zpvy

i=O

< 2CYS-21YIS (1~1) (Zpznz)i(ly,)lyl-i
izO

= 2@W7 Iyp’1
5 (’;’)(-)’
i=O

= 2&-21yl Iyllyl(= ,Yl + I)lyl

< Zas-’lyl Iyp(w)lyl—
lY1

~ 2cr’-21yl(3p2n2 )lyl ,

For Y such that 21YI > s we cannot use the expan-

sion in terms of (3) and (4) to estimate this probabil-

ity. However in this case, since a ~ 1 and 3p2n2 ~ 1,

2a’-21yl (3p2n2)lyl >1 so it still is an upper bound on

this probability.

Plugging in the bounds we have for the terms (1) and

(2) we get

()9p%3 ‘y’
=4(x’~T

Y~T,
Y#O

= 4“s[(1+%)”-11
The last inequality holds since a satisfies (1 +

9p%3/a2)’ < 5/4. ~

4 Critical Truth Assignments

and Approximate Negation

For the pigeonhole variables, Pij, i c Do, j c D1,

where size(llo ) = size(lll ) + 1, we will consider the

claas of truth assignments which are maximally one-

to-one. The set of critical truth assignments over D,

CTAD, is defined to be the class of all truth assign-

ments over D which are one-to-one on all but one ele-

ment of Do: CTAD = {a I % E Do such that a is 1-1

on DO \ {z} U Dl, and Vj G D1 PCj = O}. Given a map

disjunction, f, over the pigeonhole variables, we want

to apply the above switching lemma in order to obtain

a new map disjunction which approximates Tf.

Lemma 4.1. Let D = DO U Ill where IDoI = n + 1,

IDI[ = n, and let T be a 1-1 decision tree of height k

defined over the set D. At least a 1 – & fraction of all

critical truth assignments a over D are consistent with

some path in T.
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Proof. We prove this claim by induction on the height

of T, k. Consider a randomly chosen critical truth as-

signm’&@ a over D.

If k = O then T is just a single node and the Lemma

is vacuously true.

Now suppose that the lemma is true for all trees of

height at most k and suppose that T has height k +1.

If the root of T is labelled by some j 6 D1 then a

matches j with a unique i c Do. Let u be the map

consisting Of P~j. Then T f. is a 1-1 decision tree of

height at most k defined over D to. Furthermore, the

probability that a is consistent with some path in T is

equal to the probability that it is consistent with some

path in T;.. By the induction hypothesis this is at least

1 – k/n z 1 – (k+ 1)/(n + 1) as required.

If the root of T is labelled by some i E Do then either

i = spare(a) or spare(a) # i and a matches i with

a unique j E Do. Let E be the event that a is not

consistent with any path in T. Thus we have

Pr[E] ~ Pr[spare(@) = ~ +

Pr[spare(a) #i] x Pr[E I spare(~) # i].

Since the induced distribution on spare(a) is uniform

over Do, Pr[spare(a) = 4 = l/(n + 1). Given that

spare(cx) # i we can argue, as in the case that the label

was j G D1, that the probability of E is at most k/n.

Thus we get a total probability of E of

as required. ~

Corollary 4.2. Let D = Do U ~1 where IDol = n + 1,

]Dl I = n, and let T be a 1-1 decision tree of height k

representing ~ over the set D. Then rnaps(T’) and =~

—) fraction of all critical truthagree on at least a (1 - ~~1

assignments over D.

5

5.1

Exponential Lower Bounds –

Proof 10

Overview

A Frege proof is a sequence of propositional formulas,

each of which is either an axiom inst ante or follows from

previous formulss by one of a fixed set of inference rules.

The pigeonhole principle can be expressed by a class of

propositional formulas, {PHP. : n c IV}, where PHPn

asserts that there is no 1-1 mapping from a set Do of

size n + 1 to a set D1 of size n. We encode PHPn using

(n+l)n propositional variables, {Pij : i G DOAj c Dl})

where Do and D1 are disjoint sets such that IDOI = n+ 1

and ID1 I = n. Intuitively, Pij = 1 iff i is mapped to j.

Since our proof system will be a refutation system, we

are concerned with the statement lPHPn, which can be

written as the conjunction of the following pigeonhole

clause~

~{p;j : j G Dl}, i~ Do;

V{ Tpik, -pjk}, ~ #j, ~,j G Do, k C D1.

In a refutation, one starts with the negated clauses

~PHPn as axioms and then derives V{}, i.e. False.

As in the paper by Bellantoni, Pitassi and Urquhart

([BPU]), we proceed by induction on the depth of the

Frege proof. Assume that we have a small, depth d

Frege proof of the pigeonhole principle. Without loss

of generality, we also assume that each formula in the

proof consists of ORS and NOTS, except for the bottom

two levels which are ORS of small ANDs. Applying a

random restriction to each formula in the refutati~we
\can simplify the bottom levels so that each occurrence \

of negation at depth 3 of each formula is replaced by

the “pseudo complement”. This allows us to reduce the

depth of each formula to d -1, but now each depth

d – 1 formula only approximates the original depth d

formula on the reduced domain. Due to this approxi-

mation, instead of obtaining a depth d – 1 refutation of

the pigeonhole principle (on the reduced domain) which

is completely sound, we obtain a depth d – 1 approxi-

matee refutation which is only approximately sound.

