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Abstract

We show that deterministic communication complexity can be superlogarithmic in the
partition number of the associated communication matrix. We also obtain near-optimal deter-
ministic lower bounds for the Clique vs. Independent Set problem, which in particular yields
new lower bounds for the log-rank conjecture. All these results follow from a simple adaptation
of a communication-to-query simulation theorem of Raz and McKenzie (Combinatorica 1999)
together with lower bounds for the analogous query complexity questions.

1 Introduction

The partition number of a two-party function F : X × Y → {0, 1} is defined by

χ(F ) := χ1(F ) + χ0(F )

where χi(F ) is the least number of rectangles (sets of the form A × B where A ⊆ X , B ⊆ Y)
needed to partition the set F−1(i). Yao [Yao79] observed that logχ(F ) is a lower bound on the
deterministic communication complexity of F and inquired about the exact relationship. For upper
bounds, it is known that O(log2 χ(F )) bits [AUY83], or even O(log2 χ1(F )) bits [Yan91], suffice.

Our results are as follows—here the notation Ω̃(m) hides factors polylogarithmic in m.

Theorem 1. There is an F with deterministic communication complexity Ω̃(log1.5 χ(F )).

Theorem 2. There is an F with deterministic communication complexity Ω̃(log2 χ1(F )).

Theorem 1 implies that the logarithm of the partition number does not characterize (up to constant
factors) deterministic communication complexity, which solves an old problem [KN97, Open Problem
2.10]. The previous best lower bound in this direction was about 2 · logχ(F ) due to Kushilevitz,
Linial, and Ostrovsky [KLO99]. In this work, we show—maybe surprisingly—that superlogarithmic
lower bounds can be obtained using known techniques!

Theorem 2 is essentially tight in view of the upper bound O(log2 χ1(F )) mentioned above. A
recent work [Göö15] exhibited a different F with conondeterministic communication complex-
ity Ω(log1.128 χ1(F )); this is quantitatively weaker than Theorem 2 and hence the two results are
incomparable. The question about the relationship between logχ1(F ) and deterministic communi-
cation complexity is sometimes referred to as the Clique vs. Independent Set problem; see [Juk12,
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§4.4] for an excellent overview. In particular, Theorem 2 implies that there exists a graph on n
nodes for which the Clique vs. Independent Set problem (Alice is given a clique and Bob is given
an independent set: do they intersect?) requires Ω̃(log2 n) communication. (The upper bound
O(log2 n) holds for all graphs.) Theorem 2 also gives improved lower bounds for the log-rank
conjecture [LS88] (see [Lov14] for a survey): Viewing rectangles as all-1 submatrices, we have
χ1(F ) ≥ rank(F ) where the rank is over the reals. Hence Theorem 2 implies a communication lower
bound of Ω̃(log2 rank(F )). The previous record was Ω(log1.63 rank(F )) due to Kushilevitz [Kus94].

1.1 Our approach

We follow a recurring theme (e.g., [NW95, RM99, SZ09, She11, HN12, CLRS13, GLM+15, LRS15]):

Instead of proving an ad hoc communication lower bound directly, we prove a lower
bound in the simpler-to-understand world of query complexity [BdW02], and then “lift”
the result over to the world of communication complexity.

The general idea is to start with a boolean function f : {0, 1}n → {0, 1} (called the outer function)
and then study a composed function F := f ◦ gn where g : X × Y → {0, 1} is a small two-party
function (called the gadget). More precisely, the communication problem is to compute, on input
x ∈ X n to Alice, and y ∈ Yn to Bob, the output

F (x, y) := f(g(x1, y1), . . . , g(xn, yn)).

Deterministic simulation. We use tools that were introduced already in 1997 by Raz and
McKenzie [RM99] (building on [EIRS01]). They proved a simulation theorem that converts a
deterministic protocol for F := f ◦ gn (where f is arbitrary but the gadget g is chosen carefully)
into a deterministic decision tree for f . Unfortunately, their result was originally formulated only in
case f was a certain “structured” search problem (canonical search problem associated with a DNF
tautology), and this is how their result has been applied subsequently [BEGJ00, Joh01]. However,
we observe that, with minor modifications, their proof actually works without any assumptions
on f . We provide (in Section 3) a self-contained and streamlined exposition (including some
simplifications) of the following version of their result—here Pcc(F ) denotes the deterministic
communication complexity of F and Pdt(f) denotes the deterministic decision tree complexity of f .

Theorem 3 (Simulation Theorem). There is a gadget g : X × Y → {0, 1} where the size of
Alice’s input is log |X | = Θ(log n) bits such that for all f : {0, 1}n → {0, 1} we have

Pcc(f ◦ gn) = Pdt(f) ·Θ(log n).

