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ABSTRACT
We characterize the size of monotone span programs computing

certain “structured” boolean functions by the Nullstellensatz degree

of a related unsatisfiable Boolean formula. This yields the first expo-

nential lower bounds for monotone span programs over arbitrary

fields, the first exponential separations between monotone span

programs over fields of different characteristic, and the first expo-

nential separation between monotone span programs over arbitrary

fields and monotone circuits. We also show tight quasipolynomial

lower bounds on monotone span programs computing directed

st-connectivity over arbitrary fields, separating monotone span pro-

grams from non-deterministic logspace and also separating mono-

tone and non-monotone span programs over GF (2). Our results
yield the same lower bounds for linear secret sharing schemes due

to a known relationship between monotone span programs and

linear secret sharing developed by Karchmer and Wigderson [31]

and Beimel [7]. To prove our characterization we introduce a new

and general tool for lifting polynomial degree to rank over arbitrary

fields, generalizing a result of Sherstov [42].
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1 INTRODUCTION
Span programs (andmonotone span programs) are an elegant model

of computation introduced by Karchmer and Wigderson [31] that

capture the computational power of linear algebra over a field.
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To be precise, a span program over a field F is defined by a matrix

M over F whose rows are labelled with literals over boolean vari-

ables z1, z2, . . . , zn (possibly with repeats); the program ismonotone
if there are no negative literals (i.e. of the form ¬zi ) labelling any
rows. Given an assignment z ∈ {0, 1}n to these literals, the span

program accepts z if the rows of M labelled with literals that are

consistent with z span the all-1s vector — with this definition a

span program computes a boolean function in the natural way.

In the monotone case, we have a very interesting model of com-

putation, since monotone span programs use non-monotone op-

erations (algebra over F) to compute monotone functions (recall

that a boolean function f : {0, 1}n → {0, 1} is monotone if x ≤ y
implies f (x ) ≤ f (y)). This makes them surprisingly powerful —

for instance, it is known that there are monotone functions f com-

putable by polynomial-size monotone span programs overGF (2),
but require super-polynomial size monotone circuits [4]. Further,

monotone span programs have an interesting connection to cryp-

tography since they exactly characterize the amount of information

that must be shared in linear secret sharing schemes [31].
These reasons make monotone span programs an interesting

model to study, but due to their power proving strong lower bounds

against them is a difficult task. For monotone span programs over

the reals, exponential lower boundswere recently proven by [35, 41].

However, the strongest lower bounds known for arbitrary fields

are nΩ(logn)
, shown by Gál [21].

Our Contribution. The main contribution of the present work

is a new characterization of monotone span program size over

arbitrary fields for certain “structured” boolean functions. This

characterization allows us to resolve a number of open problems

about the complexity of monotone span programs (and, therefore,

linear secret sharing schemes), and generalize the main results of

[35, 41] to arbitrary fields. To summarize:

(1) We show, for every field F, that the F-monotone span pro-

gram size of the directed st-connectivity function STCONN

is nΘ(logn) . This is notable as polynomial-size non-monotone
span programs over GF (2) are known to be able to compute

STCONN [43], and thus we give the first field-independent

superpolynomial separation between monotone span pro-

grams and non-monotone span programs — further, this

shows that monotone span programs over any field can be

weaker than monotone non-deterministic logspace. Previ-

ously this lower bound for STCONN was only known for

real span programs [41], and it was not known whether or

not there existed a field F such that monotone span programs

over F could efficiently simulate monotone polynomial-size

circuits.

https://doi.org/10.1145/3188745.3188914
https://doi.org/10.1145/3188745.3188914
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(2) For every field Fwe show that the F-monotone span program

size of the GEN function is nΘ(n
ε )

for some fixed constant

ε > 0. Since GEN is computable by polynomial-size mono-

tone circuits this yields the first superpolynomial separation

between F-monotone span program size and monotone cir-

cuit size for all F; once again, this was previously only known
for real span programs [41].

(3) Finally, for each field F of finite characteristic, we construct

an explicit monotone function f computable in NP such

that mSPF ( f ) = O (poly(n)), but for every field F′ of charac-
teristic different from F we have mSPF′ ( f ) = 2

Ω(n)
, where

mSPF ( f ) denotes the monotone span program size of f over

F. This is the first exponential separation between mono-

tone span programs of different characteristic (indeed, the

lower bound is in fact strongly exponential in the sense of

[35], and so is tight up to constants in the exponent for any
monotone function). The best previous separations between

monotone span programs of different characteristic are due

to Beimel and Weinreb [9], who exhibited a similar separa-

tion result, but in which the lower bound was on the order

of mSPF′ ( f ) = nΩ(
√
logn)

.

Since these results are easy corollaries of our main theorem we

leave their proofs to the appendix of the full paper. Further, as

our results generalize the results of [41], we obtain as corollaries

the lower bounds for monotone switching networks obtained by

Potechin and Chan-Potechin [14, 36], the depth hierarchy theo-

rem for monotone NC obtained by Raz and McKenzie [38], and

the monotone depth lower bounds for st-connectivity obtained by

Karchmer and Wigderson [30].

Let us now discuss some of the ingredients of our characteriza-

tion. At the core of our results is a new lifting theorem. Our lifting

theorem is in the style of Raz and McKenzie [38] who showed how

to construct from any unsatisfiable CNF C = C1 ∧C2 ∧ · · · ∧Cm
over n variables and any “two-party” gadget д : X ×Y → {0, 1} a

monotone boolean function fC,д which we will call a lifted function.
Raz and McKenzie showed that for a particular choice of gadget

д, the monotone circuit depth of the function fC,д is characterized

by the decision tree depth of the search problem Search(C) associ-
ated with C (i.e. given an assignment to the variables of C, output

a falsified clause of C) — hence, they lifted lower bounds from a

“simple” computational model (decision trees) to a “complicated”

computational model (monotone boolean circuits). (See the Related

Works section for other hardness escalation theorems.)

In the present work we prove such a lifting theorem for mono-

tone span programs. In particular, for any field F, we show that

for any unsatisfiable CNF C and for any “good” gadget д the mini-

mum degree of any Nullstellenstaz refutation of C over F charac-

terizes the size of the smallest monotone span program comput-

ing fC,д over F. The open problems above are then resolved by

appealing to the broad literature of Nullstellensatz lower bounds

[6, 11, 12, 17, 40].

To be more precise, let P = {p1 = 0,p2 = 0, . . . ,pm = 0} be an

unsatisfiable system of polynomial equations over F[z1, z2, . . . , zn].
A Nullstellensatz refutation of P is given by a set of polynomials

q1,q2, . . . ,qm such that

∑m
i=1 piqi = 1. The degree of the refuta-

tion is maxi deg(piqi ), and the Nullstellensatz degree of P is the

minimum degree NSF (P) of any refutation of P. For an unsatis-

fiable CNF C, we let NSF (C) denote the minimum degree of any

Nullstellensatz refutation of C encoded as a system of polynomial

equations.

To lift the Nullstellensatz degree, we use an interesting charac-

terization of monotone span program size given by Gál [21]. Let

f : {0, 1}n → {0, 1} be a monotone boolean function, and for any

i ∈ [n] define Xi = {(x ,y) ∈ f −1 (1) × f −1 (0) | xi = 1,yi = 0}

to be the coordinate rectangle of the ith input. An algebraic tiling
of f is given by a sequence of n matrices A1,A2, . . . ,An over F,
each of size | f −1 (1) | × | f −1 (0) |, such that all non-zero entries of

Ai are indexed by Xi and
∑n
i=1Ai = 1 where 1 is the all-1s matrix.

The size of an algebraic tiling is

∑n
i=1 rankF (Ai ), and the algebraic

tiling number of f is the minimum size χF ( f ) of any algebraic tiling
of f . Gál showed that the algebraic tiling number of f is exactly

the size of the smallest monotone
1
span program computing f .

Superficially, one might expect that there is a connection between

algebraic tiling and Nullstellensatz given the similiarities of the two

expressions.

Using this measure, Gál was able to show that a simple rank-

based complexity measure of Razborov [39] lower-bounded mono-

tone span program size, and this measure also plays an important

role in the proof of our main theorem. Let F be any field, and let A
be any | f −1 (1) | × | f −1 (0) | matrix over F. The rank measure of f at

A is defined to be

µF ( f ,A) :=
rankF (A)

max

i ∈[n]
rankF (A↾Xi )

where A↾Xi denotes the submatrix of A obtained by zeroing all

entries of A outside of Xi . Let µF ( f ) := maxA µF ( f ,A) denote the
maximal

2
rank measure of f over all matrices A.

Barring the definition of a “good” gadget (see Section 3), we are

now ready to state our characterization. We note that there are

small and simple gadgets that are good, and when we refer to the

rank of a gadget д : X×Y → Fwe mean the rank of д when treated

as an |X| × |Y| matrix over F.

Theorem 1.1. Let C be an unsatisfiable CNF on n variables, and
let F be any field. For any good gadget д : X×Y → {0, 1} over F with
rank(д) = n2, the lifted function fC,д satisfies µF ( fC,д ), χF ( fC,д ) =
nΘ(NSF (C)) . Further, if NSF (C) = Θ(n), then for any good gadget д
(of sufficiently large but constant rank), µF ( fC,д ), χF ( fC,д ) = 2

Θ(n) .

