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ABSTRACT 
The exact complexity of the weak pigeonhole principle is an 
old and fundamental  problem in proof complexity. Using 
a diagonalization argument,  Paris, Wilkie and Woods [9] 
showed how to prove the weak pigeonhole principle with 
bounded-depth,  quasipolynomial-size proofs. Their argu- 
ment was further refined by Krajf~ek [5]. In this paper,  we 
present a new proof: we show tha t  the the weak pigeonhole 
principle has quasipolynomial-size proofs where every for- 
mula consists of a single AND/OR. of polylog fan-in. Our 
proof is conceptually simpler than  previous arguments,  and 
is optimal with respect to depth.  

1. INTRODUCTION 
The pigeonhole principle is a fundamental  axiom of math-  
ematics, s tat ing tha t  there is no one-to-one mapping from 
m pigeons to n holes, m > n.  I t  expresses a very basic 
fact about  cardinalit ies of sets and is used ubiquitously in 
almost all areas of mathematics .  As examples, the induction 
principle is simply a special case of the pigeonhole principle, 
and many combinatorial  counting arguments reduce to the 
pigeonhole principle. 

Perhaps not surprisingly, then, the inherent difficulty of 
proving the pigeonhole principle is t ightly connected to 
important  questions in proof theory and circuit complexity. 
I t  has served as the classic hard example for proof 
complexity, and versions of it have been used to obtain 
some of the strongest lower bounds and separations known 
to date. Examples  include Resolution, bounded-depth  
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Frege systems, Cut t ing Planes, and relat ivized bounded 
arithmetic.  

There are several impor tant  open problems connected to the 
complexity of the weaker forms of the  pigeonhole principle, 
which we define as those for which n <_ m/2. First ,  
the weak pigeonhole principle is connected to how much 
of elementary number theory, including the existence of 
infinitely many primes, can be proven in I A 0 ,  a weak 
system of ari thmetic.  Paris, Wilkie and Woods [9] show tha t  
a considerable par t  of elementary number theory, including 
the existence of infinitely many primes, is provable in 
IA0 with the  weak pigeonhole principle for Ao-definable 
functions added as an axiom scheme. I t  is a longstanding 
open question whether or not one can dispense of the weak 
pigeonhole principle, by proving it within I A o .  

Secondly, the complexity of the weak pigeonhole principle 
is related to the complexity of approximate  counting. The 
problem of recognizing the approximate  size of a set is in the 
polynomial- t ime hierarchy. However, all known proofs of 
this fact rely on the weak pigeonhole principle. These results 
t ranslate  downwards: there are bounded-depth ,  polynomial-  
size circuits tha t  can approximately count the  number of l ' s  
in a 0/1 bit  string. However, once again, all known proofs of 
correctness require much higher proof-theoretic complexity. 
This is a perplexing situation: is it  possible to prove tha t  
small circuits exist for approximate  counting, and also to 
prove tha t  any correctness proof for these small circuits is 
inherently more complex than  these circuits? A positive 
answer would follow if one could prove superpolynomial  
lower bounds on the size of bounded-depth  Frege proofs of 
the weak pigeonhole principle for the case when n -- m/2. 

Lastly, the complexity of the weak pigeonhole principle 
is connected to the inherent complexity of proving circuit 
lower bounds. In the last decade, substant ial  effort has gone 
into understanding the metamathemat ics  of the  P versus 
NP question. In pioneering work, Razborov and Rudich [12] 
show tha t  most circuit lower bounds are natural ,  and hence, 
under cryptographic certain assumptions,  these methods 
cannot be extended to proving P ¢ NP. It  would be a 
big breakthrough to extend this type  of result to show 
tha t  there can be no proof of P ~ NP (formalized in 
a reasonable way) in bounded arithmetic.  Razborov [11] 
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has shown tha t  this question is connected to the difficulty 
of proving the weak pigeonhole principle, since the circuit 
lower bound s ta tement  can encode the weak pigeonhole 
principle in a certain sense. 

Resolving the above three questions amounts to under- 
standing the exact complexity of proving the pigeonhole 
principle. This tautology is expressed propositionally by 
a formula of size polynomial  in m,  where the underlying 
variables are P i j ' ,  for i _< m and j ~ n.  Three key 
complexity parameters  are d, n and S :  the first parameter,  
d, measures the depth of the Frege proof; the second 
parameter,  n ,  is the number of holes; S is the size of the 
proof. Clearly, as d and S increase and n decreases, the 
pigeonhole principle becomes easier to prove. The ul t imate 
goal is to obtain a precise and smooth characterization 
of the smallest value for S as we vary the other two 
parameters,  d and n,  

In [9], Paris, Wilkie and Woods use a very clever diagonal- 
ization argument to give constant-depth,  quasipolynomial- 
size Frege proofs of the weak pigeonhole principle. This 
is surprising, especially since it has been shown tha t  any 
constant-depth Frege proof of the weak pigeonhole principle 
requires exponential  size whenever n is at least m - c, for 
c a constant [10; 7]. Their argument actually translates 
into depth-3.5,  quasipolynomial-size proofs in the sequent 
calculus, and Kraj/~ek [5] extends their argument to obtain 
depth- 1.5, quasipolynomial-size proofs. (Depth d + .5, for 
any nonnegative integer d, means tha t  each formula has 
depth at most d + 1, bu.t the bot tom level of gates are 
restricted to polylog fan-in.) Despite this breakthrough, 
there are still huge gaps in our overall understanding 
in terms of the three parameters  mentioned above. In 
particular,  are these results optimal in terms of depth? 
Is there a more constructive, constant-depth proof of the 
weak pigeonhole principle? Can the size be improved from 
quasipolynomial to polynomial? 

The main result of this paper  is a new proof of the weak 
pigeonhole principle. Our new proof is a step toward 
resolving the above-mentioned questions, and the exact 
complexity of the weak pigeonhole principle. We show 
tha t  the weak pigeonhole principle has quasipolynomial-size 
proofs where every formula consists of a single A N D / O R  
of polylog fan-in. In the above terminology, we obtain 
a depth-.5 proof. Translated to bounded arithmetic,  it  
follows from our proof tha t  the weak pigeonhole principle 
with respect to f can be proven in T~(f) .  