The gadget in the above can be taken to be the usual indexing function g : [m]×{0, 1}m → {0, 1}
where m := poly(n) and g(x, y) := yx. The upper bound in Theorem 3,

Pcc(f ◦ gn) ≤ Pdt(f) ·O(log n), (1)

follows simply because a communication protocol can always simulate a decision tree for f with an
overhead of factor Pcc(g) ≤ dlogme+ 1 = Θ(log n). Indeed, whenever the decision tree queries the
i-th input bit of f , Alice and Bob exchange Θ(log n) bits to compute the output g(xi, yi) of the i-th
gadget. The nontrivial part of Theorem 3 is to show that this type of protocol is optimal: there are
no shortcuts to computing f ◦ gn other than to “query” individual input bits of f in some order.
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Nondeterministic models. Recall that a nondeterministic protocol (e.g., [KN97, Juk12]) is a
protocol that is allowed to make guesses—an input is accepted iff there is at least one accepting
computation. Combinatorially, a nondeterministic protocol for F of communication cost k can be
visualized as a covering of the set F−1(1) using at most 2k (possibly overlapping) rectangles. Thus,
the nondeterministic communication complexity of F , denoted NPcc(F ) in analogy to the classical
(Turing machine) complexity class NP, is just the logarithm of the least number of rectangles needed
to cover F−1(1). A nondeterministic protocol is unambiguous if for each input, there is at most one
accepting computation. Combinatorially, this means that the associated rectangles covering F−1(1)
do not overlap. Hence we use the notation UPcc(F ) := dlogχ1(F )e in analogy to the classical
class UP. We also define coUPcc(F ) := dlogχ0(F )e, and, using the shorthand 2UP := UP ∩ coUP,
we define the two-sided measure 2UPcc(F ) := dlogχ(F )e ∈ max{UPcc(F ), coUPcc(F )} ±O(1).

Analogously, a nondeterministic decision tree (e.g., [Juk12, §14.2]) is a decision tree that is
allowed to make guesses. Formally, we treat a nondeterministic decision tree for f as a collection
of 1-certificates (accepting computations), that is, partial assignments to variables of f that force
the output of the function to be 1; the cost is the maximum number of variables fixed by a partial
assignment. In other words, a nondeterministic decision tree is just a DNF formula; the cost is the
maximum width of its terms. We denote by NPdt(f) the minimum cost of a nondeterministic decision
tree for f , that is, its DNF width. A nondeterministic decision tree is unambiguous if for each input,
there is at most one accepting certificate. We denote by UPdt(f) the minimum cost of an unambiguous
decision tree for f . We also let coUPdt(f) := UPdt(¬f) and 2UPdt(f) := max{UPdt(f), coUPdt(f)}.

Communication ↔ query. Generalizing (1), it is straightforward to check that a communication
protocol can simulate a corresponding type of decision tree also in the case of our nondeterministic
models. That is, for any f : {0, 1}n → {0, 1} and for the gadget g from Theorem 3 we have

Ccc(f ◦ gn) ≤ Cdt(f) ·O(log n) ∀C ∈ {2UP,UP}. (2)

(It is not known whether the corresponding lower bounds hold above—we conjecture they do—but
luckily we need only the upper bounds in this work.)

We can rephrase our communication results with the new notation defined above.

Theorem 1 (Rephrased). There is an F such that Pcc(F ) ≥ Ω̃(2UPcc(F )1.5).

Theorem 2 (Rephrased). There is an F such that Pcc(F ) ≥ Ω̃(UPcc(F )2).

Our goal is to prove analogous query complexity separations (in Section 2):

Theorem 4. There is an f such that Pdt(f) ≥ Ω̃(2UPdt(f)1.5).

Theorem 5. There is an f such that Pdt(f) ≥ Ω̃(UPdt(f)2).

Theorems 1–2 can now be derived by simply applying Theorem 3 and the upper bounds (2) to
Theorems 4–5. We only add that the functions in Theorems 4–5 will actually satisfy Pdt(f) = nΘ(1)

and hence the factor Θ(log n) overhead that is introduced by the gadget gets hidden in our Ω̃-notation.
A few comments about Theorems 4–5 are in order. Firstly, Savický [Sav02] has previously

exhibited a function with Pdt(f) ≥ Ω(2UPdt(f)1.261). This means that a quantitatively weaker (but
still superlogarithmic) version of Theorem 1 follows already by combining Savický’s result with
Theorem 3. Secondly, it is not hard to see that UPdt(f) ≥ deg(f) where deg(f) is the minimum
degree of a multilinear real polynomial that agrees with f on boolean inputs. (The communication
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analogue of this inequality, namely UPcc(F ) ≥ log rank(F ), was discussed above.) Consequently,
Theorem 5 gives the largest known gap between Pdt(f) and deg(f). The previous record was
Pdt(f) ≥ Ω(deg(f)1.63) by Kushilevitz [Kus94], and the current best upper bound in this context is
Pdt(f) ≤ O(deg(f)3) for all f by Midrijānis [Mid04].

The work [Göö15] also uses the “query separation plus simulation theorem” approach to exhibit
an F with coNPcc(F ) ≥ Ω(UPcc(F )1.128). The query separation in that paper involves a recursive
composition that is intricate and delicate, due to the one-sided nature of coNP and UP. In contrast,
our query separation is direct (without recursive composition) and much simpler to prove. However,
the deterministic simulation theorem we employ is a fair bit more complicated to prove than the
conondeterministic simulation theorem used in [Göö15] (which is a relatively simple special case of
a general simulation theorem from [GLM+15]).

2 Query Separations

In proving the query complexity separations it is convenient to work with functions f : Σn → {0, 1}
that have a larger-than-boolean input alphabet Σ. For such functions the understanding is that it
still costs one query for a decision tree to learn a particular input variable. At the end, we may
always convert such an f back to a boolean function f ◦ hn where h : {0, 1}dlog |Σ|e → Σ is some
surjection. The following trivial bounds suffice for us:

Cdt(f) ≤ Cdt(f ◦ hn) ≤ Cdt(f) · dlog |Σ|e, ∀C ∈ {P, 2UP,UP}. (3)

We start with the proof of Theorem 5 since the proof of Theorem 4 uses Theorem 5 (as a black box).