An approximate refutation is a Frege refutation where

each inference is sound with respect to a large subset

of all truth assignments. In contrast, an inference in

a regular Frege refutation is sound with respect to all

truth assignments. The approximation is obtained by

a new method which will be described in the next sec-

tion. The key property of the approximation is that the

pseudo-complement has the property that it is identical

to the actual complement on a large fraction of the as-

signments that are maximally 1-1, namely the critical
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truth assignments.

We repeat the restriction argument d – 2 times to

obtain an approximate depth-2 Frege refutation of the

pigeonhole principle, i.e. a refutation in which each

formula is an OR of small ANDs. We then apply a

separate base case argument which shows that there can

be no good approximation to a Frege proof of small size

and with this special form.

5.2 Definitions

Our lower bound is proved using a particular Frege sys-

tem over the basis {V, T}, but it holds for any Frege

system: by a theorem of Cook and Reckhow [CR], all

Frege systems are polynomially equivalent; and exam-

ining their theorem one finds that the small depth of

proofs is preserved in the simulation.

The Frege refutation system that we will use is the

system H described in [BPU]. H is slightly nonstan-

dard in that it is formulated as a propositional proof

system for unbounded fan-in formulas. More precisely,

the formulas of H are unordered rooted trees defined in-

ductively by the rules: (1) if y is a set of variables then

v{A 7} is a formula; (2) if A is a formula then -1A is a

formula; and (3) if I’ is a finite set of formulas, then V I’

is a formula, Thus the system allows A only at the bot-

tom level, and in fact requires A’s there. This syntactic

requirement simplifies the exposition. The system H

has one axiom: Excluded Middle Axiom A v 7A, and

two rules: (1) Weakening Rule A + A v B; (2) Cut

Rule (=A V l?), (A V C) a (B V C), where A, B and C

represent formulas. In addition, associativit y and merg-

ing and unmerging of V are implicit. The crucial prop-

erty of H that we will exploit is that each rule and axiom

involves at most one negation.

The size of a formula is one plus the number of oc-

currences of V and 1 in the formula; the size of a Frege

proof is the sum of the sizes of the formulas occurring as

lines in the proof. Since each formula consists of ORS of

ANDs in the bottom 2 levels, and the rest of the gates

are ORS and NOTS, the depth of a formula is 2 plus the

number of alternations of ORS and NOTS. The depth

of a Frege proof is the maximum depth of the formulas

in the proof. A Frege refutation of AI A AZ A... A & can

be viewed as a directed acyclic graph, where each node

in the graph is a formula of the proof. The leaves of the

graph are the formulas Ai, the root of the graph is the

empty (false) formula, and two formulas, A and B are

parents of another formula C if C follows by some infer-

ence rule from A and B. A Frege refutation has height

h if the directed acyclic graph which describes the proof

has height no greater than h.

We will relax our proof rules to yield a new approx-

imate proof system, H’, as follows. The Weakening

Rule does not change; the approximate Cut Rule is:

(A V B)(A’ V C) ~ (1? V C), and the approximate Ex-

cluded Middle Axiom is: A V At. An application of the

approximate cut rule is y-sound if A’ is equal to -1A on

a fraction 7 of all critical truth assignments. Similarly,

an application of the approximate excluded middle ax-

iom is y-sound if A’ is equal to 1A on a fraction 7 of

all critical truth assignments. All applications of the

weakening rule are l-sound. A proof in H’ is -y-sound if

all inferences in the proof are y’-sound, for some y’ z 7,

Note that a y-sound proof haa the property that for each

inference there exists a a subset S of all critical truth

assignments, CTAD of size at least -YICTA~ 1, such that

for each assignment s c S, ifs makes all precedents of

the inference true, then s also makes the antecedent of

the inference true. (Note that an axiom can be viewed

as a rule with one precedent, the “true” formula.) All

rules and axioms in H are l-sound rules; a completely

unsound rule such as [(1, 1) ~ O] is O-sound.

5.3 Reducing the Depth

In this section we show how a proof of depth d is con-

verted into one of depth d — 1 while preserving approx-

imate soundness. Let P be a sequence of formulas over

D, Illol = n + 1, IDll = n, each of depth at most d

f. Suppose that p leaves exactly(d>2)andletp<7?

those variables in D’ ~ D unset, where IDi I = n’ + 1,

[D{] = n’. P is converted into a sequence of depth d- 1

formulas over D’ in the following three steps. When

P’ is obtained by applying the conversion process to P

with p, we say that P’ is P converted by p.

(1) Apply p to each formula of P, obtaining PIP.

(2) Let Go ...G~ be the distinct map disjunctions

pearing in formulas of P rfl. Represent each

by some 1-1 decision tree Ti over D’. Define

ap-

G~

the

pseudo-complement of G~, cDl (Gi) = maps(T/).
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(3)

Replace each occurrence Of TGi by cD,(Gi), uni-

formly throughout PrP.

For each formula of PIP, merge together OR gates

appearing at heights 2 and 3.