In the process of proving our main theorem, we prove an inter-

esting technical result that we hope will have other applications. If

p ∈ F[z1, z2, . . . , zn] is a polynomial over F and д : X ×Y → F is a

gadget then we can create a matrix p ◦ дn : Xn × Yn → F (called

a pattern matrix, following Sherstov [42]) in the natural way by

composing д with p:

p ◦ дn := [p (д(x1,y1),д(x2,y2), . . .д(xn ,yn ))]x,y∈Xn×Yn .

We show that when д is good then the rank of the matrix p ◦дn can

be calculated directly from the set of monomials occurring in p.

1
Gál also gave a similar characterization of non-monotone span program size.

2
Note that the rank ofA is integral and bounded bymin{ |f −1 (1) |, |f −1 (0) | } and thus
we can safely place a maximum instead of a supremum.
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Theorem 1.2. Let p ∈ F[z1, z2, . . . , zn] be a multilinear polyno-
mial and let F be a field. For any good gadget д : X × Y → F we
have rankF (p ◦ дn ) =

∑
S :p̂ (S ),0 rankF (д)

|S | where p̂ (S ) denotes the
coefficient of the monomial

∏
i ∈S zi in p.

A special case of this theorem follows from a result of Sherstov

[42, Theorem 4.3], however, his result only works for real polyno-

mials p and for a specific choice of gadget д. In contrast, our result

works for arbitrary fields and for any gadget д satisfying a general

condition (in fact, Sherstov’s gadget satisfies our general condition

— see Section 4 in the full version for details).

Related Work. Span programs were introduced by Karchmer and

Wigderson [31], who also showed a connection with secret shar-

ing schemes and produced the first superlinear lower bounds on

non-monotone span program size. Monotone span programs have a

long history of lower bounds. Shortly after Karchmer and Wigder-

son’s paper, Csirmaz [19] proved an Ω(n2/ logn) lower bound on

monotone span program size. Beimel et al. [8] gave a lower bound

of n5/2, and then Babai et al. [3] proved the first superpolynomial

lower bound on the order of nΩ(logn/ log logn)
. Each of these results

were obtained by direct combinatorial arguments, which were sim-

plified and improved by Gál to nΩ(logn)
[21]. In the same paper,

Gál observed the connection between monotone span programs

and the rank measure, and this connection was further investigated

by Gál and Pudlák [22]. The superpolynomial lower bounds cited

above only applied to functions computable in NP; Beimel and

Weinreb [9] gave quasipolynomial lower bounds nΩ(
√
logn)

for a

monotone function in uniform NC2
, establishing that monotone

span programs can be weaker than polynomial time. Pudlák and

Sgall [37] made the first connection between span programs and

Nullstellensatz degree in the context of feasible interpolation. The

first exponential lower bounds for monotone span programs were

proved by Robere, Pitassi, Rossman and Cook [41], who showed

exponential lower bounds for real span programs. Later, Pitassi and

Robere [35] proved the first strongly exponential lower bounds for
an explicit monotone function (in NP), again over the reals.

These last results bear further discussion, as they were a direct

inspiration for the present paper. The results of [35, 41] show that

lower bounds on the rank measure µR ( fC,д ) of the lifted function

fC,д can be obtained from query complexity lower bounds for C,

using a new query measure called the algebraic gap complexity
gap(C). This can be seen as establishing one direction of a lifting

theorem from algebraic gaps to the rank measure over the reals. For

the purpose of proving lower bounds, it was then required to prove

strong lower bounds on the algebraic gap, which was done directly

for each application in an ad-hoc manner. Here, we prove that

the algebraic gap measure is exactly the same as the well-studied

Nullstellensatz degree measure in proof complexity, obtaining a full

two-way lifting theorem from Nullstellensatz degree to the rank

measure over every field. This allows us to obtain all applications

(the new ones mentioned above as well as all of the old ones) by

simply plugging in the appropriate gadget and unsatisfiable C, and

then applying known Nullstellensatz degree bounds.

Hardness escalation techniques like those employed in the present

paper are a rapidly growing area of research in complexity theory,

and are often used to study the amount of communication needed

to compute composed problems of the form

F ◦ дn := F (д(x1,y1),д(x2,y2), . . . ,д(xn ,yn ))

where F is an n-input function or relation and д is some two-input

“gadget”. Such composed problems yield a natural two-player com-

munication task: Alice receives x ∈ Xn , Bob receives y ∈ Yn
, and

their goal is to evaluate F on the input z = д(x1,y1)д(x2,y2) · · ·д(xn ,yn )
using a minimal amount of communication about their inputs. For

many models of communication, if one chooses the “right” gadget

д it is possible to show that the communication complexity of the

composed function F ◦дn is closely related to the query complexity

of F in some appropriate query model — a typical query model

studied is a decision tree, which measures the number of input bits

of F that need to be queried before we can determine the output

of f . Such a result is often very powerful since query models are

usually much easier to study than communication models.

Lifting theorems have introduced powerful new tools into com-

plexity theory, and have recently led to the resolution of open prob-

lems in many areas of theoretical computer science and discrete

mathematics, including: graph theory [23], linear programming for-

mulations for combinatorial optimization [32, 33], circuit complex-

ity and cryptography [25, 35, 38, 41], proof complexity [20, 25, 28],

game theory [5], and communication complexity [1, 16, 26, 27, 42].

Moreover the field has led to a revival of query complexity, with

new techniques leading to the resolution of some longstanding

open problems [1, 2, 23].

2 PRELIMINARIES
Let Z be a set, and let n be a positive integer. We will use the

standard notation ofZn
to represent the set of all n-tuples overZ,

and the less-standard notationZ≤n to denote the set of all tuples of

length at most n overZ. If z ∈ Zn
then zi denotes the ith element

of the tuple z, and if A ⊆ [n] then zA is the tuple of elements in z
indexed by A.

Let F be a field. It will be useful to think of matrices over F as

having their rows and columns being indexed by more general

objects. Thus, if X,Y are sets then we consider functions A : X ×

Y → F as |X| × |Y| matrices, where the rows of A are indexed

by elements of X and columns of A are indexed by Y . To simplify

notation, we will refer to such a function A as a X ×Y matrix over

F, and use regular function notation (e.g. A(x ,y) for x ,y ∈ X × Y)
to index into such matrices. We let 1X,Y denote the X ×Y all-1s
matrix, but will often leave out the subscript if the dimensions of

the matrix are clear from the context.

If A is anm × n matrix A : [m] × [n]→ F and B is p × q matrix

B : [p] × [q] → F, then the Kronecker product of A and B is the

mp × nq matrix A ⊗ B : ([m] × [p]) × ([n] × [q]) → F defined by

(A ⊗ B) ((i,k ), (j, ℓ)) = A(i, j )B (k, ℓ).

If X,Y are sets then a combinatorial rectangle in X × Y is a

subset R ⊆ X × Y for which we can write R = X × Y for some

subsets X ⊆ X,Y ⊆ Y . If A : X × Y → F is a matrix and R is

a rectangle in X × Y then we let A↾R denote the submatrix of A
indexed by elements of R. It will be formally convenient to think

of A↾R as having the same dimensions as A, and thus we formally
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define A↾R : X ×Y → F by

(A↾R) (x ,y) =



A(x ,y) if (x ,y) ∈ R

0 otherwise.

We say that A is embedded in R if A = A↾R — that is, all non-zero

entries of A are indexed by R.
If x ,y ∈ {0, 1}n then we write x ≤ y if xi ≤ yi for all i . Let

f : {0, 1}n → {0, 1} be a boolean function, a partial boolean func-

tion is a function f : {0, 1}n → {0, 1, ∗} (informally, if f (x ) = ∗
then we “don’t care” what the output of the function is). A total

boolean function f : {0, 1}n → {0, 1} is monotone if f (x ) ≤ f (y)
whenever x ≤ y; a partial boolean function f : {0, 1}n → {0, 1, ∗}

is monotone if it can be extended to a total monotone boolean

function by choosing {0, 1}-assignments for the ∗ outputs.

If f (x ) = 1 we call x an accepting instance or a yes instance, while
if f (x ) = 0 then we call x a rejecting instance or a no instance. If f
is monotone and x ∈ f −1 (1),y ∈ f −1 (0) then there exists an index

i ∈ [n] such that xi = 1,yi = 0, as otherwise we would have x ≤ y,
contradicting the fact that f is monotone.

2.1 Circuit Complexity: Karchmer-Wigderson
Games and Monotone Span Programs

In this section we review some definitions from circuit complexity.

Let F be a field. An F-span program is a computational device for

computing boolean functions defined by a matrix A over F with its

rows labelled by boolean literals over variables z1, z2, . . . , zn . Given
a span program A, a row vector Ai of A is consistent with an input

z ∈ {0, 1}n if the literal labelling Ai is set to 1 under z. The span
programA then accepts an input assignment z ∈ {0, 1}n if the set of

rows consistent with z spans the all-1s vector; with this definition a

span programA computes a boolean function f : {0, 1}n → {0, 1} in

the natural way. A span program is monotone if all literals labelling
rows of A are positive, and note that monotone span programs

compute monotone functions since adding row vectors can only

increase the span. If f is a partial monotone boolean function then

we let mSPF ( f ) denote the minimum size of a F-monotone span

program computing f .
A set of extremely useful tools in studying the circuit complexity

of boolean functions originate in communication complexity. Let
f : {0, 1}n → {0, 1, ∗} be a partial, monotone boolean function, and

letU = f −1 (1),V = f −1 (0). The monotone Karchmer-Wigderson
game of f is the relation

KW+ ( f ) = {(x ,y, i ) ∈ U ×V × [n] | xi = 1,yi = 0}.

