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INTEGRALITY GAPS OF 2 − o(1) FOR VERTEX COVER SDPs IN
THE LOVÁSZ–SCHRIJVER HIERARCHY∗
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Abstract. Linear and semidefinite programming are highly successful approaches for obtaining
good approximations for NP-hard optimization problems. For example, breakthrough approxima-
tion algorithms for Max Cut and Sparsest Cut use semidefinite programming. Perhaps the most
prominent NP-hard problem whose exact approximation factor is still unresolved is Vertex Cover.
Probabilistically checkable proof (PCP)-based techniques of Dinur and Safra [Ann. of Math. (2), 162
(2005), pp. 439–486] show that it is not possible to achieve a factor better than 1.36; on the other
hand no known algorithm does better than the factor of 2 achieved by the simple greedy algorithm.
There is a widespread belief that semidefinite programming (SDP) techniques are the most promis-
ing methods available for improving upon this factor of 2. Following a line of study initiated by
Arora et al. [Theory Comput., 2 (2006), pp. 19–51], our aim is to show that a large family of linear
programming (LP)- and SDP-based algorithms fail to produce an approximation for Vertex Cover

better than 2. Lovász and Schrijver [SIAM J. Optim., 1 (1991), pp. 166–190] introduced the systems
LS and LS+ for systematically tightening LP and SDP relaxations, respectively, over many rounds.
These systems naturally capture large classes of LP and SDP relaxations; indeed, LS+ captures the
celebrated SDP-based algorithms for Max Cut and Sparsest Cut mentioned above. We rule out
polynomial-time SDP-based 2 −Ω(1) approximations for Vertex Cover using LS+. In particular,
for every ε > 0 we prove an integrality gap of 2− ε for Vertex Cover SDPs obtained by tightening
the standard LP relaxation with Ω(

√
logn/ log logn) rounds of LS+. While tight integrality gaps

were known for Vertex Cover in the weaker LS system [G. Schoenebeck, L. Trevisan, and M.
Tulsiani, Proceedings of the 39th Annual ACM Symposium on Theory of Computing, ACM Press,
New York, 2007, pp. 302–310], previous results did not rule out a 2−Ω(1) approximation after even
two rounds of LS+.
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1. Introduction. A vertex cover in a graph G = (V,E) is a set S ⊆ V such that
every edge e ∈ E intersects S in at least one endpoint. The minimum Vertex Cover

problem asks what size the minimum vertex cover in G is. Determining how well we
can approximate Vertex Cover is one of the outstanding open problems in the
complexity of approximation: while Vertex Cover has a trivial 2-approximation
algorithm, no better approximation algorithms are known.

This contrasts with the situation for another famous problemMax Cut: for many
years, no approximation algorithm was known that could yield better than a (0.5 +
o(1))-approximation (the trivial randomized algorithm gives a 0.5-approximation) un-
til the seminal paper of Goemans and Williamson [14], which used semidefinite pro-
gramming (SDP) to obtain a 0.878-approximation algorithm. Since then SDP has
yielded breakthrough approximation algorithms for various NP-hard optimization
problems and has arguably become our most powerful tool for designing approxi-
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mation algorithms. Consequently, SDP is believed (see Lovász [23], for instance) to
be the most promising technique for attacking the Vertex Cover problem.

However, Goemans and Kleinberg [13] showed in 1995 that the standard SDP
for Vertex Cover has an integrality gap of 2 − ε for every ε > 0. Subsequently,
Charikar [6] showed that the integrality gap remains 2 − ε, even when the stan-
dard SDP is strengthened with additional triangle inequality constraints. Hatami,
Magen, and Markakis [16] strengthened this further, showing that no better approx-
imation is obtained, even when the so-called pentagonal inequality constraints are
added to the SDP. The possibility of reducing the integrality gap by adding hyper-
metric inequalities, which includes the triangle and pentagonal inequalities, of sup-
port at most O(

√
logn/ log logn) was eliminated in [11]. Further, it was recently

shown [12] that even if all hypermetric inequalities are used, the integrality gap re-
mains 2− o(1).

Indeed, the state of the art is such that SDP-based algorithms for Vertex Cover

must settle for competing in “how big” the “little oh” term is in the 2− o(1) factor.
Halperin [15] gives a (2 − log logΔ/ logΔ)-approximation, where Δ is the maximal
degree of the graph. The best approximation algorithm currently known for arbitrary
graphs is due to Karakostas [18] who obtains a (2 − Ω(1/

√
logn))-approximation

algorithm using a stronger SDP relaxation.
Nevertheless, it is consistent with the known hardness results for Vertex Cover

that there could be some other SDP with integrality gap, say, 1.4. In particular,
the best probabilistically checkable proof (PCP)-based hardness result known (Dinur
and Safra [8]) shows only that a 1.36-approximation of Vertex Cover is NP-hard.
Only by assuming Khot’s unique games conjecture [19] do we get a tight 2 − o(1)
inapproximability result [20]. However, determining the validity of the unique games
conjecture (or directly improving on [8]) remains a difficult open problem.

To get a better picture of the approximability of Vertex Cover (especially in
light of the inability to resolve the issue with PCP-based methods), Arora et al. [3]
suggested the following approach: rule out good approximations by large families of
algorithms. One such family is the class of relaxations for Vertex Cover in the
Lovász–Schrijver “lift-and-project” hierarchies. Lovász and Schrijver [24] define pro-
cedures LS and LS+ for systematically tightening linear and semidefinite relaxations,
respectively, over many rounds. These procedures are often called lift-and-project pro-
cedures. Important algorithmic properties of LS and LS+ are (a) n rounds of even
the weaker LS procedure suffice to obtain exact solutions, and (b) we can optimize a
linear function over the rth tightening of the LS and LS+ relaxations in nO(r) time
(provided the original relaxation had a polynomial-time separation oracle).

Many celebrated SDP-based algorithms, including the seminal Max Cut algo-
rithm of Goemans and Williamson [14] and the Arora–Rao–Vazirani algorithm [4] for
Sparsest Cut, can be derived using a constant number of rounds of LS+. Thus
proving inapproximability results for LS+-based algorithms rules out one of the most
promising classes of algorithms that we currently have for obtaining 2−Ω(1) approx-
imations for Vertex Cover. Furthermore, unlike PCP-based results, we emphasize
that such results do not rely on any complexity theoretic assumptions.