2.1 Proof of Theorem 5

Motivating example. Let n := k2, and consider the function f : {0, 1}k×k → {0, 1} defined on
boolean matrices M ∈ {0, 1}k×k such that f(M) = 1 iff M contains a unique all-1 column. We
claim that

NPdt(f) ≤ 2k − 1,

Pdt(f) ≥ k2.

For the upper bound, consider 1-certificates that read the unique all-1 column and a single 0-entry
from each of the other columns. (Note that this collection of certificates is not unambiguous!) For
the lower bound, it suffices to give an adversary argument (see, e.g., [Juk12, §14]), that is, a strategy
to answer queries made by a decision tree such that even after k2 − 1 queries, the output of the
function is not yet determined. Here is the strategy: Suppose the decision tree queries Mij . If Mij

is the last unqueried entry in the j-th column, answer Mij = 0. Otherwise answer Mij = 1. It is
straightforward to check that this strategy forces the decision tree to query all of the entries.

Actual gap example. We modify the function described above with the goal of establishing

UPdt(f) ≤ 2k − 1,

Pdt(f) ≥ k2.

The modified function, which we still call f , has input variables that take on values from the
alphabet Σ := {0, 1} × ([k]× [k] ∪ {⊥}). Here [k]× [k] ∪ {⊥} is a set of pointer values, where we
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interpret an entry Mij = (mij , pij) ∈ Σ as pointing to another entry Mpij given that pij 6= ⊥. If
pij = ⊥ then we have a null pointer. We define the function f : Σk×k → {0, 1} by describing an
unambiguous decision tree computing it. (We give an “algorithmic” definition rather than writing a
list of certificates.)

Unambiguous decision tree: Nondeterministically guess a column index j ∈ [k]. Read
the entries Mij = (mij , pij) for i ∈ [k] while checking that mij = 1 for all i and that
pij 6= ⊥ for at least one i. Let i be the first index for which pij 6= ⊥. Next, iteratively
follow pointers for k − 1 steps starting at (i1, j1) := pij . Namely, at the s-th step, read
Mis,js and if s ≤ k−2 then check that pis,js 6= ⊥ and define (is+1, js+1) := pis,js . Finally,
check that the resulting sequence (i1, j1), . . . , (ik−1, jk−1) visits all but the j-th column
(i.e., {j1, . . . , jk−1} = [k] r {j}) and that mis,js = 0 for all s ∈ [k − 1].

Thus the upper bound holds by construction. For the lower bound, we use the below strategy; here
a query to an entry Mij is called critical if Mij is the last unqueried entry in its column.

Adversary strategy: Always answer queries with (1,⊥) unless the query is critical. On
the first critical query, answer (0,⊥). On subsequent critical queries, answer (0, p) where
p ∈ [k]× [k] points to where the previous critical query took place.

The function value remains undetermined after k2−1 queries, because we can answer the last (k2-th)
query with (0,⊥) to make the function evaluate to 0, or with (1, p), where p is as above, to make the
function evaluate to 1. This proves Pdt(f) ≥ Ω(UPdt(f)2) for a function with a non-boolean alphabet.
If we convert f into a boolean function f ′ := f ◦ hn (where n := k2) as in (3) we end up with the
claimed gap Pdt(f ′) ≥ Ω̃(UPdt(f ′)2) since the conversion introduces only some dlog |Σ|e = Θ(log n)
factors.

2.2 Proof of Theorem 4

Let g be given by Theorem 5 such that Pdt(g) = Θ̃(q2) where q := UPdt(g). We define f := AND◦gq,
that is, f(z1, . . . , zq) = 1 iff g(zi) = 1 for all i ∈ [q]. We claim that

2UPdt(f) ≤ Õ(q2),

Pdt(f) ≥ Ω̃(q3).

For the upper bound, an unambiguous certificate for an input z will contain unambiguous 1-
certificates for g(zi) = 1 for all i ∈ [`− 1] where ` is the least index such that g(z`) = 0, or ` := q+ 1
if no such index exists. If ` ≤ q we also include an unambiguous 0-certificate for g(z`) = 0 that
just mimics the execution of an optimal decision tree for g on input z`. In other words, we use
the fact that coUPdt(g) ≤ Pdt(g). The cost is at most (`− 1) · UPdt(g) + Pdt(g) ≤ Õ(q2). For the
lower bound, we have Pdt(AND ◦ gq) = Pdt(AND) · Pdt(g) = q · Θ̃(q2) = Θ̃(q3) by the basic fact
(e.g., [Sav02, Lemma 3.2]) that Pdt behaves multiplicatively with respect to composition.

3 Raz–McKenzie Simulation

The goal of this section is to give a self-contained, streamlined, and somewhat simplified proof of
the Simulation Theorem that works without any assumptions on the outer function

f : {0, 1}N → {0, 1}.
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(Here we use N for the input length instead of n, which we reserve for later use.) In fact, f can be
taken to be anything: a partial function, a search problem (a general relation), or have a non-boolean
codomain. However, we stick with the boolean function case for concreteness.

The gadget g : [m]× {0, 1}m → {0, 1}, where m := N20, is chosen to be the indexing function
defined by g(x, y) := yx. Recall that for the composed function F := f ◦ gN , Alice’s input is
x := (x1, . . . , xN ) ∈ [m]N and Bob’s input is y := (y1, . . . , yN ) ∈ ({0, 1}m)N . We denote by
zi := g(xi, yi) the i-th input bit of f so that F (x, y) := f(z1, . . . , zN ).