We think of this relation as a computation task between two parties,

Alice and Bob: Alice receives an input x ∈ U , Bob receives an input

y ∈ V , and they wish to agree on an index i such that xi = 1 and

yi = 0. Indeed, the relation KW+ ( f ) was introduced by Karchmer

and Wigderson [30], who showed that the minimum number of

bits that Alice and Bob need to communicate to compute KW+ ( f )
is exactly the minimum depth of any monotone circuit

3
computing

f .

3
Karchmer and Wigderson also showed that a similar relation characterized non-

monotone circuit depth.

Similarly, Gál [21] characterized the size of span programs com-

puting f using a different complexity measure of the Karchmer-

Wigderson game. We introduce this measure next. For any i ∈ [n]
we refer to the set Xi = {x ∈ U | xi = 1} × {y ∈ V | yi = 0}

as the coordinate rectangle for the input xi , and note that Xi is a
combinatorial rectangle inU ×V .

Definition 2.1. Let f : {0, 1}n → {0, 1, ∗} be a partial monotone

boolean function, and let U = f −1 (1), V = f −1 (0). Let F be a

field. An algebraic tiling of KW+ ( f ) is given by a set of matrices

A1,A2, . . . ,An such that

n∑
i=1

Ai = 1

andAi is embedded inXi for each i; the size of the tiling is
∑n
i=1 rankF (Ai ).

The algebraic tiling number of KW+ ( f ), denoted χF ( f ), is the min-

imum size of any algebraic tiling of KW+ ( f ).

Theorem 2.2 (Theorem 3.4 in [21]). For any partial monotone
boolean function f and any field F, mSPF ( f ) = χF ( f ).

Using the algebraic tiling number Gál showed that the following

measure (originally introduced by Razborov [39]) is a lower bound

on span program size.

Definition 2.3. Let f : {0, 1}n → {0, 1, ∗} be a partial, monotone

boolean function and let U = f −1 (1),V = f −1 (0). Let F be any

field and let A be any U × V matrix over F. Let Xi denote the

coordinate rectangle Xi = {u ∈ U |ui = 1} × {v ∈ V |vi = 0} from

the relation KW+ ( f ). The rank measure of f with respect to A is

µF ( f ,A) :=
rankF (A)

max

i ∈[n]
rankF (A↾Xi )

.

Let µF ( f ) = maxA µF ( f ,A).

Theorem 2.4 (Lemma 3.2 in [21]). For any partial monotone
boolean function f and any field F, µF ( f ) ≤ χF ( f ).

2.2 Proof Complexity: Nullstellensatz Proofs
and Algebraic Gaps

Next we review some preliminaries from proof complexity, and in

particular theNullstellensatz proof system [6]. Letp ∈ F[z1, z2, . . . , zn]
be a polynomial over a field F. The polynomial p is multilinear if
no individual variable appears in p with degree greater than 1. If

p is multilinear, it follows that all terms in p are products of vari-

ables

∏
i ∈S zi for some S ⊆ [n], and thus it has at most 2

n
distinct

terms. Given a multilinear polynomial p, we will borrow notation

from Fourier analysis and let p̂ (S ) ∈ F denote the coefficient of the

monomial zS :=
∏

i ∈S zi in p. Furthermore, if π : [n]→ F ∪ {∗} is
a partial restriction of the variables of p, then we let p↾π denote the

polynomial over the unrestricted variables of π obtained from p in

the natural way.

Definition 2.5. Let {p1 = 0,p2 = 0, . . . ,pm = 0} be an unsatisfi-

able system of polynomial equations over variables z1, z2, . . . , zm .

A Nullstellensatz refutation of the system is given by polynomials

q1,q2, . . . ,qm over the same set of variables satisfying

m∑
i=1

piqi = 1
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where the equality is syntactic. The degree of the refutation is

maxi deg(piqi ).

It is fruitful to compare this definition with Definition 2.1: Null-

stellensatz degree is the analogue of the algebraic tiling number for

polynomials.

Let C = C1∧C2∧ · · · ∧Cm be an unsatisfiable CNF over boolean

variables z1, z2, . . . , zm . We will need to convert C to an equivalent

system of polynomial equations; here we give a standard encoding

that we will use later. If C is a clause let C+ denote the set of vari-
ables occurring positively in C and C− denote the set of variables
occurring negatively in C; with this notation we can write

C =
∨
z∈C+

z ∨
∨
z∈C−

z.

From C we can define the polynomial equation

E (C ) ≡
∏
z∈C+

(1 − z)
∏
z∈C−

z = 0,

observing that E (C ) is satisfied (over 0/1 assignments to zi ) if and
only if the corresponding truth assignment satisfies C . We will

abuse notation and let E (C) = {E (C ) |C ∈ C} ∪ {z2i − zi = 0}i ∈[m]
.

We define the Nullstellensatz degree NSF (C) of an unsatisfiable

CNF C as the minimum degree of any Nullstellensatz refutation of

E (C).
In this paper we will usually be working over {0, 1}-assignments,

due to our applications. For this reason, it may be helpful to think

of working modulo the ideal generated by {z2i − zi }i ∈[n], i.e. in the

quotient ring

F[z1, z2, . . . , zn]/⟨z2i − zi ⟩i ∈[n].

It is well known that every polynomial p ∈ F[z1, z2, . . . , zn] is
equivalent to a multilinear polynomial modulo this ideal. With this

in mind, if p is a polynomial we let deg(p) denote the degree of the
multilinear polynomial equivalent to p modulo ⟨z2i − zi ⟩i ∈[n].

Unsatisfiable CSPs and Search Problems. Let C be a formula in

conjunction normal form (CNF) and let C be a clause of C. The

certificate ofC is the unique partial assignment that falsifiesC while

only assigning variables in C . Let Cert(C) be the set of certificates
of clauses of C, and given a certificate π and a (total) assignment z
to the variables of C say that z and π are consistent if they agree

on the assigned variables of π .

Definition 2.6. Let C = C1 ∧ C2 ∧ . . . ∧ Cm be an unsatisfiable

CNF on n variables. The search problem associated with C is the

relation

Search(C) ⊆ {0, 1}n × Cert(C)

which contains all pairs (z,π ) ∈ {0, 1}n × Cert(C) such that π is

consistent with z.

For an example, let C = {C1,C2, · · · ,Cm } be an unsatisfiable k-
CNF over variables z1, z2, . . . , zn . The search problem Search(C) ⊆
{0, 1}n ×Cert(C) is defined as follows: given a boolean assignment

to the variables z, choose any falsified clause Ci and output the

assignment to the variables of Ci . (Equivalently, since clauses have
a unique falsifying assignment, one can instead just output the

index of the falsified clause i .) The next definition is a complexity

measure on Search(C).

Definition 2.7. Let C be an unsatisfiable CNF formula on n vari-

ables and let F be a field. The algebraic gap complexity of Search(C)
is the largest integer gapF (C) for which there exists a multilinear

polynomial p over F such that

degp = n and ∀π ∈ Cert(C), degp↾π ≤ n − gapF (C).

The algebraic gap complexity was introduced in [41] as a “poly-

nomial analogue” of Razborov’s rank measure (although, only over

the reals and using {−1, 1} assignments instead of {0, 1} assign-

ments). Since the rank measure µF ( f ) is a lower bound on χF ( f )
(Theorem 2.4) it is reasonable to expect that gapF (C) is a lower

bound on NSF (C). We show this in the next proposition.

Proposition 2.8. For any field F and any unsatisfiable CNF formula
C, gapF (C) ≤ NSF (C).

Proof. Let q1,q2, . . . ,qm be any set of polynomials such that∑m
i=1 piqi = 1 and maxi deg(piqi ) = NSF (C). Let r be the multi-

linear polynomial witnessing the algebraic gap of C. Multiplying

the Nullstellensatz refutation

∑m
i=1 piqi = 1 by r we can express

r (z) =
∑m
i=1 rpiqi (z). Observe that (rpiqi ) (z) , 0 only if z is con-

sistent with the unique certificate πi of the constraint pi = 0; it fol-

lows that for every z ∈ {0, 1}n that we have r (z) =
∑m
i=1 rpiqi (z) =∑m

i=1 (r↾πi )piqi (z). Using this observation and noting that deg r = n
we get

n = deg r ≤ max

i ∈[m]

deg((r↾πi )piqi )

≤ max

i ∈[m]

deg(r↾πi ) + deg(piqi )

≤ n − gapF (C) + max

i ∈[m]

deg(piqi ).

Rearranging yields gapF (C) ≤ maxi ∈[m]
deg(piqi ) = NSF (C). □

2.3 Connecting Proofs and Circuits
Next we connect the search problem Search(C) associated with

unsatisfiable k-CSPs and monotone Karchmer-Wigderson games

KW+ ( f ). Special cases of the construction in this section have been

implicitly used by several other works in the literature [25, 34, 35,

38, 41]; we give a very general presentation in the hope that it will

be useful elsewhere.