Arora et al. [3] obtained the first result along these lines for Vertex Cover

showing that Ω(logn) rounds of the weaker LS procedure have an integrality gap of
2− ε for every ε > 0. Tourlakis [28] proved an integrality gap of 1.5− ε, for Vertex

Cover for Ω(log2 n) rounds of LS. Subsequently, a beautiful result by Schoenebeck,
Trevisan, and Tulsiani [27] showed that the integrality gap is 2 − ε, even after Ω(n)
rounds of LS. Several related results about the performance of lift-and-project sys-

D
ow

nl
oa

de
d 

05
/1

4/
13

 to
 1

28
.1

00
.3

.6
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LS+ TIGHT INTEGRALITY GAPS FOR VERTEX COVER 3555

tems for Vertex Cover have appeared after the conference version of the current
paper was published. For instance, a tight integrality gap was proven for the Sherali–
Adams hierarchy (a lift-and-project hierarchy which is stronger than the LS but in-
comparable to the LS+ hierarchy) by Charikar, Makarychev, and Makarychev [7] for
nδ(ε) rounds. Very recently, integrality gaps of 7/6−ε [25] and 1.36 [29] were obtained
for the powerful Lasserre hierarchy for Ω(n) and Ω(nδ) rounds, respectively. Interest-
ingly, all these results are incomparable, meaning that none of them is stronger than
the other (see section 5 for comparative discussion). Unfortunately, the integrality
gap instances used in previous works cannot be used to prove a tight integrality gap
for even one round of LS+.

The only known integrality gaps for Vertex Cover LS+ relaxations prior to the
current paper were proved by Schoenebeck, Trevisan, and Tulsiani [26] who showed
that the integrality gap remains 7/6 for Ω(n) rounds of LS+. The graphs they use
are obtained using the standard Feige et al. [9] reduction from max-3xor to Vertex

Cover. Such instances cannot prove stronger integrality gaps for LS+ since their
integrality gaps are at most 7/6 after one round of LS+.

To summarize, previously known results do not preclude a polynomial time 2 −
Ω(1) approximation algorithm for Vertex Cover using LS+ tightenings. In particu-
lar, showing a 2−ε integrality gap for even two rounds of LS+ remained a challenging
open problem (Charikar’s construction [6] does imply a 2− ε gap for one round).

In this paper we rule out such approximations. Our starting point is the graph
families used to show tight integrality gaps for various Vertex Cover SDPs in [13,
6, 16] and recently in [11, 12] (similar graphs were used by Alon and Kahale [2] in
independent work contemporaneous with [13] studying the Lovász theta function). We
briefly describe these graphs. The vertex set is {−1, 1}m, and two vertices are adjacent
if their Hamming distance is exactly (1−γ)m. A result of Frankl and Rödl [10] bounds
from above the size of any independent set in such graphs by m(2−Ω(γ2))m. Hence,
for constant γ > 0 (or even γ a slowly vanishing function of m) any vertex cover has
size (1 − o(1))|V |. Of course for γ = 0 these graphs are just perfect matchings on
2m vertices. The cleverness of the construction lies in how a minuscule increase in
γ dramatically changes the independent set size while not appreciably altering the
“geometry” of the graph (and hence not appreciably increasing the SDP value from
the perfect matching case—the SDP value depends continuously on the geometry of
the graph solution).

We use this graph family to show that for every ε > 0, Ω(
√

logn/ log logn) rounds
of LS+ have an integrality gap of 2− ε for Vertex Cover. Our main theorem also
implies that the integrality gap remains at least 2 − O(

√
log logn/ logn) after O(1)

rounds of LS+. Hence, the approximation ratio achieved by Karakostas’s [18] algo-
rithm is essentially tight for “polynomial” time LS+ relaxations. Our main technical
tool is the construction of a sequence of tensoring operations on vectors. These op-
erations have the property that inner products on the set of tensored vectors are a
polynomial function of the inner products of the original vectors. These extend similar
tensoring operations used by Charikar [6] (and implicit in earlier work by Kahn and
Kalai [17]). However, our application calls for more complicated polynomials, and
moreover the polynomials (and hence the tensored vectors) change as the induction
unwinds in our lower bound argument (details in section 3).

Organization of the paper. Section 2 contains all necessary definitions includ-
ing a description of LS+. Section 3 outlines our approach, while section 4 contains
the proof of our main result. Section 5 discusses relevant lower bounds, limitations of
our approach, and poses some open problems.
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2. Definitions, notation, and tools.

2.1. Standard SDPs for VERTEX COVER. The standard way to formulate
Vertex Cover for a graph G = (V,E) as a quadratic integer program is

min
∑
i∈V

(1 + x0xi)/2

such that (s.t.) (x0 − xi)(x0 − xj) = 0 ∀ij ∈ E,
xi ∈ {−1, 1} ∀i ∈ {0} ∪ V.

The set of vertices i for which xi = x0 gives a minimal vertex cover. This quadratic
program leads to the SDP relaxation:

(1)

min
∑
i∈V

(1 + v0 · vi)/2

s.t. (v0 − vi) · (v0 − vj) = 0 ∀ij ∈ E,
‖vi‖ = 1 ∀i ∈ {0} ∪ V.

Note the relation of this SDP to the Lóvasz theta function [22, 13] for the Maximum

Independent Set problem: Given a graph the Maximum Independent Set prob-
lem requires one to find an independent set, namely, a subset of nonadjacent vertices,
of maximum size. Clearly the complement of any independent set is a vertex cover
and vice versa. Therefore, if we replace vi by v0 −vi in SDP (1), we get a relaxation
for Independent Set. The optimal value of this relaxation is the well-known Lóvasz
theta function.

We can strengthen the relaxation (1) by adding the vector analogues of constraints
valid for the original quadratic integer program. Examples of such constraints are the
triangle and “extended” triangle inequalities (respectively)

(vi − vj) · (vi − vk) ≥ 0 ∀i, j, k ∈ {0} ∪ V,(2)

(vi ± vj) · (vi ± vk) ≥ 0 ∀i, j, k ∈ {0} ∪ V.(3)

The SDP relaxation (1) was studied in [13]. The SDP tightened using (2) was
studied in [6], while the SDP tightened using (2) and (3) (as well as the so-called
pentagonal inequalities) was studied in [16]. Further tightenings of (1) by stronger
families of valid inequalities were studied in [11, 12].

2.2. The Lovász–Schrijver lift-and-project system. A convex cone is a set
K ⊆ Rn+1 such that for every y, z ∈ K and for every α, β ≥ 0, αy + βz ∈ K. Let ei
denote the vector with 1 in coordinate i and 0 everywhere else. Hence, Y ei denotes
the ith column of a matrix Y .

For a convex cone K ⊆ R
n+1 let M+(K) ⊆ R

(n+1)×(n+1) consist of all symmetric
(n+ 1)× (n+ 1) matrices Y such that

1. for all i = 0, 1, . . . , n, Y0i = Yii.
2. for all i = 0, 1, . . . , n, Y ei, Y e0 − Y ei ∈ K.
3. Y is positive semidefinite (PSD).