We prove the nontrivial part of the Simulation Theorem, namely the lower bound

Pcc(f ◦ gN ) ≥ Pdt(f) · Ω(logm).

3.1 High-level overview

Once and for all, we fix a deterministic protocol for F := f◦gN of communication cost k ≤ o(N ·logm).
The basic strategy is to use the protocol to build a decision tree of cost O(k/ logm) for evaluating
the outer function f on an unknown input z ∈ {0, 1}N . The simulation algorithm proceeds in
iterations, where in each iteration we either descend one level in the communication protocol tree
(by making the protocol send a bit), or descend one level in the decision tree (by querying a bit of z).
To show the simulation is correct, we maintain invariants ensuring that when we reach a leaf in the
protocol tree, the value it outputs must be the correct value of f(z) (hence we can make the current
node in the decision tree a leaf). To show the simulation is efficient, we use a potential function
argument showing that in each “communication iteration” the potential increases by at most O(1),
and in each “query iteration” the potential decreases by at least Ω(logm), and hence the number of
query iterations is at most O(k/ logm) since there are at most k communication iterations.

In a little more detail, let Rv denote the rectangle associated with the current node v in the
communication protocol tree. The simulation maintains a “cleaned up” subrectangle A×B ⊆ Rv
with the property that the set of all outputs of gN over points in A × B is exactly the set of
all possible z’s that are consistent with the results of the queries made so far. This ensures the
correctness when we reach a leaf. The analysis has two key lemmas: the Thickness Lemma helps us
update A×B in a communication iteration, and the Projection Lemma helps us update A×B in a
query iteration.

To determine which type of iteration should be next, we examine, for each unqueried coordinate,
how predictable it is (in some sense) from the values of the other unqueried coordinates of gN within
A×B. If no coordinate is too predictable, then it is “safe” to have a communication iteration; the
protocol partitions the rectangle Rv into two sides, and we restrict to the side that is “bigger” (from
the perspective of the unqueried coordinates), then use the Thickness Lemma to do some further
clean-up that restores our invariants. On the other hand, if say the i-th coordinate is too predictable
from the others, then its value (within A×B) is in danger of becoming a function of the values of
the other coordinates (which would violate our invariants). In this case, we query zi while we are
still able to accommodate either possible value for it (which might become impossible if we delayed
querying zi), and the Projection Lemma allows us to clean up A×B and restore our invariants.

We describe our notation and state the two key lemmas in Section 3.2. Then we describe the
simulation algorithm itself in Section 3.3 and analyze it in Section 3.4. Finally, we provide the
proofs of the two key lemmas in Section 3.5 and Section 3.6.
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3.2 Notation and lemmas

For a node v in the communication protocol tree, let Rv := Xv × Y v denote its associated rectangle,
let Xv,b ⊆ Xv be the set of Alice’s inputs on which the bit b would be sent (if Alice sends), and let
Y v,b ⊆ Y v be the set of Bob’s inputs on which the bit b would be sent (if Bob sends).

Supposing A ⊆ [m]n and B ⊆ ({0, 1}m)n for some n ≤ N , we make the following definitions.

• Size of sets: Let α(A) be such that |A| = 2−α(A) · |[m]n|, and let β(B) be such that
|B| = 2−β(B) ·

∣∣({0, 1}m)n
∣∣ (assuming |A|, |B| > 0).

• Projections: If I ⊆ [n] then let AI :=
{

(xi)i∈I : (x1, . . . , xn) ∈ A for some (xj)j∈[n]rI
}
⊆

[m]|I| be the projection of A onto the coordinates in I, and similarly BI :=
{

(yi)i∈I :

(y1, . . . , yn) ∈ B for some (yj)j∈[n]rI
}
⊆ ({0, 1}m)|I|.

• Pruning: If U ⊆ [m], V ⊆ {0, 1}m, and i ∈ [n], then let Ai,U :=
{
x ∈ A : xi ∈ U

}
and

Bi,V :=
{
y ∈ B : yi ∈ V

}
.

• Auxiliary graph: If i ∈ [n] then let Graphi(A) be the bipartite graph defined as follows.
The left nodes are [m], the right nodes are [m]n−1, and each tuple x := (x1, . . . , xn) ∈ A is
viewed as an edge between the left node xi and the right node (x1, . . . , xi−1, xi+1, . . . , xn).
Note that A[n]r{i} is the set of nonzero-degree right nodes.

• Average/minimum degree: Let AvgDegi(A) := |A|/|A[n]r{i}| and MinDegi(A) be, respec-
tively, the average and minimum degrees of a nonzero-degree right node in Graphi(A).

• Thickness: We say A is thick iff MinDegi(A) ≥ m17/20 for all i ∈ [n].

The following lemma is helpful for when we need to let the communication protocol send a bit.

Lemma 6 (Thickness Lemma). If n ≥ 2 and A ⊆ [m]n is such that AvgDegi(A) ≥ d for all
i ∈ [n], then there exists an A′ ⊆ A such that

(1) MinDegi(A
′) ≥ d/2n for all i ∈ [n],

(2) α(A′) ≤ α(A) + 1.

The following lemma is helpful for when we need to have the decision tree query a bit.

