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Abstract—In a multiparty message-passing model of
communication, there are k players. Each player has a
private input, and they communicate by sending messages
to one another over private channels. While this model
has been used extensively in distributed computing and
in secure multiparty computation, lower bounds on com-
munication complexity in this model and related models
have been somewhat scarce. In recent work [25], [29], [30],
strong lower bounds of the form Ω(n ·k) were obtained for
several functions in the message-passing model; however,
a lower bound on the classical set disjointness problem
remained elusive.

In this paper, we prove a tight lower bound of Ω(n · k)
for the set disjointness problem in the message passing
model. Our bound is obtained by developing information
complexity tools for the message-passing model and proving
an information complexity lower bound for set disjointness.

I. INTRODUCTION

One of the most natural application domains for com-
munication complexity is distributed computing: When
we wish to study the cost of computing in a network
spanning multiple cores or physical machines, it is very
useful to understand how much communication is neces-
sary, since communication between machines often dom-
inates the cost of the computation. Accordingly, lower
bounds in communication complexity have been used to
obtain many negative results in distributed computing,
from the round complexity of computing functions of
distributed data [23], [18] to distributed computation and
verification of network graph structures and properties
[27], [12].

To the best of our knowledge, however, all ap-
plications of communication complexity lower bounds
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in distributed computing to date have used only two-
player lower bounds. The reason for this appears to be
twofold: First, the models of multi-party communica-
tion favored by the communication complexity commu-
nity, the number-on-forehead model and the number-
in-hand broadcast model, do not correspond to most
natural models of distributed computing. Second, two-
party lower bounds are surprisingly powerful, even for
networks with many players. A typical reduction from
a two-player communication complexity problem to a
distributed problem T finds a sparse cut in the network,
and shows that, to solve T , the two sides of the cut
must implicitly solve, say, set disjointness [19]. However,
there are problems that cannot be addressed by reduction
from a two-player problem, because such reductions
must reveal almost the entire structure of the network
to one of the two players (see, e.g., [18].)

In this paper we study communication complexity in
message-passing models, where each party has a private
input, and the parties communicate by sending messages
to each other over private channels. These models are
used extensively in distributed computing, for example,
to study gossiping protocols [16], to compute functions
of distributed data [17], and to understand fundamental
problems, such as achieving consensus in the presence
of failures [11]. Message-passing models are also used
to study privacy and security in multi-party computation.

We have chosen to focus on the set disjointness
problem [7] because of its many applications in the two-
player setting. In set disjointness, denoted DISJn,k, k
players each receive a set Xi ⊆ [n], and their goal is
to determine whether the intersection

⋂k
i=1Xi is empty

or not. An Ω(n) lower bound on the two-player version
of set disjointness, due to Kalyanasundaram, Schnitger
and Razborov [15], [26], is one of the most widely
applied lower bounds in communication complexity. The
lower bound was recently re-proven as an information
complexity lower bound [2], showing that any protocol



for two-party set disjointness must “leak” a total of Ω(n)
bits about the input.

Our main result is a tight lower bound on the com-
munication complexity of the set disjointness problem
in a multiparty message-passing model, specifically the
coordinator model of Dolev and Feder [9]. This lower
bound implies a corresponding bound in the “truly
distributed” message-passing model, where there is no
coordinator. Our main technical tool in this paper is
information complexity, which has its origins in the work
of Chakrabarthi, Shi, Wirth and Yao [6], and which has
recently played a pivotal role in several communication
complexity lower bounds.

Our main theorem is an Ω(nk) lower bound on the
information complexity (and hence also the communica-
tion complexity) of the set disjointness function in the
multi-party coordinator model.

Theorem 1. For every δ > 0, n ≥ 1 and k = Ω(log n),
there is a distribution ζ such that the information com-
plexity of DISJn,k with error probability δ is Ω(nk) and
its communication complexity is Ω(nk).

The communication and information complexity of
set disjointness: Variants of set disjointness are perhaps
the most studied problems in communication complexity.
In the two-party case, it is not hard to see that evaluating
the disjointness of two subsets of [n] deterministically
requires at least n+ 1 bits of communication, for exam-
ple, using a fooling set argument [20]. In the randomized
model, when error is allowed, an Ω(n) lower bound is
also known, although it is considerably more difficult
to prove [15], [26]. This result was later improved using
information-theoretic techniques by Bar-Yossef et al. [2].
Further advances in information complexity allow one
to calculate the two-party communication complexity of
disjointness precisely, up to additive o(n) terms [5].

In the multi-party case, there are three main models
to consider, all with interesting applications. The first
model is the number on forehead (NOF) model, where
each player is given all inputs except for one. The NOF
model has important connections to circuit lower bounds
for the ACC0 class [3]. Since the disjointness problem
has small AC0 circuits, this means that for k > log n,
the communication complexity of NOF disjointness is
polylogarithmic. The second model is the number in
hand blackboard model. In this model each party is
only given her input, and the communication is carried
out via a blackboard, so each message transmitted by
a player is received by all other players. In this case,
the communication complexity of disjointness might be
as high as Θ(n log k) (note that an Ω(n) lower bound

is trivial). Due to applications in streaming computation
lower bounds, the version where the sets are either fully
disjoint or have a single element in common has been
studied. A lower bound of Ω(n/k) has been shown in
this case using information-theoretic techniques [14].

