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Reasoning about spatial knowledge is an important aspect of computational intelligence. Humans eas-

ily switch between high-level and low-level spatial knowledge, while computers have traditionally relied

only on low-level spatial information. Qualitative spatial representation and reasoning is concerned

with devising high-level, qualitative, representations of certain aspects of space using small sets of intu-

itive spatial relations that lend themselves to efficient reasoning. Many such representations have been

developed over the years, but their use in practical applications seems to be inhibited.

One reason preventing more widespread adoption of qualitative spatial representations may be the

gap between simple but inexpressive qualitative representations at one end and geometric or quantitative

representations with the expressivity of Euclidean geometry at the other end. Another factor may be

the lack of semantic integration between the various spatial representations ranging from qualitative to

geometric ontologies. We will address both issues in this thesis with a focus on spatial ontologies that

involve some kind of mereotopological relations such as contact and parthood.

We design a family of spatial ontologies with varying restrictiveness and increasingly more expressive

nonlogical languages, organized into hierarchies of ontologies of equal expressivity. As the most founda-

tional spatial ontology we propose a multidimensional mereotopology based only on ‘containment’ and

‘relative dimension’ as undefined concepts. By adding either ‘boundary containment’ or ‘betweenness’

as new concepts, we further extend the expressivity without impairing the qualitative character.

Tools from mathematical logic, such as interpretability and definability, are used to semantically

integrate other spatial ontologies into our hierarchies. Moreover, we show how mereotopological theories,

incidence geometries, and ordered incidence geometries are formally related to our theories. We thereby

better understand differences in expressivity, restrictiveness, and ontological assumptions between a

broad range of spatial ontologies. Throughout the thesis, we utilize automated theorem provers to assist

with the verification of all ontologies by constructing nontrivial models and by proving key properties

about the axiomatized relations and functions. Theorem provers are also utilized to obtain some of the

integration results.
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Chapter 1

Introduction

Knowledge and information are central to all of computer science. Spatial knowledge is among the
most ubiquitous knowledge we have, playing a key role in many areas of computer science and many
interdisciplinary fields: Artificial intelligence in the broadest sense including knowledge representation,
planning, autonomous robots, natural language processing, and computer vision; computer graphics,
computational geometry and computational topology; geographic information systems (GIS) as used
for cartography, surveying, or geology; computed-aided design and manufacturing software (CAD and
CAM) as used in architecture, civil engineering, manufacturing, or product design; medicine (image
processing, diagnosis); and cognitive science.

For centuries, spatial knowledge has been collected and curated manually for cadastres, military
purposes, and infrastructure planning. This involved laborious and expensive processes. With techno-
logical advances in remote sensing, in particular through aerial and satellite-based sensing, and advances
in computer vision and object recognition, collecting and maintaining spatial information is nowadays
much cheaper, faster, and more accurate. This has spurred a growth in location-aware applications for
a multitude of everyday applications. For example, the availability of cheap, accurate, and up-to-date
spatial maps has been a major driver for the widespread use of navigation systems. For the same reason,
more and more companies, government agencies, and even individuals nowadays collect or produce and
publish spatial information for a variety of purposes. This has resulted in ever-growing amounts of spa-
tial information in formats as varied as 2D maps, aerial and satellite images, GPS coordinates, routes,
2D and 3D plans, height profiles, sketches, and textual descriptions.

Coping with unprecedented amounts of information is not limited to spatial information, it has
received increasingly prominent attention throughout computer science. But dealing with the variety of
underlying spatial representation formats that differ in language, in expressivity, and in their implicit
semantic assumptions is equally important. This challenge has not been addressed sufficiently and is
currently a main hindrance for better integration of spatial knowledge from diverse sources. Exchanging
spatial knowledge between sources and combining it from multiple sources opens many opportunities to
address some of today’s societal challenges, such as urban and transportation planning, vehicle routing,
emergency response, or environmental and climate monitoring. Likewise, integration of spatial knowledge
may enable novel kinds of applications, similar to the recent rise in location-aware services.

Much available spatial knowledge as expressed by humans is often very high-level and imprecise. One
approach to emulate the spatial intelligence of humans replaces or supplements low-level spatial calcula-
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tions with more high-level spatial reasoning reliant on small sets of “commonsensical” spatial relations
frequently found in human language [BIC97a]. Such high-level representations of space are known as
qualitative theories of space. Finding qualitative representations of space suitable for human-computer-
interaction and for efficient spatial reasoning is the main objective of the research area of qualitative
spatial reasoning (QSR), with contributions from disciplines as diverse as Ontology, Formal Logic, Arti-
ficial Intelligence, Cognitive Science, Cartography, Geographic Information Systems, Computer Vision,
and Computational Geometry. Extensive introductions and overviews of QSR can be found, for exam-
ple, in [CH01; CR08; Vie97]. Despite much progress throughout the last 25 years, work on qualitative
representations of space has been primarily of theoretical nature. While an abundance of scenarios that
could put qualitative spatial representations to good use have been identified, the more widespread use
of qualitative representations seems to be inhibited by other factors. Many of the simple but well-
understood theories are rather limited in their expressivity, while the few more expressive theories are
either very similar to traditional geometry or are overly complicated in that humans cannot easily and
intuitively work with the proposed relations and concepts.

The development of qualitative representations of space has not been accompanied by a concentrated
effort to formally relate the qualitative spatial representations to geometric representations and to one
another. If we want to exchange spatial knowledge across systems, we must ensure that the exchanged
knowledge is interpreted equally by all systems, in other words, the meaning of the exchanged knowledge
must be preserved. We can achieve such a level of interoperability by semantically integrating the
systems’ implicit or explicit spatial ontologies, which capture their assumptions about space. Generally,
in computer science an ontology is an artifact designed with the purpose of expressing the intended
meaning—the semantics—of a vocabulary (consisting a set of concepts, relations, and functions) in
terms of the nature and structure of the entities it refers to. This is usually done in an ontological
language that may range from very informal languages to more rigidly formalized ontological languages,
such as logics. The logics used vary widely in their expressivity, from rather inexpressive description
logics (the OWL family [OWL04; OWL11] of ontology languages containing the most prominent ones)
to very expressive first- or second-order logic. In this thesis we use first-order logic as the ontological
language of choice; a spatial ontology is nothing but a first-order theory.

The general issue of semantic interoperability has been discussed in detail in, e.g., [Har+99].
Semantic integration of spatial ontologies can help translate spatial knowledge between diverse spatial

information systems, encompassing all software systems that deal with spatial information in some
way, such as mapping software, GIS software, special-purpose spatial reasoners, spatial databases, or
CAM and CAD software. Moreover, it can facilitate the use of different qualitative, geometric, or
quantitative representations of space within highly-optimized and specialized software systems, which
can be integrated into larger and more powerful spatial information systems that could—ideally—mimic
spatial inferences that humans draw. Thereby, we would leverage the various spatial information systems
that can reason efficiently about certain aspects of space in a more general spatial reasoning framework.

1.1 Research challenges

There are two research challenges pertaining to spatial ontologies that we address in this thesis. The
first one concerns the semantic integration of ontologies of space ranging from qualitative representations
to geometric and quantitative representations. The second one is the need to find more expressive
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qualitative representations of space. We will describe both challenges in more detail now.

1.1.1 Semantic integration of ontologies of space

The advance of the World Wide Web and the multiplication of network capacities have laid the technical
foundation for large-scale publishing and sharing of digital information amongst government, companies,
and individuals. The Semantic Web has promised seamless integration of information systems through
shared formal specification of the semantics of their information models in a formal ontology—a de-
scription of the concepts and relations between the concepts in the domain of interest using a logical
language. However, these prospects are still far from becoming reality, in particular because a wealth
of different ontologies have been developed for individual applications without regards for reusability.
Essentially, proprietary data formats have been replaced by proprietary ontologies, which do not permit
semantic integration per se. Though the reasons for this development may be manifold, a contributing
factor is the lack of understanding of ontologies and the ensuing lack of trust in the ontologies developed
by others. Attempts to overcome this dilemma by standardizing ontologies for particular domains or
aspects have had limited success because of the immense difficulties for all stakeholders to agree on a
standardized ontology. However, semantic integration may overcome this problem by formally relating
different ontologies to one another. Then the promise of the Semantic Web can be fulfilled without the
need for a single shared ontology.

Semantic integration of two ontologies means to understand whether and how their concepts and
relations vary in meaning. Often, two ontologies have concepts or relations of the same name or that are
in other ways superficially equivalent, but that satisfy different constraints and thus differ in meaning.
We can use logical languages to formally specify those commonalities and differences in meaning between
two ontologies, resulting in a sub-ontology that captures the set of concepts and relations shared by the
two ontologies. The sub-ontology is likely less precise and more narrow than either of two ontologies
we want to integrate, but captures the portion of the two ontologies’ knowledge whose semantics are
preserved when translating knowledge between the ontologies’ languages. In other words, models of the
sub-ontology can be exchanged without loss or change in meaning between information systems that
implement either of the ontologies.

In this thesis, we are concerned with semantic integration only of spatial ontologies. While the
essential differences between various geometric representations of space—such as the difference between a
raster-based and a vector-based representation—are well-understood, we have only started to understand
their more subtle differences and the implications of these differences. This applies even more so to many
qualitative ontologies of space that have been proposed to address cognitive inadequacies of traditional
geometry-based ontologies and to deal with vague or imprecise spatial knowledge. For many of these
qualitative theories, we lack a full understanding of the differences between them and of their relationships
to geometry-based ontologies.

1.1.2 Expressive qualitative representations of space

Qualitative descriptions of space are pervasive in human language: many of our everyday descriptions
of space are of qualitative nature. For example, we rely a lot on geographic directions (or “turns”),
connectivity (“turn left at the next light”, “follow the road until you cross Main Street”), relative positions
of features or landmarks (“in front of the church”, “across from the park”) and order among spatial
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objects (“just after the post office across the bridge”, “between the gas station and the supermarket”)
when giving driving or walking directions. While names (most frequently names of streets or towns) and
categories of spatial features (rivers, lakes, islands, hills, forests) or landmarks (‘church’, ‘gas station’,
‘post office’) are also commonly used in human descriptions of space, quantitative descriptions are less
common and mostly approximate (“after 100 meters”, “walk 10 min along the lake”, “at the fifth traffic
light”). Humans have become accustomed to highly quantitative directions only with the advance of
navigation systems.

Despite recent adoption of small sets of simple qualitative spatial relations for uses in spatial informa-
tion systems, the full potential of qualitative representations of space has not been realized for various
reasons. We believe more widespread use of qualitative representations is inhibited because many of
the simple but well-understood theories are in fact too limited in their expressiveness, an argument sup-
ported by our analysis of equidimensional mereotopologies in Chapter 4. On the other side, the few more
expressive theories that have been proposed either have expressive powers similar to those of classical
geometries and are thus no longer purely qualitative; are overly complicated; or are not well-understood
so that humans cannot easily and intuitively work with their sets of proposed relations and concepts in
interaction with spatial information systems. In other words, there is a gap between very basic quali-
tative ontologies of space such as equidimensional mereotopologies and extremely expressive geometric
theories of space.

Therefore, there is a clear need for a commonsensical and expressive, but qualitative theory of space:
a theory that is qualitative but still expressive enough to describe key aspects of space and that is
intuitive enough to be used in interaction with humans. By overcoming the limited expressiveness of
equidimensional mereotopologies, it may lead to more widespread adoption of qualitative representations
of space and, ultimately, it may help to realize the full potential of qualitative spatial reasoning.

1.1.3 Research scope

Before we describe our contributions towards the two mentioned research challenges in more detail,
remarks about two fundamental distinctions that are key in order to understand our approach, its basic
assumptions, and its limitations, are in order.

Qualitative vs. geometric and quantitative representations of space

Before we proceed we need to clarify what we mean by qualitative representations of space and how they
differ from quantitative or geometric representations. Quantitative space is equipped with a metric,
usually a distance metric, giving us precise information about how long a certain line segment is, or how
far one point is from another point. Any coordinate system allows to precisely specify such information.
In a quantitative treatise of space, we can apply metric calculations as a form of reasoning. But often,
such information is either not available, imprecise, or simply unnecessary to answer certain questions. In
those cases, we can apply qualitative reasoning, in which we only have a small set of values (or relation
symbols) available to specify a certain conceptual relationship [FNF91; KB85]. A classic example includes
cardinal directions: we may have information about how objects (or regions for that matter) are located
relative to one another using only the four cardinal directions North, East, South, West, defining a
cardinal direction calculus [Fra96]. For example, from the information that Calgary is West of Toronto,
and Edmonton is North of Calgary, we can infer that Edmonton is either North or West of Toronto.
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The same applies to topological relations: instead of expressing how far two objects are away from each
other or how large their overlap is, we only express whether one regions is completely contained in the
other, whether they partially overlap, only ‘touch’, or are not in contact at all.

Of course, the boundary between qualitative and quantitative representations is fluid. There is no
limit on the “small” number of values or relations one can use for a specific conceptual relationship in a
qualitative representation. This is well demonstrated by the general star calculus presented in [RM04]:
we can take n lines to divide space into 2n sectors, resulting in 4n + 1 base relations that express
the direction of an object relative to a fixed point. For example, for n = 1 we have the five relations
‘equivalent position’, ‘north’ (N), ‘east’ (E), ‘south’ (S), ‘west’ (W). For n = 2 these five relations are
supplemented by the four relations ‘north-east’ (NE), ‘south-east’ (SE), ‘south-west’ (SW), and ‘north-
west’ (NW). For n = 3 each of the four relations ‘north-east’, ‘south-east’, ‘south-west’, and ‘north-west’
is split into two. For n = 4, we can use the 9 relations from n = 2 and add another eight relations
that include, for example, ‘north-north-east’ (NNE), ‘east-north-east’ (ENE), and ‘east-south-east’. If
we choose a fairly large n, the resulting set of base relations can hardly be called a qualitative ontology.
Therefore, it makes little sense to categorize spatial representations into qualitative and quantitative
ones. Instead, it is a continuous scale with two extremes: a minimum of two base relations (or a
single relation with Boolean values) on the one extreme and an infinite number of base relations (or a
relation with an infinite number of values) on the other extreme. We call it the quantitative-qualitative-
continuum, illustrated by the diagonal in Figure 1.1. Euclidean geometry is at the very extreme end due
to its continuous nature and its ability to specify congruence.

Finding good qualitative representations depends on the given context: humans can only deal with
very few relations while machines may be capable of dealing with many more. Equally, for some appli-
cation, more fine-grained distinctions may be necessary than for another application. For example, in
many domains it is not sufficient to only state whether two regions overlap at all, but it is necessary
to know whether they overlap in only their boundaries or in their interiors as well. The precision with
which we measure and record spatial knowledge may also influence how many relations we distinguish
between a pair of regions. It makes no sense to work with a qualitative representation that is more
fine-grained than the accuracy of the input data. For all those reasons, it is reasonable not to focus on
a single ontology with a fixed set of relations; instead it is better to have a family of ontologies with the
flexibility to expand expressivity as necessary.

Representations of abstract vs. physical space

Our work presupposes that we are comfortable with distinguishing abstract space regions from material
objects, the later just happening to occupy abstract space regions (as a property). Space regions are
purely mathematical-geometric abstractions that have no material properties, while objects are grounded
in some physical reality, in which the materiality of objects is crucial. This separation into two levels of
space, which we call abstract space and physical space, gives us the freedom to talk about arbitrary ab-
stract regions without having to worry about whether they correspond to physically meaningful objects.
We can talk about the intersection and sums of regions, about overlapping regions, regions’ boundaries,
and regions of arbitrary dimensions without assuming that they exist in some physical reality.

While our ultimate goal is to model physical space, most of the work in this thesis focuses on the
underlying theories that capture abstract space. Only in Chapter 11 we will show how the theories of
abstract space can be utilized to model arrangements of physical entities, especially material bodies, and
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their features. In that sense, physical space as a term refers to the collection of the physical entities of
a domain of interest—it is a conceptual “space” populated by physical objects and their features. To
ground physical space in abstract space, we will reuse a portion of the DOLCE ontology [Mas+03] for
physical entities. A function assigns each physical entity the abstract region of space it occupies. Of
course, this assignment is not surjective in that there are many abstract regions of abstract space that
are not occupied by a concrete physical endurant.

The distinction between physical and abstract space allows us to formalize multidimensional mereo-
topology without the looming question of its philosophical adequacy. In the theories of abstract space we
can talk about many abstract concepts of space that are pervasive in how humans treat space and talk
about it. Moreover, it allows us to formalize space without a specific bias to a particular metaphysical
stance such as nominalism, conceptualism, or realism. Our work is not a study in Ontology (in the
philosophical sense of the word): We do not try to convince the reader that the abstract spatial entities
we talk about do exist in the real world, in our perceived image of the world, or in our mind.

1.2 Contributions

In this thesis, we study the continuum of spatial ontologies—logical theories of space—depicted in
Figure 1.1 with mereotopologies as the most basic qualitative theories on the one end and classical ge-
ometries as extremely expressive, essentially quantitative theories on the other end. Our exploration into
this continuum of spatial ontologies offers two overarching contributions towards the outlined research
challenges. The contributions can be summarized as follows.

1. We partially fill the gap in between the two extremes on the quantitative-qualitative-continuum
by proposing a multidimensional mereotopology that is more expressive and more general than
currently available mereotopologies and by showing how this multidimensional mereotopology can
be extended to increase its expressivity without obtaining the full expressive power of classical
geometries. The extensions are motivated by how humans describe space qualitatively and by the
spatial relations necessary to define Euclidean geometry. The result is a family of spatial ontologies,
grouped into hierarchies of equally expressive but differently constrained theories. With increasing
expressivity the theories in this family define successively more fine-grained qualitative relations.

2. We formally relate spatial ontologies within this family to one another, but also relate the family’s
theories to previously proposed mereotopological and geometric ontologies. Thereby, we seman-
tically integrate a wide range of spatial ontologies, not only with our theories but indirectly also
with one another.

Next, we will give an overview of the most important individual results as the pieces that accrue to the
two overarching contributions. First, we discuss the results that help us fill the mereotopology-geometry
gap; subsequently, we elaborate on the major integration results. Finally, we highlight how the semantic
integration of qualitative spatial theories with geometries allows as by-product the construction of a
qualitative analogue of geometry. This result does not support one of the two overarching contributions,
but is an interesting consequence of our work.
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Figure 1.1: A graphic illustration of the essence of the thesis showing how the spatial theories developed
in this thesis (shown in blue in the striped area) relate to other spatial theories according to two criteria:
the restrictiveness in comparison to geometric spatial theories (y-axis) and the number of independent
spatial relations we can distinguish (x-axis), which tells us how fine-grained distinctions we can make.
By proposing spatial theories located in the striped area—which was previously unexplored—we bridge
the gap between chiefly geometric theories that are less qualitative in nature and the purely qualitative
theories of equidimensional mereotopologies with puny expressivity. The placement in the continuum
is purely illustrative with the distance to the origin approximating the “qualitative” nature of a theory
without implying any scale.
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1.2.1 Multidimensional mereotopology for expressive qualitative spatial
ontologies

Due to the foundational role topological (of contact) and mereological (of parthood) relations play in
space, mereotopology is an indispensable part of any comprehensive ontology of qualitative space. In
Chapter 4 we show that there is an narrow range of traditional, so-called equidimensional, mereotopo-
logies for modeling space. The restriction of equidimensional mereotopology to models with domains
of only regions of equal dimension makes it very difficult to extend equidimensional mereotopologies
by other intuitive qualitative relations without defining a spatial theory with the expressive power of
Euclidean geometry. As Borgo and Masolo [BM10] showed, most extensions of equidimensional mereoto-
pology are indeed as expressive as Euclidean geometry, the extension by a convexity relation or a convex
hull operation being the sole exception [CR08].

One way to build more expressive non-geometric qualitative theories is to relax the restriction on
the dimensions of the objects in the domain. This results in so-called multidimensional mereotopologies.
We will develop an eminently general axiomatic theory of multidimensional mereotopology. But unlike
previous GIS-focused studies of the mereotopological relations between spatial entities of different di-
mensions, we provide an axiomatization whose spatial relations apply to entities independent of their
concrete numeric dimensions or codimensions. That is, our theory is not restricted to entities of maximal
two or three dimensions such as in the analyses of mereotopological relations in [CDF98; EH91; ME94;
McK+05] or in the General Formal Ontology (GFO) [BH11]. In our work in Chapters 6, 7, 9, and 10,
we will give a more general account of multidimensional mereotopological relations that is designed to
work for any finite number of dimensions, not just for two, three, or four dimensions. In that way, our
theory is as general as possible in the spirit of Belot’s argument [Bel11, p. 15]:

“At one time, of course, philosophers trafficked in arguments purporting to show that
space was necessarily three-dimensional. But few today are likely to deny that space could
have had two, or four, or twenty-six dimensions. And if these are allowed, it seems parochial
to exclude Euclidean spaces of any finite dimension.”

As a result, we do not need separate relations for each combination of dimensions of a pair (or set) of
entities. For example, in our theories a single relation may apply to pairs of entities with the dimensions
(3D,2D), (3D,1D), (4D,3D, (4D, 2D), (4D 1D) in a four-dimensional space. This helps keep the number
of distinct relations down, defining a fairly small set of intuitive relations. To accommodate practical
applications, in which spaces of more than four spatio-temporal dimensions may not be frequently used1,

1Though spaces of more than four spatio-temporal dimensions many not be of great practical importance, we can use
them for a multitude of purposes. For example, we can use them to model space-dependent properties, such as temperature,
lighting, or signal strength for cell phone reception throughout a building. Such properties can be treated spatially in terms
of “region”: the range of comfortable working temperature or ranges of signal strength, for example strong, medium, and
weak reception. We can also use more than four dimensions to model standard three- or four-dimensional space in a
rather unusual but interesting way by introducing new dimensions. For example, we can treat a “highway” or any other
road with more than a single lane in each direction as having a higher dimension than roads with only one lane in each
direction. Or, we could treat a path and any road with a single lane (such as some mountain road or a small one-way
street) as having a lower dimension than roads with multiple lanes. This captures the idea that, a road with multiple
lanes has an extra dimension: the number of lanes. Compare the examples of how roads are treated in different spatial
representations from [Har+99]. Equally, we could express that any path has a higher dimension than an abstract, truly
linear boundary of no width, but is considered of a lower dimension than an area, which can have arbitrary width. An
intersection or a square may also be treated differently than a point specified solely in terms of GPS coordinates. The
benefit of modeling space with more than four dimensions needs further careful investigation outside the scope of this
thesis. We consider the elegance associated with a dimension-independent approach and its benefits in terms of extracting
a small set of dimension-independent spatial relations as reasons sufficient to warrant a dimension-independent treatise of
qualitative space.
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we can voluntarily restrict the theory to a specific number of dimensions as necessary— as we will do
in our mappings to two- and three-dimensional incidence geometries in Chapter 10. Typically, such a
restriction is not even necessary; this is demonstrated by the way we model hydrogeological space in
Chapter 11 using exclusively the entities of maximal dimension in a model.

The only other proposals for multidimensional mereotopologies that are not restricted to specific
combinations of dimensions are those of Galton and Gotts [Gal96; Gal04; Got96], which inspired our
work here. In particular, Galton [Gal04] gave the only mathematical model for multidimensional me-
reotopology. However, it rests on the premise that lower-dimensional entities occur only as boundaries
of higher-dimensional entities. For example, to model a piece of string as a one-dimensional object,
the string must be part of the boundary of some two-dimensional area or plane. Equally, to model
a membrane as a two-dimensional object, it must be part of the boundary of some three-dimensional
physical body2. Often, such higher-dimensional objects simply do not exist. Our theory overcomes this
limitation: it does not assume that lower-dimensional entities only arise as boundaries of entities of the
next higher dimension. Our approach also avoids the rather awkward and unintuitive primitive relation
of ‘x includes a chunk of y’, INCH (x, y), used in Gott’s INCH Calculus [Got96]3. Altogether, we have
had the following five design criteria for our multidimensional theory of qualitative space in mind:

Multidimensional: Admits models in which entities of multiple dimensions can coexist;

Commonsensical: Defines an intuitive set of spatial relations;

Dimension-independent: All relations are as general as possible, in particular not dependent upon
specific dimensions or codimensions;

Atomicity-neutral: Admits discrete and continuous models;

Geometry-consistent: Generalizes classical geometries.

Our most basic multidimensional mereotopology CODI , introduced in Chapter 6, is based on two prim-
itive relations: spatial containment and relative dimension. In Chapter 7 we extend CODI by binary
mereological closure operations that assign a spatial entity to the intersection, difference, and sum of
any pair of spatial entities. In contrast to the closure operations defined in [Gal96; Gal04; Got96], our
closure operations are total functions (see Theorems 7.1, 7.2, and 7.5), that is, they are not only defined
for pairs of entities of equal dimension, but also for pairs of entities of different dimensions.

While this approach increases the expressivity of mereotopology by choosing a multidimensional
approach, it is still fairly limited. In order to use qualitative spatial relations to represent the space
that surrounds us without losing too much essential spatial information, we need even more expressive
qualitative theories. But because many extensions of mereotopologies have turned out to have expressive
powers comparable to those of Euclidean geometry [BM10], we want to extend our multidimensional
mereotopology in ways that increases its expressivity without becoming as expressive as Euclidean
geometry. We consider two extensions: first, by a relation of boundary-containment and, second, by
an order relation.

The first extension in Chapter 9 with a primitive relation of boundary-containment allows us to
identify, for example, whether a room is accessible from the outside of a building or not; whether
according to a construction drawing two pieces of copper pipe simply need to be coupled at their ends

2The string and membrane examples have been discussed as limitations of the proposed model in [Gal04].
3We will later relate our theory to Gott’s, in the process of which we identify some problems with the INCH Calculus

that are probably caused by the difficulty of operating with the relation INCH .
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or whether a tee-coupling needs to be inserted into one of them to connect it to the other; or whether a
city is landlocked or accessible by sea. We show how the such extended multidimensional theories, which
form the hierarchy CODIB, are expressive enough to define natural spatial distinctions such as between
interior and tangential containment or parthood. More generally, we define all nine intersection relations
from Egenhofer’s 9-intersection model [Ege91; EF91; EH91] without restrictions on the involved entities’
dimensions or codimensions. We can also define bodiless (‘thin’) as well as bulky (‘think’) boundaries in
this theory. Those two kinds of boundaries are sufficient to model most, if not all, abstract and physical
boundaries.

In Chapter 10, a second extension by a betweenness relation as a notion of order allows us to
qualitatively capture another fundamental spatial relation without constructing full mereogeometry.
Order relations play a key role in how humans navigate space: they are one of the few relations, next to
topological relations, that are most frequently preserved in human sketch maps [WL12; WS09]. Order
among street intersections often allows humans to complete easy navigation tasks in a city without
knowledge about exact distances or cardinal directions. However, order as defined in classical geometries
is narrow in scope. We propose a more general relation of relativized betweenness that is applicable to
multidimensional space without requiring common geometrical restrictions. This constructs the hierarchy
OMT of ordered multidimensional mereotopologies.

1.2.2 Semantic integration of spatial ontologies that contain some
mereotopological relations

We integrate first-order spatial ontologies with one another using methods from mathematical logic.
More precisely, we utilize (a) interpretations between theories and (b) relationships between classes of
structures. As reference for all of our integration results, we use the family of multidimensional theories
that we concurrently develop. Specifically, in Chapter 8 we relate other mereotopologies, namely the
equidimensional Region Connection Calculus (RCC) [Coh+97b; RCC92] and the multidimensional INCH
Calculus [Got96], to extensions of our multidimensional mereotopology. Equally, we construct axiomatic
extensions of our multidimensional mereotopology to relate them to incidence structures and incidence
geometries (Section 10.2).

For the relationships to other mereotopologies and incidence geometries no new primitives in addition
to those available in our basic multidimensional mereotopology are necessary. To integrate spatial
theories that distinguish contact to the boundary of another entity from contact to the interior of that
entity (based on Egenhofer’s 9-intersection relations [Ege89; Ege91; EF91; EH91]) into our family, we
use in Section 9.5 the theories from the hierarchy CODIB. The extension with betweenness is used in
Section 10.3.3 to formally integrate ordered incidence geometries into our hierarchy OMT as restrictions
of ordered multidimensional mereotopology. This establishes a direct relationship between the OMT
theories and classical geometries. it further shows that the OMT theories approach the expressivity of
geometry without explicitly or implicitly defining congruence. Thus the OMT theories are strictly less
expressive than geometries and they still exhibit a qualitative conceptualization of space.

These results show how, in principle, other spatial theories can be seen as extensions of our multi-
dimensional mereotopology. It makes clear how the various integrated spatial ontologies differ in the
expressivity of their nonlogical languages and in the kind of models they admit: because they are for-
mally related to theories in our family, we can compare them based on their sets of primitive relations
and their sets of axioms, which are formally captured by partial orders within and between hierarchies.
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All theories formally related to theories in our family are thus implicitly integrated with one another:
we can compare them by extracting from our family the most restrictive, most expressive sub-theory
that they share. In that sense, the ontologies proposed in this thesis can serve as a family of reference
ontologies for the integration of many other spatial ontologies. The results further suggest that our most
general multidimensional mereotopology can serve as a key piece of an upper ontology of space: it is
general enough to accommodate any other spatial ontology that preserves topological and mereological
relations.

1.2.3 Qualitative generalization of classical geometry

As part of our effort to relate various spatial ontologies to one another, we relate intrinsically qualitative
theories to geometries. Inevitably, the question arises to what constitutes a geometry and how does
it differ from a qualitative theory of space? This is closely related to understanding the continuum
of spatial theories: Where can we draw the line that separates geometric from qualitative theories of
space? Posed differently, we ask when a spatial theory becomes inherently geometrical. We suggest the
following answer to that question in Chapter 10: It is not necessarily the existence of a metric as the
name implies, but the presence of two “geometric” assumptions. First, the assumption that lines are
straight in that any two points uniquely define a line and, second, the assumption that lines are dense
total orders of points. With this explanation, we are equipped to generalize geometries to qualitative
theories of space by omitting those two assumptions. As specific contribution, we propose the theory
CODI plp−g as mereotopological abstraction of three-dimensional incidence geometry. Ordered incidence
geometry could be generalized similarly by finding a suitable extension of CODI plp−g in the hierarchy
of ordered multidimensional mereotopologies, OMT .

1.3 Outline of the thesis

The thesis is structured as illustrated in Figure 1.2. In Chapter 2 we review the logical methods used
to compare and to semantically integrate spatial theories with one another by grouping them into hi-
erarchies of theories with equal expressivity. In Chapter 3 we give the necessary background on spatial
ontologies; we review the basics of equidimensional mereotopology, previous work on multidimensional
mereotopologies, and the treatment of boundaries and geometric relations in mereotopology. We also
give some examples of how mereotopology has been put to practical use. Chapter 4 studies equidi-
mensional mereotopologies from the perspective of their spatial representability, addressing the question
of what constitutes an equidimensional mereotopology that adequately captures space wherein comple-
ments must exist. This chapter stands by itself, the results primarily motivate a closer examination of
multidimensional mereotopology.

In Chapter 5 we characterize the intended multidimensional structures using the mathematical notion
of manifolds with boundaries and developing more complex spatial entities analogue to the constructive
definition of simplicial complexes. We will later use this characterization to show that any intended
structure satisfies the axioms of the two key spatial theories developed in Chapter 7 and Chapter 9,
respectively.