De#nition. A refutation of PHP. over D in H’ is

(n, d, t, -j, S)-approximate if each formula has depth at

most d, each map disjunction has mapsize t,the total

size of all formulas in the proof is at most S, each in-

ference is y-sound, and the proof was obtained from a

(l-sound) proof in H of the pigeonhole principle over a

larger universe, by applying the above conversion pro-

cess (to the sequence of formulas in the proof) a finite

number of times.

The following lemma shows that if we c~oose the right

restrictions, then successive applications of the above

conversion process results in an approximately sound

refutation. The main idea behind the proof of this

lemma is that while each formula may not be approxi-

mated well at all (since every negation is approximated,

and there may be many negations in each formula), each

inference will still remain approximately sound because

each rule and axiom of H involves at most one negation.

Lemma 5.1. (Conversion Lemma) Let PO be a refu-

tation in H of PHPn over D, of depth d and size S. Let

k+ 1 ~ d– 2. Let p = pO, pl, p2, ....pk be a sequence of

restrictions such that pi leaves all variables over Di+l

unset, and Db+l ~ Dk ~ ... ~ D1 ~ D. Also, let

lDjl = nij and lDjl = ni + 1. Let P1, P2, ....Pk+l be a

sequence of proofs in H’ where Pi+l is equal to Pi con-

verted by pi. Suppose also that for every i, every map

disjunction in Pi has mapsize at most ti,and ti< ti+l

foralli~k. Letyi=l –&. If foralli, l~i<k, Pi

is a proof in H’ which is (ni, d— i, tij ~ij S)-approximate,

then Pk+l is a refutation of PHP ~~+, in H’ which is

(n~+l, d – (k + 1), tk+l, y~+l, S)-approximate.

Proof. The conversion process, applied to any proof

in H’ of depth d yields a new proof in HI of depth

d -1 and size at most S. Applying the conversion

process k + 1 times thus yields a new proof in H’

of depth d – (k + 1) and size at most S. Because

p leaves exactly those variables in Dk+l unset, where

lD~+ll = nk+l + 1 and lDf+ll = nk+l, it follows that

Pk+l is a proof of PHPn~w, in H’ over Dk+l. Also,

since size[c~~+, (G ~P~)] ~ tk+l for every map disjune

tion G in Pk, step (3) of the conversion process insures

that Pk converted by pk will have mapsize tk+l. It is

left to show that every inference in Pk+l is ‘yk+l-sound.

Fix a particular formula f“ in PO. Let /i be the for-

mula which results from ~“ after i conversion steps – ~“

is the corresponding formula in Pi. We want to show

that $k+l follows from a -y~+l-sound inference. There

are three cases to consider: either f 0 is an application of

the approximate excluded middle axiom, or f 0 follows

from the cut rule, or f“ follows from the weakening rule.

Here we assume that f 0 follows from the cut rule; the

other two possibilities are handled similarly. Assume

that f“ = B V C, where f“ follows from go = A V B

and ho = =A V 6’. Then for all proofs Pi, 1 ~ i s k, gi

and hi are the two formulas in Pi which imply Y“. The

inference (gk, hk) * f k has one oft wo forms, depending

on the depth of gk hk.

(1)

(2)

If the inference has the form (A’ VB’), (TA’VC’) ~

(B’ V C’) then there are two cases to consider. If

A’ has depth greater than 2, then the new inference

will have the same form since the negation in front

of A’ will not yet be converted; hence the new in-

ference will be l-sound. On the other hand, if A’ is

a map disjunction, then =A’ /P& will be replaced by

(?Dk+l (A’ \pk). Because Sh?[C~k+l (G /pk )] < tk+l

for all map disjunctions Gin P ‘, by Corollary 4.2,

we know that @k+l (A’ tok ) will equal -1A’ rPk for

at least 1- ~ of the critical truth assignments

over Dk+l. Hence this inference will be ‘)’k+l-SOund.

Otherwise, some previous fi, i < k, which follows

from gi and hi, has the form (A’ V B’), (CDi(A’) V

C’) -+ (B’ V C’). Let p’ = pipi+l ..pk. The infer-

ence (gk, hk) + f k thus has the form (A’ rP/ VB’ /p,

), (CDi(A’) lP, VC’ lP,) ~ (B’ rP/ VC” lP,). Because

every map disjunction in P$ has maps.ize ti, the

map disjunction cDi (A’) has mapsize ti,which by

assumption is less than or equal to tk+l. By Corol-

lary 4.2, this implies that cf)~ (A’) IPI equals -A’ rP,

for at least a fraction 1 – ~~~~1 of the critical

truth assignments over Dk+l, and hence the new

inference will be 7k+l-sound. I
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5.4 The Lower Bound

Theorem 5.2 (Lower Bound on Size) For suffi-

ciently large n, any Frege refutation of PHPn of depth

(
c1must have size at least exp n~4-(d+9) /24) .

Corollary 5.3 (Lower Bound on Depth) For suf-

ficiently large n, any Frege refutation of PHP~ of

polynomial-size must have depth at least Q(log log n).

Theorem 5.2 will be proven by induction on d, the

depth of the Frege refutation. To facilitate the proof

of the base caee, we would like to restrict attention to

Frege proofs which are balanced. Recall that the height

of a Frege refutation is the height of the proof, viewed

as a directed acyclic graph. A Frege refutation is bal-

anced if the height of the refutation is logarithmic in the

size of the refutation. The following lemma states that

any Frege refutation can be efficiently converted into an

equivalent, balanced one.