Message-passing models: In this paper we consider
message-passing models of communication complexity.
In all of the multi-party models discussed so far, mes-
sages are written on a shared blackboard, so that the
entire communication transcript is seen by all players. In
message-passing models (also known as private channel
models), the players communicate to one another by
sending and receiving messages through private point-
to-point channels. This type of model is one of the most
widely-used in distributed computing (see, e.g., [21]) and
in cryptography. Unlike shared-blackboard models, it is
possible to achieve Ω(nk) lower bounds on problems in
message-passing models [24].

There are many variants of message-passing models,
differing in the topology of the communication network,
the synchrony or asynchrony, and other parameters.
Here we will focus on the coordinator message-passing
model [9], where the players communicate with a co-
ordinator by sending and receiving messages on private
channels. We chose the coordinator model for two main
reasons: first, it is technically easier to formalize than
other models; and second, introducing a coordinator al-
lows us to overcome obstacles related to the existence of
information-theoretically secure multi-party computation
protocols (more on this below).

Although the coordinator model does not capture a
fully-decentralized system, it is closely related to the
more decentralized message-passing model in which all
players can communicate directly with each other [25];
the lower bound we prove in this paper implies a lower
bound of Ω(nk/ log k) in the decentralized message-
passing model. The coordinator model is also interesting
in itself; it is appropriate for data centers or for sensor
networks with centralized control, and there is a growing
body of work on streaming and sketching algorithms set
in the coordinator model [8], [22].

Communication complexity in message-passing mod-
els has received some attention recently. [25] introduces
a technique called symmetrization for obtaining lower
bounds of the form Ω(nk) via reduction to the two-
party case. The symmetrization technique works for
coordinate-wise problems such as Set Intersection, where
the parties need to compute the intersection of their sets;
this amounts to coordinate-wise AND on the players’
inputs. However, symmetrization seems to fall short of
yielding results for the multi-party set disjointness prob-
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lem, and the development of new information-theoretic
machinery seems necessary.

Another recent line of work dealing with communica-
tion complexity in the message-passing setting appears
in [29], [30]. In these papers, the main interest is in
distributed streaming or distributed data aggregation:
each of k machines holds some data set or receives an
input stream, and we wish to compute or approximate
some function of the joint input, either through a central
coordinator [29] or in a decentralized manner [30].
In [29], a lower bound of Ω(nk) is proven for the Gap-
Majority(2-DISJ) problem: here the coordinator holds a
set S, each player i ∈ [k] holds a set Ti, and the goal
is to distinguish the case where a “large majority” of
the intersections {DISJn,2(S, Ti)}ki=1 are empty from the
case where only a “small minority” are empty. In [30],
similar techniques are used to obtain optimal lower
bounds on a variety of problems in the decentralized
message-passing model, including computing the num-
ber of distinct elements in the joint input, and checking
various graph properties when the input is interpreted
as a graph. Our set disjointness lower bound resolves a
conjecture from [30]: it proves that computing the exact
diameter of a graph with n edges requires Ω(nk) bits.

Connection to secure multiparty computation: Our
results also have applications to showing lower bounds
on the “amount of privacy” that one can achieve in the
context of secure multiparty computation.

In the field of secure multiparty computation, the
goal is for k players to communicate over a network
to compute a joint function f on their inputs x1, . . . , xk
while ensuring that no coalition of t players learn any
information about the remaining players’ inputs (other
than what is already implied by their own inputs and
outputs). In the 1980s, the work of Ben-Or, Goldwasser
and Wigderson [4] showed multiparty protocols in the
message-passing model for computing any function in
an information-theoretically private way, assuming that
the corruption threshold t < k/2. The BGW protocol is
an important obstacle for information-complexity lower
bounds in models with private channels, since it shows
that sometimes computation is possible without leaking
any information. We circumvent this obstacle by intro-
ducing a coordinator into the model, thus rendering any
information-theoretically secure computation impossible.
Essentially, instead of measuring only the amount of
information each player learns (which may be zero),
introducing a coordinator allows us to also measure
the amount of information each player leaks to all the
other players together, through its communication with
the coordinator. We show that the average player either

learns or leaks a lot of information.
Even with private channels between every pair of

players, it is known that information-theoretic perfect
privacy is impossible to achieve if t ≥ k/2; that is, the
adversary must learn some information about the honest
players’ inputs in this setting. An important question that
remains is: how much information must the parties reveal
about their inputs in order to compute a function f?

Recently, a number of works investigated this quanti-
tative question in the two-party setting from the frame-
work of information complexity [10], [1]. We believe
that the information complexity tools developed here will
lead to a better quantitative understanding of privacy in
multiparty computation. For example, our information
complexity lower bound already shows that in any k-
party protocol for set disjointness there is a constant
fraction of players i for which either (a) player i learns
Ω(n) bits of information about the collective inputs of
the players in [k] \ {i}, or (b) player i ends up revealing
Ω(n) bits of information about its own input to the other
players. We leave a more thorough investigation of this
connection as future work.