Lemma 7 (Projection Lemma). Suppose n ≥ 2, A ⊆ [m]n is thick, and B ⊆ ({0, 1}m)n is such
that β(B) ≤ m2/20. Then for every i ∈ [n] and every b ∈ {0, 1} there exists a b-monochromatic
rectangle U × V ⊆ [m]× {0, 1}m in g such that

(1) Ai,U[n]r{i} is thick,

(2) α
(
Ai,U[n]r{i}

)
≤ α(A)− logm+ log AvgDegi(A),

(3) β
(
Bi,V

[n]r{i}
)
≤ β(B) + 1.

3.3 Description of the simulation algorithm

The Simulation Theorem is witnessed by Algorithm 1, which is a decision tree for f that employs
the hypothesized communication protocol for F . Algorithm 1 uses the following variables: v is a
node in the communication protocol tree, I ⊆ [N ] is the set of unqueried coordinates, A ⊆ [m]N

is a set of inputs to Alice, and B ⊆ ({0, 1}m)N is a set of inputs to Bob. We now exposit what
Algorithm 1 is doing, with reference to the high-level overview in Section 3.1.
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Algorithm 1: Simulation algorithm for Theorem 3

Input: z ∈ {0, 1}N
Output: f(z)

1 initialize v = root, I = [N ], A = [m]N , B = ({0, 1}m)N

2 while v is not a leaf do

3 if AvgDegi(AI) ≥ m19/20 for all i ∈ I then
4 let v0, v1 be the children of v
5 if Alice sends a bit at v then
6 let b ∈ {0, 1} be such that α

(
(A ∩Xv,b)I

)
≤ α(AI) + 1

7 let A′ ⊆ (A ∩Xv,b)I be such that
8 (1) A′ is thick

9 (2) α(A′) ≤ α
(
(A ∩Xv,b)I

)
+ 1

10 update A =
{
x ∈ A ∩Xv,b : (xi)i∈I ∈ A′

}
and v = vb (so now AI = A′)

11 else if Bob sends a bit at v then
12 let b ∈ {0, 1} be such that β

(
(B ∩ Y v,b)I

)
≤ β(BI) + 1

13 update B = B ∩ Y v,b and v = vb
14 end

15 else if AvgDegi(AI) < m19/20 for some i ∈ I then
16 query zi
17 let U × V ⊆ [m]× {0, 1}m be a zi-monochromatic rectangle of g such that

18 (1) Ai,UIr{i} is thick

19 (2) α
(
Ai,UIr{i}

)
≤ α(AI)− (logm)/20

20 (3) β
(
Bi,V
Ir{i}

)
≤ β(BI) + 1

21 update A = Ai,U , B = Bi,V , and I = I r {i}
22 end

23 end
24 output the same value that v does

On input z ∈ {0, 1}N , the node variable v traces a root-to-leaf path (of length at most k) in
the protocol tree, which is used to determine which zi bits to query, and when. The set A × B
is the “cleaned up” subrectangle of Rv (so we maintain A ⊆ Xv and B ⊆ Y v). We maintain the
invariant that every (x, y) ∈ A× B is consistent with the results of the queries made so far (i.e.,
gN (x, y) agrees with z on queried coordinates), or in other words, A{i} ×B{i} is zi-monochromatic
in g for i ∈ [N ] r I. Thus we never need to worry about any coordinate that has previously been
queried. The interesting structure in the sets A and B is what they look like on the unqueried
coordinates, i.e., the projections AI and BI . Since all 2|I| settings of the unqueried bits of z remain
possible, we must maintain that all these settings are indeed possible outcomes of g|I| on points
in AI × BI . In fact we maintain a stronger property that turns out to entail this, namely that
AI is thick (MinDegi(AI) ≥ m17/20 for every i ∈ I) and BI is “large” (as measured by β(BI)).
The potential function is α(AI); i.e., we look at the set of all projections of elements of A to the
unqueried coordinates, and we consider how large this set is compared to its domain [m]|I|. Smaller
potential corresponds to a larger set.

We caution that the sets A and B in the statements of the Thickness Lemma and Projection
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Lemma will not be the A ⊆ [m]N and B ⊆ ({0, 1}m)N maintained by the algorithm, but rather will
be subsets of the projected spaces ([m]N )I = [m]n and (({0, 1}m)N )I = ({0, 1}m)n, where n is the
size of I.

Lines 2–23 are the main loop, with each iteration being either a “communication iteration” (if
line 3 holds) in which we update v,A,B, or a “query iteration” (if line 15 holds) in which we update
I, A,B. The type of iteration is determined by mini∈I AvgDegi(AI), which is our measure of how
much the values of the unqueried coordinates are unpredictable from each other within A×B.

In a communication iteration, there are two subcases depending on whether it is Alice’s turn (line
5) or Bob’s turn (line 11) to communicate. In either subcase, the bit of communication partitions
Rv (and hence A×B) into two sides, and we restrict our attention to the “bigger” side (lines 6 and
12) by having the communication protocol “send” the corresponding bit. Here, “bigger” is actually
in terms of the projections AI and BI . This ensures the potential does not increase too much if
Alice sends, and BI stays large enough if Bob sends. However, if Alice sends, then the restriction to
the bigger side may destroy the thickness invariant, and the Thickness Lemma is used (lines 7–9) to
repair this.