We then define N+(K) = {Y e0 : Y ∈ M+(K)} ⊆ R
n+1. That is, a vector y =

(y0, . . . , yn) is inN+(K) if there exists Y ∈ M+(K) such that Y e0 = y in which case Y
is called a protection matrix for y. Define Nk

+(K) inductively by setting N0
+(K) = K

and Nk
+(K) = N+(N

k−1
+ (K)).

D
ow

nl
oa

de
d 

05
/1

4/
13

 to
 1

28
.1

00
.3

.6
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LS+ TIGHT INTEGRALITY GAPS FOR VERTEX COVER 3557

Let G = (V,E) be a graph and assume that V = {1, . . . , n}. The Vertex Cover

convex cone for G, V C(G), is the set of vectors y ∈ R
n+1 such that

yi + yj ≥ y0 ∀ ij ∈ E,(4)

y0 ≥ yi ≥ 0 ∀ i ∈ V,(5)

y0 ≥ 0.

Constraints (4) are called the edge constraints, and constraints (5) are called the box
constraints.

The value of the Vertex Cover relaxation arising from k rounds of LS+ is the
solution of

min

n∑
i=1

yi

s.t. (y0, . . . , yn) ∈ Nk
+(V C(G)) and y0 = 1.

The integrality gap of this relaxation (for n-vertex graphs) is the largest ratio between
the minimum vertex cover size of G and the optimum in the above program, over all
n-vertex graphs G.

To get an idea of the power of LS+, we note first that the relaxation N+(V C(G))
is at least as strong as the standard SDP relaxation for Vertex Cover since the
Cholesky decomposition of any matrix Y ∈ M+(V C(G)) satisfies (under an affine
transformation) SDP (1). In fact, it even satisfies the triangle inequalities (2) for
the case i = 0. On the other hand, one can show that adding both the standard and
“extended” triangle inequalities (constraints (2) and (3), respectively) to the standard
Vertex Cover SDP results in a relaxation at least as strong asN+(V C(G)). Indeed,
we will (implicitly) exploit the latter fact when constructing SDP solutions for our
lower bound.

2.3. Vectors and tensoring. We will use 0 to denote the all-0 vector. Given
two vectors x,y ∈ {−1, 1}n, their Hamming distance dH(x,y) is |{i ∈ [n] : xi 	= yi}|.
For two vectors u ∈ R

n and v ∈ R
m denote by (u,v) ∈ R

n+m the vector whose
projection on the first n coordinates is u and on the last m coordinates is v.

Recall that the tensor product u⊗ v of vectors u ∈ R
n and v ∈ R

m is the vector
in R

nm indexed by ordered pairs from n × m and that assumes the value uivj at

coordinate (i, j). Define u⊗d to be the vector in R
nd

obtained by tensoring u with
itself d times.

Definition 1. Let P (x) = c1x
t1 + · · ·+ cqx

tq be a polynomial with nonnegative
coefficients. Then we define TP to be the function that maps a vector u to the vector
TP (u) = (

√
c1u

⊗t1 , . . . ,
√
cqu

⊗tq ).

Fact 1. For all u,v ∈ R
d, TP (u) · TP (v) = P (u · v).

2.4. Frankl–Rödl graphs.
Definition 2. Fix γ, 0 ≤ γ ≤ 1, and an integer m ≥ 1. The Frankl–Rödl graph

Gγ
m is the graph with vertices {−1, 1}m and where two vertices i, j ∈ {−1, 1}m are

adjacent if dH(i, j) = (1 − γ)m.
Relatives of the following lemma appear in [10] in various guises, but it seems as

if the exact statement that we will use requires a further small step which we sketch
in Appendix A. The key difference with variants in [10] is that we explicitly allow γ
to be a function of m.
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Lemma 1. Let m be an integer, and let γ = γ(m) > 0 be a sufficiently small
number so that γ ·m is an even integer. Then there are no independent sets in Gγ

m

of size larger than (m+ 1)2m(1− γ2/64)m.

2.5. Saturated vectors. In general, our lower bounds will be proved by arguing
about vectors whose coordinates are either 0/1 or take at most one other fixed value.
The following definition formalizes this.

Definition 3. A vector y ∈ [0, 1]n+1 is an ε-vector if y0 = 1 and yi ∈{
0, 1

2 + ε, 1
}
for all 1 ≤ i ≤ n.

Note that ε-vectors have the property that the sum of any two non-0/1 coordinates
is 1+2ε. A weaker condition on vectors in [0, 1]n+1 would be to only require that the
sum of any two non-0/1 coordinates is at least 1+ 2ε. Such vectors were used in [27],
and the following definition is adapted from their paper.

Definition 4 (see [27]). Let G = (V,E) be a graph. A vector y ∈ V C(G)
is ε-saturated if for every edge ij ∈ E such that yi and yj are both not integral,
yi + yj ≥ 1 + 2ε.

Saturated vectors have the following important property proved in [27] (we include
a proof in Appendix B for completeness).

Lemma 2 (see [27]). Let G = (V,E) be any graph and suppose x ∈ V C(G) is
ε-saturated. Then x is a convex combination of ε-vectors in V C(G).

The lemma essentially says that proving lower bounds for ε-saturated vectors re-
duces to proving lower bounds for ε-vectors. This will be crucial for our arguments
since we know only how to find protection matrices for ε-vectors. We remark that our
definition for saturation is slightly different than the one in [27], as there they only
require that one of yi or yj in Definition 4 be nonintegral. Consequently, Lemma 2
becomes somewhat stronger to accommodate this difference, but the additional argu-
ment for this strengthening is trivial (see Appendix B).

3. Overview of the proof. We start with a Frankl–Rödl graph G = Gγ
m and

denote by n = 2m the size ofG. We will show that the point x = (1, 1/2+ε, . . . , 1/2+ε)
is contained in the polytope or more accurately in the convex body, defined after
Ω(

√
logn/ log logn) rounds of LS+. This clearly gives us our desired tight integrality

gap.
The standard way to prove that a certain point x is in the polytope resulting from

r rounds of LS+ (hereafter, the “rth polytope”) is as follows: 1. Exhibit a symmetric
PSD “protection” matrix Y for x such that the diagonal and first column of Y equal
x. 2. Show inductively that the vectors Y ei and Y (e0 − ei) are in the (r − 1)st
polytope. By the definition of LS+ it will then follow that x is in the rth polytope.