Organization of the paper: The remainder of the
paper is organized as follows. We begin by giving some
intuition about our approach for obtaining an Ω(kn)
lower bound on the communication complexity of set
disjointness. In Section III, we present necessary def-
initions and facts about information theory, Hellinger
distance, and information complexity. The next two
sections present our lower bound, first proving that the
information cost of solving DISJn,k is at least n times
the information cost of solving DISJ1,k = ANDk, and
then proving that it is at least Ω(k).

II. OVERVIEW: WHY IS SET DISJOINTNESS HARD?

Before diving into the technical details, let us explain
the motivation behind our definition of information cost
and the hard distribution we use in the lower bound.

Choosing the “right” notion of information com-
plexity: There are several possible ways to quantify the
amount of information leaked by a protocol that solves
DISJn,k, which might at first glance seem natural:

(1) External information cost, I(X; Π(X)): how
much information an external observer gains about the
input X by observing the transcript of all the players
and the coordinator. External information cost was used
to prove the optimal Ω(n/k) lower bound on Promise
set disjointness in the broadcast model [13].
The external information cost can also be viewed as the
coordinator’s information cost, because the coordinator
observes the entire transcript and does not initially know
any of the inputs.
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(2) The players’ internal information cost,∑
i I(X−i; Πi(X) | Xi): how much the players

together learn about the input X from their interactions
with the coordinator, given their private input.
Unfortunately, neither of these is high enough to yield
an Ω(kn) lower bound on set disjointness. It is easy to
see that the players’ information cost is not always high:
In the trivial protocol where all players send their inputs
to the coordinator, the players learn nothing. Of course,
in this protocol, the coordinator learns the entire input.

Likewise, the coordinator’s information cost is not al-
ways high. To see why, consider the following protocol:
For each coordinate j, the coordinator searches for the
smallest index i such that Xi

j = 0, by contacting the
players in order i = 1, . . . , k and asking them to send
Xi
j . If Xi

j = 0 for some i, then j 6∈
⋂k
i=1X

i, and
the coordinator moves on to coordinate j + 1 without
asking the remaining players ` > i for X`

j . Otherwise,
all players i ∈ [k] have Xi

j = 1) and the coordinator
halts with output “no”, as j ∈

⋂k
i=1X

i.
The transcript of the protocol can be losslessly com-

pressed into O(n log k) bits by simply writing, for each
coordinate j, the index of the first player i that has Xi

j =
0, or writing 0 if there is no such player. Therefore the
coordinator cannot learn more than O(n log k) bits about
the input by observing the transcript. On the other hand,
in this protocol the players gain a significant amount of
information: each player i from which the coordinator
requests Xi

j learns that X`
j = 0 for all ` < i. For a single

player i, this is not necessarily a lot of information;
in fact, in the distribution we design below, it will
correspond to roughly one bit of information. However,
this one bit is learned by many players, and each player
must learn it separately, because it is not privy to the
coordinator’s communication with the other players. We
can charge each player separately for the information
that it learns, even if this information overlaps with the
information learned by the other players.

As we have seen, there is a protocol where the players
learn nothing, but the coordinator learns a lot, and there
is a protocol where the coordinator learns very little, but
the players learn a lot. We will show that this trade-
off is inherent, by bounding from below the sum of the
information learned by the coordinator about the players’
inputs and the information learned by each player from
the coordinator (about the inputs of the other players).

Designing a hard distribution: From the example
above, we see that a hard distribution should make it hard
for the coordinator to find the players that have zeroes,
forcing it to communicate with Ω(k) players about each
coordinate j ∈ [n]. This means that with reasonably large

probability, in each coordinate j, only a few players i
should have Xi

j = 0. On the other hand, our distribution
should have high entropy, because the players can use
Slepian-Wolf coding [28] to convey their joint input X
to the coordinator using roughly O(H(X)) bits. To order
to balance these two concerns, we follow [2], and use a
mixture of product distributions.

Our hard distribution is a product η = ξn, where ξ
is a hard distribution for a single coordinate j ∈ [n].
Informally, ξ has two “modes”, selected by a “switch”
Mj ∈ {0, 1}:
• An “easy” mode, Mj = 0, where each Xi

j = 0
with probability 1/2 independently.

• A “hard” mode, Mj = 1, where there is exactly one
player i with Xi

j = 0, and the remaining players
` 6= i have X`

j = 1. The identity of the player that
receives a zero is a random variable Z ∈U [k].

More formally, for each j ∈ [n], there is an inde-
pendent distribution ξ over triples (Xj ,Mj ,Zj), where
Xj ∈ {0, 1}k, Mj ∈ {0, 1}, and Zj ∈ [k], such that the
components X1

j , . . . ,X
k
j of Xj are independent given

Mj and Zj . Each player i is given the input Xi
1, . . . ,X

i
n.