In Chapter 6 we develop a general axiomatization of multidimensional space that will form the
basis for the remainder of the thesis. Chapter 7 extends that axiomatization by defining so-called
mereological closure operations: binary functions that denote the intersection, difference, and sum for
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any pair of spatial entities, as well as a constant that denotes the universal entity. In Chapter 8 we use
the theories from Chapters 6 and 7 to establish relationships to two other mereotopologies, namely to
the equidimensional RCC and to the multidimensional INCH Calculus.

Chapters 9 and 10 each propose an extension of the language of the basic multidimensional mereo-
topology. Chapter 9 considers an extension by the notion of boundary-containment. This extension of
the language suffices to draw the interior-boundary distinctions that are necessary to define the nine
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possible intersection relations arising from the intersection of the interior, boundary, or exterior of one
entity with the interior, boundary, or exterior of a second entity. Chapter 10 examines an extension by
a multidimensional version of betweenness as a notion of spatial order. The chapter relates the basic
multidimensional mereotopology to incidence geometries and its extension by the betweenness relation
to ordered incidence geometries.

Our final technical chapter, Chapter 11, utilizes the abstract spatial theories that we developed
in the Chapters 6 to 10 to model physical space. In particular, we show how, in principle, the various
conceptions of physical boundaries and surfaces can be defined using the abstract spatial theories and we
give a spatial account of physical voids. The chapter finishes with a use case scenario that demonstrates
interesting hydrological distinctions that we can make using our multidimensional spatial theories as
underlying theory of abstract space.

While each chapter contains a summary of its results, we summarize the key findings and insights of
the entire thesis in Chapter 12.



Chapter 2

Methodology: theory extensions and
interpretations1

In our work, the ontologies of space that we are interested in are all axiomatized or axiomatizable as
theories in first-order logic. In fact, for the purpose of the thesis we consider spatial ontologies as nothing
but first-order axiomatizations of spatial relations.

First-order ontologies are vastly expressive but at the same time very difficult to integrate compared
to less expressive languages such as description logics or the OWL ontology languages. We now give
an overview of the formal methods we use to verify the spatial ontologies we develop and to integrate
spatial ontologies with one another. Most of these methods are well-known in mathematical logic or in
the field of model theory. Through joint effort in our lab [Grü09; GHK11; Grü+10; Grü+12; KG10],
those general logical methods have been customized for the verification of ontologies and the semantic
integration of ontologies. Some methods are further refined here.

On a more general note, the work in this thesis is conducted in the spirit of the axiomatic method,
which some consider as one of the oldest methods of science. In its modern mathematical and geometrical
form it dates back to Moritz Pasch [Pas88], who revolutionized the study of ‘physical space’ (which is what
used to be meant by ‘geometry’ until the end of the 19th century) by providing a set of axioms in a formal
language and proving theorems about geometry from the axioms alone. Hilbert’s work “Grundlagen der
Geometrie” [Hil71], first published in 1899, is probably the most famous piece of work applying the
axiomatic method to geometry, even though his presentation is sometimes far from clear. Indeed, much
axiomatic work in geometry, for example, uses a formal language that is still less rigorous than what
we aim for. For the purpose of automated reasoning with spatial ontologies, the degree of formality
provided by most geometry textbooks is still insufficient. In particular, we want to avoid set-theoretic
definitions of lines or planes, because those do not lend themselves to easily implementable first-order
axiomatizations. We differ in one point from most work that applies the axiomatic method; we are not
only interested in abstract mathematical theories, but rather study them in relationship to particular
classes of intended structures that we want to capture. Therefore, we must show that the axioms of a
particular theory are actually satisfied in the class of intended structures, given a particular meaning of
all nonlogical symbols in the theory’s language. Nevertheless, we can work purely axiomatically when
we compare two theories to another, for example, we can show that the axioms of one theory are entailed

1The work in this chapter extends joint work previously published as [GHK11; Grü+10; Grü+12].
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by the axioms of another theory. But we also want to compare theories with different languages; to do
so, we discuss the ideas of expressiveness and definability.

This chapter is structured as follows. In Section 2.1 we review the logical terminology and notation
used in the thesis as well as two notions of definability: one regarding theories and the other regarding
structures. We also show how those two notions are related to each other. In the subsequent Sections 2.2
and 2.3, we specifically discuss the logical and model-theoretic methods we utilize to compare, relate,
verify, and integrate spatial ontologies. Throughout, we point to thesis results that have been obtained
using the discussed methods.

2.1 Tools from mathematical logic and model theory

We now review the logical terminology and notation used throughout the thesis; most of it can be
found in standard references on mathematical logic, such as [End72; Hod93; Kle67; Mar02], though the
presentations differ significantly in terminology, notation, and organization.

2.1.1 First-order theories

Throughout, we assume standard first-order logic with equality, using the standard symbols ¬, ∧, ∨, →,
←, and ↔2 as logical connectives and ∃ and ∀ as quantifiers. The symbol = denotes the distinguished
binary relation of equality. We assign meaning to terms (denoting individuals of the domain), well-
formed formulas, and sentences (having truth values) in the standard inductive way, as explicated, for
example, in [End72].

We call a set T of first-order sentences an axiomatization. The sentences of an axiomatization are
usually called its axioms and definitions, we will formalize the difference between axioms and definitions
later on. We write T |= σ to express that σ is a logical consequence—or theorem—of T , we also say T
entails σ. A first-order theory is an axiomatization closed under logical consequences. Because all our
theories are assumed to be first-order, we use the term theory throughout to refer to a first-order theory.

Definition 2.1. A theory is a set of first-order sentences closed under logical consequence.

Strictly speaking, a theory T as a set of sentences closed under logical consequence is different from
its axiomatization as a set of sentences whose closure under logical consequences is the theory. We will
not make this distinction unless absolutely necessary; for convenience both are from now on referred to
as a theory. Two theories or two axiomatizations in the same language are logically equivalent if and
only if they have identical closures under entailments.

Every theory is implicitly associated with a signature and language specified by the nonlogical symbols
that appear in the sentences of the theory.

Definition 2.2. The signature of a theory T , denoted by λ(T ), is the set of all nonlogical symbols, i.e.,
all constant symbols, function symbols, and relation symbols, that appear in T .
The language of a theory T , denoted by L(T ), is the set of all well-formed first-order formulas that only
use the nonlogical symbols in the signature λ(T ).
The language of a signature λ, denoted by Lλ, is the set of all well-formed first-order formulas that only
use the nonlogical symbols in the signature λ.

2The symbols⇒,⇐, and⇔ do not denote logical connectives, but rather abbreviate the meta-mathematical expressions
‘implies’, ‘is implied by’, and ‘if and only if’.
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Note that a theory’s language is equivalent to the language of the theory’s signature. But the
definition of the language of a signature also allows us to talk about languages not associated with a
concrete theory.

We say a theory T is a L-theory if and only if L is the language of T . Equally, we call a formula α
or a sentence σ an L-formula or an L-sentence if and only if σ ∈ L or α ∈ L. Generally, we will use
α and β to denote formulas and σ to denote a sentence. We use lower-case letters to denote function
symbols and upper-case letters to denote relation symbols, except in Chapter 11 where some relations
are denoted by lower-case symbols to preserve the relation names from previous work. ω and Ω denote an
arbitrary function or relation symbol, respectively. Appendix A contains a list of all nonlogical symbols
used in this thesis.

2.1.2 Interpretations and models of first-order theories

A theory is a purely abstract mathematical object, only when we interpret the nonlogical symbols of the
theory, we can use the theory to capture knowledge about the world (or about a hypothetical world).

An interpretation of an L-theory T is a tuple I = 〈D,Φ,Ψ〉3 that assigns a meaning to all symbols
in λ(T ). An interpretation of a theory of the language L is also called an L-structure [Ebb94; End72;
Mar02] with λ(I) denoting the signature of the structure. D denotes a nonempty domain, Φ a mapping
of all n-place function symbols ω ∈ λ(T ) (including constants) to functions Φ(ω) : Dn → D, Ψ is a
mapping of all n-place relation symbols (predicates) Ω ∈ λ(T ) to relations Ψ(Ω) : Dn → {True | False},
where True means the relation holds and False means the relation does not hold. An L-structure I
satisfies an L-sentence σ if and only if the structure assign σ the truth value True; we then write I |= σ.
Two L-structures I1 and I2 are elementarily equivalent if for all L-sentences σ, I1 � σ if and only if
I2 � σ.

We call an interpretation I a model of a theory T if and only if all axioms (or equivalently, all logical
consequences) of T are satisfied, that is, all axioms are evaluated to statements with the truth value
True; we can write I |= T . A theory is consistent (or satisfiable) if it has some model. T entails the
sentence σ if and only if the sentence is satisfied in all models of T .

Models of a logical theory are denoted by calligraphic upper case Latin letters such asM. If necessary,
a subscript indicates the theory of which it is a model of, such asMDI linear

. If the theory is clear from
the context, we omit the subscript. The domain of a model is denoted by a bold upright version of the
letter used to denote the model, e.g., M is the domain of the modelM. Mod(T ) denotes the set of all
models of the theory T .

If Ω is an n-place relation symbol in the signature of a theory T , every modelM of T specifies a set
ΩM ⊆Mn such that 〈−→a 〉 ∈ ΩM if and only if Ψ(Ω)(−→a ) = True. Equally, any n-place function symbol
ω ∈ λ(T ) specifies a set ωM ⊆ Mn+1 such that 〈−→a , b〉 ∈ ωM if and only if Φ(ω)(−→a ) = b. We call the
sets ΩM and ωM the extensions of the symbols Ω and ω, respectively. Notice that any n-place functions
has an extension that could also be considered as the extension of an (n + 1)-place relations. In that
sense, functions are nothing more than special kinds of relations.

Extensions of particular functions and relations in a model are always denoted by the bold relation or
function symbol with the model name as subscript, such as ΩM or ωM. For example, ZEXM, ContM,
and (≤dim)M denote the extension of the zero region ZEX , the containment relation Cont, and the

3Technically, a variable assignment function is also needed to assign each variable to an element in D; we take the
variable assignment for granted.
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relative dimension relation ≤dim of a model M. boundaryM denotes the extension of the boundary
function of a model M. Extensions of unary relations are sets, we write a ∈ ZEXM to say that the
domain element a ∈M is in the extensions of ZEX in the modelM. Equally, we write 〈a, b〉 ∈ ContM
or 〈a, b〉 ∈ (≤dim)M to state that for the pair a, b ∈M the relations Cont or ≤dim evaluate to True in
the modelM. We often abuse the terser notation Cont(a, b) or a≤dimb to denote the same fact within
semantic proofs. In combination with this notation, we sometimes use the logical connectives but mean
their semantics. For example, the expression

P(z, x− y)↔ P(z, x− (x · y))

says that within the modelM = 〈M,Φ,Ψ〉 of interest (which is obvious from the context) with x, y, z ∈
M, there exist u, v, w ∈M such that u = Φ(−)(x, y), v = Φ(·)(x, y), and w = Φ(−)(x, v) and such that

〈z, u〉 ∈ PM if and only if 〈z, w〉 ∈ PM.

The function symbols ·, −, and + are not shown in bold, even when they are used semantically. The
difference should always be clear from the context.

2.1.3 Theory extensions

Definition 2.3. A theory T2 is an extension of a theory T1 (or T2 extends T1) iff for any sentence
σ ∈ L(T1),

if T1 |= σ then T2 |= σ.

T2 is a conservative extension of T1 iff for any sentence σ ∈ L(T1),

T1 |= σ iff T2 |= σ.

T2 is a nonconservative extension of T1 iff T2 is an extension of T1 and some sentence σ ∈ L(T1) exists
such that

T1 2 σ and T2 |= σ.

Strictly speaking, this definition only applies to theories T1 and T2 with λ(T1) ⊆ λ(T2).
If λ(T1) = λ(T2) and T2 is a nonconservative extension of T1, then T2 must contain at least one axiom

that is independent, i.e., not provable from the axioms of T1. Two theories with λ(T1) = λ(T2) that extend
each other must be logically equivalent. Conversely, two logically equivalent theories conservatively
extend each other.

2.1.4 Definability of nonlogical symbols

Just as we can check a set of axioms for independence, we can also check whether the nonlogical symbols
in the language of a theory are independent from another in the sense that all nonlogical symbols are
undefined concepts. An undefined concept in the language of a theory is a nonlogical symbol that
is not definable in terms of the other nonlogical symbol of the language. To formalize this notion of
an undefined concept, we need to explicate when a nonlogical symbol is explicitly definable, an idea
that reaches back to work by Padoa in 1900 (reprinted in [Hei67]) and that has been investigated by
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Tarski [Tar56c] and Beth [Bet53]. Explicit definability essentially requires that it is possible to give an
explicit definition.

Definition 2.4. Let λ be a signature.
An explicit definition of a function symbol ω /∈ λ in terms of λ is a sentence γ ∈ Lλ∪{ω} such that

γ = ∀−→v
[
∀x
[
ω(−→v ) = x↔ α(−→v , x)

]
∧ ∃x

[
α(−→v , x)

]]
where α(−→v , x) is a formula in Lλ in which only −→v and x occur free.
An explicit definition of a relation symbol Ω /∈ λ in terms of λ is a sentence γ ∈ Lλ∪{Ω} such that

γ = ∀−→v
[
Ω(−→v )↔ α(−→v )

]
where α(−→v ) is a formula in Lλ in which only −→v occur free.

We use γ throughout to denote explicit definitions. A nonlogical symbol is definable in a theory
if and only if an explicit definition for the symbol exists in the theory [Ben04; Kle67; Tar56c]. That
captures the idea of dispensable symbols, i.e., we can substitute every occurrence of such a symbol with
its definition without logically changing the theory.

Definition 2.5. A nonlogical symbol Ω ∈ λ(T ) is (explicitly) definable in a theory T iff there is a possible
definition γ of Ω in terms of λ(T ) \ Ω such that T |= γ.

More generally, we can say that a nonlogical symbol is definable in a theory using only a particular
subset of the other nonlogical symbols of the theory’s signature.

Definition 2.6. A nonlogical symbol Ω ∈ λ(T ) is (explicitly) definable in a theory T in terms of λ′ ⊆
λ(T ) iff there is a possible definition γ of Ω in terms of λ′ \ Ω such that T |= γ.

Definability allows us to separate a set of mutually undefinable nonlogical symbols from the definable
nonlogical symbols. In that way, we reduce a theory’s signature to a set of so-called primitives, of which
none is definable in terms of the others.

Definition 2.7. Let T be a theory with signature λ(T ). The symbols within a set of nonlogical symbols
Λ(T ) ⊆ λ(T ) are called a set of primitives of T iff

1. no symbol Ω ∈ Λ(T ) is definable in T in terms of Λ(T ) \ Ω, and

2. every symbol Ω ∈ λ(T ) with Ω /∈ Λ(T ) is definable in T in terms of Λ(T ).

There may be no unique set of primitives for a particular theory. But usually we are interested in
sets of primitives that include some particular nonlogical symbols. We assume that every theory has a
distinguished set of primitives (see Section 2.2.1), denoted by Λ(T ), such that Λ(T ) ⊆ λ(T ). We call
the set of sentences that only use the primitive nonlogical symbols of T the primitive language of T and
refer to it as LΛ(T ).

Next, we formalize when an extension of a theory only introduces new definitions [Hod93, p. 60].
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Definition 2.8. A theory T2 is a definitional extension of T1 iff

1. T2 is a conservative extension of T1, and

2. any symbol Ω ∈ λ(T2) is definable in T2 in terms of λ(T1).

The definition of a conservative extension already requires λ(T2) ⊇ λ(T1). That means T2 only
introduces new definable symbols but does otherwise not differ logically from T1. We can capture the
definitions introduced by T2 in a separate set of sentences Γ, called definitions, as follows [Hod93, p. 60].

Theorem 2.1. T2 is a definitional extension of T1 iff there exists a set of sentences Γ and a bijection
ϕ : λ(T2) \ λ(T1)→ Γ such that

1. T2 is logically equivalent to T1 ∪ Γ;

2. ϕ(Ω) is an explicit definition of Ω in terms of λ(T1);

3. T1 |= Γ.

Proof. ⇐ : This direction is trivial. T2 is logically equivalent to T1∪Γ and thus a conservative extension
of T1 ∪ Γ. Furthermore, T1 |= Γ, hence T2 is a conservative extension of T1, satisfying condition (1)
of Definition 2.8. Moreover, condition (2) of Definition 2.8 is satisfied, because Γ is a set of explicit
definitions of the symbols in λ(T2) \ λ(T1).
⇒: Assume that T2 is a definitional extension of T1.
Let us define Γ as the set of explicit definitions for all the symbols Ω ∈ λ(T2)\λ(T1) in terms of λ(T1) that
must exist because T2 is a definitional extension of T1 by Definitions 2.6 and 2.8. The set of sentences Γ
thereby satisfies condition (2) and condition (3), the latter because T1 |= γ for every explicit definition
γ ∈ Γ. It remains to prove that condition (1) is satisfied.

By our assumption, T2 extends T1 and by Definition 2.6 T1 |= Γ, thus T2 extends T1 ∪ Γ. If we can
show that T1 ∪Γ also extends T2, then T1 ∪Γ and T2 are logically equivalent. It thereby suffices to show
that every sentence σ ∈ L(T2) entailed by T2 is also entailed by T1 ∪ Γ.

Assume σ ∈ L(T2) such that T2 |= σ.
We can rewrite σ as a logically equivalent unnested formula σ′ inductively following [Hod93, p. 58–59].
All atomic subformulas in σ′ are unnested, that is, they are of the form v = x or ω(−→v ) = x, or Ω(−→v ).
Any symbol Ω ∈ λ(T2) \ λ(T1) that occurs in σ has an explicit definition γ ∈ Γ4 such that

γ = ∀−→v [Ω(−→v )↔ α(−→v )],

where α(−→v ) ∈ L(T1). Any occurrence of Ω(−→v ) in σ′, where Ω ∈ λ(T2) \ λ(T1), can thus be replaced by
the formula α(−→v ) to obtain a logically equivalent sentence σλ(T1) because T2 |= γ. Hence, we have

T2 |= σ ⇔ T2 |= σ′ ⇔ T2 |= σλ(T1)

σλ(T1) only uses symbols from λ(T1), thereby σλ(T1) ∈ L(T1). Hence T1 |= σλ(T1) iff T2 |= σλ(T1) because
T2 is a conservative extension of T1 by Definition 2.8(1). Hence T1 ∪ Γ |= σλ(T1) iff T2 |= σλ(T1).
Consequently, every sentence σ entailed by T2 is logically equivalent to a sentence σλ(T1) that is also
entailed by T1 ∪ Γ. Therefore T1 ∪ Γ extends T2.

4Because all n-place functions ω can be considered as (n+1)-place relations, we only deal with definitions γ of relations
Ω; the functions being a special case thereof as long as T2 |= γ.



Chapter 2. Methodology: theory extensions and interpretations 20

2.1.5 Definability of relations in a structure

A related notion is concerned with the sets, functions, and relations that are definable in some structure.
We maintain the definitions from [Grü09; Grü+10; Mar02].

Definition 2.9. LetM be an L-structure.
A set X ⊆Mn is a definable set inM iff there is a formula α(v1, ..., vn, w1, ..., wm) in L and

−→
b ∈Mm

such that
X = {−→a ∈Mn : M |= α(−→a ,

−→
b )}.

A definable structure comprises a definable set together with some definable subsets, the definable
relations. Again, all functions can be rewritten as relations and are thus not treated separately.

Definition 2.10. Let N be an L1-structure and letM be an L2-structure with domain M. N is definable
in M (equivalently, M defines N ) iff we can find a definable subset X ⊆Mn and we can interpret the
nonlogical symbols of L1 as definable subsets and functions on X so that the resulting L1-structure is
elementarily equivalent to N .

Note that the definition here uses elementary equivalence instead of isomorphism as condition on
the resulting structure because we are only interested in differences that can be expressed by some first-
order sentence. In that sense, the notion of definability here is what has been called weak definability
in [Grü+10].

If a structure N merely adds new relations and functions to a structure M without changing the
domain or the existing relations or functions, then N is an expansion of a structureM. More precisely,
N is an expansion of a structure M if and only if λ(N ) ⊇ λ(M) and we can obtain N from M by
forgetting about all the relations and functions in λ(M) \ λ(N ) [Hod93]. An expansion N of M is a
definitional expansion if and only if all added relations and functions are definable inM [Hod93].

Definition 2.11. A structure N is a definitional expansion of a structureM iff

1. N andM have equivalent domains, that is, N = M;

2. ΩN = ΩM for all Ω ∈ λ(M);

3. ΩN is a definable set inM for all Ω ∈ λ(N ) \ λ(M).

We can then prove that proof-theoretic definability of symbols as captured by the notion that one
theory is a definitional extension of another theory is directly related to the model-theoretic notion of
definitional expansions between their models.

Theorem 2.2. Let T1 and T2 be two theories. Then T2 is a definitional extension of T1 iff there is a
bijection ϕ : Mod(T1)→ Mod(T2) such that ϕ(M) is the uniquely defined definitional expansion ofM.

Proof. ⇒: Assume T2 is a definition extension of T1. Then by Theorem 2.1 for all Ω ∈ λ(T2) \ λ(T1)
there exists a explicit definition γ ∈ Γ in T2, which we can use to define ΩM for any model M of T1.
Clearly,M∪{ΩM : Ω ∈ λ(T2) \ λ(T1)} is a uniquely defined definitional expansion ofM and is also a
model of T2 because T2 is logically equivalent to T1 ∪ Γ.
⇐: The symbols in λ(T2) \ λ(T1) are implicitly defined in any model of T1. Then by Beth’s definability
theorem [Bet53; Ebb94; Kle67] there is an explicit definition of them, which can serve as the set of
sentences Γ in Theorem 2.1.
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2.1.6 Notation for theories and sentences

Logical theories are denoted by names with italic upper case Latin letters; logically distinct theories with
the same set of primitives share a name, but have a different subscript, which indicates the restrictiveness
of the axioms. For example, the theories DI linear and DI linear−bounded share the language definable from
the primitive relations ZEX and <dim, but differ in the restrictiveness of their axioms. As another
example, the abbreviation CODI is reserved for theories that only use the primitive nonlogical symbols
Cont and <dim. Appendix C contains a list of all named logical theories used in this thesis.

All logical sentences used for axiomatizing theories are labeled according to the schema ‘[theory]-
[type][number]’ as in EP-T1, where the first letter(s) indicate the theory (for example, D=dimension,
C=containment, EP=parthood, CD=containment & dimension, INCH=INCH Calculus), while the type
distinguishes axioms (A), definitions (D), theorems (T), extension axioms (E), and mapping axioms (M).
Axioms and definitions are always included in the corresponding theories, while extension axioms are
optional axioms that may be used to further extend the corresponding theories in a nonconservative way.
Theorems are properties that can be proved from the axioms and definitions alone. Mapping axioms are
only relevant when we prove definable interpretations or definable equivalence between two theories, see
Section 2.2.4. All free variables that occur in sentences labeled according to this schema are assumed
to be universally quantified. Appendix A contains a list of all named sentences used in the theories
designed in this thesis.

2.2 Relationships between ontologies

In this section, we review meta-mathematical relationships between theories that will help us to organize
theories into hierarchies, partially order them within hierarchies, and relate them across hierarchies.
First, we review the sets of primitives used (Subsection 2.2.1) in the various chapters and how we can
organize and relate theories with equivalent, related, or totally different sets of primitives using theory
extensions and theory interpretations (Subsections 2.2.2 – 2.2.4). In those subsections we also show how
the relationships between theories correspond to relationships between their classes of models because,
ultimately, we want to exchange models of the ontologies between different spatial information systems.
Thereby, Subsections 2.2.2 – 2.2.4 form the technical foundation on which we construct the family of
hierarchies of spatial ontologies.

2.2.1 The primitives used in our multidimensional theories of space

In Chapter 4 we concentrate on equidimensional mereotopological theories that rely exclusively on the
primitive concepts of region as a class, connection (or contact) as a topological relation, and part as a
mereological relation. We investigate which of those equidimensional mereotopologies can be used to
adequately axiomatize space such that models can be interpreted topologically and/or mereologically
with a suitable complementation operation. In particular, we are interested in equidimensional mereoto-
pologies that equally allow discrete and continuous models of space. This comprehensive study reveals
that very few spatially representable equidimensional mereotopologies can exist, while all of them have
an equivalent expressivity.

To overcome the limitation in expressivity, we subsequently focus on multidimensional mereotopology
that can deal with spatial entities of varying dimension in a single model. We use the following set of
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primitive symbols in this thesis to design successively stronger multidimensional mereotopologies from
Chapter 6 on:

• the zero region ZEX(x) (Chapter 6, only for the theories of the DI hierarchy; ZEX becomes
definable in any theory that extends a theory of the CO hierarchy),

• (relative) dimension x <dim y (Chapter 6),

• spatial containment Cont(x, y) (Chapter 6),

• boundary-containment BCont(x, y) (specializes spatial containment; Chapter 9),

• betweenness Btw(r, x, y, z) (Chapter 10), and

• convex hull function ch(x) (Chapter 11).

All symbols in the set Ω = {<dim,Cont,BCont,Btw, ch} are treated as primitives if they are in the
signature of any multidimensional theory proposed in this thesis. More formally, let T be any of our
theories. Then for any Ω ∈ Ω,

Ω ∈ λ(T )⇒ Ω ∈ Λ(T ).

This does not apply to external spatial theories that we also discuss, formalize, and relate to our own
theories.

In Chapter 7 we prove that the mereological closure functions are definable functions in the theory
CODI (Theorems 7.1, 7.2, 7.5, and 7.7) and thus not needed as primitives. But instead of giving
explicit definitions, we simply prove that the functions are implicitly defined. This is one example where
definability plays a role.

The theory in Chapter 11 that grounds physical space in abstract space contains many more primi-
tives, which we maintain from the DOLCE ontology [Mas+03]. In such upper ontologies it is generally
difficult to discriminate primitives from defined symbols, since the primary objective of an upper ontol-
ogy is to coarsely categorize various kinds of entities. Definitions for broad categories, such as that of a
physical endurant, are difficult, if not impossible, to come up with.

2.2.2 Comparing theories with equivalent sets of primitives

Two theories with equivalent primitive languages, that is, with equivalent sets of primitives (up to
symbol renaming), are said to be in the same hierarchy of ontologies. This considerably strengthens the
definition of a hierarchy as containing only theories with the exact same languages from [Grü+12].

Definition 2.12. A hierarchy H = 〈H,≤〉 is a partially ordered, finite set of theories H = T1, ..., Tn

such that

1. Λ(Ti) = Λ(Tj), for all i, j;

2. T1 ≤ T2 iff T2 is an extension of T1;

3. T1 < T2 iff T2 is a nonconservative extension of T1.

Out of two theories T1 and T2 in the same hierarchy, we say T2 is (axiomatically) more restricted
than T1 if and only if T2 is a nonconservative extension of T1, i.e., T1 < T2. Because theories within a
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hierarchy use the same language apart from definitions, they are capable of expressing the same set of
sentences. In other words, they have equivalent expressive power. However, an explicit definition of an
intended relation given in terms of their common primitive language may be adequate in some highly
restricted theory but inadequate in a less restricted theory. For example, in Chapter 10 we can give a
definition of convexity in our ordered multidimensional mereotopology OMT↓, but the definition only
captures the intended idea of a convex region for a subclass of the models of OMT↓, namely those that
are ordered incidence geometries. Hence, the relation of being convex as defined in Euclidean geometry,
is not definable for all models of OMT↓.

Generally, we have the following relationship between the models of two theories with the exact same
language [Grü+12].

Theorem 2.3. If T1 and T2 are theories in the same hierarchy with λ(T1) = λ(T2), then

T1 < T2 ⇐⇒ Mod(T2) ( Mod(T1).

In other words, a theory that is a nonconservative extension of another theory in the same language
and with the same primitives only restricts the set of models but does not change the structure of the
models. We can then relate all theories in the same hierarchy by their models as follows.

Corollary 2.1. Let T1 and T2 be theories in the same hierarchy.
Then T1 ≤ T2 iff there exists an injective mapping ϕ : Mod(T2) → Mod(T1) such that any model
M∈ Mod(T2) is a definitional expansion of ϕ(M).

Proof. Because T1 and T2 are in the same hierarchy, the have the same set of primitives, that is,
Λ(T1) = Λ(T2).
⇒: Assume T1 ≤ T2. Then the symbols in λ(T2) \ λ(T1) are all definable in T2 in terms of λ(T1). Hence
by Theorem 2.1 there exists a theory T3 in the language of T1 that is logically equivalent to T2 (compare
also Theorem 2.4 which proves the existence of T3 in the most general case). Then T2 is a definitional
extension of T3. There also exists a set of definitions Γ such that T2 is logically equivalent to T3 ∪ Γ.
Because T1 ≤ T3 and λ(T1) = λ(T3), a trivial mapping ϑ : Mod(T3) → Mod(T1) exists, namely the
identity function where ϑ(M) =M for allM∈ Mod(T3) that exists by Theorem 2.3.
Moreover, because T2 is a definitional extension of T3, by Theorem 2.2 there exists a bijection ϕ :
Mod(T2)→ Mod(T3) such thatM is the uniquely defined definitional expansion of ϕ(M).
Then the composition ϕ ◦ ϑ : Mod(T2)→ Mod(T1) is an injective function because ϕ is injective and ϑ
is the identity function defined for all models in Mod(T3).
⇐: Assume there exists an injective mapping ϕ : Mod(T2) → Mod(T1) such that any model M ∈
Mod(T2) is a definitional expansion of ϕ(M).
Further assume σ to be a sentence in L(T1) such that T1 |= σ. Then every model in Mod(T1) satisfies σ.
Because by our assumption every model in Mod(T2) is a definitional expansion of a model in Mod(T1),
every model of T2 satisfies σ. Therefore T1 |= σ implies T2 |= σ, thus T2 is an extension of T1 and thus
by Definition 2.12 we have T1 ≤ T2.

Throughout the thesis, we will study several hierarchies of spatial theories. Chapter 6 develops the
hierarchies of relative dimension, DI , and of containment, CO, afterward combining theories from both
hierarchies to basic theories of ‘containment and dimension’ in the hierarchy CODI . Chapter 7 focuses
on the rather complex hierarchy CODI , finding a theory in CODI that explicitly closes the domain
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under standard mereological closure operations: intersection, difference, and sum. In Chapter 9, we
add another primitive relation, BCont to the primitives of CODI , resulting in the hierarchy CODIB.
Equally, in Chapter 10, we add Btw as primitive relation, which defines a hierarchy BTW of its own
and lets us obtain another hierarchy called OMT , whose theories extend theories from CODI with the
theory BTW .

Next we will show the tools we apply to compare theories that do not have equivalent sets of primitives
and are thus in different hierarchies. First, we deal with the case where the primitives of one theory are
a subset of the primitives of another theory. This enables us to formally relate the various hierarchies
to one another.

2.2.3 Comparing theories with related sets of primitives

Two theories of which one has a primitive language that is a subset of the other can be compared with
respect to their primitive language as follows.

Definition 2.13. A theory T2 expands the primitive language of a theory T1 iff Λ(T2) ⊇ Λ(T1).