Let X,Y,Z be arbitrary sets, and let R ⊆ X × Y × Z be a

relation. We always assume that relations R are minimal in the

sense that there are no pairs of “duplicate elements”; i.e. there are

no distinct a,a′ ∈ X such that for all b, c , (a,b, c ) ∈ R if and only

if (a′,b, c ) ∈ R (and the analogous conditions hold for Y andZ).

The relation R is total if for all (a,b) ∈ X ×Y there is a c ∈ Z such

that (a,b, c ) ∈ R, and R is rectangular if for each c ∈ Z the set

Rc = {(a,b) ∈ X × Y | (a,b, c ) ∈ R}

is either empty or is a combinatorial rectangle.

Now, let f : {0, 1}n → {0, 1, ∗} be a partial monotone boolean

function and consider the monotone Karchmer-Wigderson game

KW+ ( f ). It is easy to see that KW+ ( f ) is both total and rectangular.
In fact, it is not hard to see that these two properties characterize
monotone Karchmer-Wigderson games in the following sense.

Definition 2.9 (Folklore, [9, 21, 39]). Let X,Y be sets, and let

R ⊆ X × Y × [m] be a relation that is total and rectangular. For

each i ∈ [m] let Ri = Xi × Yi ⊆ X × Y denote the rectangle
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corresponding to the output i of the relation, and define a partial
monotone boolean function fR : {0, 1}m → {0, 1, ∗} as follows. For

each a ∈ X define the string ua ∈ {0, 1}m by setting uai = 1 if

a ∈ Xi and uai = 0 otherwise. Similarly, for each b ∈ Y define

the string vb ∈ {0, 1}m by setting vbi = 0 if b ∈ Xi and vbi = 1

otherwise. Then define

fR (x ) =




1 if ∃a ∈ A : x = ua

0 if ∃b ∈ B : x = vb

∗ otherwise.

Proposition 2.10. Let X,Y be sets, and let R ⊆ X × Y × [m] be
a relation that is total and rectangular. Then fR is well-defined and
KW+ ( fR ) is equivalent (up to renaming elements of the relation) to
R.

Proof. By way of contradiction suppose that fR is not well

defined and let (a,b) ∈ A × B be a pair of elements chosen so

that ua = vb . By construction, it follows that there does not exist

an i ∈ [m] such that (a,b, i ) ∈ R, contradicting the totality of R.

Furthermore, it is clear that (a,b, i ) ∈ R if and only if (ua ,vb , i ) ∈
KW+ ( f ). □

With this proposition in mind, consider an unsatisfiable CSP C

with variables taking values in a domainZ and observe that the

relation Search(C) is total. If д : X×Y → Z is a matrix (also called

a gadget) then we can compose (or lift) Search(C) with д to obtain

a new total relation

Search(C,д) ⊆ Xn × Yn × Cert(C)

in the natural way: on input (x ,y) ∈ Xn × Yn
, find a certificate

π ∈ Cert(C) that is consistent with the string

z = дn (x ,y) := д(x1,y1)д(x2,y2) · · ·д(xn ,yn ).

The lifted search problem Search(C,д) is total since the search prob-
lem Search(C) is, however, we cannot immediately apply Proposi-

tion 2.10 to construct a boolean function since the lifted problem is

not necessarily rectangular. To avoid this issue, we instead consider

a canonical version of the search problem obtained by replacing the

outputs of Search(C,д) with a rectangle covering (in the language

of communication complexity, we are showing that the search prob-

lem has bounded certificate complexity).

Definition 2.11. Let C = {C1,C2, · · · ,Cm } be an unsatisfiable k-
CSP on variables z1, z2, . . . , zn with domainZ, and let д : X×Y →

Z be any function. The canonical search problem is the relation

CanSearch(C,д) ⊆ Xn × Yn × (Cert(C) × X≤k )

defined by

((x ,y), (π ,α )) ∈ CanSearch(C,д)

if and only if

дn (x ,y) is consistent with π and x↾vars(π ) = α .

The canonical search problem CanSearch(C,д) also satisfies the
rectangularity property and so it can be used to construct monotone

boolean functions via Proposition 2.10. To see this, let π ∈ Cert(C)
and α ∈ X≤k be chosen so that there exists ((x ,y), (π ,α )) ∈
CanSearch(C,д). We claim the set

Xπ ,α = {(x ,y) ∈ X
n × Yn | ((x ,y), (π ,α )) ∈ CanSearch(C,д)}

is a combinatorial rectangle. Towards this, let (x ,y), (x ′,y′) ∈ Xπ ,α
be two pairs in Xπ ,α . By definition x↾vars(π ) = x ′↾vars(π ) = α ,

thus we have дvars(π ) (xvars(π ) ,yvars(π ) ) = дvars(π ) (α ,yvars(π ) ) =

дvars(π ) (x ′vars(π ) ,yvars(π ) ) is consistent with π , and similarly if we

subsitute y′ for y.
Now by applying Proposition 2.10we obtain fromCanSearch(C,д)

a partial monotone boolean function fCanSearch(C,д) onN ≤ |Cert(C) | |X|
k

input variables such that KW+ ( fCanSearch(C,д) ) is equivalent to
CanSearch(C,д); to reduce clutter we will write fC,д instead of

fCanSearch(C,д) .

3 PROOF OUTLINE
The rest of the paper is devoted to the proof of Theorem 1.1.

Theorem 1.1. Let C be an unsatisfiable CNF on n variables, and
let F be any field. For any good gadget д : X×Y → {0, 1} over F with
rank(д) = n2, the lifted function fC,д satisfies µF ( fC,д ), χF ( fC,д ) =
nΘ(NSF (C)) . Further, if NSF (C) = Θ(n), then for any good gadget д
(of sufficiently large but constant rank), µF ( fC,д ), χF ( fC,д ) = 2

Θ(n) .

In this section we give a technical overview of this result. Let us

first state what it means for a gadget д to be good.

Definition 3.1. Let F be a field. A gadget д : X × Y → F is good
if for any matrices A,B over F of the same dimension

rank(1 ⊗ A + д ⊗ B) = rank(A) + rank(д)rank(B).

For the sake of concreteness, let F be a field, let C be an unsat-

isfiable k-CNF, and let д : X × Y → F be a good gadget. Our goal

is to relate Nullstellensatz refutations of C (under an appropriate

encoding) to monotone span programs computing the function

fC,д .
The proof of Theorem 1.1 proceeds, broadly, in two steps: an

upper bound and a lower bound. A hint that the upper bound holds

can be seen by comparing Nullstellensatz refutations of C and

algebraic tilings of KW+ ( fC,д ) side-by-side. Recall a Nullstellensatz
refutation of E (C) is given by a set of polynomials q1,q2, . . . ,qm
satisfying

m∑
i=1

piqi = 1, (1)

where pi ∈ E (C) for each i .
On the other hand, by the construction in the preliminaries, the

Karchmer-Wigderson gameKW+ ( fC,д ) is the same as the canonical

search problem CanSearch(C,д) from Definition 2.11. For the sake

of simplicity, let us briefly suppose that the Karchmer-Wigderson

game KW+ ( fC,д ) was instead equivalent to the simpler search

problem Search(C,д), and therefore that the coordinate rectangles

for the function fC,д were exactly the sets

Xπ = {(x ,y) ∈ X
n × Yn | z = дn (x ,y) consistent with π }

for π ∈ Cert(C). In this simpler setting, an algebraic tiling of

KW+ ( fC,д ) can be written as∑
π ∈Cert(C)

Aπ =

m∑
i=1

Aπi = 1, (2)

whereAπ is embedded inXπ for each π , πi is the unique certificate
for the equation pi = 0, and the size of the tiling is

∑
rank(Aπi ).
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To connect these two representations we use pattern matrices.
Namely, if p ∈ F[z1, z2, . . . , zn] is a polynomial then we can com-

pose p with the gadget д in the natural way to obtain a Xn × Yn

pattern matrix p ◦ дn over F defined by

p ◦ дn (x ,y) = p (д(x1,y1),д(x2,y2), . . . ,д(xn ,yn )).

For our purposes, observe that for any clause Ci we have that

(piqi ) ◦ д
n (x ,y) , 0 only if z = дn (x ,y) is consistent with the cer-

tificate πi of pi = 0 — in other words, the pattern matrix (piqi ) ◦дn

is embedded in the coordinate rectangle Xπi for each i . Thus if∑m
i=1 piqi = 1 is a Nullstellensatz refutation of E (C) then

∑m
i=1 piqi◦

дn = 1 is an algebraic tiling of KW+ ( fC,д )!
A problem with the above argument is that it is not obvious if

the size of the algebraic tiling

∑m
i=1 rank(piqi ◦д

n ) is related to the
degree of underlying Nullstellensatz refutation maxi ∈[m]

deg(piqi ).
In order to guarantee this, we need to choose the gadget д so that

for every polynomial p, the degree of p is directly related to the

rank of the pattern matrix p ◦ дn . In the case that the polynomial

p is real-valued, such a gadget was (implicitly) shown to exist by

Sherstov [42].

Theorem 3.2 (Corollary of Theorem 4.3 in [42]). Let p be a
real multilinear polynomial over n variables z1, z2, . . . , zn . For each
λ ∈ Z+ there is a gadget дλ such that

rankR (p ◦ дnλ ) =
∑

S :p̂ (S ),0

λ |S | .