It may seem surprising that, under our distribution
η, the answer to set disjointness is almost always
“yes”: The probability that we get some coordinate
j ∈

⋂n
i=1 X

i is roughly n/2k, which is negligible when
n is significantly smaller than 2k. This is necessary
for our direct sum theorem. However, it might seem
to make η an easy distribution, rather than a hard one.
The key to η’s hardness lies in the fact that the protocol
must succeed with high probability on any input, even
inputs that are very unlikely under η. This means that
for hard coordinates, the protocol must “convince itself”
that there really is some player that had a zero. This is
hard because it is difficult to find such a player.

Ruling out Slepian-Wolf coding: As observed
in [25] and as mentioned above, any lower bound for
set disjointness (or other functions in the case of [25])
must implicitly rule out an approach where the players
use Slepian-Wolf or other clever coding techniques to
convey their inputs to the coordinator efficiently. Our
lower bound does this quite explicitly.

Under the distribution η = ξn, we think of the players
as jointly “owning” the input X, because they are the
only ones that initially know it. On the other hand,
we think of the coordinator as “owning” the switches,
M = M1, . . . ,Mn: the coordinator can easily determine
if a given coordinate is “easy” or “hard” by sampling
O(log n) players’ inputs—if it finds no zeroes, it can
conclude that the coordinate is “hard” with very high
probability (in n). Since we are aiming for an Ω(nk)
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lower bound and the coordinator can determine M using
O(n log n) bits, we may as well give this information to
the coordinator for free.

Given that a coordinate j is hard, its entropy is only
1/k. If the coordinator could convey the set of hard
coordinates (or enough information about this set) to
the players, they could then use Slepian-Wolf coding to
send this part of the input to the coordinator in roughly
O(n) total bits (one bit per hard coordinate). However,
the entropy of the set of hard coordinates is n/2, so
conveying it (or sufficient information about it) to the
players requires the coordinator to send Ω(n) bits to
each player, for a total of Ω(nk) bits. In the absence
of this information, the overall entropy of the input is
Ω(nk), ruling out this type of approach.

We will formalize this intuition by showing that any
protocol for set disjointness is “bad” in one (or both) of
the following ways.
(1) The players convey to the coordinator “useless”

information about their inputs: in the easy case
when Mj = 0, the coordinator learns Ω(k) bits
about coordinate j, X1

j , . . . ,X
k
j . This information is

“useless” for the coordinator because when Mj = 0
it can safely ignore coordinate j: with overwhelming
high probability the sets do not intersect there.
One example of this approach is the naive protocol
where players send their entire input to the coordi-
nator.

(2) If the players do not convey to the coordinator a lot
of information when M = 0, then we will show
that the coordinator conveys to the players “useless”
information about the set of hard coordinates: Ω(k)
players must learn whether coordinate j is easy
(more formally, they learn Ω(1) bits of information
about coordinate j) even when their input is Xi

j = 1,
i.e., they are not the special player that the coordi-
nator is searching for.
An example of this approach is the protocol where
the coordinator first samples a few inputs to deter-
mine which coordinates are hard, then sends the set
of hard coordinates to all the players; each player
responds by sending the coordinator a list of the hard
coordinates where its input is zero.

In our lower bound proof, we explicitly bound from
below the sum of the information costs described above.

III. PRELIMINARIES

Notation: We use boldface letters to denote random
variables, and capital letters to denote vectors or sets. For
a set A ⊆ [k], we let ēA denote the complement of A’s
characteristic vector; that is, ēA has 1 in exactly those

coordinates that are not elements of A. For convenience
we drop the curly brackets, so that, e.g., ēi,j = ē{i,j}.

If X ∈ {0, 1}k·n is a k-tuple of n-bit inputs, then
Xi ∈ {0, 1}n denotes the input to the i-th player,
Xj ∈ {0, 1}k denotes the vector comprising j-th
coordinate of each player’s input, and Xi

j ∈ {0, 1}
denotes the j-th coordinate of Xi. For an n-tuple
Y ∈ {0, 1}n, we use Y−i to denote the tuple ob-
tained from Y by dropping the i-th coordinate (that
is, Y−i = Y1, . . . , Yi−1, Yi+1, . . . , Yn). We also let
Y[i,j] := Yi, . . . , Yj . Finally, embed(X, i, x) denotes the
vector obtained from X by inserting x in coordinate
i: embed(X, i, x) = (X1, . . . , Xi−1, x,Xi, . . . , Xm),
where m = |X|.

The coordinator model: As mentioned in the Intro-
duction, we will work in the asynchronous coordinator
message-passing model introduced in [9]. In this model,
there is one additional participant, called the coordinator,
who receives no input. There is a private channel be-
tween every player and the coordinator, but the players
cannot communicate directly with one another. For lack
of space, we omit the formal description of the model.

For any protocol Π and any input X ∈ {0, 1}k·n,
we let Π(X) denote the distribution of Π’s transcript (as
seen by the coordinator) when run with input X , and, for
each player i ∈ [k], we let Πi(X) denote the transcript
of messages sent between player i and the coordinator
(in both directions).

Communication complexity: Let Π be a protocol for
solving a problem P . The error of Π is given by

max
X

Pr [the coordinator outputs an incorrect answer] ,

where the probability is taken over the private random-
ness of the coordinator and the players.