Lemma 5.4. (The Simulation Lemma) Any Frege

refutation of size S and depth d can be transformed

into another Frege refutation of size S2, dep$h d+ 2 and

height O(log S).

To prove the simulation lemma, we first show that

any Frege proof can be converted into a proof in tree

form, while preserving the size and depth of the proof

to within small factors. A proof in tree form is a proof

where each intermediate formula is only used once in

the derivation. The main idea behind this proof is

keep around all intermediate formulas that have been

generated at each step in the derivation. Ie., If P =

fO, fI, . . . . .fg is the Original proof, then We construct the

new proof, Pt = fj, fj, ..., fj, where f; is the conjunc-

tion of fo, fl, . . .. fi. Secondly, we show that any size S,

depth d Frege proof in tree form can be efficiently con-

verted into a balanced Frege proof – one which has size

S2 and height O(log S). The full proof of the Simulation

Lemma can be found in [PBI].

By the above Simulation lemma, theorem 5.2 is a

corollary to the following theorem.

Theorem 5.5. (Lower Bound on Size for balanced

I?rege refutations) For sufficiently large n, any bal-

anced Frege refutation of PHPn of depth d must have

(
34-@+’)/12) .size at least S = exp n a

Proof. The proof is by induction on d. Suppose

that there were such a refutation, P, of PHPn in our

system H, of size S, depth d, and height at most

log S. Let t = 211410g S. Define A(n) = (n/256t)1i4.

If Ji is the i-fold composition of J with itself then

it is easy to show that Ai (n) ~ n4-’ /(256t)1j3. If

S < exp(nf4-(’+1) /12) then straightforward calculation

shows that t < ~Ad+l(n). Because the system H is

sound, and each map disjunction has mapsize 1, P is

a refutation in H’ which is (n., d, t, yo, S)-approximate,

where no =nandyo=
(1-*)

Applying the

Induction and Base lemmas below, we show that that

for sufficiently large no, that there is no proof in H’ of

PHPnO which is (no, d, t, YO, S)-approximate.

Suppose that n~ 2 A(n;-1) >...> ~i(no for all i,

()
0~i~d–2. Letp~=J(ni)/ni and yi= 1–%

for all such i.

Lemma 5.6. (Induction Lemma) Let Pi be a

refutation of PHP~, in H’ which is (ni, d – i, t, Yi, S)-

approximate, where t,~i,and ni are as above. Then

there is a restriction p such that Pi converted by p is

a refutation of PHP~i+l in H’ which is (ni+l, d – (i +

1), t, yi+l, S)-approximate, where t,yi+I and ni+l are

as above.

Proof. Let D be the domain of the formulas in Pi.

Since t s $A(ni) for any i < d, pi(ni – t) z t so we can

apply the Switching Lemma, for p drawn at random

from %?: to get our desired result. The probability that

Pi converted by p does not result in new proof, Pi+l,

where each map disjunction haa size at most t is at most
2 3f2.p12. Since pi —Sat where O < a < 8pi ni – A(ni)/n~ we

see that a is no greater than 1/2. It follows that since

t= 21/4 log S, Sat is no greater than 1/6.

The expected number of stars after applying the re-

striction p is n~pi = J(ni). Since the number of stars

is binomially distributed, for sufficiently large no, a ran-

dom p leaves at least the expected number of stars with

probability greater than 1/3. (See, for example, Lemma

4.1 of [BH]). Thus, there exists a restriction, p, leaving

ni+l stars, ni+l z ~(ni), such that l’i converted by P

results in a new proof Pi+l of PHP.,+l, where each

map disjunction has size at most t and the depth is

d – (i + 1). Now by the Conversion Lemma, Pi+l is also

‘y~+l-sound. m

Lemma 5.7. (Base Case Lemma) For t ~ n’, c <

1/2, there is no balanced, approximate proof of PHPn,
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which is I — ~-sound, where each formula is a t-

disjunction and the total size of the proof is 2t. In

particular, there is no proof of PHPn~., in H’ which

is (n~_z, 2, t~_z, 7~_z, S)-approximate.

Proof of Lemma 5.7. Recall that a ~-sound proof of

lPHPfl has the property that each inference is sound

with respect to at least the fraction 7 of the total num-

ber of critical truth assignments. The idea is to hit the

proof with another restriction of size no greater than

2t log S = 2t2, to obtain an approximate proof of the

pigeonhole principle on a subset, [m], of [n], with an

inference of the form [(1, 1) ~ O]. Such an inference

is O-sound. But this will be shown to contradict the

lemma which states that a (1 – ~)-sound proof of

PHP., when hit by a small restriction leaving m holes

unset, should yield a (1 – ~)-sound proof of PHPm.

We will obtain the restriction constructively, by walk-

ing up the proof, from the root (the “false” formula)

to the leaves (the pigeonhole clauses), setting variables

as we go along until we eventually force an inference

[(1, 1) ~ O]. The bottom formula is O. Consider the

precedents (there are at most two of them.) If both are

1, then we are done. Otherwise, either both are unset or

(at least) one is a zero. If either is zero, then continue

up that side. If both are unset, then force one of the two

antecedents to 1 by setting t variables; this is possible

because all formulas in the proof are t-disjunctions. If

this forces the other antecedent to O, then continue up

this side; otherwise, we can force this antecedent to 1 by

setting t additional variables. Continue in this fashion

until we force an inference [(1, 1) ~ O]. It is left to argue

that this will eventually happen since any two clauses

at the leaves can always be simultaneously forced to 1.