To define a protection matrix for x we will start with the canonical set of vec-
tors associated with the vertices of G, namely, the normalized versions of the vec-
tors {−1, 1}m (these vectors were also the starting point for [13, 6, 16] and later
for [11, 12]). These vectors have the appealing property that the inner product of
vectors associated with two vertices i and j is solely a function of their Hamming
distance dH(i, j). Observe that this property will not be compromised by applying
the TP tensoring transformation to the vectors. Indeed, we will use this tensoring
transformation with a specific polynomial P to obtain a new set of tensored vectors
and then define our candidate protection matrix to be essentially the Gram matrix of
these vectors. (Note that Charikar [6] also uses a tensor transformation to prove his
integrality gap for the SDP with triangle inequalities.)

A consequence of the observation above is that the values on the diagonal of the
Gram matrix are all identical. So this protection matrix recipe works only for vectors
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like x where all fractional values are the same. In fact, for technical reasons which
we do not get into in this outline, this recipe produces valid protection matrices only
when x is a ρ-vector for some 0 < ρ < 1/2.

To continue our inductive argument we would in turn like to use the same recipe
to find candidate protection matrices for each of the 2n vectors Y ei and Y (e0 − ei)
(or, more accurately, for the projections of these vectors onto the hyperplane x0 = 1).
The problem is that while these 2n vectors may indeed be in the (r − 1)st polytope,
they may not be ρ-vectors. (This is because the entries Yij of Y ei are a polynomial
function of dH(i, j), and the latter is distributed like a binomial distribution when i
is fixed.) So the recipe cannot be used without extra work.

To remedy the situation, we will apply a “correction” phase as follows. (Note
that “correction” phases of some sort or another can be found in many previous
works [3, 1, 5, 28, 26, 27].) We will construct the tensored vectors so that the vectors
Y ei, Y (e0 − ei) have high saturation. We will then use Lemma 2 to express these
vectors as convex combinations of ρ′-vectors from V C(G) for some ρ′ > 0 (this is
the “correction” part). We then carry on the induction with these ρ′-vectors to show
that they lie in the (r − 1)st polytope. Convexity then implies that the vectors Y ei,
Y (e0 − ei) are also in the (r − 1)st polytope.

To summarize, we start with a vector x = (1, 1/2 + ε0, . . . , 1/2 + ε0), ε0 = ε, and
after one round we need to show that the 2n vectors Y ei, Y (e0−ei) corresponding to
x’s protection matrix Y have large saturation ε1; then we continue with vectors with
fractional values 1/2+ ε1, and so on. In this process, the obvious objective is to make
the sequence ε0, ε1, ε2, . . . as slowly decreasing as possible, thereby making it last for
many rounds before it becomes negative (which amounts to negative saturation, and
hence the corresponding vectors are not in V C(G) at all). We will show that for each
round i, we can ensure that εi = εi−1 −O(γ). Thus for arbitrarily small initial ε0, we
get an induction chain of length Ω(ε0/γ).

The engine of this process and our main technical tool are the tensor-inducing
polynomials. Along with the sequence of decreasing saturation values, we shall have
a sequence of polynomials with positive coefficients, P0, P1, P2, . . . , where Pi depends
on εi and determines εi+1. The choice of this sequence is at the heart of the matter.
The nonnegativity requirement on the coefficients is what makes this a challenging
task. Charikar [6] used a polynomial designed to produce vectors that satisfy the
triangle inequality. This polynomial is the sum of a linear term and a degree O(1/γ)
monomial that unfortunately produces a poor saturation and hence cannot be used
to proceed beyond one round of LS+. In particular, the saturation it provides is
about 1/m � γ. The problem is intrinsic: consider the vector Y (e0 − ei) for some
fixed i. It is easy to see that no matter which polynomial we use, edges incident to
vertex i will have no slack at all in Y (e0 − ei). Such an edge ij will not in itself
affect the saturation, as its vertices will have integral values; however, the continuous
nature of the construction means that nearby edges i′j′ will not have integral values
since their values will correspond to evaluating the polynomial at points only slightly
different than those for ij. But then, to ensure that i′j′ has good saturation, our
polynomial must vary a lot between the cases corresponding to ij and i′j′. This calls
for a polynomial with a very large derivative and hence one with very-high-degree
d  m; in contrast, the polynomial that Charikar uses has degree independent of m.

4. Main theorem.
Lemma 3. Let m be a sufficiently large integer and γ > 0. Let n = 2m, and let ε

be a sufficiently small constant such that ε > 5γ. Suppose in addition that y ∈ R
n+1
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is an ε-vector in V C(Gγ
m). Then there exists a protection matrix Y for y such that

for all i with 0 < yi < 1, Y ei/yi and Y (e0 − ei)/(1− yi) are convex combinations of
(ε− 6γ)-vectors that lie in V C(Gγ

m). In particular, y ∈ N+(V C(Gγ
m)).

Given Lemma 3, we can prove our main theorem from which the integrality gaps
for LS+ stated in the introduction immediately follow.

theorem 1. Let m be sufficiently large, and fix γ ≥ 12
√
(logm)/m such that

γm and 1/γ are both even. Let ε be a sufficiently small constant such that ε > 5γ.
Let n = 2m, and let r = � ε

6γ � − 1. Then the integrality gap of N r
+(V C(Gγ

m)) is at

least 2− 4ε− 2/m.
Proof. Let y = (1, 1

2 + ε, . . . , 1
2 + ε) ∈ R

n+1. Clearly y ∈ V C(Gγ
m). A simple

inductive argument using Lemma 3 then implies that y ∈ N r
+(V C(Gγ

m)).
On the other hand, Lemma 1 implies that the largest independent set in Gγ

m has
size at most

(m+ 1)2me−
γ2m
64 ≤ (m+ 1)2m

e
144
64 logm

≤ 2m

m
.

Hence, the integrality gap for N r
+(V C(Gγ

m)) is at least 2m−2m/m

n( 1
2+ε)

= 2(1−1/m)
1+2ε ≥ 2 −

4ε− 2
m .

4.1. Proof of Lemma 3. Fix m and γ and consider G = Gγ
m. Denote the

vertices V of G as vectors wi ∈ {−1, 1}m, 1 ≤ i ≤ 2m, and for each vector wi ∈ V
define ui = 1√

m
wi. Note that ‖ui‖ = 1 for all i ∈ V and ui · uj = 2γ − 1 for all

ij ∈ E. Moreover, −1 ≤ ui · uj ≤ 1− 2
m for all 1 ≤ i < j ≤ 2m.

Given a polynomial P with nonnegative coefficients, we will now define a proce-
dure that takes the vectors {ui}, applies the tensoring operation TP from section 2.3
to obtain a new set of vectors, and then applies a linear transformation to the result-
ing vectors. The Gram matrix of the vectors resulting from this procedure will be
called Y (P,y). Our goal will be to pick P so that Y (P,y) is a protection matrix for
y.