The communication complexity of a protocol Π is
the worst-case number of bits exchanged between the
players and the coordinator on any input. The δ-error
randomized communication complexity of a problem
P in the coordinator model, denoted CCδ(P), is the
minimum communication complexity of any randomized
protocol Π that solves P with error at most δ.

Useful classes of distributions: Our hard distribu-
tion for set disjointness uses an auxiliary “switch” M,
which determines if a coordinate is hard or easy, and
another auxiliary variable Z, which selects the player that
receives zero in the hard case. Conditioned on M and
Z, the players’ inputs are independent from each other.
The value of M is assumed known to the coordinator,
but the value of Z is hidden from all participants.

The following definition captures distributions that
behave like our hard distribution. It is a special case
of a mixture of product distributions [2].
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Definition 1 (Switched distributions). We say that the
joint distribution η of (X,M,Z) is switched by M and
Z if X1, . . . ,Xk are conditionally independent given M
and Z, and M is independent from Z.

Our hard distribution for a single coordinate also has
the property that with very high probability, it produces
a set disjointness instance on which the answer is “yes”.
This is important for our direct sum reduction. Adapting
the definition of a collapsing distribution from [2], we
capture this notion as follows. (The following definition
is specifically for 1-bit AND; it is easy to generalize to
arbitrary functions along the same lines as [2].)

Definition 2 (ε-collapsing distributions). A distribution
µ : {0, 1}k → [0, 1] is ε-collapsing for AND if

Pr
X∼µ

[
k∧
i=1

Xk = 1

]
≤ ε.

Information theory and Hellinger distance: Let µ
be a distribution on a finite set D and let X,Y, Z be
random variables. The entropy of X is defined by

H(X) =
∑
ω∈D

µ(ω) log
1

µ(ω)

The conditional entropy of X given Y is

H(X|Y ) =
∑
y

H(X|Y = y)Pr[Y = y],

where H(X|Y = y) is the entropy of the conditional
distribution of X given the event {Y = y}.
The joint entropy of X and Y is the entropy of their
joint distribution and is denoted by H(X,Y ).
The mutual information between X and Y is

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X).

The conditional mutual information between X and Y
conditioned on X is

I(X;Y |Z) = H(X|Z)−H(X|Y,Z).

The Hellinger distance between probability distributions
P and Q on a domain D is defined by

h(P,Q) =
1√
2

√∑
ω∈D
|
√
P (ω)−

√
Q(ω)|2.

Hellinger distance is a metric and, in particular, it
satisfies the triangle inequality. Another useful property
of the Hellinger distance is the following:

Lemma 2 ([2]). Let P be a problem, and let Π be a
δ-error protocol for P . If X and Y are inputs such that
P(X) 6= P(Y ), then h(Π(X),Π(Y )) ≥ (1− δ)/

√
2.

Essentially, the lemma asserts that since the protocol
must distinguish between the two inputs X and Y , the
Hellinger distance of the respective distributions on the
transcript must be large.

The following lemma from [2] addresses the converse
direction—it shows that our ability to distinguish be-
tween samples from two distributions grows with their
Hellinger distance.

Lemma 3 ([2]). Let µ0, µ1 be two distributions. Suppose
that Y is generated as follows: we first select S ∈U
{0, 1}, and then sample Y from µS. Then I(S;Y) ≥
h2(µ0, µ1).

Information cost: In general, we define the internal
information cost of a protocol as follows.

Definition 3. Let X ∼ ζ be a distribution. The internal
information cost of a protocol Π with k parties commu-
nicating through a coordinator with respect to ζ is given
by

IC
ζ

(Π) := I
X∼ζ

(X; Π(X))

+
∑
i∈[k]

[
I

X∼ζ
(X−i; Πi(X) |Xi)

]
.

If P is a problem (formally, a Boolean predicate on k×
n-bit inputs and outputs from some domain), then we
define the information complexity of P as

IC
ζ,δ

(P) = inf
Π

IC
ζ

(Π)

where the infimum is taken over all δ-error randomized
protocols for P .

This is a general definition which does not depend on
the structure of the distribution ζ. However, our lower
bound uses a switched distribution, and as we explained
in Section II, we give a bound on the following, more
fine-grained expression:

Definition 4. Let (X,M,Z) ∼ η be a distribution
switched by M and Z. The switched information cost
of a protocol Π with respect to µ is given by

SIC
η

(Π) :=
∑
i∈[k]

[
I

(X,M,Z)∼η
(Xi; Πi(X) |M,Z)

+ I
(X,M,Z)∼η

(M; Πi(X) |Xi,Z)

]
.

The switched information cost of a problem P is defined
analogously.

The two notions of information cost are closely
related; indeed, our lower bound of Ω(nk) on

6



SICη(DISJn,k) also implies a lower bound of Ω(nk) on
ICη(DISJn,k) (the details are omitted here).

To obtain a lower bound on the communication cost
of a problem P , it is sufficient to give a lower bound on
its internal information cost (or similarly, on its switched
information cost):

Lemma 4. For any problem P , CCδ(P) ≥ 1/2 ·
ICζ,δ(P).