Using the gadget дλ from the previous theorem would imme-

diately yield the upper bound of Theorem 1.1 when F = R by

following the proof sketch above. However, there is a problem in

trying to generalize the proof of Theorem 3.2 to arbitrary fields: in

[42] the singular values of p ◦ дnλ are exactly computed for every

real polynomial p, and the singular value decomposition becomes

quite useful for other results in that work. Since singular values

are not well-defined over finite fields this proof cannot be directly

generalized.

One of the main contributions of the present paper, which we

hope will have other applications, is the following strengthening

of Theorem 3.2 to all fields.

Theorem 1.2. Let p ∈ F[z1, z2, . . . , zn] be a multilinear polyno-
mial and let F be a field. For any good gadget д : X × Y → F we
have rankF (p ◦ дn ) =

∑
S :p̂ (S ),0 rankF (д)

|S | where p̂ (S ) denotes the
coefficient of the monomial

∏
i ∈S zi in p.

From this theorem we can recover Theorem 3.2 directly: Sher-

stov’s gadget дλ from the statement of Theorem 3.2 is good for all

fields with char(F) , 2 and also satisfies rankR (дλ ) = λ. However,
Sherstov needs a stronger statement than this theorem to bound the

operator norm of p ◦ дnλ ; we cannot recover the stronger statement.

Using Theorem 1.2 instead of Theorem 3.2, along with the proof

sketch above (suitablymodified using the search problemCanSearch(C,д)
instead of Search(C,д)), yields the upper bound in Theorem 1.1:

Theorem 3.3. Let n be a positive integer and let C be an unsat-
isfiable CNF with n variables andm clauses. Let F be a field and let
д : X×Y → {0, 1} be a good gadget with rank(д) = O (poly(n)) over
F. Then

χF ( fC,д ) ≤ mnO (NSF (C)) .

Furthermore, suppose NSF (C) ≥ εn for some universal constant ε .
Then for any good gadget д over F with rank(д) > 2

1/ε ,

χF ( fC,д ) ≤ m2
O (n) .

Next let us discuss the lower bound in Theorem 1.1. In prin-

ciple, a direct proof would proceed by taking an algebraic tiling

A1,A2, . . . ,AN of KW+ ( fC,д ) of size χF ( fC,д ) and then extracting

a Nullstellensatz refutation of the underlying system of polynomial

equations in C with degree roughlyO (log χF ( fC,д )/ logn); indeed,
this is the approach that the other lifting theorems in the litera-

ture tend to follow [15, 24, 32, 38]. In particular, approaching the

problem this way seems to require extracting a polynomial qi from
each matrixAi in the tiling such that deg(qi ) ≈ log rank(Ai )/ logn.
Since the tiling we begin with is chosen arbitrarily it does not have

the structure of a pattern matrix, and so it is not clear how to go

about extracting such a polynomial.

We deviate from this approach, and instead prove a different lift-

ing theorem from the algebraic gap complexity gapF (C) to Razborov’s
rank measure µF ( fC,д ) — this allows us to exploit the structure of

pattern matrices and Theorem 1.2.

Theorem 3.4. Let n be a positive integer and let C be an unsat-
isfiable CNF over n variables. Let F be a field and let д : X × Y →

{0, 1} be a good gadget with rank(д) = n2 over F. Then µF ( fC,д ) ≥

Ω(ngapF (C) ). Furthermore, suppose gapF (C) ≥ εn for some ε > 0.
Then for any good gadget д over F with rank(д) > 2

1/ε ,

µF ( fC,д ) ≥ 2
Ω(n) .

A special case of this theorem was proven in [41] when the field

F is the real numbers: indeed, the proof of the special case crucially

relied on the “real rank-lifting” Theorem 3.2. We obtain Theorem 3.4

by following the proof from [41] while replacing each application of

Theorem 3.2 with the more general Theorem 1.2. However, we note

that this lower bound does not immediately imply the lower bound

in Theorem 1.1 since it is in terms of the algebraic gap complexity

and not Nullstellensatz degree. To obtain Theorem 1.1 we show

that the algebraic gap complexity and the Nullstellensatz degree

are the same for unsatisfiable CNFs.

Theorem 3.5. For any unsatisfiable CNF C and any field F we
have NSF (C) = gapF (C).

The rest of the paper is organized as follows. In Section 4 we

prove our main degree-to-rank connection, Theorem 1.2, and con-

struct two families of good gadgets д. Using this construction, we
prove Theorem 3.4 in Section 4.2. In Section 5 we prove Theorem

3.5, showing algebraic gaps and Nullstellensatz are dual. Finally in

Section 6 we prove Theorem 3.3 and then Theorem 1.1 follows as an

easy corollary. The main applications are proved in the Appendix.

4 RANK LIFTING OVER ALL FIELDS
In this section we prove Theorem 1.2, which is our general degree-

to-rank lifting theorem, and then Theorem 3.4, which lifts algebraic

gap complexity gapF to the rank measure µF.
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4.1 Proof of Theorem 1.2 and Gadget
Construction

As discussed above, Theorem 1.2 is a generalization of a result of

Sherstov, which holds for real polynomials and only for a particular

choice of gadget д. We generalize the “real rank-lifting theorem”

to work over all fields, and also give a general sufficient property

on gadgets д for which such a degree-to-rank lift is possible. In

fact, this general property is satisfied by Sherstov’s gadget for all

fields of characteristic other than 2, which we prove after proving

Theorem 1.2.

The proof of Theorem 1.2 is elementary, using induction and

basic algebraic properties of the Kronecker product. In contrast,

the special case of Theorem 1.2 for real polynomials and a special

gadget д [42, Theorem 4.3] follows from an explicit calculation of

the singular values of p ◦ дn .

Theorem 1.2. Let p ∈ F[z1, z2, . . . , zn] be a multilinear polyno-
mial and let F be a field. For any good gadget д : X × Y → F we
have rankF (p ◦ дn ) =

∑
S :p̂ (S ),0 rankF (д)

|S | where p̂ (S ) denotes the
coefficient of the monomial

∏
i ∈S zi in p.

Proof. Suppose thatA is anm×n matrix and B is a p ×q matrix

over F. Recall from the preliminaries that if we think of A and

B as mappings A : [m] × [n] → F, B : [p] × [q] → F, then the

Kronecker product has a natural interpretation as the mapping

A ⊗ B : ([m] × [p]) × ([n] × [q]) → F defined by

(A ⊗ B) ((i,k ), (j, ℓ)) = A(i, j )B (k, ℓ). (3)

From this fact we have the following claim.

Claim. Let S ⊆ [n], and let zS =
∏

i ∈S zi denote a monomial over

F[z1, z2, . . . , zn]. Then

zS ◦ д
n =

n⊗
i=1

MS (i )

whereMS (i ) = д if i ∈ S andMS (i ) = 1 otherwise.

Proof of Claim. For notational simplicity suppose that S =
{1, 2, . . . , t } for some t ≤ n, and a symmetric calculation applies for

general S . Then

zS ◦ д
n = [zS (д(x1,y1),д(x2,y2), · · · ,д(xn ,yn ))](x,y )∈Xn×Yn

=



∏
i ∈S

д(xi ,yi )
 (x,y )∈Xn×Yn

= [д(x1,y1) · · ·д(xt ,yt )1(xt+1,yt+1) · · · 1(xn ,yn )](x,y )∈Xn×Yn

= д ⊗ д ⊗ · · · ⊗ д︸            ︷︷            ︸
t times

⊗ 1 ⊗ · · · ⊗ 1︸       ︷︷       ︸
n−t times

=

n⊗
i=1

MS (i ),

where we have used Equation 3. □

We need the following useful properties of the Kronecker product.

(1) For any matrices A and B taking values over F,

rankF (A ⊗ B) = rankF (A)rankF (B).

(2) The Kronecker product is bilinear : if A,B,C,D are matrices

then

(A + B) ⊗ C = A ⊗ C + B ⊗ C

and

A ⊗ (C + D) = A ⊗ C +A ⊗ D

whenever the sums are well-defined.

Using these properties and the claim, we prove the lemma by induc-

tion on n. Recall from Definition 3.1 that a gadget д : X ×Y → F is

good if for any matrices A,B over F of the same dimension

rank(1 ⊗ A + д ⊗ B) = rank(A) + rank(д)rank(B).

When n = 0 the polynomial p is just a constant in F, and the

matrix p ◦д0 is the 1×1 matrix [p̂ (∅)]. In this case the conclusion of

the theorem is trivially satisfied — if p̂ (∅) = 0 then rank(p ◦д0) = 0

and if p̂ (∅) , 0 then rank(p ◦ д0) = 1 = rank(д)0.
Now, suppose that n ≥ 0, and write p = q + z1r , where q, r ∈

F[z2, z3, . . . , zn]. By the claim and the bilinearity of the Kronecker

product, we can write

p ◦ дn =
∑

S :p̂ (S ),0

p̂ (S )
n⊗
i=1

MS (i )

=
∑

S :p̂ (S ),0
1<S

p̂ (S ) · 1 ⊗
n⊗
i=2

MS (i ) +
∑

S :p̂ (S ),0
1∈S

p̂ (S ) · д ⊗
n⊗
i=2

MS (i )

= 1 ⊗
*...
,

∑
S :p̂ (S ),0

1<S

p̂ (S )
n⊗
i=2

MS (i )
+///
-

+ д ⊗
*...
,

∑
S :p̂ (S ),0

1∈S

p̂ (S )
n⊗
i=2

MS (i )
+///
-

= 1 ⊗ (q ◦ дn−1) + д ⊗ (r ◦ дn−1).