Note that each leaf formula is either an approximate

excluded middle axiom, or a pigeonhole clause, or a for-

mula which has already been set to “ 1“. There are 3

nontrivial cases to consider: (1) both leaf formulas are

instances of the approximate excluded middle axiom;

(2) one leaf formula is a pigeonhole clause and the other

is an instance of the approximate excluded middle ax-

iom; and (3) both leaf formulas are pigeonhole clauses.

Assume case (l): both formulas, ~1 and f2 are instances

of the approximate excluded middle axiom. We first

force ~1 to 1 by setting at most t variables. Because the

proof has height log S = t,at this point we have set at

most 2t2 variables. Now, consider the resulting proof,

over the new universe of size at least n — 2t2 > n/2.

By Corollary 4.2, each remaining approximate excluded

middle axiom is 1 + ~-sound. In particular, because .fz

isl+ ~-sound, it has not been forced to O. By setting

t additional variables, we can also force f2 to 1. We

can apply the same argument for case (2). Now assume

case (3): both ~1 and ~2 are pigeonhole clauses. By

examining the pseudo-complement applied to a pigeon-

hole clause, it is clear that any two such clauses can

simultaneously be set to 1.

Since the proof has height log S = t,and at each step

in our ascent up to the leaves we have set at most 2t

variables, we eventually force an inference [(1,1) ~ O]

by setting at most 2t2 variables. By lemma 5.1, we

should now have an approximate refut ation of 7PHPm,

where m = n — 2t2 ~ ~, and which is (1 — &)-sound.

Because & ~ 1/2, we know that each inference in the

approximate refutation of YPHPm is greater than l/2-

sound. However, we have forced a O-sound inference,

and hence we have reached a contradiction. I

6 Exponential Lower Bounds –

Proof 2.

We shall use PHPn in the form

Thus,

6.1

Let n

the size of PHPn is O(n3) and the depth is 4.

Complete systems of partial maps.

be a natural number and Do and DI two sets of

cardinalities n + 1 and n respectively. The following def-

inition introduces basic technical notions we shall work

with.

Definition A.

(a) ikf is the set of partial l–to-l maps from Do to

DI ,

M:= {h :~ Do + Dllh infective}.

214



(b)

(c)

For H ~ M, the norm IIHII of H is

1111][ := @hi.

(As his injective, Ihl = \domh] = Irnghl.)

A subset S ~ M is k-complete iff it satisfies four

conditions:

(i) S #0,

(ii) V6,6’e S,6#6’ac$U6’ @M,

(iii) VhCM, [hl+k~n~38 eS, hU6EM,

(iv) IISII ~ k.

For H, S ~ M, S is a refinement of H, written

Ha S,iff

V6c S,(3h~H, hU&EM)~(3h’GH, h’ q($).

Lemma A. Suppose Ha SaT for some H, S, T ~ M, S

is k-complete and IITII + k < n. Then H a T.

Proof. We have

VrET36ES, tiUTGM

by the k-completeness of S and by IITI I + k < n, and so

by. S ~ T it must be:

% E T%? E S, t? ~ T.

To prove the lemma let h c H, r c T be such that

h U r E M. Take 6’ G S s.t. 6’ ~ r. Hence also

hUu’GMand thus h’~8’forsomeh’ EH, by HaS.

We have h’ G T as we wanted to establish.

Definition B. For S, T ~ M, the set S x T, a common

refinement of S and T, is defined by:

SxT={8U~e M]some6GS, ~CTs.t

Vfi’ c S,T’ c T,-T(6’ur’ C 6U~)}.

In other words, it is the set of ~-minimal elements of

Moftheform 6Ur,66S, TET.

Lemma B. Let S, T ~ M and assume that S is k-

complete, T is l-complete, IISII + 1 ~ n, IITI[ + k < n

and k + 1< n. Then:

(a) S x T is k + Lcomplete.

(b) SaSx T, TaSx T.

Proof.

(a) Let$ ES. As18\+l <\\ Sll+l~nand Tis

i-complete, 6 U r G M for some r G T. Assume

8’ UT’ ~ 8Ur for some 6’ c S,r’ c T. Then

6 U & E M and, by the k-completeness of S, 6 = IS.

Analogously r = d. Hence 6 U 7 is ~-minimal and

thusin SxT, so SxT#(J.

Assume 6Ur, d’ UT’ c M for dUT, 6’ UT’ two distinct

elements of S x T.

Then either 6 # 6{ or T # r’ and hence either

8 U 6’ @M or r U r’ $! M by the completeness of S

and T resp.. In both cases (6 U r) U (6’ U T’) $?M

which verifies condition (b)(ii) of Definition A.

To verify (b)(iii) let Ihl + k + 1 ~ n. Then, as

IISII s k and IITII <1, by the completeness of S, T

there are6ES, ~CTs.t. hU6Ur CM. Then

clearly h U (6’ U r’) E M for some 6’ U r’ ~ 6 U ~,

an element of S x T.