Proof: For any δ-error protool Π,

IC
ζ

(Π) = I
X∼ζ

(X; Π(X))

+
∑
i∈[k]

[
I

X∼ζ
(X−i; Πi(X) |Xi)

]
≤ H(Π) +

∑
i∈[k]

H(Πi |Xi)

≤ H(Π) +
∑
i∈[k]

H(Πi) ≤ |Π|+
∑
i∈[k]

|Πi| = 2|Π|.

The claim follows.
In Sections IV and V we show that the switched

information cost of DISJn,k under our hard distribution
is Ω(nk). This implies a lower bound of Ω(nk) on the
communication complexity of DISJn,k.

IV. DIRECT SUM THEOREM

We begin by proving that the information cost of
computing the set disjointness function

DISJn,k(X1, . . . ,Xk) =

n∨
j=1

k∧
i=1

Xi
j

is as least n times the cost of solving the one-bit problem
ANDk =

∧k
i=1 X

i
j . The proof is by reduction: given

a protocol Π for DISJn,k and a switched distribution
η = ξn, where ξ itself is a switched and ε-collapsing
distribution, we will construct a protocol Π̂ for ANDk,
such that SICξ(Π̂) ≤ (1/n) SICη(Π).

The one-bit protocol Π̂ uses Π by constructing an n-
bit input, running Π on it, and returning Π’s answer.
However, the input to Π̂ is only a single bit per player.
To construct an n-bit input, the coordinator first selects
a random coordinate j ∈U [n], into which the one-bit
input to Π̂ will be embedded. Next we wish to randomly
sample the other coordinates [n]\{j} from ξn−1, in order
to obtain an n-bit input on which we can run Π. We must
do this carefully: we need Π̂ to have an information cost
proportionate to the information cost of Π, but we do
not know where Π incurs the majority of its information
cost—does the coordinator learn a lot about the inputs
given the switch M, or do the players learn a lot about

the switch M given their inputs? One of these terms may
be small, and we must ensure that Π̂’s corresponding cost
in the same term is also small.

I. If in Π the coordinator does not learn much about
the input given M and Z, then our new protocol
Π̂ should also not reveal too much about the input
to the coordinator. A good solution is to have the
coordinator sample M−j and Z−j and send them
to the players, who can then sample their inputs
independently using their private randomness.

II. If in Π the players do not learn much about M
given their inputs and Z, then we should not reveal
M to the players in Π̂. A good solution is to
have the coordinator sample M−j,Z−j and X−j,
and send to each player i its input Xi

−j. Thus the
players do not know M before they execute Π
(except what they can deduce from their inputs).

Since we do not know in advance how Π behaves on the
average coordinate, our solution is to “hedge our bets” by
using the first approach to sample the coordinates below
j, and the second approach to sample the coordinates
above j. More formally, on one-bit input (U,N,S) ∼ ξ,
protocol Π̂ works as follows:

1) The coordinator samples a random coordinate j ∈U
[n] and samples Z−j ∈U [k]n−1, and sends them to
all players.

2) For each ` < j, the coordinator samples M` and
sends it to all players. Each player i then samples
Xi
` from its marginal distribution given M` and Z`.

3) For each ` > j, the coordinator samples X`,M`

from their marginal distribution given Z`, and sends
to each player i its input Xi

`.
4) The participants simulate the execution of Π using

the joint input

embed(X, j,U) =
{(

Xi
1, . . . ,X

i
j−1,

Ui,Xi
j+1, . . . ,X

i
n

)}k
i=1

.

5) The coordinator outputs the value output by Π.
The last step is the reason we require ξ to be ε-
collapsing: for each coordinate ` 6= j, with probabil-
ity at least 1 − ε we have

∧k
i=1 X

i
` = 0. By union

bound, the probability that
∨
` 6=j

∧k
i=1 X

i
` = 0 is at

least 1 − (n − 1)ε. Whenever this occurs we have
DISJn,k(embed(X, j,U)) = ANDk(U), that is, if Π
succeeds then Π̂ succeeds as well. Therefore the error
probability of Π̂ is at most nε+ δ, where δ is the error
probability of Π.

The following lemma relates the information cost of
Π̂ to that of Π:

7



Lemma 5. For each player i ∈ [k] we have

I
(U,N,S)∼ξ

(
N; Π̂i(U) |Ui,S

)
≤ 1

n

[
I

(X,M,Z)∼η
(M; Πi(X) |Xi,Z)

]
and

I
(U,N,S)∼ξ

(
Ui; Π̂i(U) |N,S

)
≤ 1

n

[
I

(X,M,Z)∼η
(Xi; Πi(X) |M,Z)

]
.

The direct sum theorem follows immediately:

Theorem 6. Let ξ be an ε-collapsing distribution
switched by M and Z, where ε < (1 − δ)/n, and let
η = ξn. Then

SIC
η,δ

(DISJn,k) ≥ n · SIC
ξ,δ+nε

(ANDk).

V. THE INFORMATION COMPLEXITY OF AND

By Theorem 6, in order to obtain an Ω(nk) lower
bound on DISJn,k it is sufficient to show a lower bound
of Ω(k) on the information complexity of ANDk under
a hard one-bit distribution ξ, which is both switched and
ε-collapsing. We will use the following distribution on
(X,M,Z) (informally described in Section II):

• First we select Z ∈U [k] and, independently, the
mode M is selected with Pr[M = 0] = 2/3 and
Pr[M = 1] = 1/3.