If Λ(T2) = Λ(T1) then T2 and T1 are in the same hierarchy. In the more interesting case when
Λ(T2) ) Λ(T1), some primitive symbol Ω ∈ Λ(T2) \Λ(T1) is not definable in T1 in terms of Λ(T1). Then
we say T2 has a more expressive language (or simply is more expressive than) than T1. Equally, we say
the hierarchy H2 is more expressive than the hierarchy H1 if and only if any theory T2 ∈ H2 is more
expressive than any theory T1 ∈ H1. This comparison is only based on the primitive languages of H1

and H2, which are equivalent for all theories within each hierarchy, thus it suffices to establish that one
theory T2 ∈ H2 is more expressive than one theory T1 ∈ H1 in order for any theory in H2 to be more
expressive than any theory in H1.

If T2 is a nonconservative extension of T1 that expands the primitive language of T1, the following
theorem from [Grü+12] guarantees the we can separate the language expansion from the nonconservative
extension through another theory whose existence is guaranteed.

Theorem 2.4. If theory T2 is a nonconservative extension of theory T1 with Λ(T2) ) Λ(T1), then there
exists a theory T3 with Λ(T3) = Λ(T1) such that T2 is a conservative extension of T3.

Next we will relate the models of a theory that extends a second theory while also expanding the
language of the second theory. Note that for two arbitrary theories T1 and T2 not in the same hierarchy
with T2 extending T1, Mod(T2) ⊆ Mod(T1) is not necessarily true. The models of T2 may only define
structures that are elementarily equivalent to models of T1. For example, the models of the theory of
bipartite ordered incidence structures in Chapter 10 are not models of the theory of bipartite incidence
structures; rather they define structures by leaving out the betweenness relation that are bipartite
incidence structures. We can state this more formally for the general case as follows.

Theorem 2.5. If a theory T2 extends a theory T1 and expands the primitive language of T1, then there
is a function ϕ : Mod(T2)→ Mod(T1) such that anyM∈ Mod(T2) expands ϕ(M).

Proof. If T2 is a nonconservative extension of T1, then by Theorem 2.4 there exists a theory T3 with
Λ(T3) = Λ(T1) such that T2 is a conservative extension of T3. If T2 is a conservative extension of T1,
T3 = T1 satisfies the consequent of Theorem 2.4 as well (without having to use Theorem 2.4). In either
case, T1 and T3 are in the same hierarchy with T1 ≤ T3.
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By Theorem 2.1 an injective function ϕ : Mod(T3) → Mod(T1) exists such that any model M ∈
Mod(T3) is a definitional expansion of ϕ(M). Because T2 is a conservative extension of T3, there also
exists a mapping ϑ : Mod(T2) → Mod(T3) such that any model M ∈ Mod(T2) expands ϑ(M). The
composition of ϑ and ϕ results in the desired function ϑ ◦ ϕ : Mod(T2)→ Mod(T1) withM ∈ Mod(T2)
expanding ϑ(ϕ(M)) ∈ Mod(T1).

We will apply the technique of language expansions if the theories of one hierarchy are not expressive
enough in that they cannot define certain relations of interest in the class of intended structures. For
example, because the relation of a manifold being contained in another manifold’s boundary is not
definable in the primitive language of CODI , we expand it in Chapter 9 by BCont as a new primitive
relation, resulting in the hierarchy CODIB, whose primitive language is a superset of the primitive
language of CODI . Equally, in Chapter 10, we expand the language of CODI by an order relation,
resulting in a new hierarchy OMT . In that way, language expansion is primarily a relation of interest
for comparing related hierarchies by the expressive power of their primitive language.

Finally, we will use a tool from [Hod93, p. 66] that allows us to prove that the models of one theory can
always be expanded to models of another theory in order to show that the latter theory is a conservative
extension of the former theory. This method is particularly relevant in Chapter 10, it allows us to derive
the relationship between the theories of ordered multidimensional mereotopology and ordered incidence
geometry from the relationships between their models.

Theorem 2.6. If T2 extends T1 and any model of T1 can be expanded to a model of T2, then T2

conservatively extends T1.

2.2.4 Comparing theories with different sets of primitives

To compare theories in different primitive languages, we reuse the idea of interpretability from mathemat-
ical logic [End72; Tar68], in particular the notions of relative interpretations and faithful interpretations.
We essentially maintain (with some corrections) the definition of interpretability from [Grü+12; SK08],
which are based on [End72]. We assume that the languages of T1 and T2 use disjoint nonlogical symbols.

Definition 2.14. An interpretation π of the theory T1 into a theory T2 is a function on λ(T1) and
formulae in L(T1) such that

1. π assigns to ∀ a formula π∀ ∈ L(T2) in which at most the variable v1 occurs free, such that

T2 |= (∃v1) π∀

2. π assigns to each n-place relation symbol Ω ∈ λ(T1) a formula πΩ ∈ L(T2) in which at most the
variables v1, ..., vn occur free.

3. π assigns to each n-place function symbol ω ∈ λ(T1) a formula πω ∈ L(T2) in which at most the
variables v1, ..., vn, vn+1 occur free, such that

T2 |= ∀v1, ..., vn

[
π∀(v1) ∧ · · · ∧ π∀(vn)→ ∃x

[
π∀(x) ∧ ∀vn+1[πω(v1, . . . , vn+1)↔ (vn+1 = x)]

]]
4. for any formula α ∈ L(T1),

π(¬α) = ¬π(α);
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5. for any formulae α, β ∈ L(T1),
π(α→ β) = π(α)→ π(β);

6. for any formula α ∈ L(T1),
π(∀x α) = ∀x π∀ → π(α);

7. for any sentence σ ∈ L(T1),
T1 |= σ ⇒ T2 |= π(σ).

The first condition essential defines the restricted domain of T2. The other conditions except for the
last one allow us to translate arbitrary formulas and sentences in L(T1) into sentences in the language of
T2. Only the last condition characterizes the relationship between the theories T1 and T2, stating that
the mapping π is an interpretation of T1 if it preserves the theorems of T1. We say that T2 interprets
T1, or, equivalently, that T1 is interpretable in T2. Notice that it suffices to map the primitive symbols
in λ(T2), since all others symbols in λ(T2) are then implicitly mapped through their definition in terms
of the primitives Λ(T2).

Interpretations are generalization of extensions to theories with different languages: if T2 interprets
T1, then there exists a theory that is definably equivalent to T2 and that extends T1. As trivial case we
have: if T2 extends T1, then T2 also interprets T1.

A stronger notion of interpretability is that of a faithful interpretation [End72; Grü+12].

Definition 2.15. An interpretation π of a theory T1 into a theory T2 is faithful iff for any sentence
σ ∈ L(T1),

T1 |= σ ⇐⇒ T2 |= π(σ).

Equivalently, we can state that an interpretation π of a theory T1 into T2 is faithful if and only if it
satisfies the condition

T1 6|= σ ⇒ T2 6|= π(σ).

Hence, faithful interpretations preserve not only theorems (as all interpretations do), but also satisfiabil-
ity. Again, we can say that T2 faithfully interprets T1 or that T1 is faithfully interpretable in T2. Observe
that any theory T2 that conservatively extends T1 automatically faithfully interprets T1. If T2 faithfully
interprets T1, then any model of T2 is—once translated into the language of T1—an expansion of some
model of T1. This is the analogue of Theorem 2.6 for theories with different primitive languages.

Finally, the strongest meta-mathematical relationship between two theories with different primitives
is that of definable equivalence, which generalizes logical equivalence to theories in different languages.

Definition 2.16. Two theories T1 and T2 are definably equivalent iff T1 is faithfully interpretable in T2

and T2 is faithfully interpretable in T1.

Stated differently, T1 and T2 are definably equivalent if and only if there exists a theory T3 with
λ(T3) = λ(T1) ∪ λ(T2) that is a definitional extension of both T1 and T2.

We use the relationships of faithful interpretations and definable equivalence to relate different spatial
theories to one another. Most prominently, we use these relationships in Chapter 8 to construct two
theories, one in our CODI hierarchy and one as a nonconservative extension of the INCH Calculus, that
are definably equivalent. We also use theory interpretations in Chapter 10 to establish a relationship
between ordered incidence geometries and a theory of our OMT hierarchy. There, the main theorems
relate the models of the two theories, but the theory interpretations follow.
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2.3 Verification of ontologies

In the previous section we have studied ways to relate hierarchies to one another. This is one way
to verify hierarchy, we call this relative verification or cross-verification because it verifies one theory
relative to another or two theories relative to each other. In this section we present other methods
we use to verify ontologies. Subsections 2.3.1 and 2.3.2 present the methods we use to verify theories
with respect to the class of structures they are intended to capture: satisfiability, axiomatizability, and
expressivity. Other verification method is the classification of relations with a theory, which we discuss
in Section 2.3.3. Finally, in Subsection 2.3.4 we discuss how we employ automated (mechanical) theorem
proving to assist us in verifying individual spatial theories and in relating theories to one another.

2.3.1 Model characterization: satisfiability as definability in a structure

In mathematics, representation theorems are used to understand a class of structures by relating it to
another class of structure: any structure in the first class is embedded, in the best case using an iso-
morphism, in a structure in the second class. That way, properties of the embedding structures can
be directly transferred to the embedded structures—and vice versa in the case of an isomorphism. For
example, the set of regular closed sets of a topological space always define a Boolean algebra [Hal63],
and certain classes of lattices are embeddable in certain kinds of topological spaces, the most famous
result (Stone’s representation theorem) showing an isomorphism between Boolean algebras and Stone
spaces [Sto36]. Equally, we try to understand and verify ontologies of some practical domain, such as
space, time, or processes, by representing them in terms of well-understood mathematical structures
such as algebraic structures, partial orders, or groups [GHK11; Grü+10]. The known properties of
those mathematical structures help us to characterize the class of models of an ontology and to elimi-
nate unintended models. For example, by representing the models of Asher and Vieu’s mereotopology
algebraically as Stonian p-ortholattices, which again can be represented topologically, we identified un-
intended models of Asher and Vieu’s mereotopology, which do not have a topological representation in
terms of the regular sets of a topological space [HWG09; WHG12].

Representation theorems for an ontology with respect to a class of intended structures are proven in
two parts [GHK11; Grü+10]. In one direction, satisfiability shows that every structure in the class of
intended structures is definably equivalent to a model of the theory in question. In the other direction,
axiomatizability shows that every model of the theory is definably equivalent to a structure in the class
of intended structures. Axiomatizability ensures that only structures in the class of intended structures
are models of the theory in question.

To be able to talk about either property we must provide a precise description of the class of intended
structures we aim to capture. For the multidimensional mereotopology developed in this thesis, we will
present a constructive characterization of the class of intended structures based on the mathematical
notion of a manifold with boundary in Chapter 5. Subsequently, we will prove satisfiability with respect
to that class of intended structures for two key theories developed in the thesis: For the theory CODI ↓
in Theorem 7.4 and for the theory CODIB↓ in Theorem 9.2. In the context of those proofs, we will
explain why axiomatizability fails and we will discuss the difficulties involved in extending the theories
to establish axiomatizability.

The two satisfiability proofs emphasize that theories of different expressiveness can be satisfiable
with respect to the same class of structures: CODI ↓ is less expressive than CODIB↓. The difference
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in their expressivity does, however, affect whether two intended structures can be discriminated by a
sentence in the two theories. There are two intended structures that define distinct models of CODIB↓
but elementarily equivalent models of CODI ↓. Hence, CODI ↓ is not expressive enough to distinguish
those intended structures. For this reason, axiomatizability with respect to the intended structures
presented in Chapter 5 cannot be proved for any theory in the primitive language of CODI . In the next
subsection, we will discuss how we can formalize this idea.

Variants of representation theorems are used in Chapter 4, but instead of giving full representations—
which is impossible in the absence of a precise description of what constitutes a spatially representable
equidimensional mereotopology—we use necessary conditions for spatial representability and show how
they restrict the equidimensional mereotopologies, leading to a very small set of potential spatially
representable equidimensional mereotopologies.

2.3.2 Expressivity of a theory with respect to the intended structures

As we already discussed, we can compare a theory with respect to its class of intended structures. If there
is a sentence in the language of a given theory that discriminates any two non-elementarily equivalent
structures in the class of intended structures, then the theory and its language is expressive enough to
discriminate the two structures.

Frequently, we are more interested in showing that a certain relation Υ from the intended structures
is not definable in a given theory T . We can apply Padoa’s method of definability: It suffices to find two
intended structures I and I ′ that differ in their extensions of Υ but define models ϕ(I) and ϕ(I ′)5 of T
such that Ωϕ(I) = Ωϕ(I′) for all symbols Ω ∈ Λ(T ). Then the relation Υ is not definable in T . In other
words, no sentence σ ∈ L(T ) can tell the two structures apart because ϕ(I1) |= σ ⇐⇒ ϕ(I2) |= σ.

We repeatedly utilize this technique to argue that certain theories are not expressive enough to
capture a distinction in the intended class of structures, in particular in Chapters 9 and 10. For example,
at the end of Chapter 7 (Figure 7.9) and in our motivation for Chapter 9 (Figure 9.3 and 9.4) we will give
intended structures that are not elementarily equivalent but that define equivalent models of CODI ↓ to
show the undefinability of the relation of boundary-containment in CODI . Thus we introduce BCont
as primitive in CODIB to capture boundary-containment; therefore the language of CODIB is more
expressive than that of CODI .

2.3.3 Classification of relations within theories

We heavily rely on classification of relations within theories, which essentially shows that in any model
of a theory, the extension of some relation symbol Ω1 is always a subset of the extension of another
relation Ω. We then call Ω1 a subrelation of Ω in the theory. More formally, we define a classification
of a relation symbol as follows. A classification of a n-place relation symbol Ω in a theory T is a set
of n-place relation symbols Ω1, . . . ,Ωm such that for any modelM ∈ Mod(T ) with d1, . . . , dn ∈M we
have

〈
−→
d 〉 ∈ ΩiM for some i ∈ [1,m]⇒ 〈

−→
d 〉 ∈ ΩM.

We are interested in two properties of sets of subrelations of a relation: exhaustiveness and pairwise
disjointness. A set of n-place relation symbols Ω1, . . . ,Ωm is an exhaustive classification of a relation

5Note that we assume a function ϕ from the class of intended structure to models of T , implying satisfiability of T with
respect to the class of intended structures.
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symbol Ω if and only if for any modelM∈ Mod(T ) with d1, . . . , dn ∈M we have

〈
−→
d 〉 ∈ ΩiM for some i ∈ [1,m]⇔ 〈

−→
d 〉 ∈ ΩM.

We usually establish exhaustiveness in the theory by proving

T |= Ω(−→v )↔ Ω1(−→v ) ∨ · · · ∨ Ωm(−→v ).

A set of n-place relation symbols Ω1, . . . ,Ωm are pairwise disjoint if and only if in any modelM∈ Mod(T )
with d1, . . . , dn ∈M for every pair i, j ∈ [1,m] we have

〈
−→
d 〉 /∈ ΩiM or 〈

−→
d 〉 /∈ ΩjM.

Again, this can be established proof-theoretically by proving for every pair i, j ∈ [1,m] the entailment

T |= ¬Ωi(−→v ) ∨ ¬Ωj(−→v ).

Establishing that a set of relations are a set of jointly exhaustive, pairwise disjoint (JEPD) subre-
lations of a given relation has several benefits. It defines a hierarchy of successively more fine-grained
relations (illustrated in the Figures 6.7, 9.14, and 9.15), from which we can choose the appropriate level
of detail for a particular application domain or a specific reasoning task. In other words, we can choose
whether we want to distinguish the set of JEPD subrelations of a particular relation or simply lump
them together. This way we can switch between different granularities or precision of spatial knowledge
within the same theory.

Identifying sets of JEPD subrelations of relations within a theory also helps us to verify the theory
by completely characterizing one relation in terms of others. It also restricts the models in ways that
are easily verified in the intended structures if we have a fairly good understanding of how entities in
the intended structures can be related to another. As an example, we know that any manifolds with
boundary either intersects another manifold with boundary in its interior, in its boundary, or not all
(i.e., in its exterior). Hence, subrelations of contact between two entities that are supposed to represent
manifolds with boundaries must capture those three cases.

The hierarchy over relations defines a subsumption hierarchy (or subsumption lattice) over relations,
which can be exploited for more efficient reasoning in at least three different ways. The first, straightfor-
ward way uses the lattice directly for subsumption reasoning [Coh+93], but this is restricted to queries
about a coarser relation where knowledge about a more fine-grained relation is available.

The second option is to construct a constraint calculus following the approach outlined by [Esc01] to
obtain the calculus, a kind of semi-automated randomized sampling [Coh+93; LL11] to obtain its com-
position table, and the methods from [Ren07] to identify tractable subsets for which efficient reasoning
is then possible. The constructed spatial calculi can then be used for composition-based reasoning, in
which a precomputed composition [BIC97b; RL04; RL05; RN07] allows much more efficient reasoning.
Equally, a relation algebra can be defined [Dün05; DSW01; DWM99; DWM01] from a set of JEPD
relations and be used with relation-algebraic reasoning method. Reasoning with sets of JEPD relations
has been studied extensively in much work on qualitative spatial reasoning; we can readily build on those
advances by providing sets of JEPD relations, even if only as refinements of some of the relations of our
multidimensional mereotopology.
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The third option is to translate the first-order theory with the help of the lattice of relations into
a less expressive logical language, such as OWL, an ontology language popular in the Semantic Web
Community, or other description logics. We can follow the ideas of [BD05] to translate the lattice of
relations into a terminological set of role inclusion axioms (sometimes called a role box) in a description
logic such as RIQ [HS04] (which belongs to the SHIQ family of description logics, see [BHS09]) or
ALCHR+ [HLM99; HG97; Wes01]. This is effectively the reverse translation of the first-order semantic
given to the description logic ALCHI in [Mot09]. If a relation has a JEPD set of subrelations, we know
the resulting categories in the a description logic theory are also jointly exhaustive and pairwise disjoint,
even though this cannot be expressed in standard description logics. However, neither of OWL, RIQ,
or ALCHR+ can express exhaustiveness of a set of relations or concepts.

In the thesis, we state classification theorems model-theoretically in terms of a model’s extensions,
for example, in Theorem 6.1 we say PM and (<dim)M form a partition of ContM in an arbitrary
model of CODI . The Theorems 6.1, 6.2, 9.1, 9.3, 9.4 are also classification theorems. Theorem 9.4 is the
only one amongst them that establishes a jointly exhaustive but not a pairwise disjoint classification.
Theorem 7.6 also contains a classification, though it is a more general characterization of the models of
CODI l.

Chapter 11 classifies physical endurants in the DOLCE theory and in our extension by physical
voids. Notable are the classification of physical endurants (PED-A1, PED-A2), of features (PED-A7,
PED-A8), and the different classification of voids (V-D, V-A9, V-A10, V-A18, V-T2, V-T3, V-T4) along
four criteria, resulting in the subcategories of voids depicted in Figure 11.5.

2.3.4 Implementation and semi-automated verification

All of the theories presented in this thesis are specified using Common Logic (ISO 24707) [Int07], a
standardized language for the specification of expressive ontologies and for the exchange of knowledge
in information systems. Common Logic is not a single logical language but a family of logical languages
with a logical expressivity that is a superset of first-order logic. However, when specifying the first-
order theories of this thesis in Common Logic, we only use the subset of Common Logic that has a
standard first-order semantic. In particular, we do not quantify over relations or functions. Common
Logic includes a set of so-called dialects, which are syntactic forms that all share the common semantic
of Common Logic’s abstract syntax, which is also specified in the standard. We use the CLIF dialect for
the specification of all our theories.

All of our theories are provided in a repository available at http://code.google.com/p/colore/

source/browse/#svn%2Ftrunk%2Ftorsten-phd. The repository is organized as follows. Each hierarchy,
i.e., each set of theories that share a primitive language, is grouped into a folder. For example, the folder
cont contains the CO theories with Cont and ZEX as only primitives, whereas the folder codi contains
the theories from the CODI hierarchy, i.e., the theories that use Cont, ZEX , and <dim as only primitives.
Each such folder contains a number of .clif files, each specifying a set of axioms and possibly importing
other files from the same or other hierarchies. Thereby, each file implicitly specifies a first-order theory
as the closure under imported axioms6, closed again under logical consequence. The list of theories used
in the thesis and the name of their axiomatization in Common Logic can be found in Appendix C.

6We treat the import as a simple pasting of the axioms into the importing file. This is different from Common Logic’s
intended semantic of the cl-imports statement which specifies that a set of imported axioms are implicitly quantified only
over the imported domain and not the entire domain. In such a setting, an imported theory captures submodels the entire
theory, amendable by the importing axioms.

http://code.google.com/p/colore/source/browse/#svn%2Ftrunk%2Ftorsten-phd
http://code.google.com/p/colore/source/browse/#svn%2Ftrunk%2Ftorsten-phd
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Explicit definitions in a hierarchy can be found in the subfolder defs. For example, the folder codi/defs
contains definitions of the relations of parthood P (codi/defs/ep.clif) or of internal self-connectedness
ICon (codi/defs/icon.clif). The name of a definition file corresponds to the labels of the appropriate
definitions, i.e., the definition EP-D of parthood P is defined in codi/defs/ep.clif.

We rely on the Common Logic specifications of our theories for assisting the verification of the
theories. In particular, we use them for two types of verification tasks. Both tasks are supported by
automated theorem provers (ATPs) and finite model generators (FMGs). Unfortunately, no reasoners
are presently available that accept native input in Common Logic syntax. Therefore, we use other
tools, in particular the ATPs Prover9 [McC10] and Vampire [RV02] and the FMGs Mace4 [McC10] and
version 3.0 of Paradox [CS03]. To utilize them, we first have to translate Common Logic axiomatizations
into one of their supported input languages, which is either the TPTP format [Sut09] for Paradox and
Vampire or the LADR format native to Prover9 and Mace4. The script clif-to-prover9 from the toolkit
cltools developed by Chris Mungall [Mun10] allows translating a single file from the Common Logic
syntax to the LADR syntax. We embedded this in a toolkit of our own, called ColoreProver, to automate
the translations of entire theories consisting of multiple, sometimes more than two dozen, axiom and
definition files to the LADR and TPTP syntaxes. Our toolkit also provides basic functionality to quickly
perform verification tasks by feeding the translations of entire theories as input to Prover9 and Mace4.

Let us first explain the two verification tasks in more detail, before we discuss how we utilize the
ATPs and FMGs to assist us with those tasks. As already mentioned in Section 2.3.1, verification of a
first-order ontology requires us to prove a representation theorem between the models of a specific theory
and the class of intended structures. Representation theorems are normally proven in two parts—we
first prove every intended structure is a model of the ontology and then prove that every model of the
ontology is elementarily equivalent to some intended structure. The first part is rather easy, indeed we
are able to provide such results, but the second part is much more difficult, in particular in the absence
of a theory characterizing the class of intended models. Thus, we have to rely on other methods to verify
a theory. We use three approaches: (1) interpretability in other theories, (2) consistency proofs, and
(3) proving key properties of the intended structures directly from the theory. All of those techniques
partially verify a theory: they help us gain confidence in the axiomatization and identify and fix problems
with the axioms or definitions of the theories during its development [KG10]. While we have already
elaborated on the first technique in Section 2.2.4, the other two techniques require further explanations.

Consistency is a property required from any theory of practical value. From an inconsistent theory
we can prove arbitrary sentences in the theory’s language, that is, the logical consequences of an in-
consistent theory are vacuous. Consistency is usually proved by explicitly constructing a model of the
theory. However, we go a step beyond that and want to prove that all primitive and defined relations in
the theories signature are satisfiable, i.e., that their extensions can be nonempty. This is an important
property: if a theory only admits models in which a particular relation is false for all tuples, this indi-
cates a problem with the definition of the relation or the theory’s axiomatization as whole. To prove this
property, we try to prove what we call nontrivial consistency of each of our theories: that there exists a
model of each theory such that every relation has a nonempty extension7. This condition may not be
provable for all theories as it is much stronger than the previous condition requiring that the extension

7In practise, this condition is often weakened by considering only new relations when a theory extends a theory already
known to be nontrivially consistent. Of course, this is only possible for defined relations or when we know that certain
relations are unaffected by an extension. Due to high number of relations in some theories, we only explicitly force critical
relations to have a nonempty extension, others usually follow automatically in the generated models.
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of each relation must be nonempty in some model. However, if this stronger consistency property is
provable, the weaker one follows automatically. We prove the strong property of nontrivial consistency
for all our theories. The conditions for non-triviality are specified manually as a partial model, i.e., an
extension of the theory by an existential sentence requiring the existence of domain entities for which
each of the relations of interest are true. This extension is specified in an axiom file located in the sub-
folder /consistency of the folder that represents a hierarchy. Notice that we usually only prove nontrivial
consistency for the most restricted theories in a hierarchy, if it holds for those, it follows automatically
for all theories in the same hierarchy nonconservatively extended by the more restricted theory. For
some of the smaller (in particular in the number of nonlogical symbols) and simpler theories, Mace4 is
able to construct models. However, for theories with more expressive languages, Mace4 often times out
before it ever finds nontrivial models. In such cases, Paradox often successfully constructed a model, its
SAT-based approach seems much more scalable than the resolution approach taken by Mace4. However,
Paradox requires the theory in the TPTP format as input. To translate our Common Logic theories to
that format, we chain clif-to-prover9 with the tool ladr_to_tptp that comes as part of the tools provided
by Prover9/Mace4. To conform to the TPTP syntax, nonlogical symbols denoted by non-letters, such
as < or ≤, that we use in the Common Logic specifications of our theories to denote, e.g., the relations
<dim or ≤dim, are replaced by symbols containing only letters, LESS and LEQ in the example. Each
axiom file in the Common Logic notation, such as codi/consistency/codi_down_nontrivial.clif, is trans-
lated to an axiom file in the LADR notation, such as codi/consistency/p9/codi_down_nontrivial.p9. To
construct a model of the theory CODI ↓ axiomatized by the axiom file codi/consistency/codi_down_-
nontrivial.clif, we also have to include the translations of all imported axiom files, e.g., the translation
codi/p9/codi_down.p9 of the Common Logic file codi/codi_down.clif, etc. For the translation of an entire
theory to TPTP syntax, the import closure of all its corresponding LADR files is assembled in a single
file, which is in the example the LADR file codi/consistency/p9/codi_down_nontrivial.all.p9. This theory
is translated to a single file in TPTP syntax, which are found in the subfolder consistency/tptp, in the
example the file is called codi/consistency/tptp/codi_down_nontrivial.all.tptp. The models generated by
Mace4 and Paradox are found in the consistency/output subfolder, in the example they are called codi/-
consistency/output/codi_down_nontrivial.m4.out (which does not contain a model due to the timeout)
and codi/consistency/output/codi_down_nontrivial.tptp.out.

We also use the ATPs Prover9 (as our default prover) and Vampire (occasionally as noted individually
in Appendix D) to prove properties of specific theories, the sentences labeled as type ‘theorem’, i.e., with
a label of the form XX-T#. Whether the ATP found a proof as well as a link to the theorem file in
Common Logic are recorded in Appendix D. All theorems are specified in files located in the theorems
subfolder of each hierarchy, one theorem file may contain a set of theorems. Moreover, to simplify proofs
and increase our success rate in finding an automated proof, we often break a single theorem into a
set of sentences that we fed to the ATPs. For example, we split biconditionals (containing the logical
connective ↔) into its two directions, or we use case-based reasoning by proving a property separately
for an exhaustive set of cases. For example, we may prove a property separately for the precondition
ZEX(x) and the precondition ¬ZEX(x). Often, we apply case-based reasoning by considering three
cases of relative dimension separately: x <dim y, x =dim y, and x >dim y. Equally, we use case-based
reasoning by applying previous results about a JEPD set of subrelations (the simplest and most reused
classification being the classification of contact into three subtypes of contact from Theorem 6.2). This
demonstrates the utility of the classification results for the verification of our theories. A more detailed
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discussion of the potential role of theorem proving in the lifecycle of ontologies is offered in [KG10].
As an example, consider the verification of the properties CD-T1 –CD-T10 from Chapter 6. They are

specified in CommonLogic in the file codi/theorems/codi_theorems.clif. Our toolkit splits such theorem
files into individual theorems, resulting in codi/theorems/p9/codi_theorems_x.p9 with x ranging from
1 to 10 (sometimes there are more individual theorems than properties we want to prove due to the
splitting of theorems). Each theorem is then proved by Prover9 from the imported set of axioms of
CODI , resulting in the output codi/theorems/output/codi_theorems_x.p9.

The axiomatization and verification of the proposed theories is part of a larger effort in the context
of the COLORE (Common Logic Ontology Repository) project, which aims to build an open repository
of first-order ontologies that serves as a testbed for ontology evaluation and integration techniques and
that can support the design, evaluation, and application of first-order ontologies [Grü+10; Grü+12]. It
is important to remember that the theories we present here are a result of many iterations of ontology
development. We used theorem proving and consistency checking throughout this process to improve
the theories, to correct axioms, definitions, and theorems and to gain a better understanding of the
intended structures as well as the models of the theories. Throughout this process it was often the case
that particular properties were not provable, in fact, we could generate a counterexample to a particular
property. This forced us to revisit and revise axioms that seemed to pertain to the property in question.
Sometimes, we also had to revise a property that had been stated overly generic and could not be
provable after closer inspection. For this development process, our toolkit automated many otherwise
tedious steps. Automating simple tricks such as proving the consistency of a theory, as well as the
consistency of the theory with the set of theorems we want to prove, before the actual proof attempt
ensures that the theorems stand a chance to be provable and that a possible proof will less likely be
meaningless due to an inconsistency in the theory. Moreover, the toolkit automatically proves several
properties in a single run; for each property it concurrently tries to find a proof and a counterexample.
This speeds up verification and is easily achievable on modern multicore processors. Once either a proof
or a counterexample is found, the other process is aborted immediately. Our simple toolkit demonstrates
that the arduous task of verifying a sizable first-order ontology can be made manageable without the
need for completely new ATPs by simply automating tedious tasks and by implementing safeguards to
prevent misleading results.

However, we were unable to prove some properties—in particular about functions (see the proofs
about the difference and sum operations in Appendix D)—automatically, even after tuning the axiomat-
ization, adding lemmas, removing definitions, or splitting theorems into subcases. This could be ascribed
to a poor choice of using a resolution-based theorem prover for tasks where term-rewriting systems may
have performed better, or it may indicate problems with the way functions are dealt with in Prover9.
Alternatively, it could be caused by the way we axiomatized those operations: not as a single definition,
but a set of axioms that implicitly define the operations. This is a challenge we generally have to deal
with in first-order ontologies: there are many ways to axiomatize equivalent theories, but only some
‘canonical’ axiomatizations lend themselves to efficient reasoning. This problem could be addressed in
the future by syntactic restrictions in the axiomatizations or by the explicit use of syntactic sugar for
which standard, schematic translations are provided.