Our proof is optimal with respect to depth as exponential 
lower bounds are known for depth-0 sequent calculus 
proofs, i.e., Resolution proofs, of the weak pigeonhole 
principle [4].  Our upper bound is also tight in another 
sense: [6; 14] show tha t  the proof cannot be made tree-like, 
unless the size becomes exponential.  Moreover, our proof 
is conceptually simpler than the previous upper bound due 
to Paris, Wilkie and Woods: it is a simple divide and 
conquer, along the lines of the upper  bounds for Resolution 
proofs of the weak pigeonhole principle [3], combined with 
an amplification phase which allows us to speed up the 
induction. 

The outline for the remainder of the paper  is as follows. 
In Section 2, we give precise definitions of the pigeonhole 
principle tautology and of the proof system tha t  we will 
be working with. In Section 3, we give an overview and 
generalization of the Resolution upper  bound of [3]. In 
Section 4, we present our main result. In Section 5, we 
optimize the argument given in Section 4. Finally, in 
Section 6, we put  our new upper  bound in perspective with 
t h e m a n y  previous results tha t  are known in this area, and 
conclude with open problems. 

2. DEFINITIONS 
The propositional proof system tha t  we will s tudy in 
this paper  is the sequent calculus, LK, modified to allow 
unbounded fan-in connectives. Formulas are built  up using 
the connectives A, V, and -~. All connectives are assumed 
to have unbounded fan-in. The formula A ( A h . . .  ,AN) 
denotes the logical AND of the multi-set  consisting of 
A t , . . . A n ,  and similarly for V. Thus commutat iv i ty  and 
associativity of the connectives is implicit.  Our proof 
system operates on sequents which are sets of formulas of 
the form A1, . . .  ,Ai .-+ B I , . . .  , B j .  The intended meaning 
is tha t  the conjunction of the Ai's  implies the disjunction 
of the Bj 's. A proof of a sequent S in LK is a sequence 
of sequents, $1, ..., Sq, such tha t  each sequent Si is either 
an initial sequent, or follows from previous sequents by one 
of the rules of inference, and the final sequent, Sq, is S .  
The size of the proof is )-~i<i<q size(S/) and its depth is 
maxl_<i<q (depth(Si)) .  

The initial sequents are of the form: (1) x --+ x where x 
is a literal; (2) --+ A 0 ; V0 --+. The rules of inference 
are as follows. Firs t  we have simple s tructural  rules such 
as weakening (formulas can always be added to the left or 
to the right), contraction (two copies of the same formula 
can be replaced by one), and permuta t ion  (formulas in a 
sequent can be reordered). The remaining rules are the 
cut rule, and logical rules which allow us to introduce each 
connective on both the left side and the right side. The cut 
rule allows the derivation of F, F ~ --+ A, A t from F, A --~ A,  
and P' --+ A, A t . The logical rules are as follows. 

1. (Negation-left) From F --+ A , A ,  we can derive 
-~A, F -+ A.  

2. (Negation-right)  From A, F -+ A ,  derive F --+ ~A, A .  

3. (And-left) From A1 ,A(A2 , . . .  , A n ) , P  --+ A derive 
^(A1,... , A , ) , r  ~ A. 

4. (And-right) From F --+ A1, A and F -+ 
A(A2 . . . .  , A , ) ,  A derive P -+ A ( A t , . . .  , An), A 

5. (Or-left) From A1,F  -+ A and V(A2, . . .  , A n ) , F  -+ A 
derive V(A1, . . .  , A n ) , F  -+ A 

6. (Or-right) From F -+ At ,V(A2 , . . .  ,A,~),A derive 
r --+ V(A1, . . .  ,An) ,  A.  

DEFINITION l.  Let d be a nonnegative integer. A formula 
is of depth d + .5 if it is of depth d or of depth d + l 
but with the arity of the level 1 connectives restricted to 
polylogarithmie in the size of the formula. 
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A sequent calculus proof is of depth d+ .5 if all the formulas 
that appear in it are either of depth d or of depth d + 1 
but with the arity of the level 1 connectives restricted to 
polylogarithmic in the size of the final sequent. 

There is a well-known translation between propositional 
proofs of certain types of statements, and proofs of the 
corresponding first order principle in systems of bounded 
arithmetic. In particular, it is well-known that  uniform, 
quasipolynomial-size, bounded-depth proofs of Z~ (f) state- 
ments (such as the pigeonhole principle) can be trans- 
lated into S2(f) proofs. Also, uniform, polynomial-size, 
bounded-depth proofs of the same type of statements can 
be translated into IAo( f )  proofs. The upper bounds that  
we will be presenting are all sufficiently uniform that  they 
will also carry through in the uniform setting. In particular, 
our proofs can be straightforwardly translated to show that  
the weak pigeonhole principle with respect to f has a proof 
in S~(f) ,  and then by conservativity of $2 a over T ~2 , the 
proof can also be carried out in T~(f) .  (Details of this 
translation will be given in the full version of the paper.) 

The pigeonhole principle on m pigeons and n holes says 
that  there is no one-to-one function from a set of size m to 
a set of size n .  Formally, this can be stated as follows: 

P H P ~ " : . . . ,  V P~u,... ~ ' ' '  ,P~lyP~2u, "'" 
yeC-] 

where, on the left, x ranges over [m] and, on the right, 
xl ¢ x2 range over Ira] and y ranges over [hi. Note 
that  P H P ~  is actually more general than the informal 
statement above since it asserts the nonexistence of any 
injective, many-valued function from [m] to [n]. 

Clearly as n decreases, the principle becomes weaker and 
weaker. When n = m -  1, it is usually referred to as 
just  the pigeonhole principle, and when n <_ m/2 it is 
referred to as the weak pigeonhole principle. The onto 
pigeonhole principle is a weaker version stating that  there is 
no one-to-one, onto, many-valued function from m pigeons 
to n holes. 

3. THE RESOLUTION UPPER BOUND 
As mentioned in the introduction, the new proof of the 
weak pigeonhole principle presented in this paper uses 
some of the same ideas as the Resolution upper bound 
of Buss mad Pitassi [3]. More precisely, they show that  
P H P ~  has polynomial-size Resolution proofs whenever n ___ 
(log m)2/ log log m.  In this section, we provide an overview 
and generalization of this result. 

First note that  when n = O(logm) there are trivially 
polynomial-size Resolution proofs, by ignoring all but  n +  1 
pigeons, and performing a brute-force refutation on these 
pigeons and holes. 