• If M = 0, then each player’s input Xi is 0 or 1 with
equal probability, independent of the other inputs.
If M = 1, then the joint input is ēZ := 1Z−101k−Z.

The distribution is switched by M and Z, and is ε-
collapsing with ε = 1/(3 · 2k−1).

Notation: In this section we let Π(X) denote the
distribution of the protocol’s transcript when executed on
input X ∈ {0, 1}k, and Πi(X) denote the distribution of
player i’s view of the transcript. We also let Πi[x,m, z]
denote the distribution of player i’s view when the input
is drawn from ξ, conditioned on Xi = x,M = m and
Z = z. For example, if j 6= i, then Πi[1, 1, j] = Π(ēj).
Notice that Πi[0, 1, j] for i 6= j is not well-defined,
because Pr

[
Xi = 0,M = 1,Z 6= i

]
= 0. Similarly, we

let Π[i, x,m, z] denote the distribution of Π’s transcript,
conditioned on Xi = x,M = m and Z = z.

Structural properties of protocols in the coordinator
model: We prove that SICξ,δ(ANDk) = Ω(k) in several
steps. The distribution ξ comes in only when we relate
Hellinger distance to mutual information; for the most
part we rely on the fact that Π has error at most δ on any
input, and on the structural properties of Π. We begin by
outlining these properties. For lack of space, the proofs
of these properties are omitted here.

The first property we will use is a simplified version of
the Z-Lemma (or Pythagorean Lemma) of [2], extended
the coordinator model.

Lemma 7 (Diagonal Lemma). For any X,Y and ` ∈ [k]
we have

h2(Π(X),Π(Y )))

≥ 1

2
h2(Π(X),Π(embed(Y −`, `,X`))).

Under our distribution ξ, the inputs Xi are inde-
pendent given M and Z. This allows us to prove the
following variant of the Diagonal Lemma, which con-
siders player i’s view and “abstracts away” all the inputs
X−i by grouping them together under the conditioning
M = m,Z = z (for some m and z).

Lemma 8 (Diagonal Lemma for M and Xi). For any
i 6= z we have

h2(Πi[0, 0, z],Πi[1, 1, z]) ≥ 1

2
h2(Πi(ēi,z),Π

i(ēz)).

Note that Lemma 7 concerns the complete transcript
Π, while Lemma 8 concerns one player’s local view,
Πi. To move between the two we use the following
“localization” lemma, which shows that when we “keep
everything the same” and change only Xi, the distance
between the transcript’s distributions is caused entirely
by player i’s local view. We are interested in two cases:
one where we fix M = 0 and Z = z 6= i, and let Xi

change from 0 to 1; and the other where i 6= z, players
[k] \ {i, z} receive 1, player z receives 0, and we vary
player i’s input, yielding the two inputs ēi,z and ēz .

Lemma 9 (Localizing the distance to a single player’s
transcript). For any i 6= z we have

h(Π[i, 0, 0, z],Π[i, 1, 0, z]) = h(Πi[0, 0, z],Πi[1, 0, z]),

and similarly,

h(Π(ēi,z),Π(ēz)) = h(Πi(ēi,z),Π
i(ēz)).

Now we are ready to describe the main proof that the
information complexity of ANDk is Ω(k).
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Step I. Setting up a rectangle: Fix a player i and a
value z 6= i, and consider a rectangle the following four
distributions:

Πi[0, 0, z] Πi[1, 0, z]

Πi(ēi,z) Πi(ēz) = Πi[1, 1, z]

The two distributions in the top row differ only in the
value of Xi, which is 0 for the first column and 1 for the
second; the same holds for the bottom row. The top-row
distributions have M = 0, and it is helpful to think of
the bottom row as representing the hard case, M = 1
(although Πi[0, 1, z] is not well-defined, and moreover,
the input ēi,z has probability 0 under ξ).

Notice that our distribution ξ satisfies:

Pr
[
Xi = 0 |M = 0,Z = z

]
= Pr

[
Xi = 1 |M = 0,Z = z

]
= 1/2,

and

Pr
[
M = 0 |Xi = 1,Z = z

]
= Pr

[
M = 1 |Xi = 1,Z = z

]
= 1/2.

In other words, given that we are in the top row of the
rectangle (M = 0,Z = z), the distribution of the tran-
script Πi is equally likely to be Πi[0, 0, z] or Πi[1, 0, z],
the two top-row distributions. This means that if the two
top-row distributions have a large Hellinger distance,
then the conditional mutual information I(Xi; Πi |M =
0,Z = z) is large: although Xi is equally likely to be
0 or 1 a priori given M = 0,Z = z, because of the
large Hellinger distance, the transcript Πi allows us to
distinguish the case Xi = 0 from the case Xi = 1. This
is captured by Lemma 3, which yields

I(Xi; Πi |M = 0,Z = z) ≥ h(Πi[0, 0, z],Πi[1, 0, z]).