In a query iteration, we have the decision tree query a bit zi for which AvgDegi(AI) is too small
(line 16). Then we can use the Projection Lemma (lines 17–20) to restrict A×B to a subrectangle
on which the i-th output bit of gN is fixed to zi (for either possible value of zi ∈ {0, 1}); this
exploits the fact that MinDegi(AI) is large by the thickness invariant. Furthermore, the fact that
AvgDegi(AI) is small allows us to ensure a Ω(logm) decrease in potential (i.e., the density of AI
increases). (Although the absolute size of AI decreases, recall that the measure α(AI) is relative to
the current set I; by fixing the i-th coordinate, I becomes I r {i}, and since we fixed a coordinate
of small average degree, the density projected to I r {i} will increase a lot.)

3.4 Analysis of the simulation algorithm

We now formally argue that Algorithm 1 witnesses the Simulation Theorem (assuming the Thickness
Lemma and the Projection Lemma). Assuming lines 7–9 and 17–20 always succeed (which we argue
below), in each iteration one of the following three cases occurs.

• If lines 3 and 5 hold, then α(AI) increases by ≤ 2 and β(BI) stays the same.
• If lines 3 and 11 hold, then α(AI) stays the same and β(BI) increases by ≤ 1.
• If line 15 holds, then α(AI) decreases by ≥ (logm)/20 and β(BI) increases by ≤ 1.

Since there are at most k iterations in which line 3 holds, and since α(AI) is initially 0 and always
nonnegative, it follows that there are at most 40k/ logm iterations in which line 15 holds, and
hence the decision tree makes at most 40k/ logm queries. Moreover, since there are at most
k + 40k/ logm ≤ m2/20 iterations, and β(BI) is initially 0, at all times we have β(BI) ≤ m2/20.

Claim 8. Lines 7–9 and 17–20 always succeed, and the following loop invariants are maintained.

(i) AI is thick.
(ii) A×B ⊆ Rv.

(iii) g(xi, yi) = zi for all (x, y) ∈ A×B and all i ∈ [N ] r I.

Proof. The invariants trivially hold initially. Now assume they hold at the beginning of an iteration.
Suppose lines 3 and 5 hold. For all i ∈ I, we have AvgDegi

(
(A∩Xv,b)I

)
=
∣∣(A∩Xv,b)I

∣∣ / ∣∣(A∩
Xv,b)Ir{i}

∣∣ ≥ (|AI |/2) / |AIr{i}| = AvgDegi(AI)/2 ≥ m19/20/2. Thus we may apply the Thickness

Lemma with (A ∩ Xv,b)I (in place of A in the lemma), I identified with [n], and d := m19/20/2
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(noting that d/2n ≥ m19/20/4m1/20 ≥ m17/20) to conclude that lines 7–9 succeed, and hence (i) is
maintained. Also, (ii) is maintained by line 10. If lines 3 and 11 hold, then (i) is trivially maintained
and (ii) is maintained by line 13. Supposing line 3 holds, in either case (iii) is maintained since the
new A×B is a subset of the old A×B and I is unchanged.

Now suppose line 15 holds. Since (i) holds and β(BI) ≤ m2/20,1 we may apply the Projection
Lemma with AI and BI (in place of A and B in the lemma), I identified with [n], and b := zi
(noting that − logm+ log AvgDegi(AI) ≤ −(logm)/20) to conclude that lines 17–20 succeed, and
hence (i) is maintained. The new A×B is a subset of the old A×B; therefore, (ii) is maintained
since v is unchanged, and (iii) is maintained since U × V is zi-monochromatic in g.

Let v be the leaf reached at termination. We claim that there exists an (x, y) ∈ Rv such that
gN (x, y) = z, and hence the algorithm indeed outputs f(z) = F (x, y). Imagine that instead of
terminating, the algorithm continues by executing lines 16–21 repeatedly, once for each remaining
coordinate i ∈ I in arbitrary order until only one coordinate remains unqueried—except that we
ignore condition (2) (line 19). In this “extended” execution there are a total of k +N − 1 ≤ m2/20

iterations, so we have β(BI) ≤ m2/20 at all times, and thus as in the proof of Claim 8, the application
of the Projection Lemma always succeeds and invariants (i), (ii), (iii) are maintained.

Consider the state (i.e., v, I, A,B) at the end of this extended execution. Then I is a singleton,

say {1}, and |A{1}| = MinDeg1(A{1}) ≥ m17/20 by (i), and |B{1}| ≥ 2−m
2/20 · 2m = 2m−m

2/20
. Hence

A{1} ×B{1} is not monochromatic in g, since the largest monochromatic rectangle with rows A{1}
has at most 2m−|A{1}| < |B{1}| columns. Pick an (x1, y1) ∈ A{1} × B{1} such that g(x1, y1) = z1,
and pick an (x, y) ∈ A×B with this value of (x1, y1). By (ii) we have (x, y) ∈ Rv, and by (iii) we
also have g(xi, yi) = zi for all i ∈ [N ] r {1}, and thus gN (x, y) = z. The correctness is established.

3.5 Proof of the Thickness Lemma

The Thickness Lemma is witnessed by Algorithm 2, which constructs a sequence A = A0 ⊇ A1 ⊇
A2 ⊇ · · · that converges to the desired set A′.