Now assume for sake of contradiction that  there is a 
mapping from m to n (for appropriately chosen n) .  Divide 
the m pigeons up into blocks, each of size log m + 1. The 
first case is that  some block of pigeons maps in a one-to-one 
way into the first log m holes, and in this case we get a 
direct contradiction by brute force. The other case is 

where no block of pigeons all map to the first log m holes. 
But in this case, each block of pigeons can be viewed as 
a metapigeon, and now we have a one-to-one map from 
m/(log m + 1) metapigeons to the last n - log m holes, 
and we can proceed inductively. This argument can be 
translated into a Resolution proof because each inductive 
instance of the pigeonhole principle is still a conjunction of 
a set of clauses. 

We can use this idea more generally to prove 
P H P ~  with a size-S Resolution refutation, where 
n <_ log m log S/log log S.  Let the block size be b, where 
b = log S. Dividing up the m pigeons into rn/b blocks, 
each of size b, either some block maps one-to-one into 
the first b holes, or not. In the first case, we can 
use brute-force to get a size O(S) refutation, and in 
the second case, we have m/(logS)  metapigeons, and 
n - l o g s  holes. Continuing for k = n/( logS) iterations, 
as long as n < log m log S/(log log S),  we reach the desired 
contradiction. 

Thus, we obtain polynomial-size Resolution refutations of 
P H P ~  for n = O((log m)2/log log m),  quasipolynomial-size 
Resolution refutations for n = O(log m) c , etc. 

Our new upper bound gives small proofs of P H P ~  for 
much larger n ,  but  the depth increases slightly, from 0 
to .5. 

4. OUR NEW UPPER BOUND 
Our goal is to show that  PHP~ n has a quasipolynomial-size, 
tree-like proof of depth 1.5. We start by presenting the 
argument that  we will then formalize as a sequent calculus 
proof. 

The proof is in two parts: first we prove PHP~ 2 and then we 
n 2 

prove PHP2, " . Let us start with P H P ,  . By contradiction, 
suppose that  there is an injective, many-valued function 
from A = [n z] to B = [hi. (For the remainder of this 
section, we will simply speak of functions even though we 
really mean many-valued functions.) Let A 1 , . . . , A n  be  
the partit ion of A into sets of size n .  Let B1,B2 be the 
partit ion of B into sets of size n/2. Then either 

1. all the pigeons of some block Ai are sent to holes in 
the first block B1, or 

2. in every block there is at least one pigeon that  is sent 
to a hole in the second block B2. 

If the first case occurs, then we have an injective function 
from a set of n pigeons to a set of n/2 holes. The function 
is injective because the original function is. 

We now claim that  the second case also gives an injective 
function from a set of n pigeons to a set of n /2  boles. View 
each block as a new superpigeon. Send each superpigeon 
to all the holes where its member pigeons are sent. We are 
guaranteed that  each superpigeon is sent to at least one 
hole in the second block. The induced function from these 
n superpigeons to the n/2 holes in B2 is injective again 
because of the injectivity of the original function. 
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This is the first step of the proof. In this step, the number 
of pigeons was reduced to n and the number of holes was 
reduced by half. In the second step, we will amplify the 
number of pigeons back up to n 2 . Let f be the original 
function from [n 2] to [n] and let g be the new function 
from [n] to In/2]. Define a function h from In 2] to In/2] 
by setting h(i) = k  i f f t h e r e i s  j • [n] such tha t  f ( i)  = j  
and g(j) = k. This new function h is injective because of 
the injectivity of both  f and g. 

We now repeat  these two steps to obtain a sequence of 
injective functions from In] to In/4], from In 2] to [n/4], 
from [n] to [n/8], from [n 2] to [n/8], . . . ,  until an injective 
function from [n] to [1] is obtained. This is the desired 

contradiction, which proves PHP~ 2 . 

Now we prove PHP~ " . Again by contradiction, suppose 
tha t  there is an injective function f from [2n] to [n]. We 
define a function g from [4n] to [2n] as follows. Part i t ion 
[4n] into two blocks AI,A2 of size 2n and part i t ion [2n] 
into two blocks B1, B2 of size n.  The function g is defined 
by using f to map A1 to B1 and a translated version 
of f to map A2 to B2. Now compose g and f as 
was done above to obtain a function h from [4n] to In]. 
Both g and h are injective because of the injectivity of 
f ;  This process can be generalized and repeated to obtain 
a sequence of injective functions with increasingly larger 
domain. Eventually, we get an injective function from In 2] 

to [n], which contradicts PHP~ 2 and completes the proof 
of PHP~ " . 

We now turn to the formalization of this argument as 
a quasipolynomial-size, tree-like sequent calculus proof of 
depth 1.5. The proof will consist of a sequence alternations 
between the two steps mentioned above. Since pigeons will 
eventually be not jus t  simple pigeons but  superpigeons, 
as a result of the reduction step, and since the function 
from pigeons to holes will eventually be the composition 
of earlier functions, as a result of the amplification step, 
we generalize the s ta tement  of the pigeonhole principle as 
follows. Let A and B be any two sets. 

pHpA(Q)  : "'" ' V Q~,u,". -)" . . .  ,Q:,,,yQ~,2u,... 
yEB 

where, on the left, x ranges over A and, on the right, 
xl  ~ x2 range over A and y ranges over B.  Here, the 
Q~u can be arbi t rary  formulas and not just  propositional 
variables. 

In fact, in our proof, each Q~u will be a OR of small 
AND's,  say v k  \ /  ~uf)(k). Since our goal is to obtain a proof 
of depth 1.5, we have to be able to state pHpA(Q )  in 
depth 1.5. To achieve this, we say tha t  VueB Q~u actually 

stands for \1 \ /  r)(k) and tha t  Q~:luQ~2~ stands for V y q B  V k  '.~zy , 

~ / k l , k  2 f)(kl)f)(k2) ~ Z l y  "~bZ2y . 

The following two lemmas establish that  the reduction and 
amplification steps in the above argument can be carried 
out by a quasipolynomial-size, tree-like sequent calculus 
proof of depth 1.5. 

LEMMA 2. Let A be any set of size n ~ and let B be any 
set of size m < n. Let A1,. .  . , A ,  be the partition of A into 
sets of size n and let B1, B2 be the partition of B into sets 
of size m/2 .  For every set of size-s, depth-l.5 formulas 
(Q~u)~eA,ueB of the form OR of small AND's, there is 
a set of size-(ns), depth-l.5 formulas (Riy)ie[n],yeB2 of 
the form OR of small AND's such that p H p A ( Q )  has 
a size-(ns) °(z), tree-like, depth-l.5 sequent calculus proof 
from pHpAs~ (Q),  . . . ,  pHpA~ (Q) and PHP~2 (R) .  