Finally, as obviously [IS x T[l < IISII+ IITII < k+i,

condition (b) (iv) holds too.

(b) Leth GSandh U(8UT)GMfor some 6Ur C

S x T. Then, since S is k-complete, h = 6 and thus

h Q 6 U T. Hence S a S x T. Identically follows

T~Sx T.

Definition C. Let H, S ~ M. The projection of H on

S, S(H) in symbols, is:

S(H) = {6 G S13h G H,h~ 6}.

Lemma Cl. Let H, S, T ~ M, let S be k-complete,

\lTll+k ~nand Ha S~T. Then

T(S(H)) = T(H) and T(S) = T.

Proof. To see T(S(H)) ~ T(H) let r c T(S(H)).

Thenh~6~~for some8ES(H), h. GH. So~G

T(H) too.

To establish T(H) ~ T(S(H)) let r G T(H) and h ~

r for some h G H. Then, as in the proof of Lemma

A, for some 6 6 S, 6 ~ r. Hence h U 6 E M and, as

Ha S,h’ ~ &for someh’ GH. Sob’ ~6~T,i.e.

r c T(S(H)).

To see T(S) = T take H = {0}.

Lemma C2. Let H,S, T ~ M, Ha SaT,llS[[+l <

n, IITII + k < n, and let S be k-complete and let T be
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l-complete. Then S(n) = S iff Z’(iY) = T.

Proof. Assume first S(lif) = S, By Lemma Cl T(S) =

T and also T(S(H)) = T(H). Thus T(H)= T.

Now assume T(H) = 2’, and let 6 c S be given. By

the l-completeness of T and by 161+/ < IISII + 1 s n, $U

T c M for some r c T. By the assumption h ~ T, some

hEH. Hence 6Uh EMtooand thus, by Ha S,h’~ti

some other h’ E H. Therefore 6 E S(H).

Lemma C3. For any S, Hi G M, i G 1,

()s UH, =US(H,).
I I

Lemma C4. Let S ~ M be k-complete and SO, S1 ~ S

two disjoint sets, let T ~ M. Then:

T(SO) n T(S1) = 0.

Proof. For the sake of contradiction assume r G

T(SO) n T(S1 ). By Definition C, 60 ~ r and 61 G r

for some 60 E So, & E S1. But then 60 U & c M which

contradicts k-completeness of S, as necessarily 150# dl.

Lemma C5. Let S, T ~ M, S be k-complete, llTll+k ~

n, S4 T and So ~ S. Then:

T(S\So) = T\T(So).

Proof. By Lemma Cl, T(S)= T. By Lemma C4, T(S)

is a disjoint union of T(SO ) and T(S\So ). Hence

T(S\So) = T\T(So).

Now we approach the technical heart of the paper,

a space of random maps and a lemma, comming from

boolean complexity.

Definition D.

(a)

(b)

Let O < p <1. Then %3: is the probability space

of maps p c M, as defined in section 2.

For p, h G M, hp is undefined if h U p @ M and,

if h U p E M, domhp = domh\domp and hf’ =

hldomh~. Also, D( = Do\domp, D! = .Dl\rngp

and (n)~ = 111~1. For H ~ M,HP = {hp [ h G

H and hp is defined}.

Note: ~~hp undefined~? and “hp = 0 are different

things.

In the proof of the theorem we shall be forced to

move from a situation with n, Do, D1, M and some

H, S, T,... ~ M to a situation with (n) J’,Dg, D!, MP

and HP, S’, TP ,..., by choosing random p E 7Z~, while

preserving some properties. That is guaranteed by the

next lemma.

Lemma D1. Let H, S, K ~ M and p G M be arbitrary.

Then:

(a) H d S implies H@ a S’,

(b) S k-complete and Ipl + k ~ n implies that S’ is

k-complete,

(c) K = S(H) and H a S implies KP = SP(H~).

Proof.

(a)

(b)

(c)

Let h G H, 6 E S be such that hf’ U W c MP. Then

hU6EMand soh’~6forsomeh’c H. Then

(h’)J’ q $’.

S’ # 0 by k-completeness of S and by Ipl + k ~ n.

Let $fU& E MP for some 61,62 c S. Then& UC$2~

M so 61 = 62, i.e. 6[ = 6;. To verify the third

condition of Definition A(b) let Ih I + k s (n)~ for

some h G MJ’ ~ M. As Ipl = n – (n)J’ we have also

[hupl+k<n. Hence forsome6CS, (h Up) U&g

M. Butthenh U&e MJ’ ash= hp, Finally,

IISPI] < llSll ~ k.

Let@~KP,somekCK.Then~6 Sandh~fi

for some h E H, which gives KP E SP and hp ~ I@,

i.e. #’ G SJ’(HP).

Now let 6P c SP, hp E HP s.t. hp ~ iif ’. Then

hU6C Mand, as Ha S,h’ ~ 6for some other

h’ G H. So 6 G S(H), i.e. 8 E K, and therefore

8P ~ KP.

Lemma D2. Let H~M,llHll~t< s and O<p< 1.

Assume that p(n – 5s2) z 2 and t< p(n + 1). Then for

random p G %?: the statement: “there is 2s-complete

S ~ MP such that HP a S“ holds with probability at

least 1 – (64p4n3t)’.