Chapter 3

Mereotopology: theoretical
background and applications1

Mereotopological theories—which model only topological (of connection) and mereological (of parthood)
aspects of space—are foundational within qualitative representations of space. In the last two decades
many first-order theories of mereotopology have been proposed as qualitative representations of space,
which has in turn led to fruitful systematic studies exploring their ontological assumptions, their different
choices of primitive relations, and their entailed logical properties [CV99a; CV98; CV99b; CV03; Esc07;
HG12; Var96]. In this chapter we give an overview of work in mereotopology that is related to this thesis
and helps the reader to better understand our work in the context of the research area. The Section 3.1
to 3.4 discuss related theoretical work, whereas Section 3.5 discusses related applications which may
benefit from the work in this thesis.

The term mereotopology encompasses different but related ideas. The original idea, which we call
equidimensional mereotopology in the sequel, dates back to descriptions of phenomenological processes
in nature in the work of Husserl, Whitehead, and de Laguna [Hus13; Lag22; Whi20; Whi29]. Most
work on mereotopology falls into the equidimensional approach, which we will review in Section 3.1.
Its main characteristic is that a single primitive binary relation C, called connection or contact, and
a set of “regions”, understood to be spatial regions of equal dimension, usually suffice to axiomatize
classical mereotopology. Algebraic representations of equidimensional mereotopologies demonstrated
that a single primitive binary relation of parthood P is often equally expressive [DW04; HWG09]. Our
work in Chapter 4 studies necessary criteria for spatial representability of a very general and particularly
interesting class of equidimensional mereotopologies.

Two main variations of equidimensional mereotopology approach are relevant here. The first variation
of the equidimensional approach is what we call multidimensional mereotopology, a term coined by
Galton [Gal04]. Multidimensional mereotopology differs from the equidimensional approach in that the
basic set of regions can include regions of differing dimensions at the same time. A single primitive
relation of contact is insufficient to adequately define such a theory. Multidimensional mereotopology
loses some of the elegance and simplicity of equidimensional mereotopology. However, it can address

1An extended version of this chapter appeared as [HG12] in Qualitative Spatio-Temporal Representation and Reasoning:
Trends and Future Directions, edited by Shyamanta Hazarika. Copyright 2012, IGI Global, www.igi-global.com. Included
by permission of the publisher.

34

www.igi-global.com


Chapter 3. Mereotopology: theoretical background and applications 35

some of the shortcomings of equidimensional mereotopologies and can be considered as a generalization of
classical geometries, which are also multidimensional in nature in that they talk about points, lines, and
planes. We will review the existing work pertaining to multidimensional mereotopology in Section 3.2.

The second variation extends equidimensional mereotopologies by geometric or similar primitive
relations to more expressive spatial theories. As the analysis by Borgo and Masolo [BM10] showed, most
of those extensions are equally powerful in that they can define Euclidean geometry. For this reason we
will refer to those theories as mereogeometries, the term used in [BM10]. We review geometric extensions
to mereotopology in Section 3.3 and mereogeometries in particular in Section 3.3.1 to understand how
our work differs from mereogeometries.

In the penultimate Section 3.4, we touch on the issue of boundaries, an issue not restricted to
mereotopologies representations of space but closely linked to them. Finally, we give an—by no means
exhaustive—overview of some application domains and applications of mereotopologies and qualitative
representations of space in general in Section 3.5. Work that is related only to specific chapters or
sections of this thesis is briefly discussed at the appropriate time.

3.1 Equidimensional mereotopologies

In this section we will look at two families of equidimensional mereotopology: the Whiteheadean ap-
proach and a boundary-based approach. Both families have been studied quite exhaustively [CV99a;
CV98; CV99b; CV03; Esc07; HG12; Var96]. Though the focus has been on continuous equidimensional
mereotopologies, most of the results readily extend to discrete theories as well [compare HG12].

What we call equidimensional mereotopology comprises pure mereotopological theories restricted
to regular equidimensional regions. Notice that there is no restriction to any particular dimension,
but instead each model is restricted to regions of equal dimensions. For instance, if a model contains
three-dimensional entities like spatial regions, it cannot contain entities of any other dimension, e.g.,
two-dimensional surfaces, one-dimensional lines, or zero-dimensional points. All regions must be regular
in their topological interpretation, sometimes the domain of discourse is further restricted to only regular
closed or only regular open regions—the latter approach only taken in Roeper’s topological account of
mereotopology [Roe97], which we will not discuss here in detail due to the lack of a logical axiomatization.
Regularity is a notion rooted in topology.

We assume basic familiarity with topological spaces as covered in standard textbooks such as [Eng77;
Mun00]. A topological space 〈X, τ〉 is defined by its universe X and its topology τ , the set of all
open subsets of X. The interior, closure, and complement (with respect to X) of a point set A are
denoted by int(A), cl(A), and X \A. Set intersection, union, and inclusion are denoted by ∩, ∪, and
⊆. In a topological space (X, τ), a subset A ⊆ X is called regular if and only if cl(A) = cl(int(A))
and int(A) = int(cl(A)). A set is called regular closed if A = cl(A) = cl(int(A)) and regular open if
A = int(A) = int(cl(A)). Intuitively, regular regions are of uniform dimension, that is, they consist of
one or several disconnected point sets of equal dimension. Examples of nonregular regions are given in
Figure 3.1.

All equidimensional mereotopologies consists of a single parthood2 and a single contact relation that
satisfy the axioms (P.1) – (P.3) and (C.1) – (C.3) [Var98]. Such theories are commonly referred to as
ground mereotopologies (MT) [CV99a]. If either of C and P or both of them are not explicitly present

2In the multidimensional case parthood may be replaced by a suitable multidimensional predicate such as containment.
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(a) (b) (c) (d) (e) (f)

Figure 3.1: Examples of nonregular regions. Each example depicts a single point-set that is nonregular.
Regular regions cannot have any kinds of lower-dimensional artefacts, such as missing points as in (a)
or internal or boundary cracks as in (c)–(e). Equally, regular regions cannot consist of pieces of different
dimensions, whether connected as in (b) or disconnected as in (f).

or are not primitive relations, they still suffice as primitives of a logically equivalent mereotopology.
Throughout the chapter we assume that any two regions with identical extensions of parthood and
contact are identical.

(P.1) P (x, x) (P reflexive)

(P.2) P (x, y) ∧ P (y, x)→ x = y (P antisymmetric)

(P.3) P (x, y) ∧ P (y, z)→ P (x, z) (P transitive)

(C.1) C(x, x) (C reflexive)

(C.2) C(x, y)→ C(y, x) (C symmetric)

(C.3) C(z, x) ∧ P (x, y)→ C(y, z) (C monotone with respect to P )

Equivalent to (C.3) is the following axiom (C.3′).

(C.3′) P (x, y)→ ∀z(C(z, x)→ C(z, y))

Any such ground mereotopology allows defining the concepts of overlap O, underlap U , and proper
part PP in the following natural way.

(O.D) O(x, y)↔ ∃z[P (z, x) ∧ P (z, y)] (overlap)

(U.D) U(x, y)↔ ∃z[P (x, z) ∧ P (y, z)] (underlap)

(PP.D) PP(x, y)↔ P (x, y) ∧ ¬P (y, x) (proper parthood)

In the sequel, we take these definitions for granted in any mereotopological theory.

3.1.1 Whiteheadean mereotopologies

Whitehead [Whi20; Whi29] pioneered mereotopology in the 1920s by proposing a relation called ex-
tensive connection, what we now call connection or contact, to qualitatively describe the topological
relations between regions of space. Such an economical framework built around a single topological prim-
itive distinguishes his work from the mereological approach of his contemporaries Husserl, Leśniewski,
and Leonard and Goodman [Hus13; LG40; Leś27; Lus62]. Wider interest in Whiteheadean space was
sparked by Clarke’s extensive axiomatic treatment [Cla81; Cla85]. The most prominent mereotopologies
are Whiteheadean, among them the Region Connection Calculus (RCC) [Coh+97a; Coh+97b; Got94;
GGC96; RCC92] and Asher and Vieu’s and Roeper’s mereotopologies [AV95; Roe97]. Besides taking
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regions instead of points as the primitive objects, Whiteheadean theories normally make the following
four assumptions [Mor98]. The first two apply to all equidimensional mereotopologies, not just to the
Whiteheadean ones.

1. The dimension of all regions coincides with the dimension of space.

2. Regions can be only part of regions and regions have only regions as parts.

3. Regions can be interpreted as point sets (topological representability).

4. The theory is based on a single primitive relation of connection, which is extensional.

Assumptions (a) and (b) are what makes any Whiteheadean theory of space an equidimensional mereo-
topology. We will not discuss the interpretability of regions as point sets, assumption (c) further here
and instead refer to [HG12], it will also be discussed in more detail in Chapter 4. Notice that often
another assumption, a requirement for representability by regular regions, is mentioned, but it implicitly
follows from (a) and (c).

Assumption (d) captures Whitehead’s key motivation to build a theory from contact alone, rendering
all Whiteheadean theories extensional with respect to the contact relation C (C.Ext), we say they are
C-extensional. For that reason, all Whiteheadean theories are extensions of what Casati and Varzi call
a Strong Mereotopology (SMT) [CV99a].

(C.Ext) ∀z[C(x, z)↔ C(y, z)]→ x = y (C-extensionality)

In the RCC3, the contact relation induces the parthood relation (or vice versa) through the mapping
¬C(x,−y)↔ PP (x, y) where − is the operation of complementation (similar but not equivalent to com-
plements in a topological space). The relationship between contact and parthood in Asher and Vieu’s
theory [AV95] and Clarke’s theory [Cla81] is slightly different, it satisfies ¬C(x,−y) ↔ P (x, y) [BG91;
HWG09] (where − denotes the complement) because in those theories the defined complementation
operation is interpretable as true point-set complementation. The choice of a definition for the com-
plementation operation is actually a key distinction between different Whiteheadean mereotopologies.
Complementation operations are introduced to ensure that any entity y that is a proper part of x has
a supplementing part z of x such that y and z together form the “whole” x. In Chapter 4, we will
study ways to define the complementation operations (which automatically force some kind of supple-
mentation) in equidimensional mereotopologies. The different notions of supplementation, in particular
the difference between weak and strong supplementation, are discussed in-depth in the multidimensional
context in Sections 6.3 and 7.2.1.

A common feature of Whiteheadean mereotopologies is the definition of a relation of external contact
(EC), which basically arises from contact without overlap. In addition, Whiteheadean theories define
binary topological sums and intersection of regions, as well as complements. We will define those for
equidimensional mereotopologies in Section 4.1.1 where we actually need them. Additionally, concepts
such as nontangential (proper) part (NTP.D, NTTP.D), and tangential (proper) part (TP.D, TPP.D)
can be defined.

(EC.D) EC (x, y)↔ C(x, y) ∧ ¬O(x, y) (external contact)
3An axiomatization of the RCC is included on page 164 in Chapter 8, at which point we semantically integrate the

RCC into our hierarchies of spatial ontologies.
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(NTP.D) NTPP(x, y)↔ P (x, y) ∧ ∀z[EC (x, z)→ O(y, z)] (nontangential part)

(TP.D) TP(x, y)↔ P (x, y) ∧ ¬NTPP(x, y) (tangential part)

(NTPP.D) NTPP(x, y)↔ PP(x, y) ∧NTPP(x, y) (nontangential proper part)

(TPP.D) TPP(x, y)↔ PP(x, y) ∧ TP(x, y) (tangential proper part)

Most importantly, the notion of self-connectedness is definable through axiom Con.S or axiom Con.W,
depending on whether the regions in the intended models are all regular closed or simply regular. Intu-
itively, a region is self-connected if and only if it does not consist of several disconnected, i.e., scattered
parts. An even stronger version of self-connectedness is that of s-connection [BGM96], also called inter-
nally self-connectedness ICon [CV03], meaning the interior of x is a single piece (ICon.D). Notice that
the definitions Con.W and ICon may not be definable in a particular axiomatization due to the lack of
the operations cl or int; in that case, those definitions should be considered as expressing the intended
topological meaning.

(Con.S) Con(x)↔ ∀y, z[y + z = x→ C(y, z)] (strong definition of self-connectedness)

(Con.W) Con(x)↔ ∀y, z[y + z = x→ C(cl(y), cl(z))] (weak definition of self-connectedness)

(ICon.D) ICon(x)↔ ∀y, z[y + z = x→ C(int(y), int(z))] (strong self-connectedness)

The theories of Whiteheadean mereotopology differ in their axiomatization. Clarke utilizes second-
order logical notions (set theory or definite descriptions) to describe infinitary fusions, while Asher and
Vieu’s theory and the RCC are first-order theories limited to finite sums. Both the RCC and Clarke’s
theory are atomless, i.e., they include axiom AL forcing every entity to contain a nontangential proper
part, while the account of Asher and Vieu allows atoms to exist and thereby admits discrete and finite
models. Analyses of the nature of discrete mereotopology can be found, among other works, in [Gal99;
MV99; RS02].

(AL) ∀x∃y[NTPP(y, x)] (atomless)

Changes to the RCC axioms to allow models with atoms have been discussed in [Don08; RS02]. Li
and Ying [LY04] suggested a generalization of the RCC to the Generalized Region Connection Calculus
(GRCC) that allows both discrete and continuous models. The RCC has been further generalized in
various ways, particularly for the study of its algebraic counterparts, the contact algebras. Some of the
resulting theories are discussed in their algebraic form in Chapter 4. The main difference between these
theories lies in their domain of discourse. Clarke and Asher & Vieu allow any kind of regular regions,
while the RCC, GRCC, and Roeper’s theory only deal with regular closed regions.

3.1.2 Boundary-tolerant equidimensional mereotopologies

Within Whiteheadean and any other classical, i.e., equidimensional, axiomatizations of region-based
space, regions are the only entities considered in the domain of interest. Moreover, all regions are of
the same dimension, hence boundary elements cannot be in the domain of discourse. For instance,
Clarke [Cla81] and Asher & Vieu [AV95] require that all regions have nonempty interiors which must
be regions themselves. Hence, boundaries are excluded. In theories restricted to regular closed regions,
there is no difference between a regions’ interior and closure, i.e., boundary elements cannot be modelled
either.



Chapter 3. Mereotopology: theoretical background and applications 39

Since boundaries often play an important role, other authors [CV99a; Gal96; Gal04; Got96; Smi96;
SV97] have incorporated them into their theories. Two different approaches have been pursued. Most
commonly, boundaries are treated as entities of a lower dimension [Gal96; Gal04; Got96], hence dis-
missing the first Whiteheadean assumption altogether. The resulting theories are what we call multi-
dimensional mereotopologies, which we survey in more detail in Section 3.2. A less common approach,
taken in [Smi96] does not distinguish boundaries explicitly as lower-dimensional entities, but considers
them as special kinds of regions. In Smith’s theory [Smi96] every boundary region is part of the region
they bound but has an empty interior. Moreover, boundaries are self-bounding. Using an infinitary
fusion operation, a maximal boundary bdy(x) can be defined. Unrestricted fusions and the topological
operations sum, intersection, complement, and difference are defined using definite descriptions; thereby
avoiding second-order notions but not really giving a first-order axiomatization either. Although Smith
does not distinguish boundaries from other regions in the domain, it is clear that boundaries play a
special role. It is not clear, however, whether boundaries are understood to be of the same dimension
as non-boundaries or whether they are considered of having a lower dimension. On the one hand, every
boundary is a part of the region it bounds, but on the other hand, a boundary has an empty interior.

In Section 3.4, we will survey different conceptions of boundaries from a more general perspective as
they relate to our work, in particular to Chapter 9 and Chapter 11. Before that, we review multidimen-
sional mereotopologies and geometric extensions to mereotopology.

3.2 Multidimensional mereotopologies

In all equidimensional mereotopologies, lower-dimensional entities can only be defined using higher-
order logical constructs. For example, in a three-dimensional spatial configuration, lower-dimensional
entities such as points, lines, and surfaces or areas can be reconstructed through the method of extensive
abstraction that has already been discussed by Whitehead and de Laguna [Lag22; Whi20; Whi29]. The
idea dates back to Lobačevskij’s work [Lob34] from 1834. Indeed, most proposals of equidimensional
mereotopologies include a definition of so-called abstract points as limits of infinitely many nested regions
or sets of regions, compare for example [Cla85; Esc94; Men40; Tar56a].

Galton [Gal96] argues that we should neither assume regions nor points, nor any other kind of
spatial entities as more fundamental than the other. In this spirit and irrespective of the philosophical
or cognitive adequacy of regions or points, Galton [Gal96] and Gotts [Got96] have proposed frameworks
that accommodate entities of any kind of dimension (in particular points, lines, surfaces) by using a
binary predicate of equidimensionality and two separate parthood relations, one between equidimensional
entities and another one between entities of different dimensions. This comes close to what Hayes [Hay85]
envisioned for a commonsense representation of physics. Points and indivisible atomic regions can
then theoretically co-exist [Gal96]. Furthermore, it lends itself to an elegant definition of boundaries:
boundaries are defined in [Gal96; Got96] as entities of a dimension one lower than the entities they bound.
Key to the axiomatization in [Gal96] is the distinction between parthood P as relation that exclusively
applies to entities of equal dimension, and the relation IN (x, y) that relates a lower-dimensional entity x
to a higher-dimensional y. We would say “a point lies in a region” instead of “a point is part of a region”.
In a similar framework, The primitive nonsymmetric relation INCH (x, y) from [Got96], meaning that
‘x includes a chunk of y’, effectively combines both: y can be of a lower dimension than x, in which
case ¬INCH (y, x), whereas INCH is symmetric for equidimensional entities x and y. The use of cell
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complexes, that is, collections of discrete objects of different dimensions, is another solution which
can accommodate objects of different dimensions [RS02; WF00], cell complexes are frequently used in
geographic information systems [BF95; Fra05].

In strictly topological theories that define mereotopological relations, such as the work by Egenhofer
and associates [Ege89; Ege91; EF91; EH91; ES93], the relations between one-, two-, and three-di-
mensional entities (points, curves and curve segments and hence also boundaries, and two-dimensional
areas) have been investigated. As result, classifications of the mereotopological relations between pairs
restricted to specific dimensions, such as between curves and areas, or between points and curves, have
been proposed [CDFO93; Ege91; EH91; McK+05]. However, these frameworks employ full point-set
topology avoided by the previously mentioned logical theories. In our work, we therefore attempt to
construct a logical theory in which entities of different dimensions can co-exist within a single model
without resorting to the use of full topology. Moreover, we want to find general relations between entities
of any finite dimension, without being restricted to two- or three-dimensional space only. We will discuss
the relationship to the topological approaches in more detail in Chapter 9.

3.3 Geometric extensions to mereotopology

Mereotopology, whether equidimensional or multidimensional, does not deal with any geometric notions
at all. Geometries, on the other sides, inherently deal with geometric aspects, that is, metrics are an
essential part of geometries. Usually, those metrics involve distances between points or angles between
intersecting lines. Classical geometries such as Hilbert’s axiomatization of Euclidean geometry [Hil71]
are based only on primitive spatial entities that have no curvature, such as straight lines, planar planes,
etc. In this restriction, a metric is inherent: that of the shortest distance between two points, which
happens to be the length of the line segment formed by the two points. This metric is usually captured
by a congruence relation: two line segments are congruent if and only if they have the same length. More
generally, two figures A and B (treated as point sets) are congruent if there is an isometry between them,
that is, there is an injective mapping ϕ : A → B such that the straight-line distance between x, y ∈ A
is equivalent to the straight-line distance between ϕ(x) and ϕ(y) in B. Congruence is more commonly
said to preserve shape (morphology) and size; two figures are congruent if one can be obtained from the
other by a series of translations, rotations, and reflections.

3.3.1 Mereogeometries

Clearly, congruence is a very powerful concept. There have also been attempts at extending mereotopo-
logies, in particular equidimensional ones, with geometric notions while still only dealing with regions.
Those are called mereogeometries, a term coined for them by Borgo and Masolo [BM10]. Tarski’s
categorical geometry of solids [Tar56a] is probably the best known mereogeometry, later incorporated
into Bennett’s region-based geometry (RBG) [Ben01; Ben+00], a categorical first-order theory. Borgo,
Guarino, and Masolo [BGM96] have proposed an alternative first-order theory (in the sequel we refer
to it as BGM) using three primitives: binary parthood P (x, y) for the mereological part, the unary,
quasi-topological predicate simple region SR(x) with an intended meaning of ‘x is an s-connected re-
gion’ (compare the earlier definition of ICon), and the morphological binary primitive of congruence
CG(x, y). In style, the axiomatization of BGM is closest to the axiomatizations of Whiteheadean mereo-
topology we saw before, its exact relationship to other Whiteheadean mereotopologies has been studied
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by Eschenbach [Esc07]. On the geometrical (or morphological) part, BGM uses the primitive relation of
congruence, CG, to define spheres as special kinds of simple regions (SPH.D).

This enables the theory to reuse Tarski’s [Tar56a] defined relations among spheres, such as externally
tangent, internally tangent, externally diametrical, and internally diametrical. Most importantly, it
allows defining when two spheres are concentric, which in turn allows defining the ternary betweenness
relation Btw(x, y, z) for spheres meaning ‘sphere x is in between the spheres y and z’. The core notion
of two points being equidistant to a third point can then be defined by two pair of congruent spheres
having equidistance centers [Tar56a]. The first-order theory BGM does not reconstruct points, but
Tarski [Tar56a] does using a limit construction, allowing him to define equidistance of two points from
a third. Nevertheless, the theory BGM [BM10] can be used to define equidistance of two congruent
spheres from a third sphere, which implies that the center of the two spheres are equidistance from the
center of the third sphere, effectively defining equidistance of points without mentioning points (points
are second-order construct: ultrafilters of nested spheres). The standard betweenness relation (which
includes linear alignment) or the equidistance relation can subsequently be used to define a metric system
and to reconstruct elementary geometry [Tar59].

(SPH.D) SPH (x)↔ SR(x) ∧ ∀y[CG(x, y) ∧ PO(x, y)→ SR(x− y))]

(a sphere is a simple region that cannot be disconnected by congruent simple regions)

Due to the results of [BM10] other mereogeometries can be reformulated using the primitive relations
and axioms from [BM10] and [Tar56a]. For example, the primitive relation CCon(x, y, z) meaning ‘x can
connect y and z’ from [Don01; Lag22] can be defined in terms of CG and P [BM10]. For more detailed
discussions of the full mereogeometries we refer to [Ben01; Ben+00; BGM96; GP08; Nic24; Tar56a].

Slightly different, but related work includes so-called pointless or point-free geometries [Ger95] as
attempts to axiomatize Euclidean geometry from regions or solids without a primitive or defined notion
of a point. Earlier work in this direction includes [Hun13; Lob34].

3.3.2 Convexity

Convexity is usually a morphological concept that is weaker than congruence, though it may still be
sufficient to define a full mereogeometry [BM10]. The only theory including a notion of convexity
but not constructing a full mereogeometry that we know of is the RCC extended by a convex hull
primitive [Coh95; CRC95; Coh+97b; RCC92]. The resulting theory is strictly weaker than full mereo-
geometry [CR08]. It has been conjectured that the RCC together with a convex hull (or convexity)
primitive is a point-free equivalent of affine ordered geometry. We prove an analogue relationship for our
multidimensional mereotopology in Chapter 10, namely that the language of CODI is expressive enough
to define affine spaces (see Theorems 10.5 and 10.6). Together with a primitive relation of multidimen-
sional betweenness, we can also reconstruct affine ordered geometry as a consequence of the results in
Section 10.3.3. Betweenness and convexity are closely related concepts, with convexity being definable
using betweenness in a sufficiently restricted spatial theory as we briefly discuss in Section 10.3.5.

3.3.3 Other extensions

Recently, combinations of qualitative properties have received increased attention. Among them convex-
ity and relative size (or distances) [Bit09; BD07b; Gah95] are some attempts to supplement mereotopo-
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logical relations, but all result in full mereogeometries: region-based theories of space with essentially the
same expressive power as Euclidean geometry. Qualitative theories about relative positions, directions
and orientation have also been combined with the RCC-5 [Che+07b] and a rectangular cardinal direction
calculus [NS06; SK04; SK05]. The proposed theories are problematic since relative positions of extended
objects either rely on some center of each region (centre of mass, geometrical centre, or similar) or are
expressed in terms of minimal bounding objects, such as rectangles, blocks, cubes [BCC98; Che+07a],
or spheres. Neither of them are dimension-independent.

We investigate a relation of betweenness as a more adequate qualitative relation of relative position.
It applies to entities of different dimensions, but can be weakly axiomatized so that congruence or rela-
tive size are still indefinable—thereby avoiding a reconstruction of full mereogeometry. Not surprisingly,
integrating region-based theories of space with other qualitative properties is a challenge closely linked
to the exploration of qualitative spatial theories with an expressivity between mereotopology and me-
reogeometry leading to a hierarchy that resembles the relationships between the different strengths of
geometries. Our extension of multidimensional mereotopology by betweenness is related closest to the
ordering of points on oriented lines [KE99], which uses the line’s orientation to get by with a binary
ordering relation instead of a ternary or quaternary relation.

3.4 Boundaries in mereotopology

Boundaries are a key concept in topology and mereotopology. Various notions of precise4 boundaries
have been discussed in the literature that are relevant to our work [CV99a; Chi83; Kac09; SV97; Str88;
Var08]. All acknowledge the difficulty of capturing boundaries in a theory of space, proposing different
classification schemes for boundaries. A common distinction is between boundaries as being dependent
on a single object [Chi83] and boundaries as interfaces between two objects [Str88]. In [Var08], the
former are called owned and the latter non-owned boundaries. The view of boundaries as dependent
on a single object, its host, considers the boundary as an integral feature of the bounded object. As
a consequence, two objects that touch each other may have boundaries that coincide as discussed in
[BH11; Chi96]. In the view of boundaries as interfaces the boundary is not dependent on any particular
object, but is characterized by how it delineates two objects [Var08]. Then, a single object has no
such thing as a boundary unless it touches other objects. A slightly different perspective is offered by
Kachi [Kac09] distinguishing symmetrical (“Brentanian”) from asymmetrical (“Bolzanian”) boundaries.
Both are dependent particulars, the difference lies in that in the Brentanian view boundaries of two
adjacent objects can coincide, whereas in the Bolzian view we have to choose to which of two bounding
objects the boundary belongs.

Another distinction is between bodiless and bulky boundaries [Var08]. Bodiless boundaries are said to
occupy no space and are in that sense abstract A-surfaces [Str88] (not to be confused with boundaries in
abstract vs. physical space). More precisely, they are of a lower dimension than the object they bound
and thereby do not occupy a region of space of the dimension of the bounded object as opposed to bulky
boundaries that occupy space of the same dimension as the bounded object. The notion of a bodiless
spatial boundary manifests itself in the continuous model of space commonly used for topology and
geometry, such as Euclidean geometry, wherein lower-dimensional boundaries are defined as limits. The
notion of a bulky boundary is based on a discrete model of space, which seems particularly appropriate

4We do not deal with vague boundaries here at all. See [BF96; CG96; Sch+08] for different treatises of vague boundaries.
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for capturing material objects. Bulky surfaces are referred to by Stroll as physical surfaces (P-surfaces)
for that reason [Str88]. Contrary to the limit construction possible when defining bodiless boundaries,
material objects are usually divisible only to a certain extent based on the granularity of interest (such
as its matter, its atoms, or its elementary particles such as quarks). Such material objects have bulky,
material surfaces—the outermost thin layer of its material—which rely on a discrete representation of
space, wherein we stop dividing objects or spatial regions into smaller ones at some level of granularity.
There, limits in the traditional sense do not apply. Because this understanding of space is usually tied
to a physical reality, it is often used to model physical space as compared to the continuous conceptions
of space that are primarily used to model abstract space.

Yet another distinction is between fiat and bona-fide boundaries [CV99a; SV97; Var08]. Loosely
speaking, bona-fide boundaries require a physical discontinuity, such as a change in material (e.g., the
water surface) or a physical disconnection which may or may not be a change in material at the same
time (e.g., a book laying on a table or a stack of wooden shelves before assembling a book shelf). A fiat
boundary is one that requires an underlying physical discontinuity, though it is left open whether it may
have such a discontinuity. Fiat boundaries are usually treated as bodiless boundaries. For example we
divide the space of the world into regions that we call countries: how we draw the boundaries between
countries is often arbitrary—especially boundaries that have been established during colonial times—
from a purely spatial point of view (with the exception of, e.g., countries that occupy an entire island,
which have a physically meaningful boundary, namely the bona-fide boundary of the island) and may
not be based on physical boundaries. On the other hand, so-called bona fide boundaries of physical
objects can be treated either as bodiless interfaces between objects or as “thin” layers of material at the
surface of an object. Bona-fide boundaries include all perceived surfaces such as a table top or the walls
of a room, but may also include other proper objects that are perceived as boundaries, such as a river
separating two pieces of land or two countries.

For more thorough discussions of the various conceptions of boundaries and the intricate philosophical
issues involving boundaries we invite the reader to consult, e.g., [Chi83; SV97; Str88; Var08].

3.5 Applications of mereotopology

Though theoretical work on mereotopology is often motivated by practical applications, these appli-
cations remain sparse. Only recently specific applications of mereotopology and mereogeometry have
emerged and been used to test the viability of mereotopology in practise. Most of the known work cus-
tomizes mereotopology to fit the application domain, but it has turned out that mereotopology by itself
is rather limited in its usefulness. Instead, it usually must be integrated into more expressive ontologies
or reasoning frameworks.

Among the main areas applying mereotopologies in one way or another are geographic information
systems (GIS), computer-aided design and manufacturing (CAD and CAM), navigation, computer vision
applications, biological and medical ontologies, product and assembly modelling and engineering, and
applications in (computational) linguistics, e.g., for language understanding.

Apart from these specific areas of applications, all upper ontologies need to incorporate spatial and
spatio-temporal concepts to be of use for representing physical reality. For that reason, for example,
the upper ontologies BFO [Gre03; Smi+12], DOLCE [Mas+03], SUMO [NP01], and the upper ontology
of openCyc [Cyc12] all include some mereotopological component. See [BF05] for an overview of the
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categories and relations pertaining to space that are present in the various upper ontologies. However,
the relations in upper ontologies are only sparsely axiomatized, leaving the interpretation wide open.
We show in Chapter 11 how our work in this thesis can be used to restrict the interpretations of certain
space-related categories in DOLCE and how we can obtain more fine-grained categories.

Geographic information systems Traditionally, the GIS community has been a driving force in the
advancement of qualitative theories of space with the objectives of formalizing spatial relations used by
humans and of applying high-level reasoning to those spatial relations. This is demonstrated by the large
body of work on qualitative relations concerning geographic space and geographic information systems
[CDF97; CDF98; CDFO93; Ege91; Ege94; EH91; EM95; Fra96; HCDF95; ME94]. The role of ontologies,
including of spatial ontologies, for semantic integration of spatial information in GIS has been discussed
extensively in [Fon+00; Fon+02]. In the context of built environments, Bittner [Bit00] demonstrated
how a mereotopological theory with rough location relations can be used to model a parking lot. He
explored the necessity of boundaries in general, but also the necessary distinction of different kinds of
boundaries, in particular bona-fide and fiat boundaries, to naturally capture the built space.