PROOF. For the moment,  ignore the fact tha t  the Q~u's 
are formulas and pretend tha t  they are simple propositional 
variables. PHP A (Q) can be writ ten as follows: 

p H p A ( Q ) : ' " '  V Q~u, . . . - -+. . . ,Q~IuQ~2y, . . .  
y E B  

where, on the left, x ranges over A and, on the right, 
xl  ¢ x2 range over A and y ranges over B .  For any 
i • { 1 , . . . ,  n}, pHpAi  1 (Q) can be writ ten as 

P H P B A ~ ( Q ) : ' " '  V Q~u, . . . - -+ . . . ,Q~a~Q~u, . . .  
yqB1  

where, on the left, x ranges over Ai and, on the right, 
xl  ¢ x2 range over Ai and y ranges over B1. 

The idea behind the set of R formulas is the following: Riu 
will say tha t  some pigeon from the i t h  block Ai is sent 
hole y.  This is formalized as 

Riy : V Q~u" 
ZEAl 

PHP~ 2(R) can then be writ ten as 

° V PHPB2(Q) : . - .  , Riu, . . .  -+ .. .  ,R iyRju , . . .  
YEB2 

where, on the left, i ranges over [n] and, on the right, 
i ¢ j range over In] and y ranges over B~. Of course, it 
is understood tha t  RiuRju actually s tands for 

x l  EAI z 2 E A j  

The proof of PHP A(Q) from pHpAa 1 (Q) ,  . . .  , pHpA~ (Q) 
and PHP~2 (R) s tar ts  with the following sequents: 

V Q,u-~ V Q,u, V Q,u (xEA). (1) 
y q B  yEB  1 y q B  2 

For every i ,  cut pHpA~ I (Q)  with the corresponding se- 
quents in (1). This gives 

• " '  V Q~u,- . .  
y E B  

- + " "  ,Q~,uQ~2y,... , " ' ,  V Q~u,.. .  
y q B 2  

(i • [n]) (2) 
where, on the left, x ranges over Ai and, on the right, 
xl  ~ x2 range over Ai ,  y ranges over B1 and x ranges 
over Ai .  
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Now consider the following sequents: 

Q~u --+ R, u (i E In], x E Ai, y E B~). (3) 

By using the OR-left rule and then the OR-right rule, 
combine the sequents in (3) that  correspond to the various 
values of y: 

V Q'Y -'+ V Riu ( i e [ n ] , x e A i ) .  (4) 
y6B2 yEB2 

Cut each of the sequents in (2) with the corresponding 
sequents in (4) to obtain 

• . . ,  . . . ,  V R,,, 
yEB yEB2 

(i e [n]) (5) 

where, on the left, x ranges over Ai and, on the right, 
xl # xa range over Ai and y ranges over B1. Cut each of 
these sequents with PHP~= (R) to obtain 

" " '  V Q~u"'" 
y E B  

-+ . . .  , Qx,~,Q~=y, . . . ) . . .  , RiyRju, . . . (6) 

On the left of this sequent, x ranges over A. On the 
right, we have one Q~,yQ:~=~ for every xl ¢ x2 E Ai,  every 
i E In] and every y E B1. On the right, we also have one 
RiuRju for every i ¢ j E In] and every y E B2. 

Finally, recall that  RiuRju actually stands for 

V V 
x l E A i  x 2 E A j  

Consider the following sequents: 

R i u ~  - ~ . . .  , Q ~ I ~ Q ~ , . . .  (i # j ~ [n],y ~ B~) (7) 
where, on the right, x~ ranges over Ai and x~ ranges over 
Aj .  Cut each of these sequents with (6) to obtain 

" " '  V Q ' u , " "  -+ . . . .  Q * , u Q ~ a u ' " "  (8) 
y~B 

where, on the left, x still ranges over A, but,  on the 
right, we now have one Q~uQ~zu for every i ~ [n], every 
x~ ¢ x~ ~ AI and every y ~ B~, and another Q ~ u Q ~ u  
for every i ¢ j E [n], every x~ ~ Ai,  every x2 E Aj and 
every y ~ B~. pHpA(Q)  can now be easily obtained by 
weakening, which completes the proof. 

This was all done under the assumption that  the Q ~  's 
are simple propositional variables. Generalizing to OR's 
of small AND's is fairly easy since it requires only minor 
modifications of the proof. To illustrate, suppose that  
Q ~  = V~ ~uc~(~) • Then the sequents in (7) become 

V V V V 
~IEAi kl  k2 z2~Aj  

V t3(~a)f)(~=) " " " ' ~ X l Y  ~q~:~2~] ' " " " 

~l,k2 

(i ¢ j e [n],y e B=) (9) 

where, on the right, x~ ranges over Ai and xa ranges over 
A~. These sequents are proved in essentially the same way 
as the sequents in (7). We leave the remaining details to 

the reader as well as the straightforward task of verifying 
that  the proof is tree-like and of size (ns) ° 0 )  . [] 

LEMMA 3. For every set C of size n ,  for every set D ,  
for every set of size-s, depth-l.5 formulas (Qxu)zec,ueD 
of the form OR of small AND's,  and for every set of 
size-t, depth-l.5 formulas (Pwx)we[n2l,xe[n] of the form 
OR of small AND's, there is a set of s ize-O(nst) ,  depth-l.5 
formulas (R,ou)~,e[,2].ueD of the form OR of small AND's  

rL 2 
such that PHP°D(Q) weakened by the eedents of P H P ,  (P) 
has a size-(nst) ° 0 ) ,  tree-like, depth-l.5 sequent calculus 

p~ooi ~om PHPZ ~ (n).  

g3Ck) and that  P ~  = PROOF. Suppose that  Q*u = Vk ~*u 

Vj P(* J~) • PHP°D (Q) weakened by the cedents of PHP~ 2 (P) 
can be written as follows: 

• .., V ,..., V 
xE[n] uED 

--+... , P,~,xPw2,, . . .  , . . .  , Q~auQ~zu . . . .  (10) 

where, on the left, w ranges over [n 2] and x ranges over 
C,  and, on the right, x ranges over [hi, xl  ¢ x2 range 
over C and y ranges over D.  As mentioned earlier, it is 
understood that  VyeD Qxy stands for 

V V ock) " ~ X y  , 

y6D k 

that  Q~ayQ~2u stands for 

V n(kl)n(kz) ~ a g l y  ~ ' ~ x 2 y  ) 

k l , k 2  

and similarly for P .  