For the choice of p = nc-l and t = s = nb such that

0<6< .$< $ and n sufficiently large this probability

is at least 1 – 2-n’ even if we add the condition Ipl s

n — ~pn (using Chernoff inequality).

Proof. H can be viewed as a t-disjunction. Also,

note that for any 1-1 decision tree T representing H 1P
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over D 1P, the maps defined by the paths of T is a h-

complete set S such that Hf’ a S where k = 6(H tp).

Thus, by Lemma 3.2, with probability at least 1 – az’,

there exists a 2s-complete S ~ MP where a satisfies

O < a ~ 8p2n312t 112. Plugging in this term, we obtain

the desired probability 1 – (64p4n3t)$. ~

6.2 The Lower Bound.

In this section, we will prove the following theorem.

Theorem. Let F be any Frege proof system and d any

natural number (greater than the depth of PHPn as

formalized in F). Then for all sufficiently large n every

depth d F-proof of PHPn must have the size at least

()

~-d
exp n .

Recall that we consider only formulas in the language

V,l, 0,1, pij, i c Do, j 6 D1,IDo = n+ l,IDII = n.

Let p be a disjunction. The reduced form of p will be

the expression V Vi where each pi is either a negated
ikI

formula or a variable and p is obtained from pi, i G 1 by

applying the binary V in a suitable order. Equivalently

pi can be determined as the maximal subformulas of p

whose depth is less than the depth of p.

Definition F. Let I’ be a set of formulas, I’ closedunder

subformulas. A k-evaluation of 17is a pair of mappings

(H, S).

H:r+P(M), s:r+P(M)

such that:

(1) for every p E I’, HP G S9 ~ M and S’v is k-

complete;

(2) HO = O)HI = {O]}S’O = SI = {0}; ffpij =
{{(ij)}};

~ij = {{(ij’)]li’ # ~,1 # j} u {{(ij)}};s

(3) if 1P E I’, then H.p = Sw\HP, S.v = S9;

(4) if p c r and i~I pi is the reduced form of p, then

uHvi ~ SP and Hv =

()

SP U HW, .

iEZ iEI

Let p E M. We define

(Pij)p = 1 if p(i) = j

O if i E dom(p), but p(i) #j,

O if j G rng(p), but p(?) = j for i’ #i,

pij otherwise.

If p is a formula, then @ is obtained by applying p to

all variables of p; if I’ is a set of formulas, then P’ =

bPkO E v.

Lemma F1. Let r be a set of formulas, p c M, and

Ipl + k S n. If (H, S) is a k-evaluation of r, then
(HP, SP) is a k-evaluation of rP.

Proof. - use Lemma Dl(a) and (b).

Lemma F2. Let d ~ 1, be an integer, O < c <$,0<

b < &d-l and let I’ be a set of formulas of depth d, I’

closed under subformulas. Suppose that [1?[ < 2n6 and

n is su~ffi$ently large. Then there exists p E M, Ip[ s

n—nc such that there exists a ~ 2n8-evaluation of

rp.

Proof. Proceed by induction.

(1)

(2)

For d = 1 the only formulas are single variables for

which we have HPij and SPij by (2) of the defini-

tion. Clearly SPij is 2-complete, hence we have a

2-evaluation, (p= 0).

Suppose that the lemma is true for d and let I’

be a set of formulas of depth d+ 1, I’ closed under

subformulas. Let Abe the formulas of r of depths

d. Let O < &d(= Ed+l-l) be given. By the induction

assumption we have a p’ E M, Ip’1 s n–n=a-l and a

~ 2n6-evaluation (H’, S’) of AP’. Let m = n – Ip’1,

thus m z n’d-’. We shall extend p’ to a suitable

p. This can be thought of as applying some p“ to

the restricted universe given by D~’ and D!’. By

Lemma F1 the restrictions of M’ and S’ will be s

2n$-evaluations of AI’’I’” again, thus we only need

to choose p“ so that we can extend this evaluation

to the whole r. For negation it is straightforward

for any p“. For disjunction we apply Lemma D2

with n, Do, D1 replaced by m, Dg’, D!’, and t =

s Lmc-l. Let ~ ~ r,p of depth d+ 1,= na)p= z

let V Vi be the reduced form of p. Note that n8 =

n ‘*-’”* ~ m~ and ~ < .s. By Lemma D2,

217



if n is sufficiently large, then with probability s

1 –2-n’, there is S ~ M@’J’” such that U(H&i)fl” W

and Ip”[ ~ m — 2pm = m — mc. If this’ is the case,

we extend (H’, S’) to p by defining

SP=Sand Hv=

()

S U(H&i)P” ,

i

Since [1’1 < 2n8, there is at least one p“ with the

above properties satisfied all for such p c I’. Then

we have also

lPl=lP’P’’l s~–m+m–m’ =~–mcsn–n”’.

Lemma F3. For every Frege system F there exists a

constant ~ with the following property. If (71, ..., 7~)

is an F-proof, (H, S) is a k-evaluation of the set of all

subformulas of the proof and k ~ n/f, then H7i = S7,

fori=l,.. .,t.