Recently, GeoSPARQL [Ope12] has been proposed by the Open Geospatial Consortium as a standard
for geospatial data in the syntax of the Resource Description Framework (RDF) [RDF04]. It includes
some qualitative spatial relations, in particular mereotopological relations, such as the RCC relations,
the 9-intersection relations, and relations capturing the dimensionality and the boundary of spatial en-
tities. Moreover, GeoSPARQL distinguishes simple (not self-intersecting) from complex entities (similar
to how we define atomic and composite manifolds in Chapter 5). It has the main disadvantage that it
provides not much more than a vocabulary: the semantic is only verbally explained, thereby limiting its
use for semantic integration. Our work here could be used to formalize the meaning of those mereotopo-
logical relations in first-order logic, thereby basing the standard on a rigorous axiomatic foundation, and
eventually allowing the standard to be used for exchanging spatial knowledge across spatial information
systems.

Computer-aided design and manufacturing One particularly promising field for applications of
mereotopologies are ontologies for CAD and CAM software, which allow the exchange of architectural or
manufacturing blueprints without the loss of critical semantics. For example, a “hole” in a product part
or assembly has in some CAM systems a much more specialized meaning than generally in space: it must
be something that is obtained by the process of drilling (and thus is of round or oval shape). A similar
system that models the layout of an operation exploiting natural resources will have a very different
notion of a “hole”. There are also much more subtle differences. E.g. one software system treating a
closed set of lines or curves as a region, i.e., the boundary defining a region, whereas another system
treats them as a linear feature that just happens to enclose a region. On a higher level, we want to know
under what circumstances a translation between the spatial representations of two different theories is
possible: What specific knowledge will be lost and what will be preserved?

Mereotopological and mereogeometrical relations have been used for representing assemblies of parts
by Kim et al. [KMY06; KYK08; Kim+09], though only in a logical language with very limited expres-
siveness, namely the Semantic Web Rule Language (SWRL). For example, they distinguish different
kinds of assembly joints obtained by welding, gluing, brazing, fastening, soldering, stitching, stapling,
etc. based on Smith’s boundary-tolerant mereotopology [Smi96]. However, they introduce additional
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geometrical predicates such as angles and offsets of the joined objects. The basic mereotopological defi-
nitions are translated into SWRL rules. The contact is further refined to distinguish the morphology of
the contact. This documents that for practical applications, mereotopology is usually only a basis and
needs to be extended by domain-specific terminology. The different kinds of joints can be more precisely
captured in a first-order ontology. Moreover, many distinctions can be captured more easily in a truly
multidimensional mereotopology.

Bio-ontologies Biological, biomedical, and medical research has shown considerable interest in on-
tologies to represent various relations, e.g., anatomical, genetical, or simple spatial and spatio-temporal
relations for describing medical images (X-rays, tomographic images, etc.). Many relations occurring
in these fields are of mereological and mereotopological nature. The ontologies in the Open Biomedical
Repository (OBO) use basic spatial and spatio-temporal relationships defined in the BFO and the OBO
relation ontology. The mereotopological and mereogeometrical concepts of the OBO Relation Ontology
(RO) have been explored in [Bit09; Smi+05]. The RO also contains location relations, while an explicit
distinction between contact and adjacency (external connection) is made. All mereotopological and me-
reogeometrical relations in RO are temporal, thus allowing for change over time. This is an aspect we
will not model in our work, we strictly work with a static view of space. One focus in bio-ontologies has
been on capturing the spatial structure of anatomy, see e.g., [Bit09; Don04; Don05; RMJ03]. However,
most of the bio-ontology community has focused on ontologies formalized in description logics instead
of using the more expressive first-order logic, which could capture the semantics of the various relations
much more precisely.

Robot navigation Robot navigation through unknown or partially unknown territory can benefit
from qualitative, in particular from mereotopological, representations of space. Examples include ex-
ploring the connectivity of rooms in an unknown building to learn which rooms, hallways, and staircases
are connected [KB91; KL88; LL90; RK04] or which rooms belong to certain floors. This provides a
high-level spatial model for a robot to search for things in a building (e.g., search-and-rescue robots),
find their way out again, or backtrack once trapped in a dead end. Learning topological maps directly
from the environment can be achieved used mereotopological representations where the maps usually
consist of entities of multiple dimensions including regions, lines, and points, supplemented by orienta-
tion information about the robot. Learnt topological maps can subsequently be refined by geometrical
information. However, the topological information is not directly used for qualitative reasoning. Instead,
graph-based approaches such as Voronoi diagrams or connectivity graphs, sometimes in connection with
region partitioning, e.g., in [Thr98], are dominant. The use of mereotopologies or mereogeometries is
much less prevalent in practical navigation applications. Nevertheless, the multidimensional theories we
develop in this thesis may be a suitable representation for such tasks, helping to better separate the
layout of a single floor from the layout of the building.

Interesting problems in a similar direction include qualitative route finding where traditional graph-
based route finding is combined with region properties. For example, instead of finding the shortest or
fastest route between some points, we might be interested in the most scenic route (going through forests,
along a lake, outside a city) where the different properties are represented as regions (from geographic
maps) instead of assigning each link in the network an individual value for such properties.

Human navigation can also be supported by qualitative representations of space, in particular in
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built environments and cities where distances are usually of a lesser concern. In particular within
three-dimensional environments, simple descriptions of routes are crucial, but differ from traditional
two-dimensional navigation [TDZ11]. In such settings, our multidimensional theory may be a good
foundation for a representation of space that is equally usable for humans and information systems.

Natural language processing Many navigation problems such as translating a route description into
a map are directly linked to natural language processing of spatial relations. Because of the variability
and ambiguity of language in expressing mereological and topological relations, understanding of mereo-
topological relations or spatio-temporal relations in general is more of an extraction challenge. We need
to identify the proper interpretation of terms such as “is a part of”, “adjacent”, etc. to correctly build
mereotopological models. This has been done for temporal relations [Ver+05], but the methodology
should be applicable to spatial relations as well. For instance, the language presented in [Cha04]—an
extension of the event calculus with mereotopological relations—can help track epidemics by capturing
and understanding the language of epidemic outbreak reports. More recently, there has been some inter-
est in sketch map understanding. Recent work [WL12; WS09] shows that topology and the spatial order
among spatial objects are most consistently preserved in human sketch maps. Consequently, those are
the relations we need to include in qualitative representation of space useful for human navigation. To
that respect, the theories in the hierarchy OMTB developed in Chapter 10 may be suitable for formally
representing sketch maps drawn by humans, since they preserves those two kinds of relations. In the other
direction, qualitative spatial ontologies could be used to automatically general sketch maps through an
abstraction process from more detailed maps often found in navigation software. Such generated sketch
maps can help prevent confusion through information overload.



Chapter 4

Equidimensional mereotopologies
with mereological closures1

Closure Mereotopology (CMT: [CV99a]) is widely accepted as the most restricted mereotopology that
does not contain any controversial ontological assumptions. Though some specific extensions of CMT
have been studied in great detail, the question of what constitutes a mereotopology that adequately
represents the abstract space underlying physical space has been largely neglected. In particular, the
existing work on specific mereotopologies suggests that still new combinations of axioms could yield
yet unexplored theories of closure mereotopology. We give strong evidence why this is not the case.
We do so by focusing on the spatial representability of the models of a mereotopology. Though many
concrete embeddings of mereotopological models in topological spaces have been constructed [see BD07a;
DV06; DV07; DW04; DW05a; Dün+06; Dün+08; Vak07], the question of whether these topological
representations adequately reflect the intended structure of physical space has not be addressed2. As
it turns out, the key in this pursuit is the necessary strength of the complementation operation. We
show that assuming the existence of some kind of uniquely defined complements and requiring a weak
form of spatial representability restrict the algebraic structure arising from mereotopologies to an extent
that only a few particular theories remain. Only two distinct minimal classes of ontologically coherent
mereotopologies (we define C-closure in that regard) are conceivable—distinguished by the presence or
absence of unique complements. Our analysis further identifies the algebraic properties that correspond
to the various closure operations and other ontological assumptions of the mereotopologies.

For our investigation we treat mereotopology algebraically as first proposed by Stell [Ste00; SW97]
and Düntsch and Winter [DW04; DW05b]. The systematic studies of algebraic counterparts3 of mereo-
topologies in [HG12; Vak07] offer many insights that help us understand the different mereotopological

1This chapter and Appendix F have been originally published as [HG13] in Notre Dame Journal of Formal Logic.
Copyright 2013, University of Notre Dame. All rights reserved. Reprinted by permission of the publisher, Duke University
Press. www.dukeupress.edu

2Our notion of spatial representability deviates from standard topological representations in the sense that we are
interested in whether all regions of an algebraic theory of mereotopology can be represented by adequately sized point
sets so that notions such as contact (sharing a point), overlap (sharing a region), and complementation have intuitive
spatial semantics. This understanding of spatial representations is similar to what are called a “faithful interpretations”
by [For96; Mor98]. It is more stringent than the standard notion of topological representability of algebraic structures in
pure mathematics.

3Algebraic counterpart refers to the class of contact algebras that can be constructed according to Theorem 4.2 Equally,
a mereotopology whose models can be mapped to structures of a certain class of contact algebras is referred to as logical
counterpart of the class of contact algebras.
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theories and the relationships among them. The study of algebraic theories of mereotopology is, for
example, most convincing in separating the mereological component from the topological component
as pointed out by [LY04]. We are particularly interested in Unique Closure Mereotopology (UCMT)
and Unique Infinitary Closure Mereotopology (UGMT), subclasses of CMT of which all models have
algebraic counterparts. UCMT includes many prominent mereotopologies as subtheories, such as the
theories of Whitehead [Whi29], of Clarke [Cla81], the Region-Connection Calculus (RCC: [GGC96;
RCC92]), and its generalization (GRCC: [LY04]) which admits discrete models. The theory UCMT
is introduced in Section 4.1; it assumes closure under (binary) sums and intersections just as CMT
does, but additionally assumes closure under complementation with respect to a universal region and
that all these closure operations are unique. In Section 4.2 we show that the algebraic counterparts of
models of UCMT are orthocomplemented contact algebras (OCA). Thus, the spatial representability of
UCMTs can be studied through the spatial representability of OCAs—a task we are much more com-
fortable with. In Section 4.3 we look at spatially representable OCAs, but lacking a complete definition
of spatial representability we resort to a weaker form thereof, MT-representability. We can show that
every MT-representable complete OCA is pseudocomplemented and satisfies the Stone identity, i.e., is a
SPOCA. For this result, we rely on the lattices being complete. However, this is only a minor restriction
since we can reasonably expect all spatially representable contact algebras to be complete. For discrete
MT-representable mereotopologies, it is no restriction at all.

Section 4.4 contains our key contribution: We identify algebraic conditions that are necessary and
sufficient for the closure operations sums, intersections, complements, and universal to be defined me-
reologically or topologically in SPOCAs. In particular, we show that the ontological choice between a
mereological or topological complementation in a mereotopology is reflected in the algebraic structure:
The algebras of mereologically closed mereotopological models are uniquely complemented and thus
distributive while those of topologically closed models are only pseudo- and orthocomplemented but
potentially non-distributive. This confirms how central complementation, and thus supplementation, is
in mereotopology—as already emphasized by [Ste04].

We identify the two minimal classes that emerge as MT-representable and ontologically coherent
(a notion formalized later) algebraic structures from those two classes of SPOCAs in Section 4.5. The
first class, namely weak Boolean contact algebras (WBCA), defines all closure operations mereologically;
though only the more restricted generalized Boolean contact algebras (GBCA) are guaranteed to have
intuitive spatial representations. The second class, namely SPOCAs with contact defined as xCy ↔
x � y⊥ or as xCy ↔ x ≮ y⊥, defines all closure operations topologically or quasi-topologically. These
two classes are also the weakest ones that could axiomatize space as intended by Whitehead [Whi29].
However, neither of them satisfies all conditions discussed by Whitehead. As a further consequence of
our work, we can verify algebraically that the assumptions of Whiteheadean mereotopology as outlined
in [For96; Mor98] are not compatible with the connectivity axiom Con, stating ∀x[C(x,−x)]. Ways to
overcome this problem are discussed in Section 4.6. Furthermore, we prove that no “true mereotopology”,
that is, no MT-representable MT-closed mereotopology, with atoms can exist. Only if we allow coherently
closed (C-closed) instead of MT-closed mereotopologies, exactly two theories (among all combinations of
mereological and topological definitions of each of the closure operation sum, intersection, complement,
and universal), namely the GBCAs and the SPOCAs with xCy ↔ x 6≤ y⊥, admit both continuous and
discrete models.

From a methodological point of view, this chapter demonstrates that the duality between algebraic
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Figure 4.1: An overview of our approach in Chapter 4. The correspondence between a logical theory of
mereotopology and its model on the left-hand side are fairly standard. Representation results between
some classes of algebraic structures, specifically lattices, and topological spaces as indicated on the
right-hand side are known for some specific cases. In order to establish a subset of the logical theories
of mereotopologies that have spatially representable topological interpretations, we need to, first and
foremost, establish a correspondence between the models of CMTs and contact algebras. Since we
cannot achieve this in general (indicated by the dashed arrow), we resort to the restriction of CMTs
to UCMTs as shown in the second row. Every model of a UCMT has an algebraic counterpart in
the class of orthocomplemented contact algebras (OCAs) as indicated by the solid arrow in the middle.
As the second crucial step (the right dashed arrow in the top row), we try to reduce the class of OCAs
to a smaller class that still includes all spatially representable contact algebras. This is a subclass
of the Stonian pseudo- and orthocomplemented contact algebras (SPOCAs), which are at least MT-
representable. However, as indicated by the uni-directed solid arrow on the right, not all SPOCAs are
spatially representable or even topologically representable.

structures and topological spaces is not a mere theoretical exercise only of mathematical interest, but
helps us understand the diversity of theories of qualitative space and select an axiomatization accord-
ing to any given set of desirable ontological assumptions. Our methodology is outlined in Figure 4.1:
We leverage the knowledge about duality between certain lattices and topological spaces to the un-
derstanding of mereotopology. The models of all mereotopologies satisfying the discussed closure as-
sumptions can be represented algebraically in a straightforward manner. With the introduced notion
of MT-representability we are then able to reduce the contact algebras resulting from UCMTs to a
much more restricted set of contact algebras, namely SPOCAs, that includes all spatially representable
and ontologically coherent algebraic counterparts to models of UCMT. Two examples of such contact
algebras arising from UCMTs, which are representative of the only two C-closed MT-representable
contact algebras with discrete models, are given in Figure 4.1. The figure also describes their logical
counterparts as well as the common spatial interpretation of their models.
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4.1 Mereotopologies with complements

In this chapter, we only consider so-called equidimensional mereotopologies, i.e., unsorted mereotopolo-
gical theories whose domain elements can be interpreted as all being of equal dimension. For example,
the domain elements could be interpreted all as 1D regions (such as time intervals or intervals on a
line) as in Allen’s Interval Algebra [All83], or as spatial regions which are all 2D or all 3D, or as spatio-
temporal regions of either all 3D or all 4D. The language of those theories consist of a parthood and a
contact relation that satisfy P.1 –P.3 and C.1 –C.3 as discussed in Chapter 3. We also take the defini-
tions of overlap (O.D), underlap (U.D), and proper parthood (PP.D) from Chapter 3 for granted in any
equidimensional mereotopology.

4.1.1 Closure mereotopology with unique closures (UCMT)

A common requirement for mereotopological theories is the existence of closure operations. These require
an intersection for any two overlapping entities and a sum for any two underlapping entities, compare,
for example, closure meoreotopology (CMT: [CV99a]). Here, we go beyond CMT in three ways in
order to define unique closure mereotopology (UCMT).

First, we require a greatest entity to exist, i.e., something that everything else is a part of UCMT.4.
The existence of such a universal entity, denoted by u, is plausible in any restricted domain of interest,
such as the earth, a specific country, building, or an even smaller experimental domain (such as a closed
“blocks world” consisting of a finite number of blocks).

(UCMT.4) ∀x[P (x, u)] (unique universal entity)

Secondly, we require all closure operations to be uniquely defined. The universal u is already unique
by P.2. Because we want sums and intersections also to be uniquely defined for all pairs of entities, we
denote them by function symbols, namely ⊕ and �. We need to ensure that the sum x⊕y is the smallest
element which has both x and y as parts (supremum) and that anything that overlaps the sum must also
overlap either x or y. Likewise, the intersection x�y is the greatest element that is both part of x and y
(infimum) if x and y overlap at all. If x and y do not overlap, the intersection x� y is meaningless and
may be assigned an arbitrary entity without further logical consequences. These conditions are reflected
in the axioms UCMT.1 and UCMT.2, which entail ∀x, y P (x, x ⊕ y) and ∀x, y P (x � y, x). It follows
that every pair of elements has a sum and intersection so that P (x1, x2) and P (y1, y2) together imply
P (x1 ⊕ y1, x2 ⊕ y2) and P (x1 � y1, x2 � y2), the latter only if O(x1, y1). We do not require a similar
precondition in UCMT.1 because in the presence of UCMT.4 any two entities automatically underlap.

(UCMT.1) ∀z[(O(x, z) ∨O(y, z))↔ O(x⊕ y, z)] (sum is supremum)

(UCMT.2) O(x, y)→ ∀z[(P (z, x) ∧ P (z, y))↔ P (z, x� y)] (intersection is infimum)

Finally, we require models not only to be closed under intersections and sums, but also to be closed
under complementation. Given that a universal entity exists, complements are a natural concept moti-
vated by human perception of physical space: if we are given a restricted physical space, we can easily
identify the complement with respect to the universal entity. Again, the complement shall be uniquely
defined for every entity, hence we denote it by a function, namely 	. Note, however, that the com-
plement of the universal u is not meaningful because in a moment we will specifically prohibit a null
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(empty) entity to exist. We can choose, for example, 	u = u. The complement function shall be in-
volutary UCMT.5—a reasonable assumption for uniquely defined complements. Additionally, UCMT.6
and UCMT.7 ensure that entities and their complement interact correctly with respect to sums and
intersections (overlap). Though 	 is a total function, the universal’s complement is not meaningful. For
this reason, UCMT.5, UCMT.6, and UCMT.7 explicitly do not apply to the universal u.

(UCMT.5) x 6= u→ x = 	(	x) (complements involutary)

(UCMT.6) x 6= u→ x⊕ (	x) = u (sum of complements)

(UCMT.7) x 6= u→ ¬O(x,	x) (complements nonoverlapping)

We do not restrict ⊕, �, and 	 any further at this point. Instead, we consider in Section 4.4 two
plausible definitions, a mereological and a topological one, of each of these functions.

Contrary to the existence of a universal entity, a null entity (also called zero region) is often deemed
cognitively undesirable. The null entity would be part of every entity, thus it would also be in contact
to every entity. On the other side, the null entity is empty, i.e., not really existent and thereby not
in contact to anything at all. To avoid this paradox, we postulate UCMT.3 to ensure the cognitive
adequacy of the mereotopological theories.

(UCMT.3) ∀x∃y¬P (x, y) (no null entity)

However, it is not an essential assumption here because the algebraic counterparts of these mereotopo-
logies explicitly introduce a null entity. That means our subsequent analysis extends to mereotopologies
with unique closures that allow or even require a null entity, such as Roeper’s mereotopology [Roe97].
In fact the multidimensional theories constructed in later chapters all use a zero region to simplify their
axiomatizations.

We use the term UCMT in the following broader sense:

Definition 4.1. Let MT be a consistent, unsorted first-order theory with two distinguished binary pred-
icates C and P, two binary functions ⊕, �, a unary function 	, and a constant u. If MT entails the
sentences P.1 –P.3, C.1 –C.3, and UCMT.1 –UCMT.7 with the definitions O.D, U.D, and PP.D, we
call MT a UCMT.

The domain elements in a model of UCMT are often called regions.
Any UCMT has a mereological component that is restricted to a closed mereology CM where

sums, intersections, complements, and the universal are unique but is noncommittal with respect to
other mereotopological principles. These mereotopological principles, their corresponding axioms, and
the properties of the resulting logical theories have been studied in much detail in [CV99a; Esc07]. We
will show later that the requirement of unique closures including unique complements does not leave
many choices with respect to other mereotopological principles if we require spatial representability and
ontological coherence at the same time.

4.1.2 General mereotopology with unique infinitary closures (UGMT)

Many mereotopologies go beyond CMT by requiring sums and intersections of arbitrarily many—
possibly infinitely many—entities to exist. Axioms postulating such infinitary closures or unrestricted
fusions either require axiom schemas or sets or classes, [CV99a]. For better readability we use a set
notation here: X denotes an arbitrary set of domain entities.
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(UGMT.1) ∀X
[
∀z
[
∃x∈X[O(x, z)]↔ O(

⊕
X, z)

]]
(unrestricted sum)

(UGMT.2) ∀X
[
∃z
[
∀x∈X[P (z, x)]

]
→ ∀z

[
∀x∈X[P (z, x)]↔ P (z,

⊙
X)
]]

(unrestricted intersection)

A UCMT that satisfies these axioms is a general mereotopology (GMT) with unique infinitary
closures (including complements).

Definition 4.2. A UGMT is a UCMT that satisfies UGMT.1 and UGMT.2.

Only in Section 4.2.2 we will briefly discuss the subclass UGMT and how their algebraic counterparts
yield complete lattices.

4.2 The algebraic structures arising from models of UCMT

We now introduce a class of algebraic structures called contact algebras and show that the models
of UCMT correspond to orthocomplemented contact algebras (OCA) while the models of UGMT
correspond to complete OCAs. First let us define what we mean by a contact algebra. Contact algebras
are not a new concept, various classes thereof have been studied as algebraic counterparts of specific
mereotopological theories, e.g., by [BD07a; DW04; DW05b; Ste00; SW97; Vak07]. Our definition here
encompasses the weakest common properties and is based on bounded lattices, which we will define in a
moment in Definition 4.4. Within contact algebras we denote the lattice operations meet and join using
the symbols · and +.

Definition 4.3. A contact algebra (L,C) consists of a bounded lattice L which defines a partial order
≤ and a contact relation C that satisfies the axioms C0 –C3.

(C0) 0¬Cx (null disconnectedness)

(C1) x 6= 0→ xCx (C reflexive)

(C2) xCy ↔ yCx (C symmetric)

(C3) xCy ∧ y ≤ z → xCz (C monotone with respect to ≤)

Thus, the contact relation must satisfy the axioms of a ground mereotopology. The axioms C1 –C3 are
algebraic versions of the axioms C.1 –C.3 of MTs while C0 deals with the the newly introduced smallest
element 0 that is necessary to construct a lattice from a mereotopological model. The assumption that
0 is not connected to any other entities is merely a convenient choice without deeper implications. To
distinguish the contact relation in a mereotopological theory from the contact relation in its algebraic
counterpart, we write C(x, y) to refer to the former and xCy to refer to the latter. The latter has nothing
to do with the bold notation used in later chapters to refer to the extension of C.

4.2.1 Relevant classes of lattices

Before we show how to construct the algebraic counterparts of UCMTs, we review the various classes of
lattices necessary for the later sections of this chapter. These are used to define more restricted classes
of contact algebras. Most of these classes of lattices are defined in standard references such as [Bly05;
Grä98], while more specialized classes are covered in [Ste99]. Each class allows nondistributive models
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Figure 4.2: Relationships between bounded lattices with varying kinds of complementation; adapted
from [Hah08; Ste99]. The arrows indicate refinement, e.g., every p-ortholattice is also a pseudocomple-
mented and an orthocomplemented lattice. These refinements are transitive. In the case of distributive
bounded lattices many of these classes of lattices collapse.

unless explicitly ruled out. The relations between these classes of bounded lattices are illustrated in
Figure 4.2.

One remark upfront: Any lattice can be treated as an algebraic structure 〈L, ·,+〉 as well as a
partially ordered set 〈L,≤〉 with unique supremum + and unique infimum · for any pairs of entities. We
can define x ≤ y ↔ x · y = x for any x, y ∈ L. We depict lattices as Hasse diagrams which are transitive
reductions of the partial order of the lattice. That means only the direct, i.e., covering, order relations
are depicted while transitive closure is implied. x ≤ y holds if and only if there is a path consisting of
one or multiple line segments strictly leading upwards from x to y.

Definition 4.4. A bounded lattice is a structure 〈L, ·,+, 0, 1〉 of arity 〈2, 2, 0, 0〉 such that

(L.B0) 〈L, ·,+〉 is a lattice, i.e., a+ b and a · b are uniquely defined for all a, b ∈ L;

(L.B1) there exists an element 1 ∈ L so that 1 · a = a (and 1 + a = 1) for all a ∈ L;

(L.B2) there exists an element 0 ∈ L so that 0 · a = 0 (and 0 + a = a) for all a ∈ L.

Definition 4.5. A bounded distributive lattice is a structure 〈L, ·,+, 0, 1〉 such that

(L.D0) 〈L, ·,+, 0, 1〉 is a bounded lattice,

(L.D1) the distributive law holds, i.e., a · (b+ c) = a · b+ a · c for all a, b, c ∈ L.

The structures in the following Definitions 4.6 to 4.10 are all of type 〈2, 2, 1, 0, 0〉 equipped with a
unary function of complementation or pseudocomplementation.
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Definition 4.6. A complemented lattice is a structure 〈L, ·,+, ′, 0, 1〉 such that

(L.C0) 〈L, ·,+, 0, 1〉 is a bounded lattice,

(L.C1) a′ is a complement of a, i.e., a+ a′ = 1 and a · a′ = 0.

Definition 4.7. An orthocomplemented lattice (short: ortholattice) is a structure 〈L, ·,+, ⊥, 0, 1〉 such
that

(L.O0) 〈L, ·,+, 0, 1〉 is a bounded lattice,

(L.O1) a⊥ is an orthocomplement of a, i.e., for all a, b ∈ L we have

(a) a⊥⊥ = a,

(b) a · a⊥ = 0,

( c) a ≤ b implies b⊥ ≤ a⊥.

Notice that orthocomplemented lattices are complemented.

Definition 4.8. A pseudocomplemented lattice is a structure 〈L, ·,+, ∗, 0, 1〉 such that

(L.P0) 〈L, ·,+, 0, 1〉 is a bounded lattice,

(L.P1) a∗ is the pseudocomplement of a, i.e., for all b ∈ L, a · b = 0 ⇐⇒ b ≤ a∗.

Definition 4.9. A quasicomplemented lattice is a structure 〈L, ·,+,+, 0, 1〉 such that

(L.Q0) 〈L, ·,+, 0, 1〉 is a bounded lattice,

(L.Q1) a+ is the quasicomplement of a, i.e., for all b ∈ L, a+ b = 1 ⇐⇒ b ≥ a+.

Quasicomplemented lattices are also known as dually pseudocomplemented lattices.

Definition 4.10. A uniquely complemented lattice (short: unicomplemented lattice) is a structure
〈L, ·,+, ′, 0, 1〉 such that

(L.U0) 〈L, ·,+, ′, 0, 1〉 is a complemented lattice,

(L.U1) a′ is the unique complement of a, i.e., for all b ∈ L, b+ a = 1 and b · a = 0 imply b = a′.

Clearly, every uniquely complemented lattice is orthocomplemented, but not necessarily pseudocom-
plemented or quasicomplemented. On the other side, Figure 4.3 gives an example of a orthocomple-
mented, pseudocomplemented, and quasicomplemented lattice which is not unicomplemented. Pseudo-
or quasicomplemented lattices do not even have to be complemented. Lattices that are both pseudo-
complemented and orthocomplemented (and thus also complemented and quasicomplemented) but not
unicomplemented were introduced in [HWG09] as p-ortholattices.

Definition 4.11. A p-ortholattice is a structure 〈L, ·,+,+,⊥, 0, 1〉 such that

(L.PO0) 〈L, ·,+,+, 0, 1〉 is a quasicomplemented lattice,

(L.PO1) 〈L, ·,+,⊥, 0, 1〉 is an ortholattice.

An ortholattice is pseudocomplemented if and only if it is quasicomplemented. For a given p-
ortholattice 〈L, ·,+,+,⊥, 0, 1〉, the structure 〈L, ·,+, ∗, 0, 1〉 is a pseudocomplemented lattice if we define
x∗ = x⊥+⊥. P-ortholattices in which the orthocomplementation and pseudocomplementation operations
coincide (unlike Figure 4.3) are unicomplemented. Unicomplemented ortholattices are Boolean [Bir67].
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1 = 0+ = 0∗

a∗∗ = b∗∗ = c∗∗ = a⊥∗ = a+⊥ = a+∗ a∗ = b∗ = c∗

a = a⊥⊥ b = b⊥⊥ c⊥

c = c⊥⊥ a⊥ b⊥

a++ = b++ = c++ = a∗⊥ = a⊥+ = a∗+ a+ = b+ = c+

0 = 1+ = 1∗

Figure 4.3: A p-ortholattice with ortho-, pseudo-, and quasicomplements indicated.

0⊥

b (x · y)∗ = a⊥

x y x∗ + y∗ = (x · y)⊥

x · y y∗ = y⊥ x∗ = x⊥

a b⊥

0

Figure 4.4: A p-ortholattice that violates (x · y)∗ = x∗ + y∗ and is therefore not Stonian [HWG09].

Definition 4.12. A Boolean lattice is a structure 〈L, ·,+, ′, 0, 1〉 such that

(L.BO0) 〈L, ·,+, ′, 0, 1〉 is an orthocomplemented lattice,

(L.BO1) the distributive law holds, i.e., a · (b+ c) = a · b+ a · c for all a, b, c ∈ L.

But there are other interesting subclasses of p-ortholattices that are not distributive and thus not
Boolean. Stonian p-ortholattices were introduced in [HWG09] to algebraically capture the structure of
the mereotopology of [AV95]. A Stonian p-ortholattice is a p-ortholattice that satisfies the Stone identity
(L.SPO1). Figure 4.4 illustrates that not all p-ortholattices are Stonian.

Definition 4.13. A Stonian p-ortholattice is a structure 〈L, ·,+,+,⊥, 0, 1〉 such that

(L.SPO0) 〈L, ·,+,+,⊥, 0, 1〉 is a p-ortholattice,

(L.SPO1) The Stone identity holds, i.e., (a+ b)+ = a+ · b+ for all a, b ∈ L.

Again, a Stonian p-ortholattice 〈L, ·,+,+,⊥, 0, 1〉 is equivalently defined as 〈L, ·,+, ∗,⊥, 0, 1〉 using
pseudocomplementation if we choose x∗ = x⊥+⊥. We use both structures interchangeably. Stonian
p-ortholattice generalize the (distributive) Stone lattices to non-distributive lattices.



Chapter 4. Equidimensional mereotopologies with mereological closures 56

The Stone identity was originally proposed by Marshall Stone as an immediate generalization of
Boolean algebras to so-called Stone lattices—pseudocomplemented distributive lattices which satisfy the
Stone identity. Several other ways of stating the Stone identity in p-ortholattices are known, as the
following theorem from [HWG09] showed.

Theorem 4.1. Let 〈L, ·,+,+,⊥, 0, 1〉 be a p-ortholattice with x∗ = x⊥+⊥ for all x ∈ L. Then the
following statements are equivalent:

1. (x · y)∗ = x∗ + y∗ for all x, y ∈ L;

2. (x+ y)+ = x+ · y+ for all x, y ∈ L;

3. (x · y)++ = x++ · y++ for all x, y ∈ L;

4. (x+ y)∗∗ = x∗∗ + y∗∗ for all x, y ∈ L.

We will later use the properties 4.1(3) and (4); (4) is captured by the axiom S in the axiomatization
of SPOCA’s.