We now want to define a set of R formulas that  will allow 
us to prove the above sequent from PHP~  2 (R). The P 
formulas describe a function between a set of size n 2 and 
a set of size n ,  while the Q formulas describe a function 
between a set C of size n and a D set of size m.  The 
idea is that  the R formulas will describe the composition of 
those two functions. First, in what follows, we will identify 
C with [hi. More precisely, let f be any one-to-one, onto 
function from [n] to C. Whenever x is in [hi and we 
write Q*u, we will actually mean Ql(*)u" Now R,ou will 
be defined as follows: 

P ~  = V P~*Q*~- 
x~[n] 

Once again, this last formula actually stands for 

V • 

• E[n] J k 

The sequent PHP~  2 (R) can be written as follows: 

n 2 
PHPD ( R ) : . . . ,  V R ~ u ' ' " - + " ' ' R w l u R w z u " ' "  (11) 

yED 

where, on the left, w ranges over [n 2] and, on the right, 
wl ¢ w2 range over In 2] and y ranges over D.  In other 

372 



words, this sequent says tha t  if every w is sent to some y,  
then at least two w ' s  will be sent to the same y.  

The proof of (10) from this sequent consists of two main 
steps. First ,  we show tha t  if two w's  go to the same y,  
then either two w ' s  go to the same x or two x ' s  go to the 
same y. This can be wri t ten a s  

R~I u R~2 

-+ . . .  , P ~ , ~ P , ~ ,  . . . , . . .  , Q ~ , , Q ~ ,  . . . 

(w~ =/=wu • [n~] ,y•D) (12) 

where, on the right, x and x~ ¢ x2 range over [n]. 

Second, we show tha t  if w goes to some x and every x 
goes to some y,  then w goes to some y. That  is, 

V V V e (13) 
ze[n] ue[D] yeD 

where, on the left, x ranges over [n]. Applying the cut 
rule to (11) and all the sequents in (12) and (13) produces 
the desired result,  i.e., sequent (10). 

We now examine in more detail  the proofs of the sequents 
in (12) and (13). For the sequents in (12), consider 
arbi t rary  values of wl ¢ w~ E [n 2] and y E D.  First  note 
tha t  P~luR~2y stands for 

V V V V V V P'4'21Q 4'2P2% 
= l e [ n ]  J l  k l  w2e[rl] J2 k2 

Now star t  with the following sequents: 

pw(Jl )  [ ' ) ( k l ) p ( J 2 )  C')(k2) p ( J l )  p ( J 2 )  
l X l " ~ X l y  - W2X2",,~X2y --'~ . Wl X 1 - tU2X 2 

(x , ,x2 E [n],j~,j2,k~,k:) (14) 

and 

p ( J l )  o ( k l ) p ( j 2 )  [ ' )(k2) o ( k l ) / ' ) ( k 2 )  
" WlWl~WlY " w 2 x 2 ~ w 2 Y  ~ "~ZlY " ~ 2 Y  

(~ , ,~  e [n],j~,j~,k~,k:) (15) 
By using the OR-left rule, combine all the sequents in (14) 
with xl  = x2 and all the sequents in (15) with xl  ¢ x2. 
This gives 

R w l y R w 2 y  ~ p ( J l ) p ( J 2 )  ~')(kl ) [-} (k2) 
• .. ,- 101~ W2X,... ,... , ~ l Y ~ 2 y  ,.-. 

where, on the right, x and xl  ~ x :  range over [n] and 
j l ,  j2,  kl and ks range over all possible values. Several 
applications of the OR-right rule now yield the desired 
sequent in (12). 

Let us now turn to the proof of the sequents in (13). Let 
w E [n 2] be arbitrary.  Again, first note tha t  VueD Rwv 
stands for 

V V V V 
y q D x E [ n ]  j k 

Start  with the following sequents" 

p(D n(k) ~ , ~ y  -+ P~)Q(~) ( x e [ n ] , y e D ,  j , k )  (16) 

By using the OR-left rule and then the OR-right rule, 
combine the sequents in (16) that  correspond to the various 
values of k: 

pb')_ wx, Q ~  --+ v\/P'(J)n(k),~ "~v (x e [n],y e D , j )  (17) 
k 

Again by using the OR-left rule and then the OR-right  
rule, combine the sequents in (17) tha t  correspond to the 
various values of j:  

\ / \ / P ( J ) n ( k )  ( x E [ n ] , y  Pwx, Qxy --~ y v "  w* "~*u e D) (18) 
j k 

Once more, by using the OR-left rule and then the OR-right 
rule, combine the sequents in (18) tha t  correspond to the 
various values of y: 

Pw,,VQ.~--~ VVVPwO:Q(~ ) (xetn]) (19) 
y 6 D  y E D  j k 

Finally, in a similar way, combine all the sequents in (19) 
to obtain the desired sequent in (13). 

There only remains to say tha t  it is easy to verify tha t  the 
proof is tree-like and of size (nst) ° 0 ) .  [] 

THEOREM 4. For every set of size-t, depth-l.5 formulas 

(Pxu)~e[n2],ue[n ] of the form OR of small AND's,  PHP~ 2 (P) 
has a size-(nt) °(l°gn) , tree-like, depth- l.5 sequent calculus 
proof. In particular, if the P~u 's are simple propositional 
variable, then the size of the proof is n °O°gn) . 

PROOF. As mentioned earlier, the proof consists in a 
sequence of alternations between the reduction and ampli- 
fication steps formalized in the preceding lemmas. Before 
describing the proof, first note tha t  these two lemmas 
also hold when all the sequents involved are weakened 
by the cedents of PHP~ 2 (P) .  This is simply because in 
every application of any of the inference rules, both  the 
hypotheses and the conclusion can be weakened in this 
way. In what follows, we assume tha t  all sequents are 

n 2 weakened by the cedents of P H P ,  (P ) .  