First, define v0 = (1, 0, . . . , 0). For each vertex 1 ≤ i ≤ 2m define

(6) vi =

⎧⎨
⎩
v0 if yi = 1,
0 if yi = 0,

(12 + ε,
√
1−4ε2

2 · TP (ui)) if yi =
1
2 + ε.

Let Y (P,y) ∈ R
(n+1)×(n+1) be the PSD matrix defined by Y (P,y)ij = vi · vj . We

define a class of polynomials and show that for any polynomial P in this class, Y (P,y)
is a protection matrix for y.

Definition 5. A polynomial P (x) is called (γ, ε,m)-useful if it satisfies the
following conditions:

1. P has only nonnegative coefficients,
2. P (1) = 1,
3. P (x) ≥ P (2γ − 1) = − 1−2ε

1+2ε for all x ∈ [−1, 1],
4. For all i ∈ {1, . . . , 2m} and all jk ∈ E,

(7) − 4ε

1− 2ε
≤ P (ui · uj) + P (ui · uk) ≤ 4ε

1 + 2ε
.

Claim 1. If P is (γ, ε,m)-useful, then Y = Y (P,y) ∈ M+(V C(G)). In particu-
lar, Y is a protection matrix for y, and hence y ∈ N+(V C(G)).
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Proof. Since Y is PSD by definition, to show that Y is a protection matrix for y
it suffices to show that (A) for all 0 ≤ i ≤ n, Yi0 = Yii = yi, and (B) for all 1 ≤ i ≤ n,
Y ei, Y (e0 − ei) ∈ V C(G).

Consider (A) first. Clearly Yi0 = Yii = yi whenever yi ∈ {0, 1}. In particular,
note that Y00 = 1. So assume that yi = 1/2+ ε. Clearly Yi0 = 1

2 + ε. So consider Yii,
which equals

(8) vi·vi =

(
1

2
+ ε

)2

+
1− 4ε2

4
TP (ui)·TP (ui) =

1

4
+ε+ε2+

1− 4ε2

4
P (ui·ui) =

1

2
+ε,

where the last equality follows from the fact that the ui are unit vectors and P (1) = 1.
Now consider (B). We must show that for 1 ≤ i ≤ n, Y ei and Y (e0 − ei) both

satisfy the edge constraints (4) and the box constraints (5). Note that if yi ∈ {0, 1},
then {Y ei, Y (e0 − ei)} = {0, Y e0} ⊆ V C(G), and these constraints are trivially
satisfied. So assume yi =

1
2 + ε.

The box constraints require for all 1 ≤ j ≤ n that 0 ≤ Yij ≤ Yi0 and 0 ≤
Y0j − Yij ≤ Y00 − Yi0. Equivalently, for all 1 ≤ j ≤ n,

Yi0 + Yj0 − Y00 ≤ Yij ≤ Yi0.(9)

On the other hand, the edge constraints require for all 1 ≤ i ≤ n and all jk ∈ E that

Yij + Yik ≥ Yi0,(10)

(Y0j − Yij) + (Y0k − Yik) ≥ Y00 − Yi0.(11)

Since (9) holds when yi ∈ {0, 1}, by symmetry it also holds if yj ∈ {0, 1}. So
assume yj = 1

2 + ε. We first show that the right inequality in (9) holds. Fix j ∈
{1, . . . , n}. Note that since yi = yj =

1
2 + ε, it follows from (8) that ‖vi‖ = ‖vj‖. So,

Yij = vi · vj ≤ ‖vi‖2 = Yii = Yi0.
Now consider the left inequality in (9). We have that

Yij + Y00 − Yi0 − Yj0 = Yij − 2ε

=

[
1

4
+ ε+ ε2 +

1− 4ε2

4
TP (ui) · TP (uj)

]
− 2ε

=
1

4
− ε+ ε2 +

1− 4ε2

4
P (ui · uj)

≥ 0,

where the last inequality follows by property 3 of a (γ, ε,m)-useful polynomial and
the fact that the ui are unit vectors. So (9) holds.

Now consider the remaining constraints. Fix j, k ∈ {0, 1, . . . , 2m}. Using con-
straints (9), the fact that Yii = Yi0 for all i, and the fact that y is an ε-vector in
V C(G), it is easy to verify that constraints (10) and (11) hold whenever one of yj or
yk are integral. So assume yj = yk = 1

2 + ε.
Constraint (10) then holds if the following is at least 1:

Yij + Yik

Yi0
= 2

(
1

2
+ ε

)
+

1− 2ε

2
TP (ui) · (TP (uj) + TP (uk))

= 1 + 2ε+
1− 2ε

2
(P (ui · uj) + P (ui · uk)).(12)
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Similarly, (11) holds if the following is at least 1:

(Y0j − Yij) + (Y0k − Yik)

Y00 − Yi0
= 1 + 2ε− 1 + 2ε

2
(P (ui · uj) + P (ui · uk)).(13)

But by property 4 of a (γ, ε,m)-useful polynomial, for all 1 ≤ i ≤ n and all jk ∈ E,
(12) and (13) are indeed both at least 1. The claim follows.

By Lemma 2, to complete the proof of Lemma 3 it suffices to show that there
exists a (γ, ε,m)-useful polynomial P such that if Y = Y (P,y), then for all i such
that yi =

1
2 + ε the vectors Y ei/yi and Y (e0 − ei)/(1 − yi) are (ε − 6γ)-saturated.

(The vectors Y ei/yi and Y (e0−ei)/(1−yi) are the “normalized” versions of Y ei and
Y (e0 − ei), i.e., their projections onto the hyperplane x0 = 1.)

To that end, let us first compute the saturation of these vectors for an arbitrary
but fixed (γ, ε,m)-useful polynomial P . Fix i such that yi = 1

2 + ε and consider
Y ei/yi. Let I = {i} ∪ {j : yj ∈ {0, 1}}. Then the saturation of Y ei/yi is at least

min
j,k �∈I,jk∈E

1

2
((Yij + Yik)/yi − 1)

= min
j,k �∈I,jk∈E

[
ε+

1− 2ε

4
(P (ui · uj) + P (ui · uk))

]

≥ min
j,k �=i,jk∈E

[
ε+

1− 2ε

4
(P (ui · uj) + P (ui · uk))

]
,(14)

where the equality follows by (12) and the fact that yj , yk 	∈ {0, 1}. Similarly, the
saturation of Y (e0 − ei)/(1− yi) is at least

min
j,k �∈I,jk∈E

1

2

(
(Y0j − Yij) + (Y0k − Yik)

1− yi
− 1

)

= min
j,k �∈I,jk∈E

[
ε− 1 + 2ε

4
(P (ui · uj) + P (ui · uk))

]

≥ min
j,k �=i,jk∈E

[
ε− 1 + 2ε

4
(P (ui · uj) + P (ui · uk))

]
,(15)

where the equality follows by (13) and the fact that yj , yk 	∈ {0, 1}.
Lemma 3 now follows from the following lemma proved in section 4.2, which shows

that (γ, ε,m)-useful polynomials of the type we require do in fact exist.
Lemma 4. Let m be an integer and γ a sufficiently small positive real such that

m
2γ and 1

2γ are even integers and m is significantly larger than 1
γ . Suppose ε > 5γ.