Notice that the dual of L.SPO1, (a · b)+ = a+ + b+, holds for all quasicomplemented lattices and,
equally, (a + b)∗ = a∗ · b∗ holds for all pseudocomplemented lattices. Moreover, (L.SPO1) and its dual
hold for orthocomplements in ortholattices, that is (a + b)⊥ = a⊥ · b⊥ and (a · b)⊥ = a⊥ + b⊥ for all
a, b ∈ L if L is orthocomplemented [HWG09]. Finally, it is easily verifiable that Boolean lattices are
Stonian p-ortholattices.

4.2.2 Orthocomplemented contact algebras (OCA)

We now show that all the models of a UCMT can be viewed algebraically as contact algebras in which
the lattice is orthocomplemented4.

Definition 4.14. An orthocomplemented contact algebra (OCA) is an algebraic structure A = (L,C)
consisting of an ortholattice L = 〈L, ·,+,⊥, 0, 1〉 and a contact relation C that satisfies C0 –C3.

The theory
OCA = {L2∨ –L6∨, L2∧ –L4∧, O1′ –O3′, C0 –C3}

axiomatizes OCAs, see Appendix F.1 for the algebraic axioms we use. Notice that OCAs are not
necessarily distributive. We only consider nontrivial OCAs which contain an element apart from 0 and
1. Now we show how to construct an OCA from an arbitrary model of UCMT.

Theorem 4.2. LetM be a model of UCMT with domain M.
ThenM with the extended domain L = M ∪ {0} where 0 /∈M and with the definitions

x · y =

0 if x = 0 or y = 0 or 〈x, y〉 /∈ OM
x� y otherwise

4Orthocomplemented lattices have first been used by Biacino and Gerla [BG91] as an algebraic theory of Clarke’s
axiomatization of mereotopology.
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x+ y =



0 if x = 0 and y = 0

y if x = 0 and y 6= 0

x if x 6= 0 and y = 0

x⊕ y otherwise

x⊥ =


0 if x = u

1 if x = 0

	x otherwise

1 = u

xCy =

false if x = 0 or y = 0

〈x, y〉 ∈ CM otherwise

defines an structure A = (L,C) = (〈L, ·,+,⊥, 0, 1〉,C) that is an OCA.

Proof. In order to show that A is an OCA it suffices by Definition 4.14 to prove that

(i) L is an ortholattice, and

(ii) C satisfies C0 to C3.

(i): Since ⊕ and � define supremum and infimum for every pair of elements (infimum is defined as 0
for all nonoverlapping pairs), L = (M ∪ {0},+, ·,⊥ , 0, 1) is a lattice with the partial order defined
as x ≤ y ⇔

(
P(x, y) or x = 0

)
. This definition of ≤ follows from our construction by the following

two derivations:

x ≤ y ⇒ x · y = x

⇒
(
x� y = x and O(x, y)

)
or x = 0

⇒ ∀z[P(z, x) ∧P(z, y)↔ P(z, x)] or x = 0

⇒ ∀z[P(z, y)← P(z, x)] or x = 0

⇒
(
P(x, y)← P(x, x)

)
or x = 0

⇒ P(x, y) or x = 0

and

P(x, y) or x = 0⇒
(
P(x, y) ∧ ∀z[P(z, x)→ P(z, y)]

)
or x = 0

⇒
(
O(x, y) ∧ ∀z[P(z, x)→ P(z, y)]

)
or x = 0

⇒
(
∀z[P(z, x) ∧P(z, y)↔ P(z, x� y)] ∧ ∀z[P(z, x)→ P(z, y)]

)
or x = 0

⇒ ∀z[P(z, x)↔ P(z, x� y)] or x = 0

⇒ x = x� y or x = 0

⇒ x = x · y

⇒ x ≤ y

By the definition of the meet operation ·, the lattice has in 0 a lower bound. By the definition of
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the join operation + and UCMT.4, the lattice has in 1 an upper bound. Thus, L is a bounded
lattice.

L further satisfies the properties L.O1(a) – L.O1(c) of ortholattices:

L.O1(a): for all a ∈ L with a 6= 0, 1, a⊥⊥ = a follows from the definition of 	 in UCMT.5. For
a = 0 we have a⊥⊥ = (a⊥)⊥ = 1⊥ = 0 and for a = 1 we have a⊥⊥ = (a⊥)⊥ = 0⊥ = 1.

L.O1(b): for all a ∈ L, a · a⊥ = 0 follows immediately if a = 0 or a = 1. For all a ∈ L with
a 6= 0, 1 we have 〈x, (	x)〉 /∈ OM by UCMT.7, which results in a · a⊥ = 0 by our definition of
⊥ and ·.

L.O1(c): Assume a, b ∈ L with a ≤ b. We will prove that b⊥ ≤ a⊥ in any case.
If a = 0, then b⊥ ≤ 1 = 0⊥ = a⊥, which is trivially satisfied.
If a = 1, then a ≤ b implies b = 1 and therefore b⊥ = 1⊥ ≤ 1⊥ = a⊥ is trivially satisfied.
If b = 0, then a ≤ b implies a = 0 and therefore b⊥ = 0⊥ ≤ 0⊥ = a⊥ is trivially satisfied.
If b = 1, then b⊥ = 1⊥ = 0 ≤ a⊥, which is trivially satisfied.
Now consider the following computation for the case a, b 6= 0, 1 with the assumption a ≤ b:

a ≤ b⇒ a · b = a definition of ≤

⇒ a� b = a definition of � for a, b 6= 0, 1

⇒ ∀z[P(z, a) ∧P(z, b)↔ P(z, a)] UCMT.2

⇒ ∀z[P(z, b)← P(z, a)]

⇒ ∀z[¬P(z, b)→ ¬P(z, a)]

⇒ ∀z[P(z,	b)→ P(z,	a)] UCMT.7

⇒ ∀z[P(z,	a) ∧P(z,	b)↔ P(z,	b)]

⇒ 	b�	a = 	b UCMT.2

⇒ 	b · 	a = 	b definition of � for a, b 6= 0, 1

⇒ b⊥ · a⊥ = b⊥ definition of ⊥ for a, b 6= 0, 1

⇒ b⊥ ≤ a⊥ definition of ≤

Then b⊥ ≤ a⊥ follows as well. Hence the structure L is an ortholattice.

(ii) The contact relation C satisfies C0 by definition and C1 –C3 follow directly from C.1 –C.3 of a
UCMT.

Thus, the structure A = (L,C) = (〈M ∪ {0}, ·,+,⊥, 0, 1〉,C) is an OCA.

We can obtain an analogous result for UGMT in terms of complete OCAs. First, we define what it
means for a lattice to be complete—a second-order property similar to the fusion operator in UGMT.

Definition 4.15. Let 〈L, ·,+, 0, 1〉 be lattice. It is complete if and only if it is closed under arbitrary
meets, that is

∀S ⊆ L ∃x ∈ L : x =
∏∏∏

S

A complete lattice is also complete under arbitrary joins, i.e.,

∀S ⊆ L ∃x ∈ L : x =
∑∑∑

S.



Chapter 4. Equidimensional mereotopologies with mereological closures 59

These so-called fusion operators
∑∑∑

and
∏∏∏

are often alternatively denoted as
∨

and
∧
, respectively. We

call a contact algebra complete if its underlying lattice is complete.
Then, the next corollary immediately follows.

Corollary 4.1. LetM be a model of UGMT with domain M.
ThenM with the extended domain L = M ∪ {0} where 0 /∈M and with the definitions

∏∏∏
S =

0 if 0 ∈ S or ¬∃z
(
∀x ∈ S (〈z, x〉 ∈ PM)

)⊙
S otherwise

∑∑∑
S =

0 if ∀x ∈ S (x = 0)⊕(
S \ {0}

)
otherwise

x⊥ =


0 if x = u

1 if x = 0

	x otherwise

1 = u

xCy =

false if x = 0 or y = 0

〈x, y〉 ∈ CM otherwise

defines an structure A = (L,C) = (〈L, ·,+,⊥, 0, 1〉,C) that is a complete OCA.

Proof. With M being a model of UGMT, it is also a model of UCMT. Hence we can construct an
OCA (L,C) from M according to Theorem 4.2 because the binary definitions for intersection, ·, and
sum, +, follow from the fusion definitions. Because the lattice L is complete by the very existence of
the fusions of arbitrary sets of entities, the OCA is also complete.

Theorem 4.2 and Corollary 4.1 enable us to focus on the topological representability or embeddability
of (complete) OCAs in order to study representability of all the models of UCMT and of UGMT.

4.3 Mereotopologically representable complete OCAs

The study of topological representability of algebraic structures has a long tradition established in the
seminal work by [Sto36] on the duality between Boolean algebras and the topological spaces now known
as Stone spaces. Since then, many generalizations thereof have been found. Here, we are not interested in
full duality, but rather in embeddings of OCAs (with lattices as core) in a topological space in a way that
preserves the mereotopological structure, i.e., gives point-set interpretations to all lattice elements so
that parthood and contact also have point-set interpretations that reflect their intended spatial meaning.
If an OCA has such a topological representation or embedding, we call it spatially representable. But
instead of giving a complete definition of spatial representability, we only partially define it by giving
a few necessary conditions that must hold in a spatially representable OCA. Every OCA that satisfies
these conditions is called mereotopologically representable (MT-representable). Then we have for all
OCAs

spatially representable⇒ MT-representable
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but not its converse, i.e.
MT-representable; spatially representable

Nevertheless, by showing that MT-representable complete OCAs are pseudocomplemented and sat-
isfy the Stone identity we can conclude the same for spatially representable complete OCAs. Thus,
MT-representability restricts the behaviour of complementation in the lattice structure of the algebraic
counterparts resulting from models of UGMT. Translated into the realm of the logical theories, we
essentially show that all models of UGMT that have some spatial representation must have an alge-
braic structure whose lattice is a Stonian p-ortholattice. This defines a weakest class of equidimensional
mereotopologies with unique closures under arbitrary sums, arbitrary joins, and under complementation.

A few words on our notation: Sets are denoted by capital letters to distinguish them from lattice
elements. h(a) denotes the set that a lattice element a is represented by. We already introduced our
notation for topological spaces on page 35. In addition, the following set-theoretic equivalences in
topological spaces are used without further mentioning.

Lemma 4.1. Let 〈X, τ〉 be a topological space. Then for all sets S = {A : A ⊆ X},

int
( ⋂

A∈S

A
)

=
⋂

A∈S

int(A) and cl
( ⋃

A∈S

A
)

=
⋃

A∈S

cl(A),

int
( ⋃

A∈S

A
)
⊇
⋃

A∈S

int(A) and cl
( ⋂

A∈S

A
)
⊆
⋂

A∈S

cl(A).

4.3.1 MT-representability

For an OCA to be spatially representable, we require that a lattice homomorphism h into a set of subsets
of X of a topological space (X, τ) exists. The binary lattice operations · and + correspond to binary
operations u and t defined over the subsets of X. They may map to standard set intersection ∩ and
union ∪ in the topological space, though this is not required. The infinitary versions of · and + that
must exist in complete lattices then map to infinitary version of u and t, which we denote as

d
and⊔

. Notice that as a lattice homomorphism, h must preserve joins and meet, i.e., h(x · y) = h(x) u h(y)
and h(x + y) = h(x) t h(y). In particular, we must have h(x) ⊆ h(y) ⇐⇒ x · y = y. In other words,
the lattice order ≤ and thus the inherent parthood order, P , is preserved as subset inclusion ⊆ in the
representing topological space.

We are now ready to define MT-representability of a complete OCA.

Definition 4.16. Let A = (〈L,+, ·,⊥ , 0, 1〉,C) be a complete OCA.
It is called MT-representable iff there is some topological space 〈X, τ〉 and an injective lattice homomor-
phism h from L into the structure 〈T ,u,t〉 where T ⊆ X for each T ∈ T and the following conditions
are satisfied:

1. h(1) = X and h(0) = ∅;

2. for all sets S ⊆ L we have⋂
x∈S

int(h(x)) ⊆ h(
∏∏∏

S) =
l

x∈S

h(x) ⊆
⋂
x∈S

cl(h(x)) and

⋃
x∈S

int(h(x)) ⊆ h(
∑∑∑

S) =
⊔
x∈S

h(x) ⊆
⋃
x∈S

cl(h(x));
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3. any x ∈ L is regular, i.e. satisfies int(x) = int(cl(x)) and cl(int(x)) = cl(x);

4. for all x, y ∈ L, if int(h(x)) ∩ int(h(y)) 6= 0 then xCy;

5. for all x, y ∈ L, if cl(h(x)) ∩ cl(h(y)) = 0 then x¬Cy.

Condition (1) ensures that the embedding topological space is not larger than necessary, while condi-
tion (2) ensures that the set that represents the meet (or join) of a set of entities differs only in boundaries
from the point-set intersection (union) of their representing sets. More specifically, the representation of
the meet (join) of a set of entities is not smaller (greater) than the intersection (union) of the interiors
of their representations and not larger (smaller) than the intersection (union) of the closures of their
representations. Condition (3) ensures that all lattice elements are represented by regular sets, so that
all elements apart from 0 have a nonempty interior, that is, an MT-representable complete OCA satisfies

3 ′. for all x ∈ L, int(h(x)) = ∅ if and only if x = 0.

To prove the direction → of this implication, assume int(h(x)) = ∅ for some x ∈ L. Then from

h(x) ⊆ cl(h(x)) = cl(int(h(x))) = cl(∅) = ∅

it immediately follows that x = 0 because h is injective and satisfies condition (1).
The conditions (4) and (5) ensure that contact is adequately interpreted so that any two entities

whose representations share a point are indeed in contact, while if the closures of their representations
do not share a point, they are not in contact. Finally, if x · y = 0 and x+ y = 1 then h(x)uh(y) = ∅ and
h(x)th(y) = X. Then from conditions (2) and (3) of Definition 4.16 we deduce the following additional
condition,

6 . for all x, y ∈ L, if x · y = 0 and x+ y = 1 then int(X \ h(x)) ⊆ h(y) ⊆ cl(X \ h(x)),

which follow immediately from the next two derivations:

int(X \ h(x)) = X \ cl(h(x)) int(X \A) = X \ cl(A)

⊆ cl(h(y)) Definition 4.16(2) implies cl(h(y)) ⊇ X \ cl(h(x))

⊆ int(cl(h(y))) apply int() on both sides

= int(h(y)) Definition 4.16(3)

⊆ h(y)

cl(X \ h(x)) = X \ int(h(x)) cl(X \A) = X \ int(A)

⊇ int(h(y)) Definition 4.16(2) implies int(h(y)) ⊆ X \ int(h(x))

⊇ cl(int(h(y))) apply cl() on both sides

= cl(h(y)) Definition 4.16(3)

⊇ h(y)

In other words, any complement of an entity x in an OCA is mapped by h to a point set that is at
least as large as the interior of the topological complement of x and no larger than the closure of the
topological complement of x.
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Special versions of MT-representability are representability by regular closed (or regular open) sets
or by regular sets as for the Boolean Contact Algebras (BCAs) with x¬Cy ↔ x < y⊥ or the Stonian
p-ortholattices with x¬Cy ↔ x ≤ y⊥. In other words, lattices representable by regular closed sets of a
topological space, such as BCAs, satisfy all conditions of Definition 4.16. Key is that conditions (2) to
(5) are satisfied if we use ∩ as u and if we have cl(x) = x for all x ∈ L; (2) then simplifies (in the binary
case) to int(h(x))∩ int(h(y)) ⊆ h(x)∩ h(y) ⊆ h(x)∩ h(y) which is trivially true. Conditions (4) and (5)
then amount to cl(h(x)) ∩ cl(h(y)) 6= 0 ⇔ xCy which is satisfied once we define x¬Cy ↔ x < y as in
BCAs, compare the definition of contact in [DW05a]. For the representation of Stonian p-ortholattices
by regular sets, we can choose xu y = x∩ y ∩ int(cl(x∩ y)) to satisfy condition (2) while the conditions
(4) and (5) are satisfied if we define h(x)∩h(y) 6= 0⇔ xCy, compare the definition of contact in [AV95;
HWG09]. Now we can prove the first property of MT-representable complete OCAs.

Theorem 4.3. An MT-representable complete OCA is pseudocomplemented.

Proof. Suppose A = (〈L,+, ·,⊥ , 0, 1〉,C) is an MT-representable complete OCA. Let x ∈ L be an
arbitrary lattice element. We will show that it must have a pseudocomplement in L.
Let Sx = {x∗i : x∗i ∈ L and x · x∗i = 0} ⊆ L denote the set of meet-complements of x in L. Because A
is a complete lattice, we have

∑∑∑
Sx ∈ L. We will now show that x ·

∑∑∑
Sx = 0 and thus

∑∑∑
Sx ∈ Sx.

Note that all x∗i ∈ Sx not only satisfy x · x∗i = 0 but also x+ x∗i ≥ x+ x⊥ = 1, allowing us to utilize
Definition 4.16(6) in the following computation:

int
(
h(x ·

∑∑∑
Sx)
)
⊆ int

(
cl
[
h(x) ∩ h

(∑∑∑
Sx
)])

Def. 4.16(2)

⊆ int
(
cl
[
h(x) ∩ cl

( ⋃
y∈Sx

h(y)
)])

Def. 4.16(2)

⊆ int
(
cl
[
h(x) ∩

⋃
y∈Sx

cl(h(y))
])

Lemma 4.1

⊆ int
(
cl
[
h(x) ∩

⋃
y∈Sx

cl(cl(X \ h(x)))
])

Def. 4.16(6)

= int
(
cl
[
h(x) ∩ cl[X \ h(x)]

])
cl(cl(A)) = cl(A)

⊆ int
(
cl(h(x)) ∩ cl[X \ h(x)]

)
Lemma 4.1

= int(cl(h(x))) ∩ int
(
cl[X \ h(x)]

)
Lemma 4.1

= int(h(x)) ∩ int
(
cl[X \ h(x)]

)
Def. 4.16(3)

= int(h(x)) ∩ int
(
X \ int(h(x))

)
cl(X \A) = X \ int(A)

= int(h(x)) ∩
(
X \ cl(int(h(x)))

)
int(X \A) = X \ cl(A)

= int(h(x)) ∩
(
X \ cl(h(x))

)
Def. 4.16(3)

=
(
int(h(x)) ∩X

)
\
(
int(h(x)) ∩ cl(h(x))

)
A ∩ (B \C) = (A ∩B) \ (A ∩C)

= int(h(x)) \
(
int(h(x)) ∩ cl(h(x))

)
int(h(x)) ⊆ X

= int(h(x)) \ int(h(x)) int(h(x)) ⊆ cl(h(x))

= ∅

By Definition 4.16(1) and (3′) we conclude that x ·
∑∑∑

Sx = 0. Hence,
∑∑∑

Sx is the pseudocomplement of
x, i.e., a meet-complement of x greater than or equal to any x∗i ∈ Sx. Thus any element in A must have
a pseudocomplement. Consequently, A is pseudocomplemented.
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The restriction to complete lattices essentially shifts the focus from UCMT to UGMT. Notice,
however, that all discrete models of UCMT are trivially complete.

Now we prove that in an MT-representable OCA the Stone identity must also hold. First, recall that
a pseudocomplemented ortholattice is also quasicomplemented, which also applies to contact algebras
defined over those lattices. In the following, we utilize the fact that MT-representable complete OCAs
are quasicomplemented to prove that they satisfy the Stone property. We exploit the fact that h(x)→
h(x++) is an interior mapping in the topological sense for a quasicomplemented OCA given condition 2
of Definition 4.16, see [HWG09] for details, that is,

h(x++) = int(h(y)) (+)

This is well known for Boolean lattices which are representable by the regular open sets of a topological
space. More generally, it can be justified by considering that by the definition of a quasicomplement,
x+ is the smallest entity so that x+ x+ = 1. We then have

h(x+ + x++) = h(x+ + x⊥+) = h(x+) ∪ h(x⊥+) = h(1) = X,

which is an open set in every topological space.
Analogously, h(x) → h(x∗∗) is a closure mapping in the representation of a pseudocomplemented

OCA given condition 2 of Definition 4.16, that is,

h(x∗∗) = cl(h(y)) (∗)

We further need the following result from [HWG09].

Lemma 4.2. Let 〈L,+, ·, ∗,⊥, 0, 1〉 be a p-ortholattice. Then we have

1. a∗∗ = (a++)∗∗

2. a++ = (a∗∗)++

We are now ready to prove the Stone identity for MT-representable, quasicomplemented OCAs.

Theorem 4.4. An MT-representable OCA A = 〈(L,+, ·,⊥ ,+ , 0, 1),C〉 satisfies (x · y)++ = x++ · y++

for all x, y ∈ L.

Proof. Suppose A = 〈(L,+, ·,⊥ ,+ , 0, 1),C〉 is an MT-representable quasicomplemented OCA. Let x, y ∈
L denote two arbitrary lattice elements. We prove the two directions (x · y)++ ⊆ x++ · y++ and
(x · y)++ ⊇ x++ · y++ individually.

First (x · y)++ ⊆ x++ · y++ follows from

h((x · y)++) = int(h(x · y)) (+)

⊆ int(cl(h(x)) ∩ cl(h(y))) Def. 4.16(2)

= int(h(x∗∗) ∩ h(y∗∗)) (∗)

= int(int(h(x∗∗) ∩ h(y∗∗))) int(int(A)) = int(A)

= int(int(h(x∗∗)) ∩ int(h(y∗∗))) Lemma 4.1

= int(h(x∗∗++) ∩ h(y∗∗++)) (+)
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⊆ h(x∗∗++ · y∗∗++) Def. 4.16(2)

= h(x++ · y++) Lemma 4.2

For the other direction, (x · y)++ ⊇ x++ · y++, suppose (x · y)++ + x++ · y++. Then h((x · y)++) +
h(x++ ·y++) and there must exist a nonempty set z so that h(z) ⊆ h(x++ ·y++) but h(z) * h((x ·y)++).
By Def. 4.16(3), we know that int(h(z)) is nonempty; hence we assume

int(h(z)) ⊆ int(h(x++ · y++)) assumption

while int(h(z)) * int(h((x · y)++)) is contradicted by the following computation:

int(h(z)) ⊆ int(h(x++ · y++)) assumption

⊆ int(cl(h(x++) ∩ h(y++))) Def. 4.16(2)

= int(cl(int(h(x) ∩ int(h(y)))) (+)

⊆ int(cl(h(x · y))) Def. 4.16(2)

= int(int(cl(h(x · y)))) int(int(A)) = int(A)

= int(int(h((x · y)∗∗))) (∗)

= int(h((x · y)∗∗++)) (+)

= int(h((x · y)++)) Lemma 4.2

With h being an injective lattice homomorphism, we conclude (x · y)++ = x++ · y++.

We thereby proved that one version of the Stone property, namely condition (3) from Theorem 4.1,
is satisfied in any MT-representable OCA. This leads us to the definition of SPOCAs as a subclass
of OCAs which contains all complete OCAs that are MT-representable. SPOCAs can be axiomatized
algebraically by the theory

SPOCA = {L2∨ –L6∨, L2∧ –L4∧, O1′ –O3′, PC1′, PC2′, PC′′, S, C0 –C3},

see Appendix F.1 for the axioms, and see [WHG12] for more explanations and a reduction of this
nonminimal theory.

Definition 4.17. A Stonian pseudocomplemented and orthocomplemented contact algebra (SPOCA) is
a structure (〈L, ·,+,⊥ ,+ , 0, 1〉,C) such that

1. 〈L, ·,+,+ ,⊥ , 0, 1〉 is a Stonian p-ortholattice;

2. C satisfies C0 to C3.

The following corollary summarizes our result of this section:

Corollary 4.2. An MT-representable complete OCA is a complete SPOCA.

As a consequence, from now on we can focus our attention to SPOCAs without worrying that
other spatially representable classes of contact algebras may be overlooked. The only case we have not
accounted for are lattices that are not complete. It is, however, unlikely that any such class is of relevance
for a spatially representable mereotopology.



Chapter 4. Equidimensional mereotopologies with mereological closures 65

4.4 Closure operations in SPOCAs

In this section, we give a mereological and a topological definition of each of the closure operations
sum, intersection, complement, and universal; closely adhering to the definitions presented in [CV99a].
We investigate whether each of the four closure operations are defined in either (or in both) ways in
general SPOCAs. For those mereological or topological closure operations that are not entailed, we
identify equivalent algebraic properties. Surprisingly, very few such additional properties are necessary;
the necessary ones primarily arise from complements being defined mereologically or topologically. If
we define complements mereologically, the arising SPOCAs are distributive, while defining complements
topologically allows SPOCAs whose underlying Stonian p-ortholattices are non-distributive. In the later
case, the contact relation must be more restricted. The resulting two main types of SPOCAs are explored
in detail in Section 4.5.

Generally, we expect each of the closure operations to be defined at least mereologically or topo-
logically. But from an ontologically sound theory of mereotopology, we expect further that all closure
operations are defined consistently, e.g., either all are defined mereologically or all are defined topologi-
cally. We use the following terminology, the axioms follow shortly.

Definition 4.18. A UCMT is M-closed iff it satisfies M-IUCMT, M-SUCMT, and M-CUCMT.

Definition 4.19. A UCMT is T-closed iff it satisfies T-IUCMT, T-SUCMT, T-CUCMT, and Dis.

Definition 4.20. A UCMT is T ′-closed iff it satisfies T-IUCMT, T-SUCMT, T-C ′UCMT, and Dis.

A UCMT is then coherently closed (C-closed) if it is defined in one of those three ways.

Definition 4.21. A UCMT is C-closed iff it is M-closed, T-closed, or T ′-closed.

Ideally, the closure operations can be defined mereologically and topologically at the same time.
Then we call it MT-closed (mereotopologically-closed).

Definition 4.22. A UCMT is MT-closed iff it is

1. M-closed, and

2. T-closed or T ′-closed.

We use all of these properties for both the logical theories and their corresponding algebraic theories.

4.4.1 Mereological closure operations

The closure operations intersection, sum, and complementation can be defined mereologically as follows.
It is easily verified that these are consistent with UCMT.6 and UCMT.7.

(M-IUCMT) ∀w[P (w, x� y)↔ (P (w, x) ∧ P (w, y))] (intersection)

(M-SUCMT) ∀w[O(w, x⊕ y)↔ (O(w, x) ∨O(w, y))] (sum)

(M-CUCMT) ∀w[O(w,	x)↔ ¬P (w, x)] (complement)

In the sequel we will exclusively use the algebraic equivalents of these axioms as found in Ap-
pendix F.1. These differ only slightly from the above axioms to account for the additional bottom
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element 0 in a contact algebra, see Lemma F.1 in Appendix F.2 for the proof of the equivalence of the
two versions.

Notice that the universal u (denoted by 1 in the algebraic counterpart) is always defined mereologically
as ∀x [P (x,u)]. Moreover, we can easily prove that the algebraic equivalents of M-IUCMT and M-SUCMT,
i.e., M-I and M-S, are theorems in SPOCAs.

Lemma 4.3. SPOCA � M-I

Lemma 4.4. SPOCA � M-S

M-C does not necessarily hold in SPOCAs. Defining complementation mereologically requires the
SPOCA to be uniquely complemented and thus distributive and Boolean.

(Uni) (x · y = 0 ∧ x+ y = 1 ∧ x · z = 0 ∧ x+ z = 1)→ y = z (unicomplemented)

Lemma 4.5. SPOCA � M-C ↔ Uni

Proof. Since unicomplemented ortholattices are Boolean and vice versa it suffices to show that a uni-
complemented SPOCA satisfies the algebraic equivalence of M-C: z · x⊥ 6= 0 ↔ z � x and that a
SPOCA satisfying this property is unicomplemented. This has been done using the automated theorem
prover.

For the sums and complements to be unique, we further need extensionality of O postulated as O-Ext.
Recall that ¬O(x, y) ⇐⇒ x · y = 0.

(O-Ext) ∀z(z · x = 0↔ z · y = 0)↔ x = y (O-extensionality)

But from M-C we can already prove extensionality of O.

Lemma 4.6. SPOCA ∪ M-C � O-Ext

We obtain the following corollary on the effects of mereological closures in SPOCAs.

Corollary 4.3. A SPOCA is M-closed iff it is unicomplemented. An M-closed SPOCA is O-extensional.

4.4.2 Topological closure operations

The closure operations intersection, sum, and complementation can be defined topologically as following.
Again, their algebraic versions are found in Appendix F.1 with Lemma F.2 in Appendix F.2 proving the
equivalence of both versions. It is easily verified that these are consistent with UCMT.6 and UCMT.7.
There are two slightly distinct ways of defining topological complements, denoted by T-C and T-C ′.

(T-IUCMT) ∀w[C(w, x� y)→ (C(w, x) ∧ C(w, y))] (intersection)

(T-SUCMT) ∀w[C(w, x⊕ y)↔ (C(w, x) ∨ C(w, y))] (sum)

(T-CUCMT) ∀w[P (w,	x)↔ ¬C(w, x)] (complement)

(T-C′UCMT) ∀w[PP (w,	x)↔ ¬C(w, x)] (alternative complement)
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Figure 4.5: Two regions x and y connected to z whose set intersection is not connected to z due to the
nontransitive nature of contact.

Notice that since the universal is always defined mereologically as ∀x P (x,u), it is also automatically
defined topologically as ∀x C(x, u). However, this does not guarantee the topological uniqueness of the
universal, i.e., that ∀y [(∀x C(x, y)) → y = u] holds. Therefore, we introduce Dis, which has been
previously used to study contact algebras. Recall that the algebraic equivalent of u is 1.

(Dis) ∀x[x 6= 1→ ∃y(x¬Cy)] (only the top element is connected to all entities)

Intersections are always defined topologically in SPOCAs. Notice however that T-I only contains a
simple implication and not a biconditional. The reverse direction is not desirable as Figure 4.5 illustrates.

Lemma 4.7. SPOCA � T-I

Proof. Follows directly from C3.

Moreover, SPOCAs satisfy one direction of the implication in the axiom T-S, namely the direction
T-S← (the algebraic version of T-S←UCMT).

(T-S←UCMT) ∀w[C(w, x⊕ y)← (C(w, x) ∨ C(w, y))]

Lemma 4.8. SPOCA � T-S←

Proof. Follows directly from C3.

Since the reverse direction of T-S does not always hold, we use C4 to guarantee that sums are defined
topologically in SPOCAs, i.e., if an element x is connected to another element z, it is also connected to
one of the parts of z that make up z.

(C4) xC(y + z)→ xCy ∨ xCz (topological sum)

Lemma 4.9. SPOCA ∪ C4 � T-S

Proof. Immediately follows from Lemma 4.8.

Topological complement operation

Now we turn to the complement. We have two options, using either T-CUCMT or T-C′UCMT. We first
study T-CUCMT and then proceed with T-C′UCMT. In SPOCAs, T-CUCMT is captured algebraically by
C5 which requires an element to be in contact to all elements that are not parts of its orthocomplement.
In particular, for any x, x¬Cx⊥.
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(C5) zCx↔ z 6≤ x⊥ (topological complement)

Interestingly, C5 alone is sufficient to ensure that T-S holds and that C is extensional, i.e., C4 and
C-Ext are satisfied in all SPOCAs which satisfy C5. C-Ext expresses extensionality of C, that is, two
elements are considered identical if they are in contact to exactly the same elements. C-extensionality
is equivalent to requiring that a mereotopology can be reconstructed from contact as the only primitive
relation. It further ensures topological uniqueness of the universal (Dis).