Therefore, applying the inductive assumption, we have

rankF (p ◦ д
n ) = rankF (1 ⊗ (q ◦ дn−1) + д ⊗ (r ◦ дn−1))

= rankF (q ◦ д
n−1) + rankF (д)rankF (r ◦ д

n−1)

=
∑

T :q̂ (T ),0

rankF (д)
|T | +

∑
T :r̂ (T ),0

rankF (д)
|T |+1

=
∑

S :p̂ (S ),0
1<S

rankF (д)
|S | +

∑
S :p̂ (S ),0

1∈S

rankF (д)
|S |

=
∑

S :p̂ (S ),0

rankF (д)
|S | ,

where we note that T ⊆ {2, 3, . . . ,n} and S ⊆ [n]. □

We remark that Sherstov’s gadget from Theorem 3.2 is good over

every field with characteristic other than 2. For the sake of space

considerations, we omit the proof of this observation and refer to

the full version of the paper. We instead introduce a new gadget

that has large rank and is good over every field.

Definition 4.1. For any positive integer λ define hλ : [λ + 1] ×

[λ + 1]→ {0, 1} by

hλ (x ,y) =



1 if x = y = i for some i ∈ [λ]

0 otherwise.

That is, hλ is the (λ + 1) × (λ + 1) identity matrix with one of the

1s deleted.
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Lemma 4.2. Let λ be a positive integer and let F be any field. Then
hλ is good and satisfies rank(hλ ) = λ.

Proof. Clearly rank(hλ ) = λ, so we focus on the linearity prop-

erty of rank. By definition of 1, hλ , and the Kronecker product, we

have

1 ⊗ A =
*.....
,

A A · · · A
A A · · · A

...

A A · · · A

+/////
-

hλ ⊗ B =

*........
,

B 0 · · · 0 0

0 B · · · 0 0

...

0 0 · · · B 0

0 0 · · · 0 0

+////////
-

.

Adding them yields the matrix

*........
,

A + B A · · · A A
A A + B · · · A A

...

A A · · · A + B A
A A · · · A A

+////////
-

,

which is easily verified to have rank λ · rank(B) + rank(A), since
there are λ copies of B on the diagonal. □

4.2 Lifting Algebraic Gaps to the Rank Measure
Next, using Theorem 1.2 we state our main lifting theorem from

algebraic gaps to the rank measure over all fields. The proof of

this theorem is essentially identical to the proofs of the similar

theorems from [35, 41]; for the sake of space considerations we

defer the proof to the full version.

Theorem 3.4. Let n be a positive integer and let C be an unsat-
isfiable CNF over n variables. Let F be a field and let д : X × Y →

{0, 1} be a good gadget with rank(д) = n2 over F. Then µF ( fC,д ) ≥

Ω(ngapF (C) ). Furthermore, suppose gapF (C) ≥ εn for some ε > 0.
Then for any good gadget д over F with rank(д) > 2

1/ε ,

µF ( fC,д ) ≥ 2
Ω(n) .

5 ALGEBRAIC GAPS AND
NULLSTELLENSATZ

In this section we prove Theorem 3.5, which we restate here for

convenience.

Theorem 3.5. For any unsatisfiable CNF C and any field F we
have NSF (C) = gapF (C).

The proof uses the dual characterization of Nullstellensatz de-

gree by d-designs [11, 13]. Let F be a field of characteristic other

than 2, and let P be an unsatisfiable system of multilinear polyno-

mial equations over F[z1, z2, . . . , zn]. A d-design for P is a linear

functional D on the space of polynomials satisfying the following

axioms:

(1) D (1) = 1.

(2) For all P ∈ F and all polynomials Q such that deg(PQ ) ≤ d ,
we have D (PQ ) = 0.

(3) D (z2P ) = D (zP ) for all variables z and all polynomials P of

degree less than d − 1.

It is known (see, for example, [11]) that the system P does not

have a Nullstellensatz refutation of degree d if and only if it has a

d-design, and thus every system of polynomial equations F has a

(NS(F ) − 1)-design.
We prove Theorem 3.5 in two steps: one for characteristic 2 and

the other for characteristic different than 2 (although, the proofs are

essentially the same). Before we begin, we will need the following

easy lemma regarding the dual of a CNF. Let C be an unsatisfiable

CNF. For any clause C ∈ C let C† denote the clause obtained by

negating every literal in C (so, z is replaced with ¬z and ¬z is

replaced with z). Let C† be the CNF obtained from C by replacing

each clause in C with its dual, and note that C† is unsatisfiable if

and only if C is unsatisfiable.

Lemma 5.1. For any field F, NSF (C) = NSF (C†).

Proof. Let C = {C1,C2, . . . ,Cm } be an unsatisfiable CNF over

variables z1, z2, . . . , zn . We prove NSF (E (C)) = NSF (E (C†)), and
note that NSF (E∗ (C)) = NSF (E (C)) over every field. It will be con-
venient to consider the following alternative encoding of CNFs C

as a system of polynomial equations. For each variable zi introduce
two variables, denoted zi and zi , along with the axioms

∀i : zi (1 − zi ) = 0, zi + zi = 1

which enforce that zi = 1 − zi and zi , zi ∈ {0, 1} (this encoding is
typically used in the “polynomial calculus with resolution”, or PCR,

proof system). Then encode each clause Ci as

E□ (Ci ) =
∏
j ∈C+i

zj
∏
j ∈C−i

zi ,

which yields an encoding of C in F[z1, z1, z2, z2, . . . , zn , zn]. We

show thatNSF (E (C)) = NSF (E□ (C)) and then thatNSF (E□ (C)) =

NSF (E□ (C†)).

First observe that NSF (E (C)) ≤ NSF (E□ (C)) is easy: in the

refutation of E□ (C) replace every literal zi with zi and every literal

zi with 1−zi . So, we focus on proving NSF (E□ (C)) ≤ NSF (E (C)).
Suppose we have a Nullstellensatz refutation of E (C), and we

construct a Nullstellensatz refutation of E□ (C) of the same de-

gree. For this, it suffices to show that there is a low degree proof

of E (C ) from E□ (C) for each clause C ∈ C. Write E□ (C ) as∏
i ∈C+ zi

∏
i ∈C− zi , and we use the axioms zj + zj − 1 = 0 for

each j ∈ C+ to derive E (C ). To do this, multiply the axiom by

−
∏

i ∈C− zi , yielding

−
∏
i ∈C−

zi (zj + zj − 1) = (1 − zj )
∏
i ∈C−

zi − zj
∏
i ∈C−

zi .

Doing this for each i ∈ C+ and factoring yields∏
j ∈C+

(1 − zj )
∏
j ∈C−

zi −
∏
j ∈C+

zj
∏
j ∈C−

zi

which yields E (C ) (over zi variables) after adding E
□ (C ). Perform-

ing this multiplication for eachC ∈ C yields E (C), and it is easy to

see that the degree is less than the degree of E (C).

Now let us proveE□ (C) = E□ (C†). Observe that if
∑
C ∈C E

□ (C )qi =

1 is a Nullstellensatz refutation of E□ (C) then
∑
C ∈C E

□ (C†)q†i =

1 is a Nullstellensatz refutation of C†, whereq†i is the polynomial ob-

tained from qi by exchanging the variables zi and zi for each i ∈ [n]
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and b ∈ {0, 1}. This shows that NSF (E□ (C)) = NSF (E□ (C†)), and
thus NSF (C) = NSF (C†). □

Using this proposition we are ready to prove Theorem 3.5. First

we prove the theorem for fields of characteristic 2, as it is simpler

and illustrates the main idea.

Lemma 5.2. For any field F of characteristic 2 and any unsatisfiable
CNF C we have gap(C) = NSF (C).

Proof. Let D be a d-design for E (C†). For any S ⊆ [n] let xS
denote the monomial

∏
i ∈S xi . Define the polynomial p by its co-

efficients as follows: for each S ⊆ [n] let p̂ (S ) = D (x
[n]\S ). Clearly

degp = n since p̂ ([n]) = D (1) = 1 so we focus on proving the

second property. By definition, since F has characteristic 2 we have

E (C†) =
∏
i ∈C−

(1−zi )
∏
i ∈C+

zi =
∏
i ∈C−

(1+zi )
∏
i ∈C+

zi = zC+
∑

T ⊆C−
zT .

The second condition in the definition of the gap complexity is

equivalent to the following system of linear equations on the co-

efficients of p̂: for any clause C and any subset S ⊆ [n] with
S ∩ vars(C ) = ∅ and |S | ≥ n − d we have

0 =
∑

T ⊆C−
p̂ (S ∪T ).

By the definition of p, we must therefore verify that

0 =
∑

T ⊆C−
D (z

[n]\S∪T ).

LettingU = [n] \ S ∪ vars(C ) we can re-write this equation as

0 =
∑

T ⊆C−
D (xU xC+xT ).

By linearity of D this is equivalent to

0 = D *.
,
xU xC+

*.
,

∑
T ⊆C−

xT
+/
-

+/
-

= D (xU E (C
†)).