Algorithm 2: Algorithm for Lemma 6

1 let A0 := A
2 for j = 0, 1, 2, . . . do
3 if MinDegi(A

j) ≥ d/2n for all i ∈ [n] then stop and output A′ := Aj

4 let i be such that MinDegi(A
j) < d/2n, and assume i = 1 for convenience of notation

5 let (x∗2, . . . , x
∗
n) be a nonzero-degree right node in Graph1(Aj) with degree < d/2n

6 let Aj+1 := Aj r {(x1, x
∗
2, . . . , x

∗
n) : x1 ∈ [m]

}
7 end

If the algorithm terminates, then A′ satisfies (1). We just need to argue that it does terminate,
moreover with |A′| ≥ |A|/2 (which is equivalent to (2)). In an iteration, it obtains Graphi(A

j+1)
from Graphi(A

j) by removing all edges incident to some right node in Aj[n]r{i}. Hence
∣∣Aj+1

[n]r{i}
∣∣ =∣∣Aj[n]r{i}

∣∣− 1, and for every i′ 6= i,
∣∣Aj+1

[n]r{i′}
∣∣ ≤ ∣∣Aj[n]r{i′}

∣∣. Therefore, the total number of iterations

is at most
∑n

i=1 |A[n]r{i}| =
∑n

i=1 |A|/AvgDegi(A) ≤ n · |A|/d. Since |Aj+1| > |Aj | − d/2n in each

1There is no circular reasoning here; in showing that β(BI) ≤ m2/20 we just needed that lines 7–9 and 17–20
succeeded in all iterations before this one.
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iteration, in total at most (n · |A|/d) · (d/2n) = |A|/2 elements of A can be removed throughout the
execution. Thus the algorithm must terminate with |A′| ≥ |A|/2.

3.6 Proof of the Projection Lemma

Assume i = n for convenience of notation, so Ai,U[n]r{i} = An,U[n−1] =
{

(x1, . . . , xn−1) : (x1, . . . , xn) ∈
A for some xn ∈ U

}
(which is the set of right nodes in Graphn(A) that have a neighbor in U) and

Bi,V
[n]r{i} = Bn,V

[n−1] =
{

(y1, . . . , yn−1) : (y1, . . . , yn) ∈ B for some yn ∈ V
}

.

We claim that if we take a uniformly random U ⊆ [m] of size m7/20 and let V :=
{
w ∈ {0, 1}m :

wj = b for all j ∈ U
}

, then

(0) An,U[n−1] = A[n−1] with probability greater than 1− 2−m
3/20

,

(1) A[n−1] is thick,
(2) α(A[n−1]) ≤ α(A)− logm+ log AvgDegn(A),

(3) β
(
Bn,V

[n−1]

)
≤ β(B) + 1 with probability greater than 2−m

3/20
.

The Projection Lemma then follows by a union bound. (We mention that our argument for property
(3) is substantially different from and simpler than the corresponding part of the proof in [RM99].)

Property (0). For every nonzero-degree right node (x1, . . . , xn−1) ∈ A[n−1] of Graphn(A), let
Lx1,...,xn−1

:=
{
xn ∈ [m] : (x1, . . . , xn−1, xn) ∈ A

}
denote the set of all left nodes adjacent to

it. We have |Lx1,...,xn−1 | ≥ MinDegn(A) ≥ m17/20, and (x1, . . . , xn−1) ∈ An,U[n−1] iff U intersects

Lx1,...,xn−1 . Since U has size m7/20, the probability U does not intersect Lx1,...,xn−1 is at most

(1 −m17/20/m)m
7/20 ≤ e−m

4/20
. Since the number of elements (x1, . . . , xn−1) ∈ A[n−1] is at most

mn−1 ≤ 2m
1/20·logm, by a union bound the probability that one of them is not in An,U[n−1] is at most

2m
1/20·logm · e−m4/20

< 2−m
3/20

.

Property (1). For this it suffices to show that MinDegj(A[n−1]) ≥ MinDegj(A) for all j ∈ [n− 1].
Assume j = n− 1 for convenience of notation. For every nonzero-degree right node (x1, . . . , xn−2) in
Graphn−1(A[n−1]), there exists xn−1 such that (x1, . . . , xn−2, xn−1) ∈ A[n−1]. Thus by the definition
of A[n−1] there exists xn such that (x1, . . . , xn−2, xn−1, xn) ∈ A. Therefore, by the definition of
MinDegn−1(A) applied to the nonzero-degree right node (x1, . . . , xn−2, xn) of Graphn−1(A), we have
that (x1, . . . , xn−2, x

′
n−1, xn) ∈ A holds for at least MinDegn−1(A) different elements x′n−1. All these

elements satisfy (x1, . . . , xn−2, x
′
n−1) ∈ A[n−1]. Hence, the degree of the right node (x1, . . . , xn−2) in

Graphn−1(A[n−1]) is at least MinDegn−1(A).

Property (2). We have |A[n−1]| = |A|/AvgDegn(A) and |[m]n−1| = |[m]n|/m, and hence
α(A[n−1]) = log

(
|[m]n−1|/|A[n−1]|

)
= log

(
|[m]n|/|A|

)
− log

(
m/AvgDegn(A)

)
= α(A) − logm +

log AvgDegn(A). (Thus (2) holds with equality, but we only needed the inequality.)

Property (3). We first state a claim, whose proof we give later.