Then there exists a (γ, ε,m)-useful polynomial P such that for all i, j, k ∈ {−1, 1}m
where j, k 	= i and jk ∈ E,

(16) |P (ui · uj) + P (ui · uk)| ≤ 20γ.

4.2. Proof of Lemma 4: Constructing (γ, ε,m)-useful polynomials. In
this section we prove Lemma 4. Before giving the proof, we motivate the construction
of the required polynomial P and discuss how we arrived at the correct definition.

Requirement 2 of Definition 5, namely, that P (1) = 1, ensures that v0 · vi = v2
i

and implies that the sum of the monomial coefficients of P are 1. In other words,
the required polynomial P will be a weighted average of the “pure” monomials xs,
s ∈ {0, 1, . . .}. As was discussed before, the Frankl–Rödl graph Gγ

m with γ = 0 is just
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a perfect matching on the vertices of the cube. A useful observation is that for G0
m,

Lemma 4 can be proved by taking ε = 0 and P (x) = x. (Of course, this graph is
useless for proving lower bounds since a bipartite graph exhibits no integrality gap.)
From a geometric standpoint, viewing the vertices as the set {−1, 1}n ⊂ R

n, the graph
Gγ

m is a small perturbation of G0
m. Therefore, intuitively, the polynomial P we will

use to prove the lemma should be a small perturbation of the polynomial x. That is,
in the weighted average of pure monomials making up P , most of the weight should
be placed on the linear part.

The evolution in previous works of integrality gap constructions can be viewed
as an evolution of the underlying tensoring polynomials P those constructions were
based on. Indeed, while not described quite in this language (as well as not addressing
the lift-and-project framework) one can view the integrality gap constructions for
the standard SDP of Goemans and Kleinberg [13] as a solution using the tensoring
polynomial P (x) = x and the SDP considered by Charikar [6] (whose SDP is in fact
equivalent to one round of LS+) as using a polynomial P with weight roughly 1− γ
on x and roughly γ on the monomial x1/γ . Charikar’s considerably more complicated
construction is in fact a result of satisfying requirement 3 of Definition 5, which
necessitates that the polynomial will attain its minimum at 2γ − 1.

For our purposes, we start with two parameters ε and γ, with ε  γ, and we need
to satisfy requirement 3 of Definition 5 as well as inequality (16). A key observation
is that by using any polynomial with small (say, O(1/γ)) degree, such as that of
Charikar, we get that P (1 − 1/m) is almost the same as P (1). But then we will not
satisfy inequality (16) for triplets i, j, k such that ij ∈ E and dH(i, k) = 1, since for
such a triplet we will have

P (ui · uj) + P (ui · uk) = P (2γ − 1) + P (1− 2/m)

= −(1− 2ε)/(1 + 2ε) + 1− (P (1)− P (1− 2/m))

≈ 4ε

 γ.

We rectify this by ensuring that P (x) < P (1) − Θ(ε) for all x ≤ 1 − 1/m and by
designing P so that P (1) “jumps” to 1 (as required by requirement 2 of Definition 5).
This can be achieved by adding a very-high-order term to the weighted combination
making up P .

So to summarize, to satisfy the conditions of Lemma 4, our polynomial P will
be a weighted average of a linear monomial, a midorder monomial, and a very-high-
order monomial, with most of the weight on the linear monomial. Indeed, all three
components will be seen in the proof of Lemma 5 below.

Here is another, possibly simpler, way to think of the type of transformation we
need to apply to the vector solution for G0

m to obtain an integrality gap solution for
Gγ

m. Take a polynomial à la Charikar’s which satisfies inequality (16) but violates
requirement 3 of Definition 5 in that P (2γ − 1) = 1 − Θ(γ). The trick is to rescale
all its values other than its value at 1 by 1 − ε to achieve requirement 3, while not
compromising on inequality (16). This can be done by rescaling the vectors by

√
1− ε

and adding a new orthogonal component to all vectors involved unique to each vertex,
scaled by

√
ε. This would have achieved the same effect, namely, the inner product of

any two different vectors would be always bounded by 1− ε. Notice that in this way
we don’t actually produce a polynomial P that satisfies inequality (16), but rather
directly produce vectors that exhibit the right behavior. We therefore opt to use the
first approach that is expressible completely in the language of polynomials.
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Fig. 1. The domain R. The value −λ represents the critical inner product −1 + 2γ.

We now move to the proof of the lemma: Fix ε and γ as in the statement of the
Lemma 4. Let R be the subset of R2 that consists of all (x, y) ∈ [−1, 1]2 for which
|x+ y| ≤ 2γ, |x− y| ≤ 2(1− γ), x < 1− 1

m , and y < 1− 1
m (see Figure 1).

Claim 2. To prove the lemma it suffices to find a polynomial P with nonnegative
coefficients such that P (1) = 1, for all x ∈ [−1, 1] P (x) ≥ P (2γ−1) = (2ε−1)/(2ε+1)
and such that

(17) |P (x) + P (y)| ≤ 20γ ∀(x, y) ∈ R.

Proof. By definition, P satisfies the first three properties of a (γ, ε,m)-useful
polynomial.

Next recall that the vectors ui satisfy the property −1 ≤ ui · uj ≤ 1− 2
m for all

1 ≤ i 	= j ≤ 2m. Further, if jk ∈ E and i 	= j, k, then since uj + uk is supported on
γm coordinates on which it assumes values ±2/

√
m, we get that

|ui · uj + ui · uk| = |ui · (uj + uk)| ≤ 2γ.