We describe the proof in a top-down fashion. Let c be the 
maximum of all the hidden constants in the s tatements  of 
Lemmas 2 and 3. First ,  by Lemma 2, we prove PHP~ 2 (P)  
from pHpA11 (P ) ,  . . . ,  pHpA~ (p )  and PHP~2(R) ,  where 

A1 , . . .  , A ,  is the part i t ion of In ~] into se ts  of size n,  
B1,B2 is the part i t ion of [n] into sets of size n/2 ,  and R 
is a set of s ize-(nt) ,  depth-1.5 formulas. In other words, 

we prove P H P ~ ( P )  from n + 1 sequents of the form 
PHPDC(Q) where IV I = n,  IDI = n /2  and the Q ' s  are sets 
of size- (nt) ,  depth- 1.5 formulas. 

Second, by Lemma 3, we prove each of these sequents from 
a sequent of the form P H P ~  2 (R) where the R ' s  are sets of 
size-c(nt) 2 , depth- 1.5 formulas. 

We continue using the two lemmas in alternation. In 
general, it  is easy to verify tha t  after k reductions and 
amplifications, we will be left with proving ( n +  1) k sequents 

r~ 2 
of the form PHP /2~(R ) where the R ' s  are sets of size- 

(cut) 2k , depth- 1.5 formulas. 

After log n steps, we are left with only sequents of the form 
PHP~ 2 (R),  and these are very easy to prove. 
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It is easy to see tha t  the entire proof is tree-like. To 
calculate its size, note tha t  the largest subproofs occur in 
the last amplification step. There, we have (n + 1) l°gn 
proofs of size at most (cnt) zcl°gn The total  size of the 

proof is therefore (nt) °O°gn) [] 

The next lemma formalizes the proof of PHP~ n from 

PHP~ 2 tha t  was outlined at the beginning of this sec- 
tion. The overall s t ructure of the proof is similar to the 
amplification step tha t  was formalized in Lemma 3. 

LEMMA 5. For every set of size-s, depth-l.5 formulas 
(Q~u)~e[2-l,ue[-] of the form OR of small AND's,  there is a 
set of size- ( ns ) °O°s n) , depth- 1.5 formulas ( R,~y )~oe[n2],ue[n] 
of the form OR of small AND's  such that PHP~n(Q) has a 
size-(ns) °O°g") , tree-like, depth- l.5 sequent calculus proof 

from PHP~Z (R) .  

The main result of this section now follows directly from 
Lemma 5 and Theorem 4. 

THEOREM 6. For every set of size-t,  depth-l.5 formulas 
(P~u)~eD-I,~E[-I of the form OR of small AND's ,  pHp2n~(P) 

has a size- (nt) °O°g n)2 , tree-like, depth-l.5 sequent calculus 
proof. In particular, if the Pxu 's are simple propositional 
variable, then the size of the proof is (n) °O°gn)2 . 

5. OPTIMAL DEPTH 
In this section we will show how to prove pHp2n n in 
depth .5. Note tha t  the  s ta tement  of PHP~ n itself has 
depth 1, so in order for the theorem to make sense, we 
will need to convert the proof into refutation form. Let 
Clauses(PHP~ n) denote the set of depth-0 sequents tha t  
underly the pigeonhole principle. That  is, Clauses(PHP~ ") 
conSists of the sequents -+ P i l , . . .  ,Pin for each i E [2n], 
and the sequents Pik, Pjk --+ for each i ¢ j • [2n], k • [n]. 
The following lemma shows tha t  it is easy to convert a 
proof of PHP~ ~ into a refutation of Clanses(PHP~") with 
no significant change in size or depth.  

LEMMA 7. Let PHP~ '~ have a size-s, tree-like, depth-l.5 
sequent calculus proof. Then there is a size-O(s2), tree-like, 
depth-l.5 refutation of Clauses(PHP~") .  

PROOF. Recall tha t  PHP~ ~ is the following sequent: 

P H P ~ : ' " '  V P ~ k , . . . - + . . - , P i k P j ~ , . . .  
he[n] 

where, on the left, i ranges over [2n] and, on the right, 
i 5~ j range over [2n] and k ranges over [n]. Star t  with 
the sequents 

-+ Pn . . . .  , Pin (i e [2n]). 

By several applications of the OR-right rule, we get 

--+ V Pik (i e [2n]). 
kelp] 

Now cut each of these sequents as well as each of the 
sequents PikP~k ~ with PHP~ n to obtain the desired 
contradiction. The bound on the size of the refutation is 
easy to verify. []  

We will now show how to convert a tree-like refutation of 
Clauses(PHP~ n) of dep th - l . 5  into a (dag-like) refutation 
of Clauses(PHP~ ") of depth- .5 .  The following result is due 
to Krajieek. 

THEOREM 8 ([5]). Let Q be a set of sequents of 
depth. O. That is, each sequent in Q is of the form 
P ~ A where P and A are sets of literals. Let d be 
a nonnegative integer. Suppose that there is a tree-like, 
depth- (d + 1.5) L K  refutation of Q of size S .  Then Q has 
a depth- (d + .5) L K  refutation of size polynomial in S .  

For completeness, we include the proof for the case of 
reducing the depth  from 1.5 to .5. 

PROOF. Consider an arbi t rary  sequent in the dep th - l . 5  
LK refutation, of the form: 

r,V ,V At,At:,... ,Act 
i i i i 

r n  1 

-,  V B ; , . . . V ' ,  , A v , , . . . A D r ,  A 
i i i i 

where F and A are sets of formulas of depth  at  most .5, 
and B,', q': and are formulas of depth .5. 

Let P be the tree-l ike,  dep th - l . 5  LK refutation, and let 
Pk denote the  first k lines of P .  Assume tha t  sk is the 
sequent at  line k,  and assume without  loss of generality 
tha t  it  has the above form. We will prove by induction 
on k tha t  Pk can be efficiently converted into a dag-like, 
depth- .5 proof of 

r, eL.. .  
-+ B~ 1 m , . . .  ,Bq . . . .  B~n, . . .  ,Bq , A  

from axioms: 

( l a )  ~ A I , . . . , A ~  

(2a) ~ A ~ , . . . , A ~  

yn, (ma) ~ A ~ , . . . , A q  

and 

(lb) D1 . . . .  , D~ --+ 

(2b) O12 . . . .  ,B~ --+ 

(rob) D '~ , . . . ,Dr~- - -~ .  

This suffices to prove the theorem since the final line has 
depth 0. 