(C-Ext) ∀z(zCx↔ zCy)↔ x = y (C-extensionality)

Lemma 4.10. SPOCA ∪ C5 � C4

Lemma 4.11. SPOCA ∪ C5 � {C-Ext, Dis}

Moreover, Int must hold in SPOCAs satisfying C5. This seems, however, coincidental and owed
to the fact that elements are disconnected from their complements, that is, ¬Con holds. Despite its
name, ¬Con is not the negation of Con but the exact opposite assumption. Con is inconsistent with a
nontrivial SPOCA satisfying C5. Int and Con have previously only been used in the context of contact
algebras with Boolean lattices, but easily generalize to SPOCAs. In our study we include Int only for
completeness purposes, it is not motivated by or directly related to the closure operations.

(Con) ∀x 6= 0, 1[xCx⊥] (connected complements)

(¬Con) ∀x[x¬Cx⊥] (disconnected complements)

(Int) ∀x, y[x¬Cy → ∃z(x¬Cz ∧ y¬Cz⊥)] (interpolation)

Lemma 4.12. SPOCA ∪ C5 � ¬Con

Proof. Choose y = x⊥ in C5 to obtain x¬Cx⊥.

Lemma 4.13. SPOCA ∪ C5 � Int

Proof. Choosing z = x⊥ in Int always evaluates to true: we obtain x¬Cy → (x¬Cx⊥ ∧ y¬Cx⊥⊥). By
Lemma 4.12 it is sufficient to prove ∀x, y[x¬Cy → y¬Cx⊥⊥] which is with x = x⊥⊥ the trivially true
inverse of C2.

We obtain the following corollary on the effect of topological closures in SPOCAs.

Corollary 4.4. A SPOCA is T-closed iff it satisfies C5. A T-closed SPOCA is C-extensional and
satisfies C4, ¬Con, and Int.

Finally, we verify that C5 and Uni (unique complementation) are independent of one another, i.e.,
that there exist SPOCAs that satisfy C5 but are not uniquely complemented and that there exist
SPOCAs with a Boolean lattice that do not satisfy C5. Both results are not very surprising.

Lemma 4.14. SPOCA ∪ Uni 2 C5

Proof. Counterexample provided in ca/theorems/spoca_Uni_C5.clif.

Lemma 4.15. SPOCA ∪ C5 2 Uni

Proof. Counterexample provided in ca/theorems/spoca_C5_Uni.clif.
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Quasi-topological complement operation

Now we turn to T-C′UCMT as an alternative to the axiom T-CUCMT for defining complements topologi-
cally. T-C′UCMT is captured algebraically by C5′.

(C5′) (x 6= 0 ∨ z 6= 1) ∧ (x 6= 1 ∨ z 6= 0)→ [zCx↔ z ≮ x⊥] (alternative topological complement)

Obviously, C5 and C5′ are mutually inconsistent but what are the consequences of using C5′ instead
of C5 to define complements? First, C5′ is in SPOCAs not sufficient to entail C4.

Lemma 4.16. SPOCA ∪ C5 ′ 2 C4

Proof. Counterexample provided in ca/theorems/spoca_C5prime_C4.clif.

Subsequently, we will focus on SPOCA together with C4 and C5′. It requires an element to be
connected to all other elements that are not proper parts of its (ortho-)complement, in other words, Con
is a theorem.

Lemma 4.17. SPOCA ∪ C5 ′ � Con

By Lemma 4.17 C5′ is not really a topological definition of complementation since complements are
connected, i.e., xCx⊥. Truly topological complements are complementary with respect to their extension
of contact. In a SPOCA that satisfies C5′, none of C-Ext, Dis, Int, or Uni necessarily hold. Let us start
with C-Ext: we can have models in which

∃x, y [x 6= y ∧ ∀z (xCz ∧ yCz)].

Then, the universal is no longer topologically unique; this would require Dis in addition. For that reason,
we refer to C5′ as a quasi-topological complement.

Lemma 4.18. SPOCA ∪ {C4, C5 ′} 2 C-Ext

Proof. Counterexample provided in ca/theorems/spoca_C4_C5prime_C-Ext.clif.

In the presence of C5′, Int is a also theorem of SPOCAs.

Lemma 4.19. SPOCA ∪ {C4, C5 ′} 2 Int

Proof. Counterexample provided in ca/theorems/spoca_C4_C5prime_Int.clif.

Finally, neither C5′ together with C4 entails Uni in SPOCAs, nor vice versa.

Lemma 4.20. SPOCA ∪ {C4, C5 ′} 2 Uni

Proof. Counterexample provided in ca/theorems/spoca_C4_C5prime_Uni.clif.

Lemma 4.21. SPOCA ∪ C5 ′ 2 Uni

Proof. Counterexample provided in ca/theorems/spoca_C5prime_Uni.clif.

Therefore the class of SPOCAs satisfying C5′ do not necessarily have a Boolean lattice structure.
Those that additionally satisfy C4 have all closure operations defined mereologically and topologically
except for the complement which is defined mereologically but only quasi-topologically. The following
corollary summarizes the effect of quasi-topological closures in SPOCAs.

Corollary 4.5. A SPOCA is T ′-closed iff it satisfies C4 and C5 ′. A T ′-closed SPOCA satisfies Con.
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4.5 Coherently closed MT-representable UCMTs

We already mentioned that a UCMT is only ontologically coherent if it is M-closed, T-closed, or
T′-closed. Now we can use the Corollaries 4.3, 4.4, and 4.5 to identify the weakest theories of C-closed
MT-representable UCMTs and explore the theories with stronger topological or mereological closure
conditions. A particular emphasis will be on theories that admit discrete models, i.e., theories allowing
models that contain atomic entities.

4.5.1 M-closed MT-representable UCMTs

Because M-closed SPOCAs are unicomplemented, they must have a Boolean lattice.

Corollary 4.6. The algebraic counterpart of an M-closed UCMT has a Boolean lattice.

Proof. Follows from unicomplemented ortholattices being Boolean [Bir67].

Many of the contact algebras previously studied in the literature have Boolean lattices and satisfy
C0 –C3 [see DW04; LY04; Ste00]. The most important ones are the following.

Definition 4.23. A contact algebra (L,C) in which L is a Boolean lattice is a

1. Generalized Boolean contact algebra (GBCA) if C satisfies C4;

2. Boolean contact algebra (BCA) if C satisfies C4 and C-Ext;

3. RCC algebra (RBCA) if C satisfies C4, C-Ext, and Con;

4. Proximity BCA (PBCA) if C satisfies C4, C-Ext, and Int.

BCAs are the algebraic counterparts of the theory RCC presented in Section 8.1.1 and RBCAs are
the algebraic counterparts of the theory RCC ∪ {RCC4′, RCC8} also presented in Section 8.1.1. For a
more comprehensive overview of the different classes of contact algebras and their relationships to one
another we refer to [HG12]. Contact algebras that have Boolean lattices but do not satisfy C4 are even
weaker than GBCAs; we call them weak Boolean contact algebras (WBCA), axiomatizable as

WBCA = SPOCA ∪Uni.

Definition 4.24. A weak Boolean contact algebra (WBCA) is a contact algebra (L,C) in which L is a
Boolean lattice.

As illustrated by the model in Figure 4.6(a), there do exist WBCAs that satisfy neither C4 nor C-Ext.
Thus, the class of WBCAs is strictly more general than both EWBCAs (to be introduced shortly) and
GBCAs. WBCAs are the weakest algebraic structures resulting from an MT-representable UCMT that
is M-closed. WBCAs admit atoms and in particular finite models as Figure 4.6(a) shows.

Theorem 4.5. An M-closed MT-representable UCMT has an algebraic structure (L,C) whose lattice
L is Boolean and whose contact relation satisfies C0 to C3.

This is a more general perspective of the results from [DW08] in which the different contact relations
definable on Boolean algebras have been studied. The weakest contact relation in [DW08] already
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1 , {1, 2, 3}

c′ , {1, 2} b′ , {1, 3} a′ , {2, 3}

a , {1} b , {2} c , {3}

0 , {}
(a) The Boolean lattice B3 with 3 atoms

1 , {1, 2, 3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1} {2} {3} {4}

0 , {}
(b) The Boolean lattice B4 with 4 atoms

Figure 4.6: The Boolean lattices B3 and B4 as WBCA and EWBCA that do not satisfy C4.
(a) B3 with {{〈0, x〉 : x ∈ L} ∪ {〈a, b〉, 〈a, c〉, 〈b, c〉}} /∈ C (and symmetric tuples) defining disconnection
is a WBCA which does not satisfy C-Ext or C4. B3 with {{〈0, x〉 : x ∈ L} ∪ {〈a, c〉}} /∈ C (and
symmetric tuples) is a non-extensional GBCA. The elements a′, b′, c′, and 1 are indistinguishable with
respect to the contact relation.
(b) B4 with x < y′ → x¬Cy defining disconnection except for {〈1, 2〉, 〈3, 4〉} ∈ C results in an EWBCA
not satisfying C4.
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satisfies C4, while Figure 4.6(a) shows that there are weaker contact relations definable on a contact
algebra with a Boolean lattice which may arise from M-closed UCMTs whose sums are not topologically
closed, i.e., which violate C4. We do not argue for the usefulness of these structures; in practice C4
seems like a reasonable assumption. We only explore weaker M-closed contact algebras by showing what
other contact relations are theoretically definable on a Boolean lattice.

WBCAs can be extended by C-Ext to obtain extensional weak Boolean contact algebras (EWBCA)
or by C4 to obtain the already defined GBCAs. EWBCAs are axiomatizable as

EWBCA = SPOCA ∪ {Uni, C-Ext}

Definition 4.25. An extensional weak Boolean contact algebra (EWBCA) is a WBCA (L,C) in which
the contact relation C satisfies C-Ext.

Again, there exist EWBCAs whose contact relations do not satisfy C4 (compare Figure 4.6a). How-
ever, in the following we show that in all nontrivial EWBCAs not satisfying C4, xCx′ holds for some
elements, while for atoms it cannot hold. In other words, the theory of EWBCAs extended by the
negation of C4 (¬C4), by ¬Triv, and by Atom is inconsistent with either of ¬Con and Con. For the
proof we rely on the following result from [DW05b] stating that Dis implies C-Ext in contact algebras
and thus in WBCAs. This results extends to SPOCAs.

(¬C4) ∃x, y, z[xC(y + z) ∧ x¬Cy ∧ x¬Cz] (some y is connected to y + z but neither to y nor to z)

(¬Triv) ∃y[y 6= 1 ∧ y 6= 0] (some entity besides 0 and 1 exists)

(Atom) ∃a[a 6= 0 ∧ ∀x(x = 0 ∨ x = a ∨ x · a 6= x)] (existence of an atom)

Lemma 4.22. SPOCA ∪ C-Ext � Dis

Lemma 4.23. EWBCA ∪ {¬C4, ¬Triv, ¬Con} � ⊥

Proof. We give an automatic proof showing that SPOCA ∪ {Uni, Dis} ∪ {¬C4, ¬Triv, ¬Con} � ⊥.
Since by Lemma 4.22 EWBCA |= SPOCA ∪ {Uni, Dis}, ¬Con is then inconsistent with any nontrivial
EWBCA that does not satisfy C4.

That does not mean that EWBCA ∪ {¬C4, ¬Triv} entails Con because ¬Con is not the simple
negation of Con but states that all entities are disconnected from their complement. We will next
prove that EWBCAs that contain an atom are inconsistent with Con as well because the atom must be
connected to its complement. This is generally true for all SPOCAs that satisfy Atom and Con.

Lemma 4.24. SPOCA ∪ {Dis, Atom, Con} � ⊥

Proof. Let a be an atom in L. Then a⊥ is a dual atom, i.e., 1 is the only element greater than a⊥. By
overlap, a⊥ is in contact to all elements except for a and 0. Suppose Con would hold, then aCa⊥ holds
and ∀y[a⊥Cy ↔ 1Cy] but 1 6= a⊥, a violation of Dis. This does not hold for a trivial model in which 1
is the only atom.

It immediately follows that EWBCAs that with atoms cannot satisfy Con.

Lemma 4.25. EWBCA ∪ {Atom, Con} � ⊥
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Figure 4.7: The classes of M-closed contact algebras and the logical extension relations among them,
which are indicated by arrows. For each class more than a single contact relation may exist. For
example, on BCAs contact can be defined as overlap, xCy ↔ x · y 6= 0, or as the standard contact
relation, x¬Cy ↔ x < y′. These are two distinct extensional contact relations. On the other side, there
are Boolean algebras that only allow strictly nonweak and/or extensional contact relations.

Proof. By Lemma 4.22, EWBCA � Dis and by Lemma 4.24 EWBCA ∪ {Atom, Con} � ⊥ follows.

Therefore, all models of EWBCAs which do not satisfy C4 but contain an atom suffer from a nonuni-
form interpretation of the contact relation — in particular all atomic, all atomistic, and all finite models
of EWBCAs and, more generally, of WBCAs with Dis. That xCx⊥ for atoms x is inconsistent with
extensionality had already been observed for BCAs in [RS02]. Our proofs are slightly stronger and show
that this problem persists in the weaker theory WBCAs extended by Dis requiring a topologically unique
universal element. The failure of xCx⊥ for some elements is not by itself a concern; in a disconnected
model one element may be isolated from the remaining space. However, the failure of xCx⊥ for all
atoms is a serious issue hinting to a weakness in the theory. Although it can be overcome by enforcing
C4, this creates other problems since C4 and C-Ext together disallow any discrete models unless contact
is reduced to overlap (which in turn reduces the theory to a pure mereology). The problem does not
persist in WBCAs; for those we can prove that Con is consistent.

Lemma 4.26. WBCA ∪ ¬C4 ∪Atom ∪ Con 2 ⊥

Proof. Figure 4.6(a) provides a counterexample.

What extensions of WBCAs are obtained if some of the closure operations are also defined topolog-
ically? Intersections are already defined topologically in WBCAs. If sums are defined topologically, we
require C4 and obtain GBCAs. If we define complements topologically by C5, we obtain PBCAs. Its
discrete models again reduce contact to overlap. Finally, if we require neither sums nor complements to
be defined topologically, but instead enforce C-extensionality, we obtain BCAs whose discrete models
have overlap as the only feasible contact relation. Hence, among the different strengths of closure opera-
tions, the two classes WBCAs and GBCAs are the only algebraic theories of M-closed MT-representable
UCMTs that admit non-atomless models with a contact relation different from overlap.

The extensions of WBCAs with the quasi-topological complements require adding C5′ and Con, which
results in MT-representable contact algebras that parallel those without C5′, see Figure 4.7. Those in
the classes WBCA′ and GBCA′ that do not satisfy Dis admit finite models, but those that satisfy Dis
and, in particular C-Ext, do not admit any models with atoms. In any of those models Con is satisfied
and thereby CM 6= OM.
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Figure 4.8: A contact algebra with a six-element Stonian p-ortholattice. Let ∀x, y[x 6= 0∧x ≤ y → xCy]
and aCa∗ (and symmetric tuples) define contact. Then the displayed lattice C6 together with C defines
a SPOCA (C6,C) that satisfies C5 and is thereby T-closed.

4.5.2 T-closed and T′-closed MT-representable UCMTs

T-closed MT-representable UCMTs have SPOCAs as algebraic counterparts which may be non-distrib-
utive as long as C5 is satisfied.

Theorem 4.6. A T-closed MT-representable UCMT has an algebraic structure (L,C) in which L is a
Stonian p-ortholattice and C satisfies C0 –C5, C-Ext, ¬Con, and Int.

This nondistributive class of SPOCAs has been studied in depth in [HWG09]; it is the algebraic
equivalent of the subtheory RT− of the mereotopology of [AV95].

Because such T-closed SPOCAs satisfy C4, intersections and sums are implicitly defined mereolo-
gically as well. The only real extension in terms of additional mereological closure operations requires
complements to be mereologically defined, which in turn by Lemma 4.5 makes the lattice Boolean and
thus results in a PBCA: C-Ext as well as Int are already entailed in all T-closed SPOCAs. This also
means C-Ext extends T-closed SPOCAs nonconservatively, while Con is altogether inconsistent with
T-closed SPOCAs. We already know that PBCAs are always atomless, hence the theory SPOCA ∪
C5 is—among all possible extensions of T-closed MT-representable UCMTs by additional mereological
closure operations—the only theory that admits atoms. Figure 4.8 gives such a model.

T′-closed MT-representable UCMTs also have SPOCAs as algebraic counterparts which may be
non-distributive as long as C5′ is satisfied. They differ from the T-closed ones in that they satisfy Con
instead of ¬Con but do not necessarily satisfy Dis, C-Ext or Int. However, those that have a universal
that is topologically defined, i.e., those that satisfy Dis are always atomless by Lemma 4.24.

Theorem 4.7. A T ′-closed MT-representable UCMT has an algebraic structure (L,C) in which L is
an atomless Stonian p-ortholattice and C satisfies C0 –C4, C5 ′ and Con.

4.5.3 MT-closed MT-representable UCMTs

Sections 4.5.1 and 4.5.2 let us conclusively answer the question whether MT-closed MT-representable
UCMTs exist and what their structure is. Such structures must be M-closed and either T-closed or
T′-closed. For the first case (a M- and T-closed theory) the intersection of the respective minimal
theories, i.e., of WBCAs and SPOCAs satisfying C5, results in PBCAs that satisfy C5 and which are
necessarily atomless. In these structures ¬Con is entailed; it requires that the contact relation be defined
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as overlap xCy ↔ x · y 6= 0 which reduces the theory to a pure mereology. For the second case (a M-
and T′-closed theory) we get the RBCA′s as minimal theory, which are RBCAs with contact defined as
C5′ and which are also atomless. Hence, we have the following result.

Theorem 4.8. Every MT-closed MT-representable UCMT has an algebraic structure that is an atom-
less BCA.

We also have negative results on the existence of MT-representable UCMTs with CM 6= OM or
with atoms.

Corollary 4.7. No M-closed and T-closed MT-representable UCMT with CM 6= OM exists.

Corollary 4.8. No MT-closed MT-representable UCMT with atoms exists.

Corollary 4.9. No MT-closed MT-representable UCMT with discrete models exists.

4.6 Conclusions

Our exploration revealed three weakest classes of potentially spatially representable complete OCAs
that correspond to extensions of UCMT. The first are WBCAs, the weakest class in which all closure
operations are defined mereologically. The second class are SPOCAs with C5, the weakest class in which
all closure operations are defined topologically. The third class are SPOCAs with C4, C5′, and Dis
(which further implies C-Ext). We are not aware of full embedding theorems for these three weakest
classes of contact algebras. This remains to be investigated in the future.

4.6.1 Spatially representable contact algebras with discrete models

Among the spatially representable OCAs, the classes allowing discrete models are of particular interest.
Although space is potentially infinitely divisible according to Aristotle, in practical applications any
concrete model of space will have “atoms” at some level, i.e., there is some finest granularity. This
granularity is usually determined by the precision of available data or measurement devices (think of
satellite images vs. microscopic pictures) or the precision we want to reason at (think of a car navigation
system vs. the accurate description of surface chemistry). For a generic Ontology (in the philosophical
sense) of space discrete models might not be that important, but for any specific domain we want to
be able to specify models completely e.g., by explicitly listing a finite set of regions and the primitive
relations (such as connection and parthood) among them. Such a specification should be consistent with
the theory and not a mere approximation thereof. Many mereotopologies, e.g., the RCC (corresponding
to RBCAs), prevent the existence of atomic regions by including a divisibility axioms, i.e., requiring the
existence of an interior part for each region. Such theories do not allow us to list all atomic regions of
a specific model. Of course, approximations of such models are possible, but these approximations have
different model-theoretic properties. This has an important consequence: the construction of and the
reasoning with specific models using a theory consistent with discrete, and especially finite, models can
be achieved using standard theorem provers, which is not possible for mereotopological theories that
only admit infinite models.

Which extensions of the three weakest classes of MT-representable C-closed OCAs allow discrete
models, i.e., are not atomless? We showed that non-atomless WBCAs and EWBCAs have contact
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relations that behave erratically with regard to contact among complements. While the stronger BCAs
and extensions thereof do not suffer from this problem, their discrete models are only of mereological
nature, i.e., CM = OM for any discrete modelM [DW05a]. Similarly, SPOCAs satisfying C5′ and Dis
rule out discrete models by Lemma 4.24. This leaves GBCAs and SPOCAs with xCy ↔ x 6≤ y⊥ as the
only (among all combinations of mereological and topological or quasi-topological closure operations)
MT-representable OCAs that admit discrete models. These two classes can be characterized as following:

1. GBCAs in which all closure operations are defined mereologically while sums and intersection are
also defined topologically. In general, GBCAs are consistent with either of Con or ¬Con. The enti-
ties in such algebraic structures are representable by either (1) only regular open, (2) only regular
closed, or (3) unrestricted point sets (with point-set intersections, unions, and complements). In
the second case Con must hold while in the other cases ¬Con must hold. The lattices underlying
this class are distributive, i.e., parthood is distributive with respect to sum and intersections.

2. The subclass of SPOCAs with xCy ↔ x 6≤ y⊥ as weakest contact algebras defining all closure
operations topologically while sums and intersections are also defined mereologically. Due to
the topological nature of complements, ¬Con must hold. The representation of such algebraic
structures must include both regular open and regular closed sets, since each regular closed set has
a regular open set as complement and vice versa. In this class, the underlying lattices—and thus
the parthood relation—may be non-distributive.

Indeed, GBCAs and SPOCAs with xCy ↔ x 6≤ y⊥ exemplify the two ways of constructing discrete
mereotopologies discussed in [MV99]. SPOCAs with xCy ↔ x 6≤ y⊥ constitute a C-extensional theory
with classical topological operators in which each entity, in particular each atom, is “duplicated” as
an open and as a closed set, while GBCAs define an O-extensional theory without classical topological
operations, i.e., that do not distinguish regions with identical closures.

4.6.2 Spatially representable Whiteheadean mereotopology

In [Whi29], Whitehead originally proposed a C-extensional mereotopology and defined atoms as regions
without proper parts. We can interpret this as an implicit endorsement of the existence of atoms.
Unfortunately, as Corollary 4.8 shows, no MT-closed MT-representable mereotopology with atoms can
exist. In fact, the only theory that (1) allows atoms, (2) is C-extensional, and (3) is MT-representable are
the SPOCAs with xCy ↔ x 6≤ y⊥ defining contact—assuming that this class of SPOCAs can be further
strengthened to a class of spatially representable SPOCAs; see [WHG12] for work in this direction.
From [HWG09] we know that such theory is also definable by a single mereological primitive P (the
partial order relation ≤ in the lattices) or by a single topological primitive C; it seems to seamlessly
bridge the gap between mereology and topology. But at the same time, Whitehead never distinguished
sets with identical closures. We can understand this as an implicit condition for representations by
closed regions (or, dually, by only open regions); in fact many researchers followed this understanding of
Whitehead’s intentions. He entices us to believe that the two assumptions, namely existence of atoms
and representability by closed regions, are consistent. However, SPOCAs with xCy ↔ x 6≤ y⊥ as the only
remaining candidate for true Whiteheadean mereotopology do rely on this difference between interiors
and closures. If the distinction between interiors and closures is removed, these models collapse into
Boolean contact algebras, compare [WHG09], and thereby prevent a meaningful definition of contact
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apart from overlap in discrete models. With this stricter requirement of representability by only closed
sets, no discrete region-based theory in the intention of Whitehead is definable [see also For96; Mor98].
Further research on theories of qualitative discrete space must therefore concentrate on non-topological,
such as graph-based, approaches or on multidimensional approaches that accommodate regions of various
dimensions. We explore the latter path in the remainder of this thesis.

There are others ways out of this dilemma as demonstrated in the literature. If we do not insist on
discrete models, RBCAs and the equivalent logical theory RCC, provide a truly Whiteheadean account
of continuous space. One spatial representation thereof is the complemented disk algebra as described
in detail in [LL06] that consists of all simple closed regions of, e.g., R2. RBCA′s,which are RBCAs with
a particular definition of contact, admit continuous models in which entities can be connected to their
complement. If we abandon C-extensionality instead we can rely on GBCAs. Non-extensional theories
have also been used for defining multidimensional mereotopologies [Gal99; RS02]. The rationale for giv-
ing up C-extensionality is simple [RS02]: C-extensionality is a principle that holds in the perfect world
where we can always find smaller parts that distinguish two distinct entities. If finite models are con-
sidered as models with limited accuracy, i.e., as approximations of continuous models, C-extensionality
may be violated because the distinction in the contact between two entities may be too small a part so
that it is lost in the approximation.

An alternative parsimonious way out of this dilemma is to abandon ∀x [C(x,	x)] (Con) instead. The
nondistributive SPOCAs with xCy ↔ x � y⊥ allow such choice. At first sight it seems to be a surprising
choice since well-behaviour of lattices is usually associated with distributivity. But as we have shown
in [HWG09], the non-distributive lattices in question (Stonian p-ortholattices and restrictions) behave
nicely even without distributivity. In particular, these structures also satisfy the DeMorgan laws and
stop only short of being Boolean. We thereby are able to answer the question posed in [Dün+08] asking
what kind of structures should be considered the standard model of a non-distributive contact algebra
for the case of spatially representable contact algebras. The standard (and only) models of spatially
representable complete non-distributive contact algebras are the regular sets of a topological space.

Notice that there is no need to completely abandon Con. If we define an additional attachment
relation A from C as

A(x, y)↔ [C(x, y∗∗) ∨ C(x∗∗, y)] ∧ ¬C(x, y),

we can prove ∀x [A(x,	x)] in a connected space even if ∀x [¬C(x,	x)]. Attachment is a stronger relation
than contact defined in SPOCAs as xCy ↔ x � y⊥, but weaker than weak contact WCont as defined
in [AV95]. Moreover, C and A make the distinction between the intended interpretations of ‘sharing a
point’ and ‘overlapping neighbourhoods’ clear.

4.6.3 Summary

This chapter treated mereotopology with unique closure operations algebraically and studied the arising
contact algebras that may yield spatial representations for all their models. In particular, this is the
first time that non-distributive contact algebras are included and studied comprehensively as algebraic
counterparts of mereotopologies. We showed that SPOCAs defined over Stonian p-ortholattices with
xCy ↔ x � y⊥ as contact are a good candidate for an ontologically coherent region-based theory of
space. In fact, these are the least constrained algebraic structures that admit discrete C-extensional
models among all of the algebraic theories satisfying the conditions of MT-representability which are
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at the same time necessary conditions for spatial representability. The other candidates for spatially
representable contact algebras are SPOCAs with xCy ↔ x ≮ y⊥, BCAs, in particular its atomless
extension RBCA, and the weaker GBCAs. The latter two correspond to the logical theories RCC and
GRCC known from the literature. While RCC models are C-extensional and always continuous, the
models of GRCC can be discrete but are not C-extensional. We demonstrated that the main difference
between GBCAs and SPOCAs with xCy ↔ x � y⊥ or xCy ↔ x ≮ y⊥ is whether complements are
defined mereologically or topologically. Mereological complements require distributive contact algebras
such as GBCA, BCA, or RBCA, while topological complements allow non-distributive contact algebra
based on Stonian p-ortholattices. The remaining closure operations sum, intersections, and universal
are in either case defined mereologically; topological sums require C4 while a topological universal
requires Dis or C-Ext. As one of our key contributions in this chapter, all mereological and topological
closure operations are directly attributed to properties of the parthood lattice or the contact relation.
Mereological complements manifest themselves in unique complementation in the algebraic counterparts
while topological complements require C5 which binds the contact relation to the orthocomplementation
operation. Contact algebras with topological complements can be non-distributive, but are required to
satisfy Con, C-Ext, and C4. Thus the ontological choice of defining complements topologically is directly
associated with other, more implicit, ontological choices.

We have established in GBCAs and SPOCAs with C5 two weakest, potentially spatially representable,
theories that allow atoms and that define all closure operations either mereologically or topologically.
As natural next steps (Question 1) concrete topological embeddings theorems for these two classes of
contact algebras need to be established analogously to the topological embeddings for BCAs [DW05a].
For the SPOCAs with C5, we know that non-representable models exist [WHG12]. Extending the theory
of SPOCAs with axioms that rule out some of the non-representable models, [WHG12] is a first step
towards such an embedding theorem.

On a separate note, all equidimensional mereootologies have a limited expressivity by relying only
on contact and parthood, often even defining one relation in terms of the others. For the remainder of
the thesis, we will look at ways to increase this expressivity in a qualitative representation of space that
captures mereotopological spatial relations.



Chapter 5

The intended structures of
multidimensional qualitative space

The aim of the subsequent chapters is to develop a logical theory that qualitatively captures arbitrary
arrangements of idealized, i.e., uniform-dimensional, spatial entities in an abstract space. Any such
spatial arrangement is called an intended structure. Any single intended structure may contain idealized
entities of different dimensions at the same time, but each idealized spatial entity in an intended structure
must have a uniform dimensions, i.e., must not contain artefacts of lower dimensions. The purpose of
this chapter is to formally characterize the class of intended structures, which can be considered as
qualitative abstractions of n-dimensional simplicial complexes. First, we review simplicial complexes
and their building blocks—simplices—and then analogously define how to construct composite manifolds
from m-manifolds with boundaries as building blocks. Finally, we introduce the notion of complex
manifolds1 which correspond to the intended structures. This will also shed some light on how composite
and complex manifolds generalize simplicial complexes by abstracting away distinctive vertices and by
ignoring whether spatial entities are curved or not. Essentially, we replace simplices by the more general
m-manifolds with boundaries as basic entities.

5.1 Simplices and simplicial complexes

In this section we maintain the definitions and terminology from [Lee11]. Any n-simplex is spanned by
n + 1 vertices—which are 0-simplices (points)—that are not all contained in a single (n − 1)-simplex.
The number n denotes the dimension of a simplex. For example, a 2-simplex is spanned by three points
that are not collinear and a 3-simplex is spanned by four points that are not coplanar. A 0-simplex is a
single point, a 1-simplex a line segment, a 2-simplex a triangle, a 3-simplex a solid tetrahedron.

Simplices are always closed in the topological sense: every n-simplex includes all bounding (n − 1)-
simplices. For example, a 2-simplex includes the three vertices as 0-simplices and three 1-simplices,
namely the line segments that connect each pair of vertices. In other words, each subset of a simplex’
vertices is itself a simplex; we call those the faces of the simplex. The (n − 1)-simplices spanned by

1The term complex manifold used throughout the thesis refers to a collection of composite manifolds. It is not related
to another notion of complex manifold used frequently [compare MK71] to denote a manifold that is embeddable in the
field of complex numbers.
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vertices of a simplex are called its boundary faces.
Simplicial complexes are collections of nicely arranged simplices. More precisely, a collection of

simplices K is a simplicial complex if and only if it satisfies the following three conditions [Lee11]:

1. if σ ∈ K, then every face of σ is in K;

2. the intersection of two simplices in K is either empty or a face of each;

3. every point in a simplex σ ∈ K has a neighbourhood that intersects at most finitely many simplices
in K.

The maximal dimension of any simplex contained in a simplicial complex is called the dimension of the
simplicial complex. Essentially, simplices can only be fused together in their boundaries (faces), but
cannot overlap. To capture a spatial model with two overlapping simplices, we would need to break the
overlapping region into simplices again. However, two different simplicial complexes may overlap, their
overlap could be modelled again as a simplicial complex.