Similarly, |ui·uj−ui·uk| ≤ 2(1−γ). Hence, {(ui · uj ,ui · uk) : j, k 	= i and jk ∈ E} ⊆
R. So (17) implies (16). Moreover, since 5γ < ε, it implies property 4 of a (γ, ε,m)-
useful polynomial in all cases except when i = k. However, in that case we have

P (ui · ui) + P (ui · uj) = P (1) + P (2γ − 1) = 1 +
2ε− 1

2ε+ 1
=

4ε

1 + 2ε
,

and hence property 4 holds in that case too.
Lemma 4 now follows from the following technical lemma.
Lemma 5. Let m be an integer and γ a sufficiently small positive real such that

1
γ is an even integer and m is significantly larger than 1

γ . Let ε > 3γ be sufficiently
small. Then there exists a polynomial P satisfying the conditions in Claim 2.

Proof. Let P (x) = Δ(x + 1)x
2m
γ + cx

1
γ + (1 − c − 2Δ)x, where c, Δ are positive

constants we will define below so that P satisfies the conditions of the lemma. Note
that P has a “high” degree component (i.e., Δ(x + 1)x

2m
γ ) which vanishes at −1 as
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high degree component

medium degree component

linear component

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

y

–0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1

x

Fig. 2. Relative behavior of the three components of P .

well as a “medium” degree and a linear component (see Figure 2). Note also that
P (1) = 1.

Necessary conditions for ensuring that P (x) ≥ P (2γ − 1) = (2ε− 1)/(2ε+ 1) for
x ∈ [−1, 1] are that

(18)

{
P ′(2γ − 1) = 0,
P (2γ − 1) = 2ε−1

2ε+1 .

These two (linear) conditions immediately determine the values of c and Δ, though
for our needs here, a rough estimation of c and Δ with respect to γ and ε will suffice.
To that end, observe that when x takes values close to 2γ − 1, then the high order

term (x + 1)x
2m
γ in P, P ′ is negligible compared to the other terms. Therefore, the

following system is a good approximation of the conditions in (18):

(19)

⎧⎨
⎩
(

1
γ (2γ − 1)

1
γ −1 − 1

)
c −2Δ = −1,(

(2γ − 1)
1
γ + 1− 2γ

)
c +2(1− 2γ)Δ = 4ε

2ε+1 − 2γ.

Recall here that ε is fixed, 1/γ is even, and that γ =
√
logm/m goes to 0 as m

grows. Taylor series then give that (−1 + 2γ)1/γ = e−2 − 2e−2γ −O(γ2). Given this
estimation, it is easy to derive from (19) the following rough bounds that suffice for
our analysis below:

2ε

1 + 2ε
− 5γ < Δ < 3ε,

7γ < c < 8.5γ.

Note that since ε > 3γ, these bounds ensure that P has positive coefficients.
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Next we verify that these bounds ensure that P (x) ≥ P (2γ − 1) for x ∈ [−1, 1].
Since 1

γ is even, P ′′(x) is at least

Δ

(
2m

γ
+ 1

)
2m

γ
x

2m
γ −1 +Δ

(
2m

γ
− 1

)
2m

γ
x

2m
γ −2.

It is not hard to see then that P ′′(x) ≥ 0 whenever x ≥ −1 + 2γ
2m+γ . So since

P ′(2γ−1) = 0, it follows that P (x) ≥ P (2γ−1) whenever x ≥ −1+ 2γ
2m+γ . It is more

difficult to estimate P ′′ when x < −1 + 2γ
2m+γ ; instead, we will bound P (x) directly

for such x: our lower bounds for c and Δ and the fact that m is sufficiently large
imply that for x < −1 + 2γ

2m+γ ,

P (x) > c
(
1− γ

m

) 1
γ − (1− c− 2Δ)

> −1 + 2Δ+ c+ ce−
1
m

> −1− 2ε

1 + 2ε
− 4γ + 0.9c

> P (2γ − 1).

Hence, P (x) ≥ P (2γ − 1) for every x in [−1, 1].
It remains to prove that |P (x) + P (y)| ≤ 20γ on R. Firstly, since m  1/γ,

we (very generously) have that (x + 1)x
2m
γ < γ

6ε when x ∈ [−1, 1 − 1
m ]. Secondly,

|x 1
γ + y

1
γ | ≤ 2 over R. Finally, by the definition of R, we have that |x + y| ≤ 2γ for

all (x, y) ∈ R. Hence, for all (x, y) ∈ R, the expression |P (x)+P (y)| is bounded from
above by

Δ
∣∣∣(x+ 1)x

2m
γ + (y + 1)y

2m
γ

∣∣∣+ c
∣∣∣x 1

γ + y
1
γ

∣∣∣+ (1− c− 2Δ)|x+ y|.

These three terms are at most γ, 17γ, and 2γ, respectively, implying that |P (x) +
P (y)| ≤ 20γ.

5. Discussion and open problems. It is well known that lift-and-project sys-
tems derive all local linear constraints after appropriately many number of rounds.
More precisely, after r rounds all valid linear inequalities with support at most r are
derived. For systems with a PSD constraint, it is natural to ask whether a given lift-
and-project system derives after some number of rounds all valid linear inequalities
on inner products of support at most r. In other words, if integral solutions to the
original system satisfy certain quadratic constraints, under what conditions can the
lift-and-project system derive the corresponding constraints on vectors? For Vertex

Cover, the triangle inequality is the quintessential example of such a quadratic in-
equality. More generally, integral Vertex Cover solutions satisfy any �1 inequality,
namely, any inequality on vector distances with respect to the �22 norm that is valid
for all distance functions that can be represented in some �1 space. It was shown [11]
that for most graphs, the triangle inequality and, in general, any pure hypermetric
inequality is not produced by the LS+ system when applied to the standard linear
relaxation for Vertex Cover. In particular, this is true for the Frankl–Rödl graph
instances we consider in the current work. This clearly exposes a serious weakness of
the system. It was, however, shown [12] that the SDP solution in the current work
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Table 1

Known lower bounds for Vertex Cover in the various linear and SDP systems. We remind
that the NP-hardness is 1.36, while the unique games conjecture (UGC)-hardness is 2− ε.

LS SA LS+ LA LA
Integrality gap 2− ε 2− ε 2− ε 1.36 7/6 − ε

� of rounds Ω(n) Ω(nδ(ε)) Ω(n) Ω(nδ) Ω(n)

does in fact satisfy all hypermetrics1 of small support, of which the triangle inequal-
ity is a special case. In contrast we do not know if the same holds true for local �1
inequalities that are not hypermetric inequalities.

Lasserre [21] describes a lift-and-project system that does indeed eventually derive
all valid vector inequalities. In light of [12] the most interesting inequalities derived
by the Lasserre system for Vertex Cover are those �1 inequalities that are not
hypermetric inequalities. Currently, we do not know how to extend our arguments to
prove lower bounds in the stronger Lasserre system.