When k = 1, sk is an axiom, of the  form x --+ x,  so the 
inductive s ta tement  holds. Now suppose tha t  the k th line 
follows from two previous lines by a rule. The two rules 
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requiring work are the cut-rule, and the V-right rule. First ,  
suppose tha t  the two previous lines have the form: 

r, V A L . . . , V A f ' , A c L . . . , A c ~ ' , V E ,  
i i i i i 

--, A, VBt,... ,A 
i i i i 

and 

r, V ... , V At, A ... , A c r  
i i i i 

,,, V B:, . . . ,  V B r , A  ,A Dr, V 
i i i i i 

In the above notation, the formulas in F ,  A ,  and A~, B~, 
C~, D~ and El have depth .5. And the k th line, obtained 
by cutt ing on Vi Ei ,  has the form: 

r, VAL... ,VAf',AcL... ,Act  
i i i i 

,VBr,AD:,... ,A r 
i i i i 

By induction, there is a dag-like, depth- .5 proof, Q1, of 

r ,  C~, 1 ... ,c~,... ,c7',... ,c7 
--~ A , B ~ , . . .  1 ,, , B q , . . .  ,B1 , . . .  , B ~  

from axioms ( la )  through (ma) and ( lb)  through (rob), 
and -+ E l , . . .  E q, and a dag-like, depth- .5 proof, Qz, of 

P, C~, 1 . . .c~,.. .  ,c7',... ,c7  
--+ A , B ~ , . . .  1 , B q , . . .  ,B'~ . . . .  , B ~ , E I , . . .  ,Eq 

from axioms ( la )  through (ma) and ( lb)  through (rob). We 
want to combine Q1 and Q2 to obtain a dag-like, depth-.5 
proof, Q,  of 

r, c L . . . c L . . . c ? , . . .  ,c7  
--+ A , B ~ , . . .  1 ,,, ,B~ , . . .  ,B1 , . . .  , B ~  

from axioms ( la )  through (ma) and ( lb)  through (rob). 
Replacing each axiom of the form -+ E l , . . .  Eq in QI by 
the entire Q2 proof gives the desired proof Q. 

The other case, where the cut rule is applied to Ai E i ,  and 
the V-right rule is proven similarly; the other rules require 
little or no modifications. []  

This result, combined with Theorem 6 and Lemma 7, gives 
the main theorem of this section. 

THEOREM 9. The propositional weak pigeonhole princi- 
ple, PHP2n n,  has size-n °O°s")2 , depth-.5 L K  proofs. Also, 
the first-order version of the weak pigeonhole principle, 
PHP~"(R) ,  has T~(R) proofs. 

Our upper bound is opt imal  with respect to depth since 
it is known tha t  depth-0  proofs, i.e., Resolution proofs, 
of PHP~" require exponential size [4]. In addition, our 

upper bound is t ight in another sense: the proof cannot be 
made tree-like, unless the size becomes exponential ,  as the  
following theorem shows. 

THEOREM 10 ([6; 14]). For sul~ciently large n ,  if P 
is a tree-like L K  refutation of P H P ~ ,  where each formula 
in P involves at most k variables, then P has size at least 
2tn/2kJ . 

The results of [6; 14] are very elegant and apply to a 
large class of formulas. However, the exact form of the 
lower bound for the weak pigeonhole principle is not made 
explicit and their  proof is more complicated than  needed 
for the part icular  case tha t  concerns us. Therefore, we will 
give here a simpler proof of the theorem, one tha t  extends 
the lower bound for tree-like Resolution given in [3]. 

PROOF. The proof will consist of two stages. 

1. Show tha t  if there is a small tree-like, depth-.5 LK 
refutation of P H P ~ ,  then there is a decision tree of 
the same structure,  with nodes queried by decisions of 
the form f ( X )  = 0/1,  where f is a function, and X 
is a set of at most k variables upon which f depends, 
with the proper ty  tha t  each leaf is labeled by some 
clause of P H P ~  that  is falsified. 

2. Show tha t  any such decision tree for PHP~'  has to 
be large. 

We will prove the first step by induction on the size of the 
proof. The only rules tha t  really mat te r  are the ones tha t  
take two sequents to one sequent: these are AND-right,  
OR-left and cut. 

First ,  suppose we derive C = F ~ A from A = F ,g  -+ A 
and B = F --+ g , A  by an application of the cut rule. 
Consider an assignment a tha t  makes C false. Then if 
g(a)  is false, then B is false. Otherwise, if g(c~) is true, 
then A is false. So we label this node with g. Since 
the proof has depth .5, g is a function involving at  most 
k variables, and so satisfies the conditions required of the 
decision tree. 

Now suppose we derive C = F --+ A ( A 1 . . . A , ) , A  from 
A = F --+ A1,A and B = F --+ A ( A 2 , . . . A ~ ) , A  by an 
application of the AND-right  rule. Consider an assignment 
c~ that  makes C false. This implies tha t  A(A1 , . . .  , A , ) ( c 0 .  
is false. Now if Al(c  0 is false, then A is false. On the 
other hand, if A l ( a )  is true, then A ( A ~ , . . . A , )  is false 
and thus B is false. So we can label this node with A1. 
The OR-left rule is handled in a similar way. 

We will now prove step two. We want to show tha t  any 
decision tree for solving the search problem associated with 
PHPn m, where the queries made are of the form f ( X ) ,  
where each f depends on at  most k variables, must  have 
size at least 2 t"/~kj . 

Consider the critical t ru th  assignments (cta's) where n 
pigeons are mapped  to n holes, and the remaining m - n 
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pigeons axe unassigned. Consider the restricted tree T ,  
where we only care about paths that are followed by at 
least one critical t ruth  assignment. Now we want to claim 
that T must be large. 

We want to prove that  along any path in T ,  the number 
of branching nodes must be at least Ln/2kJ, and hence the 
total size of T is at least 2 I ' /~kj .  We will prove it by 
induction on n .  When n = 0, any of the m pigeons is a 
valid answer, and the size is therefore 1. 

Now suppose n > 0, and assume that  Q is a decision tree 
for P H P ~ .  Let f (X)  be the first query in Q, and suppose 
that the the left subtree of Q is labeled by f (X)  = 0 and 
the right subtree of Q is labeled by f (X)  = 1. If all cta's 
are such that  f (X)  = 0, then proceed on the left subtree. 
Similarly if all cta's are such that  f (X)  = 1, then proceed 
on the right subtree. 