Since |S | ≥ n−d andU = [n]\S∪vars(C ) we have that |U ∪T | ≤ d ,
and so deg(xU E (C

†)) ≤ d , implying that D (xU E (C
†)) = 0 by the

design property, and we have shown that gapF (C) ≥ d + 1. To

finish the proof of this direction, observe that the system E (C†)
has an NSF (C) − 1 design by definition, and so it follows that

gapF (C) ≥ NSF (C). □

When the characteristic is different from 2 the previous proof

does not immediately work. The previous proof used the identity

E (C†) =
∏
i ∈C−

(1−zi )
∏
i ∈C+

zi = zC+
∑

T ⊆C−
(−1) |T |zT = zC+

∑
T ⊆C−

zT ,

which exploits the fact that −1 = 1 in characteristic 2. If the charac-

teristic is different from 2we cannot use this fact, and the alternation

in sign breaks the proof. We fix this problem by changing to the

Fourier basis.

Given a clause C , define the polynomial

E∗ (C ) =
∏
i ∈C+

(1 + zi )
∏
i ∈C−

(1 − zi ).

This is obtained from applying the affine transformation 1 − 2zi to
E (C ) — intuitively, now −1 encodes “True” and +1 encodes “False”.

(Clearly this transformation is only useful when the characteristic

is different from 2.) Define E∗ (C) = {E∗ (C )}C ∈C ∪ {z
2

i − 1}i ∈[n]
for an unsatisfiable CNF C. Let NS∗F (C) denote the Nullstellensatz
degree required to refute the system E∗ (C), and it is easy to see that
NS∗F (C) = NSF (C) (just replace every variable zi with (1 − zi )/2,
or symmetrically replace zi with 1 − 2zi ).

Similarly, we define gap∗F (C) to be the same as gapF (C) except
with respect to {−1, 1} restrictions (formally, for each certificate

π ∈ Cert(C) apply the transformation 1 − 2zi to each coordinate

of π , obtaining a −1, 1 restriction). Once again, it is not hard to see

that gap∗F (C) = gapF (C): given a polynomial p witnessing gapF (C)
simply replace every variable zi with (1 − zi )/2, and since the de-

gree of polynomials is preserved under affine maps the resulting

polynomial will witness gap∗F (C) (we can go in reverse symmetri-

cally).

Lemma 5.3. For any field F with characteristic other than 2 and any
unsatisfiable CNF C we have NSF (C) = gapF (C).

Proof. We show that NS∗F (C
†) = gap∗F (C). Again, we show this

using designs, however over {−1, 1} wemust technically replace the

constraint D (z2P ) = D (zP ) with D (z2P ) = D (P ) in the definition

of d-designs.

So, let D be a d-design for E∗ (C†) and for any S ⊆ [n] let zS
denote the monomial

∏
i ∈S zi . From above we have

E∗ (C†) =
∏
i ∈C−

(1+zi )
∏
j ∈C+

(1−zj ) =
∑

T ⊆vars(C )

(−1) |T∩C
+ |zT . (4)

From D we define a multilinear polynomial p witnessing algebraic

gaps for E∗ (C). We (again) define the multilinear polynomial p by

its coefficients: namely, for each S ⊆ [n] let p̂ (S ) = D (z
[n]\S ).

Clearly degp = n since p̂ ([n]) = D (1) = 1 so we focus on

proving that deg(p↾π ) ≤ n−d for all {−1, 1} certificates π . Now, this
condition is equivalent to the following system of linear equations

on the coefficients of p̂: for any clause C and any subset S ⊆ [n]
with S ∩ vars(C ) = ∅ and |S | ≥ n − d we have

0 =
∑

T ⊆vars(C )

(−1) |T∩C
+ |p̂ (S ∪T ). (5)

By the definition of p, to finish the proof we must verify that

0 =
∑

T ⊆vars(C )

(−1) |T∩C
+ |D (z

[n]\(S∪T ) ).

LettingU = [n] \ (S ∪ vars(C )) we can re-write this equation as

0 =
∑

T ⊆vars(C )

(−1) |T∩C
+ |D (zU zvars(C )\T ).
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Observing that (−1) |T∩C
+ | (−1) |(vars(C )\T )∩C+ | = (−1) |C

+ | , the lin-

earity of D and Equation 4 implies that

0 =
∑

T ⊆vars(C )

(−1) |T∩C
+ |D (zU zvars(C )\T )

= D *.
,

∑
T ⊆vars(C )

(−1) |T∩C
+ |zU zvars(C )\T

+/
-

= D *.
,
zU

*.
,

∑
T ⊆vars(C )

(−1) |T∩C
+ |zvars(C )\T

+/
-

+/
-

= D *.
,
zU

*.
,

∑
T ⊆vars(C )

(−1) |C
+ | (−1) |(vars(C )\T )∩C+ |zvars(C )\T

+/
-

+/
-

= (−1) |C
+ |D (zU E

∗ (C†)).

Since |S | ≥ n − d and U = [n] \ (S ∪ vars(C†)) we have that

|U ∪vars(C†) | ≤ |[n]\S | ≤ d , and so deg(zU E
∗ (C†)) ≤ d , implying

that D (zU E
∗ (C†)) = 0 by the design property.

□

Theorem 3.5 is an immediate corollary of Lemma 5.3 and Lemma

5.2.

6 LIFTING NULLSTELLENSATZ TO
ALGEBRAIC TILING

As discussed in Section 3, the upper bounds will be proven by lifting

Nullstellensatz upper bounds to algebraic tiling upper bounds.

Theorem 3.3. Let n be a positive integer and let C be an unsat-
isfiable CNF with n variables andm clauses. Let F be a field and let
д : X×Y → {0, 1} be a good gadget with rank(д) = O (poly(n)) over
F. Then

χF ( fC,д ) ≤ mnO (NSF (C)) .

Furthermore, suppose NSF (C) ≥ εn for some universal constant ε .
Then for any good gadget д over F with rank(д) > 2

1/ε ,

χF ( fC,д ) ≤ m2
O (n) .

Proof. For each clause Ci let pi = E (Ci ). Let q1,q2, . . . ,qm be

multilinear polynomials in F[z1, z2, . . . , zn] such that

∑m
i=1 piqi =

1 is a minimum-degree Nullstellensatz refutation. From this we

immediately have that

∑m
i=1 piqi ◦д

n = 1, where 1 is the Xn ×Yn

all-1s matrix. However, this is not an algebraic tiling since the

matrices piqi ◦ д
n
are not necessarily embedded in the rectangles

Xπ ,α .

To avoid this, observe that for each pi and each z ∈ {0, 1}n we

have pi (z) , 0 if and only if z is consistent with the certificate of pi ;
by extension, for all (x ,y) ∈ Xn×Yn

we have that piqi ◦д
n (x ,y) =

0 unless дn (x ,y) is consistent with the certificate of pi . Therefore,

letting πi be the certificate of pi , for each α ∈ X≤k let (piqi ◦
дn )↾Xπi ,α be the matrix obtained by zeroing all entries of piqi ◦д

n

outside of Xπi ,α . Clearly this restricted matrix is embedded within

Xπi ,α , and furthermore it is clear that the matrices {Xπi ,α | πi ∈

Cert(πi ),α ∈ X≤k } have disjoint support. Thus we can write

1 =
m∑
i=1

piqi ◦ д
n =

m∑
i=1

∑
α ∈X≤k

(piqi ◦ д
n )↾Xπi ,α .

Since rank(д) = poly(n) then by Theorem 1.2

rankF ((piqi ◦ д
n )↾Xπi ,α ) ≤ rankF (piqi ◦ д

n )

=
∑

S :Epiqi (S ),0
rank(д) |S | ≤ nO (NSF (P))

for all i ∈ [m] and α ∈ X≤k . By taking a rank-1 decomposition of

the sum, this implies that

χF ( fP,д ) ≤ m·|X≤k |·nO (NSF (P)) ≤ m |X|k+1nO (NSF (P)) ≤ mnO (NSF (C))

since |X| = O (rank(д)) = O (poly(n)) and NSF (C) ≥ k . An analo-

gous calculation holds if NSF (P) ≥ εn. □

With this we can prove Theorem 1.1 as an easy corollary.

Theorem 1.1. Let C be an unsatisfiable CNF on n variables, and
let F be any field. For any good gadget д : X×Y → {0, 1} over F with
rank(д) = n2, the lifted function fC,д satisfies µF ( fC,д ), χF ( fC,д ) =
nΘ(NSF (C)) . Further, if NSF (C) = Θ(n), then for any good gadget д
(of sufficiently large but constant rank), µF ( fC,д ), χF ( fC,д ) = 2

Θ(n) .

Proof. Let C be a width-k unsatisfiable CNF on n variables and

let F be any field. In both cases, the lower bound holds by applying

Theorem 3.4. The upper bound follows from Theorem 3.3 since

m ≤ nO (k )
. To see this, observe that in the first case k = O (NSF (C))

and in the second case k = O (1) implies nO (k )
is O (poly(n)). □

7 APPLICATIONS
Finally, we use Theorem 1.1 to prove our new monotone circuit

lower bounds.