Similarly, given that we are in the rightmost column
(Xi = 1,Z = z), the distribution of Πi is equally
likely to be Πi[1, 0, z] or Πi[1, 1, z]. Therefore a large
Hellinger distance between these distributions implies
that I(M; Πi |Xi = 1,Z = z) is large: Lemma 3 again
yields

I(M; Πi |Xi = 1,Z = z) ≥ h(Πi[1, 0, z],Πi[1, 1, z]).

Recall that Pr [M = 0 | Z = z] = 2/3 (as M and Z are
independent), and observe that when z 6= i we have
Pr
[
Xi = 1 | Z = z

]
= 2/3. Therefore,

I
(
Xi; Πi |M,Z = z

)
≥ 2

3
I
(
Xi; Πi |M = 0,Z = z

)
and

I
(
M; Πi |Xi,Z = z

)
≥ 2

3
I
(
M; Πi |Xi = 1,Z = z

)
.

It follows that

I(M;Πi |Xi,Z = z) + I(Xi; Πi |M,Z = z)

≥ 2

3

(
h2(Πi[1, 0, z],Πi[1, 1, z])

+ h2(Πi[0, 0, z],Πi[1, 0, z])
)

≥ 1

3

(
h(Πi[1, 0, z],Πi[1, 1, z])

+ h(Πi[0, 0, z],Πi[1, 0, z])
)2

≥ h2(Πi[0, 0, z],Πi[1, 1, z])

3
.

The last step uses the triangle inequality. Now we apply
Lemma 8, which together with the above yields

I(M; Πi |Xi,Z = z) + I(Xi; Πi |M,Z = z)

≥ 1

3
h2
(
Πi(ēi,z),Π

i(ēz)
)
. (1)

This holds only for z 6= i. Taking the expectation over
all z ∈ [k], we obtain

I(M; Πi |Xi,Z) + I(Xi; Πi |M,Z)

≥ 1

k

∑
z 6=i

(
I(M; Πi |Xi,Z = z) + I(Xi; Πi |M,Z = z)

)
(1)
≥ k − 1

3k
E

Z6=i

[
h2(Πi(ēi,Z,Π

i(ēZ))
]

≥ 1

6
E

Z6=i

[
h2(Πi(ēi,Z,Π

i(ēZ))
]
. (2)

The last step uses the fact that k − 1 ≥ k/2, as k > 1.
Let us define the usefulness of player i to be γi :=

EZ 6=i
[
h2(Πi(ēi,Z,Π

i(ēZ))
]
. Roughly speaking, player

i’s usefulness corresponds to how sensitive the protocol
is to the fact that Xi = 0, when some other player z 6= i
also has 0. By (2) we see that in order to obtain our
desired Ω(k) lower bound, it is sufficient to bound the
sum

∑
i γi (or the average,

∑
i γi/k). But why should

γi be large on average? In other words, why should the
protocol distinguish the case where only one player has
zero from the case where two players have zero, when
the answer to ANDk is 0 in both cases? This will again
follow from the structural properties of the protocol.

A. Step II: bounding the average usefulness.

In order to show that the average player has a large
usefulness γi, consider any two players i 6= j, and the
rectangle consisting of the following four distributions:

Π(ēi) Π(1k)
Π(ēi,j) Π(ēj)

We have ANDk(ēi) = ANDk(ēj) = 0, but ANDk(1k) =
1. By the correctness of the protocol and Lemma 2, the

9



statistical distance between Π(ēi) and Π(1k) must be
at least 1 − δ, which implies that h(Π(ēi),Π(1k)) ≥
(1 − δ)/

√
2. By the diagonal lemma (with ` = j),

h(Π(ēi),Π(ēj)) ≥ h(Π(ēi),Π(1k))/
√

2 ≥ (1 − δ)/2,
that is, the protocol must distinguish ēi from ēj .
(Roughly speaking, this means that the protocol must
find a player that has zero in the case where M = 1, an
interesting fact in itself.) By the triangle inequality,

h(Π(ēi),Π(ēi,j)) + h(Π(ēj),Π(ēi,j))

≥ h(Π(ēi),Π(ēj)) ≥ (1− δ)/2,

and therefore

h2(Π(ēi),Π(ēi,j)) + h2(Π(ēj),Π(ēi,j))

≥ (h(Π(ēi),Π(ēi,j)) + h(Π(ēj),Π(ēi,j)))
2

2

≥ (1− δ)2

8
.

Now summing across all pairs of players i 6= j, we see
that 2

∑
i

∑
j 6=i h

2(Π(ēi),Π(ēi,j)) ≥ k(k − 1) · (1 −
δ)2/8, which implies that

∑
i γi ≥ k · (1 − δ)2/16 =

Ω(k). Together with (2), this yields our main result for
this section:

Theorem 10. For any k > 1, SICξ,δ(ANDk) ≥ (1 −
δ)2/96.

Combining Theorem 10 with our direct-sum theorem
from Section IV, we obtain

Theorem 11. For any n ≥ 1 and for k = Ω(log n),
SICη,δ(DISJn,k) = Ω(nk).

Theorem 11 implies a lower bound of Ω(nk) on the
communication complexity of DISJn,k.
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