Otherwise, f (X)  splits up the problem in two pieces in 
a nontrivial way. First consider the left subtree, the one 
labeled by f (X)  = 0. In this case, we want to find a 
restriction p0 so that: (1) f (X)  is forced to 0 by p0, 
and (2) p0 is a partial one-to-one map from at most 2k 
pigeons to holes. To obtain po, since f (X)  is forced to 
0 by some cta, select an assignment to the variables of 
X consistent with one of these cta's. Then minimally 
extend the assignment so that  we are left with a partial 
assignment p0 that  leaves m'  unassigned pigeons and n I 
unassigned holes, and the remaining pigeons are mapped in 
a one-to-one way onto the remaining holes. Since IX[ < k, 
at most k pigeons and at most k holes are mentioned by p0, 
and therefore the extended assignment leaves m ~ _> m - 2k 
and n '  > n -  2k. Now applying p0, it follows that  the 

left subtree, Qo, solves the decision problem for PHP,'~,', 
where m' = m -  2k, n' = n -  2k. By the inductive 
hypothesis it follows that  any path of Q0 must have at 
least [ ( n -  2k)/2kJ branching nodes. 

Similarly, for the right subtree (labeled f (X)  = 1), we can 
find a restriction so that  f (X)  is forced to 1 by pl and pl 
is a partial map from at most 2k pigeons to holes. Applying 
pl it follows that  the right subtree Q1 solves the decision 
problem for PHPn~, ' , and again by the inductive hypothesis, 
any path in Q1 must have at least [(n-2k)/2kJ branching 
nodes. 

Thus, in total, it follows that  any path in Q has at least 
[n/2kJ branching nodes, and thus the size of Q is at least 
2tn/2kJ. [] 

6. DISCUSSION AND RELATED RESULTS 
We summarize what is currently known in Table 1. The 
symbol * in the References column indicates the current 
paper. All of the lower bounds are exponential in n .  (Some 
of these are actually proven generally, as a function of n 
and m.)  

For depth 0 (Resolution proofs), the best known up- 
per bound are polynomial-size proofs of PHP~ m , where 
n _< (log m)2/  log log m [3]. As mentioned in the introduc- 
tion, prior to the result of this paper, the only nontrivial 

constant-depth LK proof of the weak pigeonhole principle 
was that  of [9], and the optimization with respect to depth 
of [5]. Kraj/~ek also shows that  the proof of [9] can also be 
modified to give depth-.5 LK proofs of the onto pigeonhole 
principle. 

When m - n = O(1), it is known that  any bounded-depth 
LK proof of P H P ~  requires exponential size. Moreover, it is 
known that  even if one adds the onto pigeonhole principle as 
an axiom scheme, there is still no subexponential, bounded- 
depth LK proof of P H P ~ .  

In this paper, we showed how to prove PHP~ n with depth- 
.5, quasipolynomial-size LK proofs. It is not known whether 
or not there are constant-depth, polynomial-size LK proofs 
of the weak pigeonhole principle. If we restrict at tention to 
polynomial-size proofs, then all that  is known is that  one 
can prove P H P ~  in constant depth, where n = polylog m.  
Moreover, the depth of the proof is dependent on the the 
exponent in the polylog m.  

Lastly, by formalizing circuits that  count, one can prove 
P H P ~  for any n < m with polynomial-size Frege proofs [2]. 

There are many interesting open problems that  are raised 
by this work. Most importantly, are there polynomial-size, 
constant-depth proofs of either the weak pigeonhole princi- 
ple, or the onto weak pigeonhole principle? As mentioned 
in the introduction, a sufficiently uniform positive answer 
would answer a longstanding open question of [15] about 
the provability of infinitely many primes in IA0.  

The original proof of [9] actually shows that  PHP~ 2 has 

depth-d,  size-n l°g"¢a) n proofs. That  is, as d increases, the 
size is reduced. We do not know how to extend our new 
proof to this more general situation. 

In the introduction, we mentioned a close connection 
between the weak pigeonhole principle and approximate 
counting. Here we elaborate further on this connection and 
a related open problem. Buss's Frege proof [2] of PHP~ +1 
views the pigeonhole variables as a bipartite graph with 
pigeons on the left and holes on the right. If every pigeon 
maps to at least one hole, then the number  of edges out of 
the left side of the graph is at least m.  To say this, we 
construct a polynomial-size circuit that  counts the number 
of l ' s  in a binary string with one index for each of the 
edges of the graph, and prove inductively (using the pigeon 
axioms) that  this circuit outputs a number  of size at least 
ra. Similarly, if each hole has at most one pigeon mapped to 
it, then the number of edges into the right side of the graph 
is at most n ,  and again we say this by proving inductively 
(using the hole axioms) that  the counting circuit outputs a 
number of size at most n .  Finally, if m > n ,  this gives us 
the desired contradiction. 

Using a pairwise independent collection of hash functions, 
approximating the number of l ' s  in a binary string is 
computable with bounded-depth,  polynomial-size circuits. 
It is tempting to try to use such circuits to prove the 
weak pigeonhole principle, in a similar manner  to the above 
argument of Buss. However, the proofs of correctness 
of all known constructions involve probablistic counting 
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Resolution 

(depth-0 LK) 

Depth-.5 LK 

UPPER BOUNDS LOWER BOUNDS 

Ref. n < Size Ref. n > 

[3] (logm)" 
log log m 

, log m log S 
log log S 

* d-~ 

poly(m) 

poly(S) 

m O(log m) 

m 0 (log rn) 2 

[3; 13] (log m)" (tree-like) 
log log m 

[4] m 1/2+e 

[6; 14] ~ (tree-like) 

m/2 

Depth-l .5 LK [9; 5] m/2  m °0°gin) [10; 7; 1] m -  m 1/48° 

Depth-c LK [8] polylog m poly(m) [10; 7; 1] m - m °(1) 

[9; 5] m/2 m l°s°(°) m 

Ta bl e  1: S u m m a r y  o f  r e la t ed  resu l t s .  

and hence rely on the weak pigeonhole principle to prove 
correctness. It  is not clear whether this can be avoided. 
We conjecture that  it is not possible to prove the weak 
pigeonhole principle with polynomial-size, small-depth (say 
depth 2 or 3) Frege proofs. Such a result would be very 
striking, as it would be the first instance where there 
are known explicit constructions of circuits computing a 
function (in this case approximate counting), but where 
any proof of correctness of the function cannot be carried 
out in an equally feasible way. 

Lastly, a question left open in [4], are there polynomial-size 
Resolution proofs of P H P ~ ,  when m > n 2 / l o g n ?  We 
conjecture that  the answer is no. 
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