Claim 9. For every W ⊆ {0, 1}m with β(W ) ≤ m11/20, we have PrU [V ∩W 6= ∅] ≥ 3/4.
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In particular, for every W ⊆ {0, 1}m we have PrU [V ∩W 6= ∅] ≥ 3
4 · |W |/2

m−2−m
11/20

. For every
(y1, . . . , yn−1) ∈ ({0, 1}m)n−1, let Wy1,...,yn−1

:=
{
yn ∈ {0, 1}m : (y1, . . . , yn−1, yn) ∈ B

}
. Letting

(y1, . . . , yn−1) be uniformly random in ({0, 1}m)n−1, we have

EU

[∣∣Bn,V
[n−1]

∣∣/2m(n−1)
]

= Ey1,...,yn−1 PrU

[
(y1, . . . , yn−1) ∈ Bn,V

[n−1]

]
= Ey1,...,yn−1 PrU

[
V ∩Wy1,...,yn−1 6= ∅

]
≥ Ey1,...,yn−1

(
3
4 ·
∣∣Wy1,...,yn−1

∣∣/2m − 2−m
11/20

)
= 3

4 · |B|/2
mn − 2−m

11/20

≥ 5
8 · |B|/2

mn

where the last line follows since |B|/2mn = 2−β(B) ≥ 2−m
2/20

. It follows that with probability at

least 1
8 · |B|/2

mn > 2−m
3/20

over U , we have
∣∣Bn,V

[n−1]

∣∣/2m(n−1) ≥ 1
2 · |B|/2

mn, which is equivalent to

(3). This finishes the proof of the Projection Lemma, except for the proof of Claim 9.
Recall that b ∈ {0, 1} is fixed. For W ⊆ {0, 1}m and j ∈ [m], define W j := {w ∈ W : wj = b}

and Bad(W ) := {j ∈ [m] : |W j | < |W |/4}.

Claim 10. For every W ⊆ {0, 1}m, |Bad(W )| ≤ 6β(W ).

Proof of Claim 10. Let w be a random variable uniformly distributed over W , and let H(·) denote
Shannon entropy. There are at most 6β(W ) coordinates j such that Pr[wj = b] < 1/4, since otherwise
H(w) ≤

∑m
j=1H(wj) < 6β(W ) ·H(1/4) + (m− 6β(W )) · 1 ≤ m− 6β(W ) · (1− 0.82) ≤ m− β(W ),

contradicting the fact that H(w) = log |W | = m− β(W ).

Proof of Claim 9. Suppose we sample U := {j1, . . . , jm7/20} by iteratively picking each ji+1 ∈
[m] r {j1, . . . , ji} uniformly at random. We write V as VU , as a reminder that it depends on U .
For i ∈ {0, 1, . . . ,m7/20}, define Wi :=

{
w ∈ W : wj1 = wj2 = · · · = wji = b

}
, and note that

W0 = W , Wi+1 = W
ji+1

i , and Wm7/20 = VU ∩W . Let Ei+1 denote the event that ji+1 6∈ Bad(Wi),
and note that if Ei+1 occurs then β(Wi+1) ≤ β(Wi) + 2. Thus if E1 ∩ · · · ∩ Em7/20 occurs then
β(VU ∩W ) ≤ β(W ) + 2m7/20 <∞ and hence VU ∩W 6= ∅. Conditioned on any particular outcome
of j1, . . . , ji for which E1∩· · ·∩Ei occurs, by Claim 10 we have |Bad(Wi)| ≤ 6β(Wi) ≤ 6(β(W ) +2i)
and thus

Pr
[
Ei+1 | j1, . . . , ji

]
≥ 1− |Bad(Wi)|

m− i
≥ 1− 6(β(W ) + 2i)

(6/7)m
≥ e−14(β(W )+2i)/m

where the last inequality uses the fact that 1− x ≥ e−2x if x ∈ [0, 1/2], applied to x := 6(β(W ) +
2i)/(6/7)m ≤ 7(m11/20 + 2m7/20)/m ≤ 1/2. We conclude that

Pr[VU ∩W 6= ∅] ≥ Pr
[
E1 ∩ · · · ∩ Em7/20

]
=
∏m7/20−1
i=0 Pr

[
Ei+1 | E1 ∩ · · · ∩ Ei

]
≥
∏m7/20−1
i=0 e−14(β(W )+2i)/m

= exp
(
−
∑m7/20−1

i=0 14(β(W ) + 2i)/m
)

= exp
(
−14
m

(
β(W )m7/20 + (m7/20 − 1)m7/20

))
≥ exp

(
−14

(
m−2/20 +m−6/20

))
≥ 3/4.
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4 Conclusion and Open Problems

Regarding Theorem 1, there remains a gap between the upper bound O(2UPcc(F )2) and the lower
bound Ω̃(2UPcc(F )1.5)—and of course the state of affairs for query complexity is the same.

There is not much room for improvement in Theorem 2, since an O(UPcc(F )2) upper bound
is known. A closer inspection of our proof shows that Pcc(F ) ≥ Ω

(
UPcc(F )2/ log3 UPcc(F )

)
. The

lower bound can be improved to Ω
(
UPcc(F )2/ log2 UPcc(F )

)
by letting h : {0, 1}O(logn) → Σ (as

in (3) at the top of Section 2, where |Σ| = poly(n)) be the decoder of any asymptotically good
error-correcting code (such as the Justesen code). For such an h, any adversary strategy has the
property that unless at least some small constant fraction of the input bits to h have been queried,
every element of Σ remains a possible output of h. Thus an adversary strategy for h composes with
the adversary strategy for f (from Section 2.1) to give Pdt(f ◦ hn) ≥ Ω(n log n). The upper bound
UPdt(f ◦ hn) ≤ O(

√
n log n) is unchanged. The Simulation Theorem introduces another log n factor.

Our work provides further confirmation that communication-to-query simulation theorems are
very powerful and useful tools. We advocate finding more applications of such theorems, developing
such theorems for other models (such as unambiguous, or bounded-error randomized), and improving
the size of the gadget for the simulation theorems of [RM99, GLM+15].
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