Proof. Let F be given. Let ~ be the maximal number

of subformulas in a rule of F plus 1. Clearly it suffices

to prove the following claim and apply induction:

Claim. Let

Pl(@l,. ... @m)j Pr(@l,(,@m).., @m)

PO(A) . . ..ATI)

be an instance of a rule of F. Let (H, S) be an

n/~-evaluation of the subformulas of PO(41, ..., $~),

. . .. 9-(01,... , h). Suppose that Ht = S( for ~ =

Pi(’@l,.. .,%), i = 1,...,7. Then Ht = SC for

t=po(+l,..., ~m).

Proof of Claim. Let (H, S) be given. Let I’ be the

set of all formulas of the form p(~l, ..., @~), where

xll,.. - , gm) a subformula of some ~i(ql, . . . . qm), i =

o , . . . . r. Let T be an ~-complete system such that

St d T for every ~ c I’. Such a system exists by Lemma

B. Note also that ][SJI + IITII s n for every f c r.

Suppose that Yt c l?. Then H?t = St\Ht, hence, by

Lemma C5, Z’(HAt) = T\T(Ht).

Suppose that a, ~, a V ~ e r. Let i~A 7i resp. ;YB 7i

be the reduced forms of a resp. /3. Hence, using Lemma

C3,

(w)usav(~H,i).Ha,p = Sa,p U Hvi

Now using Lemma C3 and using Lemma Cl twice we

get

(iG4 a, (id3 )

T(H.vP) =T(S’~VP u H7 ) u T(S.VP IJ H7i )

‘T(L!HJuT(AiH
‘T(s4klH~i))uTHJ)
=T(H@) U T(HP).

Furthermore, by Lemma Cl we have T(H~) = T(St) =

T, for~=pi(@l,..., ~m), i=l, r,sinceHC=SfC=Sf

and Se is complete.

Thus we have shown that the mapping f ~ T(HC)

of r into the Boolean algebra of subsets of T has the

following properties:

(1) it maps Y on the operation of the complement and

V on the operation of the union:

(2) itmaps the premises of the rule on T.

Since the rule is sound, we must have ‘T(H() = T

for< =po(~l,... , <m), hence by definition and Lemma

C2, Ht = S~(H~) = SC, which concludes the proof of

the claim and, consequently, of the lemma.

Lemma F4.

(i) Let (H, S) be a k-evaluation of the subformulas of

PHPn and suppose k ~ ~ – 3. Then HP~Pm = (?J,

(hence # SPHP. ).

(ii) Ifp CM, k<~ – 3, then the lemma holds for

PHP.P.

Proof.

(i) PHPn is a disjunction of formulas -p where

$0 ranges over ~p;k V ~pjk,~ # j E Do, k e

DI, V Pik, ~ C DO. We shall show that HP = Sv
keDl
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(ii)

for each such formula, hence lf.w = 0, thus

HPHPn = SPHP. ( u H.w) = SPHP. (0) = ~.

There are two cases, First, suppose that p is ~p~k V

~f)jk. By definition

H.Pi, = {{(L 0 (~’, ~)}[i’ # i, k’ # k};

H.Pj, = {{(~) 0, (~’, ~)}lj’ # j, k’ # k}.

Let T be the 3-complete set

{{(i, k’), (~, k“), (/, k)}li # 1 # j, k’ # k“ # k}

U{{(i, k), (j, k’}lk # k’}

U{{(i, k’), (j, k)}[k # k’}.

It can be easily verified that T(ll~Pik U H.P~, ) = T.

By Lemma B, we have some n/2-complete W which

is a common refinement of SWand T. Hence, by
Lemma C2, W(H.P,, U H.Pjk ) = W, and again by

Lemma C2,

H7P1~v~P~~ = S(H~Pib U H~Pj~) = S~Pi~v_Pj~ .

The second csse is when p is V pik. By definition
keDl

Hw = SW({(i, k)lk G DI}). But, clearly, {(i, k)[k G

D1 } is l-complete, hence

Sw({(i, k)lk G R}) = Sw.

The generalization is straightforward: if p contains

a variable which is changed to O or 1 by p, then all

the variables in p are fixed and one can easily check

that H.v = 0.

Now we are ready to prove our main result. Let F be

a Frege system, d z 4 (4 is the depth of PHPO), O <

6< 5-d+l let n be sufficiently large and let (Y1,. ... Yt)

be an F-proof of depth d and size ~ 2“’. Let f be

the constant associated to F by Lemma F3. Choose

an c such that e < ~ and $ < .s~-l. By Lemma F2,

there exists p G M, lpl ~ n – n“d-’ and a 2n3-evaluation

(H, S) of IV’, where I’ is the set of subformulas of the

proof (yl, . . . . %). Clearly (y; ,. ... -#) is an F-proof

with variables pij, i E D;, j G D; and rp is the set of

its subformulas. Let m = (n)f’ = n – IPI z ned-i. since

n is large, we have

Thus we can apply Lemma F3 (with n replaced by m

etc.) and Lemma F4. By the first one we get Ilvf = Sv?,

fori=l . . . . . t;by the second one, HPHPl = 0, whi~h

is different from SPHPg. Thus, (71, ..., Y*) cannot be

a proof of PHP~, i.e. any proof of PHP” of depth d

must have size at least 2“s.
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