In general, since �1 constraints have proved powerful in tightening relaxations for
problems such as Sparsest Cut [4], we believe that such an extension is of great
importance. In Table 1 we summarize all currently known lower bounds for Vertex

Cover in the various hierarchies. Interestingly, all lower bounds are incomparable,
with the results for each system varying both in the size of the integrality gap and
the number of rounds of lift-and-project tightenings. Any improvement to the results
in Table 1 would be of great interest.

In particular, with respect to the result in the current paper, it would be very
interesting to investigate how the integrality gap for Vertex Cover evolves beyond
ω(

√
logn) rounds of LS+. Note that our graph instances have odd girth (the length of

the shortest odd length cycle) essentially O( 1γ ) ≈
√
logn and that proving integrality

gaps for Vertex Cover for more rounds than the odd girth proved quite challenging
in the LS context (see [28, 27]).

Appendix A. Proof of Lemma 1. The lemma we require is a fairly easy
corollary of a lemma in [10] about sets avoiding intersections of a certain cardinality.

Lemma 6 (Theorem 1.4 in [10]). Let η be a sufficiently small number and m an
integer. Also, let F and G be two set families over the universe [m] so that |F ∩G| 	=
�mη� for every F ∈ F , G ∈ G. Then 4−m|F||G| ≤ (1− η2/4)m.

Our first step is to observe that Lemma 1 is equivalent to showing an identical
bound to Lemma 6 on the size of a set-family over the universe [m] such that every
two sets have symmetric distance different than (1 − γ)m. Indeed, consider the cor-
respondence between points in {−1, 1}m and subsets of [m] in which the ±1 vectors
are the characteristic vectors of the corresponding sets. In this correspondence the
Hamming distance between points is the symmetric difference between the sets they
represent. Finally, an independent set in Gγ

m is a set of points in {−1, 1}m so that no
two have Hamming distance (1− γ)m.

Let A be a family of sets so that the symmetric difference between any two sets
in A is not (1− γ)m and consider its partition

Ak = {S ∈ A : |S| = k}.
Let w ∈ {0, 1, . . . ,m} be such that Aw is the largest family among the Ak. We may
assume here that w ≤ m/2, as otherwise we can work with the complementary vectors.

1Hypermetric inequalities are a natural countable class of �1 inequalities.
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Next we observe that for two sets S, T ∈ Aw we have that

(1− γ)m 	= |S � T | = |S|+ |T | − 2|S ∩ T | = 2(w − |S ∩ T |),

and therefore

(20) |S ∩ T | 	= w − (1 − γ)m/2.

We proceed now to bound |A|. For this we will examine two cases for the value
of w.

Case 1. First assume that |w/m − 1/2| ≥ γ/4. In this case the naive bound
|Aw| ≤

(
m
w

)
suffices. Indeed, using Chernoff bound for the estimation of binomial

coefficients we get

(
m

(m/2)(1− γ/4)

)
≤ 2m exp(−(mγ/2)2/(4m))

= 2m exp(−mγ2/64),

and therefore |A| ≤ (m+ 1) · 2m(1− γ2/64)m.
Case 2. In the more interesting case in which w > m

2 (1 − γ/2) it follows from
inequality (20) and the fact that w ≤ m/2 that Aw is a family that avoids intersections
of size ηm, where γ/4 < η ≤ γ/2. We now apply Lemma 6 with F = G = Aw to get

|Aw| ≤ 2m(1− η2/4)m/2 ≤ 2m(1− γ2/64)m/2 ≤ 2m exp(−mγ2/32).

As before |A| ≤ (m + 1) · 2m exp(−mγ2/32), which completes the proof of
Lemma 1.

It is interesting to note that the above estimate is nearly tight: consider the
family A of all sets of cardinality less than (1 − γ)m/2. Clearly this family avoids
symmetric differences of cardinality (1 − γ)m. Now |A| = ∑

j<m
2 (1−γ)

(
m
j

)
, which is

at least γm
2

(
m

m
2 (1−2γ)

)
. The last expression can be further bounded from below by

γm

2
2mH(1/2−γ) ∼ γm

2
2m(1−γ2/4) = 2m

γm

2
2−γ2m/4.

So for |A| to be o(2m) we must have that γm2−γ2m/4 = o(1), and so γ = Ω(
√

logm/m).

Appendix B. Proof of Lemma 2. For completeness, we include in this section
a proof of the lemma by Schoenebeck, Trevisan, and Tulsiani [27] (Lemma 2 here) for
expressing an ε-saturated vector as a convex combination of ε-vectors.

Proof. Partition V as follows: Let V− = {i ∈ V : xi < 1/2 + ε}, V+ = {i ∈ V :
xi > 1/2 + ε}, V0 = {i ∈ V : xi = 1/2 + ε}. Let r(0) = 0, and for all i ∈ V let

r(i) =

⎧⎨
⎩
1− xi

1/2+ε , i ∈ V−,
1, i ∈ V0,
1− 1−xi

1/2−ε , i ∈ V+,

setting at the end the maximum of the r(i)’s equal to 1. Note that since x is ε-
saturated, whenever ij ∈ E and i ∈ V−, we must have j ∈ V+. Moreover, for such a
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pair we must have that r(j) ≥ r(i) because

r(j) − r(i) = 1− 1− xj

1/2− ε
−
(
1− xi

1/2 + ε

)

=
xi

1/2 + ε
− 1− xj

1/2− ε

=
xi(1/2− ε)− (1− xj)(1/2 + ε)

(1/2 + ε)(1/2− ε)

=
xi + xj − (1 + 2ε)

2(1/4− ε2)
+

ε(xj − xi)

1/4− ε2

> 0,

where the last inequality follows from the fact that x is ε-saturated.
Reorder the r(i)’s so that 0 = r(i0) ≤ r(i1) ≤ · · · ≤ r(i|V |). For each t =

1, . . . , |V |, let x(t) be the ε-vector where

x
(t)
i =

⎧⎨
⎩
0, i ∈ V− and r(i) ≥ r(it),
1, i ∈ V+ and r(i) ≥ r(it),
1
2 + ε, otherwise.

We claim these vectors are in V C(G). To see why consider an edge ij. The

constraint x
(t)
i + x

(t)
j ≥ 1 is satisfied unless at least one of x

(t)
i and x

(t)
j is 0. However,

if x
(t)
i = 0, then i ∈ V− and r(i) ≥ r(it). So the feasibility of x implies j ∈ V+, and

hence r(j) ≥ r(it). So x
(t)
j = 1, and the constraint is satisfied.

It remains to argue that x is in the convex hull of the x(t)’s. To that end, we
define a distribution D over the vectors x(t) such that x(t) is assigned the probability

r(it)− r(it−1). It is easy to verify now that Et[x
(t)
j ] = xj for all j ∈ V .
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