ST-Connectivity. We first characterize the complexity of comput-

ing the layered st-connectivity function by monotone span programs

over all fields. Letm,n be positive integers, and let Gn,m denote

the following directed graph withmn + 2 vertices V = {vi, j | i ∈
[n], j ∈ [m]} ∪ {s, t }. We think of the vertices as being arranged in

m + 2 layers indexed by i = 0, 1, . . . ,m + 1: layer 0 contains the

vertex s , layer m + 1 contains the vertex t , and the jth layer for

j = 1, 2, . . . ,m contains vertices {vi, j | i ∈ [n]}. Finally, for each
pair of adjacent layers Li ,Li+1 add all edges oriented from Li to
Li+1, and note that the final graph containsmn2 + 2n edges.

With this graph in mind, the layered st-connectivity function

STCONNn,m is defined as follows: the input is a boolean string of

lengthmn2 + 2n describing a subgraph of the graph Gn,m defined

above, and the function outputs 1 if and only if there is a directed

path from s to t . In a seminal work, Karchmer and Wigderson [30]

showed that optimal monotone formulas computing STCONNn,m
have sizemΩ(logn)

— the upper bound follows from recursive dou-

bling, and the lower bound was shown via communication complex-

ity. Their lower bound was improved by Potechin [36] to hold for

monotone switching networks, and by Robere, Pitassi, Rossman and

Cook [41] to real monotone span programs and monotone compara-

tor circuits. We show the same theorem holds for monotone span

programs over all fields. This fact is notable as non-monotone span

programs overGF (2) are known to be able to compute STCONNn,m
efficiently [43].

Theorem 7.1. For all sufficiently large n and for every field F,
mSPF (STCONNn+1,n ) = n

Θ(logn) .
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Proof. The upper bound holds since monotone span programs

can simulate monotone formulas. Define the unsatisfiable CNF

INDm = z1 ∧ (z1 ∨ z2) ∧ (z2 ∨ z3) ∧ · · · ∧ (zm−1 ∨ zm ) ∧ zm .

Buss and Pitassi [13] have shown that NSF (INDm ) = Ω(logm)
where INDm is the unsatisfiable CNF formula. Let д : X × Y →

{0, 1} be any gadget that is surjective on {0, 1}. We show that

STCONN |X |,m is a total extension of the function fI NDm,д (this has

essentially been observed in many previous works e.g. [25, 38, 41]).

Applying the lower bound from Theorem 1.1 using the gadget h
from Definition 4.1 completes the theorem.

It remains to show that STCONN |X |,m is a total extension of

fI NDm,д . Recall that fI NDm,д is the partial monotone boolean

function defined from

CanSearch(INDm ,д) ⊆ X
m × Ym × (Cert(INDm ) × |X|≤2)

using Proposition 2.10. We first claim that the variables of fI NDm,д
are in a natural 1-1 correspondencewith the variables of STCONNt,m .

To see this, recall that each variable of fI NDm,д corresponds to a

non-empty rectangle in CanSearch(INDm ,д), which are of the

form

Xπ ,α = {(x ,y) | x↾vars(π ) = α and дn (x ,y) is consistent with π }.

Fix such a π ,α so that Xπ ,α are non-empty and let C denote the

clause of INDm such that Cert(C ) = π . Suppose C = (zi ∨ zi+1)
without loss of generality; the input variable uπ ,α corresponding

to the rectangle Xπ ,α is therefore naturally identified with the pair

α = (α1,α2) ∈ X
2
. We map uπ ,α to the edge connecting node α1 in

layer i to node α2 in layer i + 1 in STCONN |X |,m . (The clauses z1
and zm correspond to the edges between s and the first layer and

the last layer and t , respectively.)
We now claim the setU of accepting inputs to fI NDm,д corre-

spond directly to the s-t paths in STCONN |X |,m . Since this is the

set of all minterms of STCONN |X |,m and fI NDm,д is monotone,

the theorem follows. Fix any x ∈ Xm . By the definition of fI NDm,д
(cf. Definition 2.9), we will set uπ ,α = 1 if x↾vars(π ) = α . By our

identification of edges with uπ ,α above this corresponds to picking

out one node in each layer of STCONN |X |,m (namely, we choose

node xi in layer i) and placing edges connecting them all. This

clearly yields a st-path, and moreover all st-paths are definable in

this way since x can range arbitrarily over Xm . □

GEN. Since polynomial-size monotone circuits can compute

STCONNn,m , the previous theorem yields a quasipolynomial sep-

aration between mSPF and mP over all fields F. We can improve

this to a (weakly) exponential separation by considering the GEN

function, defined next.

Let n be a positive integer and let T ⊆ [n]3 be a subset of triples
of [n]. We say that T generates a pointw ∈ [n] ifw = 1, or if there

is a triple (u,v,w ) ∈ T such that T generates u and v . The GENn
problem is then defined as follows: as input, we receive a subset

T ⊆ [n]3, encoded as a bitstring of length n3, and must decide

whether or not T generates the point n.
Let h be a positive integer. A pyramid graph of height h is the

graph ∆h on n =
(h
2

)
vertices V , which are partitioned into h

sets V1,V2, . . . ,Vh where Vi has i vertices. Ordering each Vi as

vi,1,vi,2, . . . ,vi,i ; then for each i = 2, 3, . . . ,h, ifvi, j andvi, j+1 are
adjacent vertices inVi add two edges (vi, j ,vi−1, j ) and (vi, j+1,vi−1, j ).

A pyramid instance of GEN is a collection of triples T which is nat-

urally isomorphic to a pyramid graph: the top point of the pyramid

is n, and we assume that the point 1 is connected to each of the

pointsv1,i in the first layer of the pyramid by triples (1, 1, i ). Define
∆h -GENn to be the restriction of GENn wherein one only needs to

recognize if the input generates n by a height-h pyramid instance

∆h (necessarily n ≥
(h
2

)
).

It is not hard to see that the ∆h -GENn problem has polynomial-

size monotone circuits, and it has been used in several previous

works studying the strength of circuit classes inside mP. For in-
stance, Raz and McKenzie [38] have used the function to separate

mNCi frommNCi+1 for all i , and Chan and Potechin [14] used it to

prove strong lower bounds against monotone switching networks.

Theorem 7.2. Let h be a positive integer and let n =
(h+1

2

)
. For

every field F,mSPF (∆h -GEN2n3 ) = NΘ(N ε ) for some constant ε > 0

and N is the number of input variables to the function.

Proof. First we note that N ≤ O (n6) ≤ O (h12). The upper

bound holds since there are nO (h)
pyramid instances of GENn of

height h, and by brute force we can construct a monotone formula

checking each of these with the same size. We therefore focus on

the lower bound.

Consider the following unsatisfiable CNF Peb∆h . There is one
boolean variable zv for each vertex v in ∆h , and we have the fol-

lowing clauses:

(1) The target clause (¬zt ).
(2) For each source vertex u ∈ R add the source clause (zu ).
(3) For each internal vertexw with in-neighboursW ⊆ V add

the edge clause (zw ∨
∨
v ∈W ¬zv ).

Let д : X × Y → F be the matrix from Theorem 1.1, and note

that |X| ≤ 2n2. It has been observed by several works [25, 38,

41] that ∆h -GENn |X | is a total extension of the partial function

fPeb∆h ,д
(the construction is essentially the same construction used

for STCONN above), and thus lower bounds on NSF (Peb∆h ) will
yield the theorem.

Buresh-Oppenheim et al. [10] show that the formula PebG re-

quires Nullstellensatz degree at least the pebbling number of the
graphG over every field. Cook [18] showed that the pebbling num-

ber of the height-h pyramid ∆h is Ω(h). Applying the lower bound

from Theorem 1.1 and using the crude bounds on N in terms of h
and n yields the theorem. □

Counting Principles. Finally, we come to the question of separat-

ing the strength of monotone span programs over different fields.

Beimel and Weinreb showed that for each prime p there is a func-

tion with polynomial size monotone span programs over GF (p),
but all fields with characteristic different from p require monotone

span programs of size nΩ(
√
logn)

. We improve this separation to

its limit: we show that for each prime p there is a function f with

polynomial-size monotone span programs over fields of characteris-

tic p, but for all fields of characteristic q , p the function f requires

monotone span programs of strongly exponential size (i.e 2
Ω(N )

where N is the number of input variables). The function f is also

computable in NP, and thus we obtain strongly exponential lower

bounds for monotone span programs over all characteristics, nearly
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matching the lower bounds for non-explicit functions obtained by

counting arguments [29].

Theorem 7.3. For every prime p there exists a monotone boolean
function f with N inputs such that f satisfies mSPF ( f ) = poly(N )
for all fields F of characteristic p, but for every field F′ of charac-
teristic q , p, mSPF′ ( f ) = 2

Θ(N ) . Furthermore, the function is f is
computable in NP.

Proof. Buss, Grigoriev, Impagliazzo and Pitassi [12] describe,

for each positive integer n and each primep a constant-width linear-

size unsatisfiable CNF formulaMOD
p
n satisfying:

(1) For each field F of characteristic p,NSF (MOD
p
n ) ≤ O (1), and

(2) For each field F of characteristic q , p, NSF (MOD
p
n ) = Ω(n).

(In fact, each of these bounds holds for the stronger polynomial

calculus proof system.) Constructing the monotone function in

the usual way from MOD
p
n and a the upper and lower bounds,

respectively, from Theorem 1.1 immediately yields the result. □
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