Notice that condition (3) considers all points, not just the spanning points, the vertices, of a simplex.
For example, a 3-simplex has only three vertices, but an infinite number of points (consider the simplex
as a point set). The condition ensures that each point (including each vertex) is included only in a finite
number of simplices within a simplicial complex. However, this does not require a simplicial complex
to be a finite collection of simplices; an infinite set of simplices that are all disjoint would be a simple
counterexample. Moreover, it does not guarantee that a simplex is spanned by a finite number of vertices,
i.e., is finite-dimensional.

Despite their simplicity, simplicial complexes can model many complex geometric objects, such as
polygons (as a collection of 2-simplices) in 2D or 3D and other kinds of surfaces as well as polyhedra
as collections of 3-simplices. For this reason, simplicial complexes have been widely used as basis for
models of geographic space, of built environments (e.g., houses, airports, subway systems), of parts
and assemblies in manufacturing (e.g., cars, machinery), of virtual objects (rendering of objects and
characters in movies, video games, virtual realities), etc.

What constitutes now a qualitative abstraction of simplicial complexes? Note that the definition of
simplices and simplicial complexes implicitly use a metric - namely the distance in Euclidean space to
define simplices as the regions bounded by the shortest lines that connect its vertices. That also ensures
that simplices are always convex (though simplicial complexes such as polyhedra can be nonconvex). In
the desired generalization, we will remove these restrictions and allow nonconvex entities bounded by
arbitrary curves or “folded” curves (with sharp points) and their higher-dimensional equivalents (curved
planes, etc.) as generalizations of n-simplices. We want to maintain the following properties from the
definition of simplicial complexes for our intended models:

1. Every entity is a collection of simple entities.

2. The intersection between two simple n-dimensional entities in a collection that constitutes an entity
is either empty or of a dimension < n.

3. Every entity is topologically closed, i.e., includes its topological boundaries (faces) of the next-
lowest dimension. But we do not require faces to be in the entity’s collection of simple entities.

4. All entities are decomposable into the simple entities (such as a polygon or polyhedra can be
decomposed into sets of simplices).
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5. The simple entities are m-manifolds with boundaries. We will explain shortly what that means.

To describe the class of intended structures, we employ a methodology very similar to the defini-
tion of simplicial complexes: we first review a generalization of simplices, known as m-manifolds with
boundaries in mathematics, and subsequently use those as the building blocks for constructing composite
m-manifolds, which in many ways generalize simplicial complexes.

A remark about our terminology is in order. Throughout this thesis, we are often a bit imprecise
in the use of the terms “line”, “curve”, “line segment”, and “curve segment”. Usually, all refer to
the most general class, which is most accurately denoted as “linear feature”, i.e., a “curve segment”,
which may be arbitrarily curved and may or may not bounded by endpoints. In that sense this class
includes straight lines, curves, straight line segments, curve segments, straight rays, and curved rays.
An “area” means a two-dimensional piece of space that may be curved, folded, or similarly transformed
in a higher-dimensional space. Equally, the geometric entities of higher dimensions can also be bent,
curved, or warped in any imaginable way (unless otherwise stated) as long as its topology is maintained.
In general, we make no assumptions about the curvature of spatial entities unless we are explicit about,
i.e., when we say “straight line” or “flat area”. In our reconstruction of classical geometries in Chapter 10
the distinction will become important. Up to, but not including Chapter 9 we also do not discriminate
bounded regions, so-called “segments”, from unbounded regions such as curves or lines without endpoints.
Up to where we formally define closed entities, all spatial entities may have a boundary or may be closed,
that is, have an empty boundary such as a sphere.

5.2 Manifolds with boundaries

As the most primitive building blocks for the spatial arrangement we intend to capture we use m-
manifolds with boundaries, a well-known mathematical concept [Lee11]. Note that we use here the
more general notion of topological manifolds, not the restricted version of smooth manifolds (which is
implicitly assumed in the majority of work on manifolds). m-Manifolds with boundaries are point sets
that are locally Euclidean. We reuse the following formal definition from [Lee11]:

Definition 5.1. An m-manifold with boundary, MF, is a second-countable Hausdorff space in which
every point p ∈ MF has a neighbourhood homeomorphic to an open subset of the m-dimensional upper
half space Hm = {(x1, ..., xm) ∈ Rm : xm ≥ 0}.
We call m the dimension of MF and write dim(MF) = m.

Second-countable Hausdorff spaces are topological spaces that have a countable cover of open subsets
and any two points are distinguishable by some open set. The last condition of the above definition says
that manifolds are locally Euclidean, that is, they behave locally like n-dimensional Euclidean space,
i.e., every point (except boundary points) has a neighbourhood in the manifold that is homeomorphic
to Rm. Every boundary point has a neighbourhood in the manifold that is homeomorphic to the upper
half space of Rm. Most importantly, this disallows topological singularities (see Figure 5.2): any kind of
self-intersection (both X-intersection and T-intersection), also known as double points, and any kind of
isolated or missing entities of lower dimension such as an isolated point or a missing point in a manifold of
a dimension 1 or greater (a line, area, etc.), or an isolated or missing line in a manifold of dimension 2 or
greater (an area, volume, etc.), and so on. It also prevents constructs such as space-filling curves [Sag94],
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first constructed by Peano and Hilbert [Hil91; Pea90], which self-intersect at any point [Sag94]. Space-
filling curves are the reason why many definitions of dimensions are extremely complicated. However,
in our setting where self-intersection of manifolds is not allowed, we can clearly identify the dimension
of any manifold by the dimension of the homeomorphic Euclidean space.

Notice that we do not rule out so-called non-topological singularities (compare Figure 5.1), such as
sharp points (“cusps”), which are not defects with regard to the topology, but only with regard to the
smoothness (or differentiability). In particular, we do not require the manifolds in this thesis to be
smooth manifolds, differentiable manifolds, orientable manifolds, or triangulable manifolds; for defini-
tions of those see e.g., [Lee11]. While all topological manifolds of dimensions two and three admit a
unique piecewise-linear triangulation and are therefore triangulable (with triangulations that are sim-
plicial complexes) [compare the Triangualation Theorems in Lee11], some manifolds of dimension four
or greater are not piecewise-linear triangulable. For example, the 4-manifold E8 is not piecewise-linear
triangulable [Fre82].

For brevity we will use the term m-manifolds to refer to a topological m-manifold with (possibly
empty) boundary throughout the thesis. This deviates from standard mathematical usage, with the
term m-manifolds more commonly referring to smooth m-manifolds without boundary. Unless we speak
of manifolds of a particular dimension, we will often drop the ‘m-’ as well.

We are interested in both the interior and boundary of manifolds. We define the interior of a manifold
as follows.

Definition 5.2. Let MF be an m-manifold. The interior of MF is the set MF◦ of all points p ∈ MF
that have a neighbourhood homeomorphic to Rm.

Then the (manifold) boundary of an m-manifold is the point-set difference between the manifold and
its interior.

Definition 5.3. The boundary of an m-manifold MF is the point set δMF = MF \MF◦.

Note that the concept of a manifold with boundary admits empty boundaries; if the boundary is
empty, the manifold is called closed.

Definition 5.4. An m-manifold MF is closed if and only if δMF = ∅.

Closed manifolds are either boundaries of a higher-dimensional manifold, e.g., the sphere is a 2-
manifold that bounds a 3-manifold solid ball, or are unbounded manifolds that stretch into infinity such
as a line (as opposed to a line segment), a plane, or any entity homeomorphic to Rm for some finite m.
Non-closed manifolds also include entities that are only partially bounded such as a ray, a half-plane, or
a half-sphere.

Notice that any 0-manifold, i.e., any isolated point or any discrete space, is completely contained in
its own interior, that is, the boundary of a 0-manifold is always empty [Lee11, p.43].

The notion of a closed manifold should not be confused with the notion of a closed set in a topological
space, they are quite different concepts. Foremost, the notion of closure in a topological space applies to
arbitrary subsets, whereas the notion of closure discussed here only applies to manifolds. The topological
closure of a point set is the smallest closed set defined by the topology—it may not be the smallest
manifold that does embed the point set. Next, we define the manifold-closure of a set; which is the
smallest manifold with boundary (closed or not) containing the set.
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Figure 5.1: Examples of 2-manifolds. The top five are examples of planar 2-manifolds with boundaries;
including convex (left) and nonconvex (middle and right) 2-manifolds, 2-manifolds with other 2-manifolds
cut out (right) as holes, and with straight (top) or curved (second row) boundaries. The second row from
the bottom shows a 2-manifold that is curved in 3D; any of the planar examples may be equally curved
and may have internal sharp edges. The bottom row gives examples of closed 2-manifolds (surfaces; not
bodies) that are either convex (left and middle) or nonconvex (right) and may have sharp edges (middle
and right). Other examples of 2-manifolds include a cylinder (a rectangle glued together at two opposite
edges) or a Möbius strip.



Chapter 5. The intended structures 84

Figure 5.2: Examples of spatial entities that are not manifolds. On the left side, each of the 1D curves
has some “double point”: in the top example the point the curve self-connects (T-intersection) at a
point, in the second row example the curve self-intersects (X-intersection) at a point, and in the bottom
example the curve splits (T-intersection) at a point. The middle column contains similar examples for
curved 2D areas: in the top example the area self-connects (T-intersection) in a point, in the second
row example the area self-intersects (X-intersection) in a line, and in the bottom example the area splits
(T-intersection) at a line. The two right-most examples have other kinds of singularities: in the top
example, the inner boundary (bounding the hole) meets the outer boundary, resulting in a point that
is not homeomorphic to the half space of R2, whereas in the right example in the second row the point
where the two pieces connect is also not homeomorphic to the half space of R2. Note that all examples
in this figure can be represented by composite manifolds.

Definition 5.5. The closure of a set X ⊆ Rm is the smallest m-manifold X such that X ⊆ X ⊆ Rm.

Any m-manifold—and thus any of our basic spatial entities—has, among others, the following prop-
erties:

1. Is a topologically closed point set;

2. Has no isolated or missing lower-dimensional entities (“solid entity”, also known as “regular set”
in topological spaces), i.e., is of a unique dimension m in the sense that it is homeomorphic to an
open subset of Hm;

3. Is a one-piece entity (self-connected);

4. Has no double points caused by self-intersection (X- or T-intersection).

While this allows singularities such as “cusps”, “corners”, and ‘edges’ (see Figure 5.1), no single
point can be both a boundary and an interior point of the manifold (see Figure 5.2); otherwise the entity
self-intersects and cannot be a manifold. Moreover, an m-manifold cannot be constituted of two pieces
that are only “weakly connected”, i.e., where the pieces are only connected by some entity of dimension
≤ m− 2 (compare Figure 5.2). Then the contact is not locally Euclidean in Rn.
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Figure 5.3: The examples from Figure 5.2 as composite manifolds. We have spaced about the individual
atomic manifolds and their points of contact as necessary. Also, some atomic manifolds are displayed
checkered in order to better distinguish atomic manifolds within each composite manifold. The example
in the center consists of four atomic manifolds: one checkered, one striped, one dark-coloured, and one
with a transparent light color.

5.3 Composite m-manifolds

Manifolds with boundaries are the most basic building blocks in our approach to characterize the class
of intended structures as generalization of simplicial complexes. In our next step, we study how we can
assemble those manifolds, which we will refer to as atomic manifolds in the sequel, to more complex
spatial structures, called composite manifolds. While atomic manifolds are comparable to simplices,
composite m-manifolds are maybe best compared to the set of simplices of the highest dimension within
a simplicial complex, such as the set of all two-dimensional areas contained in a simplicial 2-complex.
This gives a rough idea how we generalize simplicial complexes.

The definitions in this section are our own, they are not standard in mathematical treatises of
manifolds. First, we define when a collection of atomic manifolds forms a composite manifold, and
subsequently we define the interior and boundary of such a composite manifold. A compositem-manifold
is a collection of m-manifolds that may touch one another only in their boundaries and that are all of
equal dimension. Trivially, any atomic m-manifold is a (singleton) composite m-manifold. If two m-
manifolds “touch” each other in the interior of one of the manifolds, i.e., if an interior point of one of
the manifolds is also a point of the other manifold, they cannot be in common composite m-manifold.
Formally, we define composite m-manifolds as follows.
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Definition 5.6. A finite collection of m-manifolds M is called a composite m-manifold if and only
if MF1 ∩ MF2 ⊆ δMF1 and MF1 ∩ MF2 ⊆ δMF2 for all MF1,MF2 ∈ M. We denote the composite
m-manifold as Mm, m indicating the dimension m = dim(M) = dim(MF1) for all MF1 ∈ M of the
composite m-manifold.

Notice that the superscript in a compositem-manifold denotes its dimension. We omit the superscript
when the dimension is irrelevant.

To define the boundary of a composite manifold, we first define its area and its interior boundaries.
The area Σ is the set of all (interior and boundary) points that any of the atomic manifolds in a composite
manifold include.

Definition 5.7. Let M be a composite manifold.
The area of M is the set of all points included in any of the manifolds in M:

ΣM = {p : p ∈ MF and MF ∈M} =
⋃
{MF : MF ∈M}.

The interior boundary ∆i of a composite manifold is best captured as a recursive function. Note that
we can no longer rely on the existence of a neighbourhood homeomorphic to Rn as in the Definitions 5.2
and 5.3 to distinguish interior from boundary points because two manifolds can be glued together
without their glue points becoming interior points in the traditional sense. Loosely speaking, the interior
boundary comprises the topological interiors of the set of glue points between the constituent atomic
manifolds in a composite manifold.

Definition 5.8. The interior boundary ∆iM of a composite manifold M is defined as:

∆iM =


∅ if |M| ≤ 1,

∆i

(
M \ {MF}

)
∪
{

(δMF′ ∩ δMF)◦ MF′ ∈M
} otherwise, where MF is an

arbitrary manifold in M

Observe that we only consider the interior of the intersection of two atomic manifolds to be in its
interior boundary. If, for example, two 2-manifolds in a composite manifold share a 1-manifold, only the
interior of the 1-manifold is in the interior boundary of the composite manifold. A special case is where
two atomic manifolds in a composite manifold share a single point, then the interior of that point will
be empty (recall that all manifolds have a topology that is locally Euclidean), i.e., will not contribute to
the interior boundary of the composite manifold.

Finally, we are able to define the boundary of a composite manifold as the sum of its constituent
manifolds’ boundaries with all interior boundaries removed.

Definition 5.9. Let M be a composite manifold. We define its boundary as

∆M =
( ⋃

MF∈M
δMF

)
\∆iM.

Moreover, we can define the interior of a composite manifold as the sum of its constituent manifolds’
interiors together with its interior boundary.
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Definition 5.10. Let M be a composite manifold. We define its interior as

ΘM =
( ⋃

MF∈M
MF◦

)
∪∆iM.

Composite m-manifolds have, among others, the following properties:

1. Uniform dimension m for all manifolds in the collection;

2. No isolated or missing lower-dimensional parts (“solid entity”);

3. Any two atomic m-manifolds can only share boundaries;

4. Every proper subcollection of manifolds is a composite m-manifold.

Observe that the properties 2. to 4. also apply to simplicial complexes. However, n-simplicial com-
plexes of dimension n ≥ 2 are not composite m-manifolds because simplicial complexes are closed under
sub-complexes (compare condition (1) for simplicial complexes on page 80), i.e., every face bounding a
constituent simplex must also be in the simplicial complex. On the other side, compositem-manifolds are
explicitly not closed in that way (compare Definition 5.6). However, the set of all n-simplices contained
in a finite simplicial complex of dimension n is a composite n-manifold.

For many practical purposes, we want to determine whether a finite set of m-manifolds is a composite
m-manifold. This can be done in polynomial time complexity of O(n2) using Procedure 1 with the
assumption that we have an oracle that is able to determine whether the interior of a given manifold M
intersects another given manifold MF, i.e., whether M◦ and MF share a point. This is the critical part
of the procedure that depends on the specific data structure used to represent manifolds and may be
nontrivial or at least not doable in polynomial time. If such an oracle or an adequate decision procedure
is available, Procedure 1 simply checks that the pairwise intersections of any two m-manifolds in the
collection do not include an interior point of either manifold.

Procedure 1 Decide whether a collection of m-manifolds is a composite m-manifold
Require: M be a collection of m-manifolds.
Ensure: return true iff M is a composite m-manifold.
while M 6= ∅ do
pick a M ∈M
M := M \M
for all MF ∈M do
if M◦ ∩MF 6= ∅ or M ∩MF◦ 6= ∅ then
return false

end if
end for

end while
return true

Similarly to Procedure 1 we can construct larger composite m-manifolds from a given composite m-
manifold by adding one m-manifold at a time and ensuring that it only touches the existing m-manifolds
in boundaries.
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5.4 The intended structures: Complex m-manifolds

The class of structures we intend to capture are spatial configurations consisting of collections of idealized
space regions, each being a composite m-manifold, arranged arbitrarily in Rn where n is greater or
equal to the greatest dimensions of all the manifolds in the configuration. Space regions with different
dimensions can coexist in a structure as long as each of them is of uniform dimension. Equally, even the
composite manifolds of greatest dimension may have a codimension greater than zero. Space regions can
be arranged arbitrarily, in particular in ways so that the interior of one intersects the interior or boundary
of another (which we disallowed within a single composite manifold). Any space region represented by
a composite manifold can also spatially contain lower-dimensional spatial regions, which are just not in
the composite manifold’s collection of atomic manifolds. In particular, a curve or a line (either being a
1-manifold), or an area (a 2-manifold) are different from any finite set of points (a 0-manifold) they may
contain. Recall that we only consider finite collections as composite manifolds, i.e., infinite point sets are
not composite manifolds of dimension zero. Equally, a line cannot completely fill a region, that is, space-
filling curves are impossible because they self-intersect as we discussed before. Though a set of points
and a curve may be spatial entities in one spatial arrangement, they are always of different dimensions,
with the area being of higher dimension than the curve and the curve being of higher dimension than
the set of points, and thereby neither of them can be identical.

Similarly to the definition of simplicial complexes, we require that the composite m-manifolds in our
class of intended structures are arranged “nicely”: that means the intersection of any two (atomic or com-
posite) m-manifolds is either empty or a composite n-manifold with n ≤ m. Earlier, we already ensured
that any two atomic m-manifolds in a composite m-manifold may only intersect in their boundaries. We
extend this now by the following condition:

• The intersection of any two atomic or composite manifolds in an intended structure is equivalent
to some collection of composite manifolds of the structure with a distinguished composite manifold
of highest dimension.

This covers three cases: (1) the intersection of two atomic m-manifolds that are in the same composite
m-manifold must be a collection of composite n-manifolds with a distinguished maximal composite
manifold of greatest dimension n < m, (2) the intersection of two atomic manifolds of dimensions n
and m in different composite manifolds must be equivalent to a collection of composite manifolds with a
distinguished maximal composite manifold of greatest dimension l ≤ min(n,m), and (3) the intersection
of two composite manifolds of dimensions m and n must be equivalent to a collection of composite
manifolds with a distinguished maximal composite manifold of greatest dimension l ≤ min(n,m).

Why do we have to resort to the cumbersome notion of a maximal composite manifold of greatest
dimension contained in the point intersection? This is due to the fact that two manifolds (even within
the same composite manifold) may intersect in disjoint sets of various dimensions; for example, two
2-manifold (2D areas) may intersect in one or multiple 1-manifolds (curve or line segments) while also
intersecting in one or multiple 0-manifolds (points) that are not contained in any of the curve or line
segments. In this case, the maximal manifold of greatest dimension would be a 1-manifold containing
all shared curve and line segments but not containing the 0-manifolds in the intersection that are not
themselves contained in any 1-manifold of the intersection. If two 2-manifolds (not in the same composite
manifold) intersect in a single or in a set of 2-manifolds, then all 1-manifolds and 0-manifolds not
contained in a shared 2-manifold are ignored. The following definition formalizes the condition.
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Definition 5.11. Let M be a finite collection of composite manifolds.
M is a complex manifold if and only if the following conditions are satisfied:

1. any atomic manifold MF ∈ {MF : there exists a composite or atomic manifold MF′ ∈M such that
MF ∈ MF′} is a singleton composite manifold {MF} ∈M;

2. for any MFm1 ,MFn2 ∈M with ΣMFm1 ∩ ΣMFn2 6= ∅ there exists a nonempty collection of manifolds
M′ ⊆M such that ⋃

MF′∈M′
ΣMF′ = ΣMFm1 ∩ ΣMFn2 ;

and there exists a MFk3 ∈M′ so that for all MFl4 ∈M′;

(a) ΣMFl4 ⊆ ΣMFk3 , or

(b) l < k;

3. for any MFm1 ,MFn2 ∈M with ΣMFm1 ∩∆MFn2 6= ∅ and dim(ΣMFm1 ∩∆MFn2 ) < dim(MF1) there
exists a nonempty collection of manifolds M′ ⊆M such that⋃

MF′∈M′
ΣMF′ = ΣMFm1 ∩∆MFn2 ;

4. for any MFm1 ,MFm2 ∈M with dim(ΣMFm1 \ΣMFm2 ) = dim(MFm1 ), there exists a MFm3 ∈M such
that

ΣMFm3 = ΣMFm1 \ ΣMFm2 .

Let us remind the reader that our definition is totally unrelated to how the term complex manifold is
used in differential geometry [MK71]. Our notion of a complex manifold will be central throughout the
remainder of the thesis; some explanation of it is due. The first condition is obvious: Each composite
manifold’s area is the union of the areas of a collection of singleton composite manifolds in M. In other
words, every atomic manifold in some composite manifold in M is also a composite manifold in M.

Condition (2) requires that the point-set intersection of any two manifolds is identical to the sum of
the areas of the collection M′ of shared manifolds. It further requires that a unique maximal manifold
of maximal dimension exists in this collection M′. Thus, a complex manifold is closed under point-set
intersection, though the point-set intersection may not be a single manifold; and is closed under manifold
intersection, in which the dimension k of the maximal shared composite manifold MFk3 is greater than
or equal to the dimension l of all other composite manifolds MFl4 in the collection M′. Moreover, it is
easy to see that k ≤ min{m,n} must hold.

In the case where one manifold intersects another manifold in its boundary (not necessarily only in
its boundary), condition (3) requires the intersection of the former manifold with the latter manifold’s
boundary to be covered by a collection of manifolds M′. However, in this collection, there does not have
to exist a unique maximal manifold of maximal dimension.

Lastly, condition (4) requires a complex manifold to be closed under set differences when the set
difference is of the same dimension as the minuend.

Note that M is a collection with a specific structure. To make this distinction more explicit, we often
write Dom(M) to denote the collection of composite manifolds that constitute a complex manifold M.
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Just like every atomic or composite manifold, every complex manifold can be assigned a dimension.
However, complex manifolds are—unlike atomic and composite manifolds—not of uniform dimension.
Instead, a complex manifold has an embedding dimension: the largest dimension of all its constituting
composite m-manifolds.

Definition 5.12. Let M be a complex manifold that is a finite collection of composite manifolds.
We say M is a finite complex manifold of dimension m (short: a finite complex m-manifold), and

write Mm, if and only if n ≤ m for all MFn ∈M and there exists a MFn ∈M with n = m.

The class of all finite complexm-manifolds is our class of intended structures. Every complex manifold
in this class is a finite set of composite manifolds, and every of its composite manifolds is composed of
a finite set of atomic manifolds. We will not deal with infinite sets complex manifolds in this thesis.

Definition 5.13. Let M denote the class of finite complex manifolds.

When necessary, we restrict M to collections Mm with a specific m; those are captured by subclasses
Mm. For example, M3 is the class of all finite complex manifolds M3. In other words, each structure
M3 inM3 contains at least one composite 3-manifold and contains no (atomic or composite) m-manifold
with m > 3. Equally, M≤3 denotes the class of all finite complex m-manifolds with m ≥ 3, that is, the
class of all finite complex manifolds that are embeddable in R3.

In Chapter 9, we will further restrict the class of intended structures to Mdense in which every
structure Mm contains a manifold of every dimension n ≤ m (compare Section 9.1). This restriction
will be necessary to utilize special properties of the manifolds of next-lowest dimension contained in a
manifold.

Previously, we defined the interior MF◦ and boundary ∆MF of any composite or atomic m-manifold.
Within a finite complex manifold Mm in the class M, we can also define the exterior of any composite or
atomic n-manifold MFn ∈Mm with n ≤ m as follows. Intuitively, the exterior of a manifold is the set of
all points in the structure that are not contained in the interior or boundary of the manifold itself. Recall
that ΣMF denotes the area of a manifold, which is comprised of the manifold’s interior and boundary.

Definition 5.14. Let M be a structure in the class M. Then for any MF ∈ M we define the exterior
MF− as

MF− =
( ⋃

MF′∈M

ΣMF′
)
\ ΣMF.

While the interior and boundary of a composite manifold can be defined independently of the complex
manifold it is contained in, the exterior is only definable with reference to a particular space, which is
defined by the complex manifold containing the composite manifold.

More complex entities of mixed dimension are not objects of the domain, but can be captured as sets
of simple entities or introduced as a separate class using a new unary relation (a sortal). We will not
deal with those in any detail in the thesis.

5.5 About the structures in the class of intended structures

The class of intended structures encompasses a wide range of spatial structures if the composite manifolds
are appropriately chosen. Here, we want to give a sample of the structures that are within that class.
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By design all simplicial complexes are in the class of intended structures. But more general kind of
structures are also in the class M (and in the subclass Mdense defined in Section 9.1).

One important subclass of M are planar geometries, these include Euclidean geometry but also,
among others, elliptical and spherical geometries [Gre94]. This will become evident in Chapter 10 when
we investigate the relationship between ordered incidence geometries, of which Euclidean and elliptic
geometries are extensions, and our own logical theories.

The spatial arrangements we are interested in are maybe best visualized using Kandinsky’s abstract
paintings, such as the one shown in Figure 5.4, which is essentially a spatial arrangement of various
geometric figures of dimensions zero, one, and two in a two-dimensional space. The various linear and
areal features can be treated as composite 1- and 2-manifolds; the entire painting is then a complex
2-manifold. The relations we propose in this thesis can be used to qualitatively describe the painting.
For example we can say that a green square partially overlaps a yellow triangle and is in superficial
contact to a red square. The green square is incident but does not contain two straight line segments
that start in the interior of the square. The purple disk is also incident with two line segments, but
those cross the disk, i.e., they do not have an end in the interior of the disk. A notion not captured by
the class M but relevant in Chapter 10 is that of betweenness. For example, within the large triangle
in the centre of the painting, the brown straight line segment is in between the brown triangle and the
disk that contains a set of dots (points). Also, the rose rectangle is in between the light green rectangle
and the brown rectangle within the self-connected rectangle that is composed 16 rectangles in a diagonal
row just left of the painting’s centre.

One special class of arrangements of one- and zero-dimensional entities are simple graphs: any graph
is a simplicial complex and thus in the class M. We can consider the edges of a graph as 1-simplices
and its vertices as 0-simplices. Schematic maps that are represented (or representable) as graphs, are
thus in M as well. For example, public transportation networks including train, subway, streetcar, bus,
and ferry routes are naturally structures in the class M based on their graph representation. However,
a simple graph representation actually loses information about the network, namely the information
which edges form a route (e.g., a bus route or a subway line). But preserving the route information
is not difficult (though it may lead to duplicate edges between two vertices, resulting in a non-simple
graph) while remaining within the class of structures M. Schematic maps of public transportation
networks preserve topological information while abstracting, e.g., shape (the exact geographical route)
and distance information between stations [AH00; Mor96]. Other schematic topological maps that are
then also in M include abstracted maps of hiking trails (see Figures 5.5 and 5.6), of ski trails [Fie09], of
water ways, or of campgrounds.

These examples point to a more general class of structures within the intended structures: maps
for various purposes. Examples of maps that are representable as complex manifolds include not just
schematic maps but also topographical maps, highway maps, city maps, country maps, nautical maps,
as well as small, incomplete excerpts from maps used for giving direction (as to a hotel, a restaurant,
or a conference location), or even sketch maps (see Figure 5.7 for an example). Take a city map as
example: its neighbourhoods, parks, and squares may be treated as two-dimensional entities, its streets
and paths as one-dimensional entities, and important buildings, points of interest, or subways stops as
zero-dimensional entities. A highway map may be less detailed, containing only states and cities (if
large enough) as areal features, highways and other main roads as linear features and smaller towns, rest
areas, and gas stations as point features. Maps used for indoor navigation, such as evacuation maps,
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Figure 5.4: Komposition VIII (oil painting) by Wassily Kandinsky, 1923, from http://www.
wikipaintings.org/en/wassily-kandinsky/composition-viii-1923, used under fair dealing ac-
cording to Copyright Act, Canada, 2004.
This painting is an example of a “spatial” arrangement we aim to capture by the class M. When viewed
as a spatial arrangement, it consists of various two-, one-, and zero-dimensional spatial entities, which
are composite manifolds. It contains examples of many of the spatial relations we discuss in this thesis.
Examples of two-dimensional entities are areas of uniform color such as disks (filled circles), triangles,
squares, and other rectangles. One-dimensional entities found in this painting are the various straight
and curved line segments including half-circles or circles. Some of the areas have one-dimensional entities
that may serve as their boundaries, such as the yellow disk on the left side, which is bounded by a black
circle. Other areas only have implicit boundaries, for example, the yellow triangle at the top is not ex-
plicitly separated from the ground. Wherever two one-dimensional entities (which may be boundaries of
two dimensional entities) meet or intersect, there is an implicit point, a zero-dimensional entity. Where
a one-dimensional entity penetrates or crosses an area, their intersection is a part of the one-dimensional
entity. We then say the one-dimensional entity is incident with the two-dimensional entity; for example,
the blue disk at the bottom is incident with the line segment passing through it. Areas also overlap, for
example in the bottom right corner the yellow triangle overlaps the green square.

http://www.wikipaintings.org/en/wassily-kandinsky/composition-viii-1923
http://www.wikipaintings.org/en/wassily-kandinsky/composition-viii-1923
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Figure 5.5: Schematic hiking map of the Polish-Czech Friendship Trail, from http://commons.
wikimedia.org/wiki/File:Friendshiptrail1.png, used under fair dealing.
The map shows the main trail and outgoing or crossing trails (all linear features) with the trail junctions
(point features). It also displays points of interest along the trail, such as peaks and mountain huts
(point features). Areal features include lakes and marsh areas, with some trails passing by or through
them.

Figure 5.6: Schematic map of the hiking trails in and around Oregon Caves National Monument in
the US state of Oregon, from http://commons.wikimedia.org/wiki/File:ORCA_Hiking_trail_map_
.png, which is in the public domain as a piece of work created by a US government official.
This schematic map shows the extent of the park (an area), various trails (linear features), and trail
junctions (point features). It also shows other linear features, such as creeks, main access roads as well
as point features, such as the parking lot, the forest ranger hut, or the “big tree”.

http://commons.wikimedia.org/wiki/File:Friendshiptrail1.png
http://commons.wikimedia.org/wiki/File:Friendshiptrail1.png
http://commons.wikimedia.org/wiki/File:ORCA_Hiking_trail_map_.png
http://commons.wikimedia.org/wiki/File:ORCA_Hiking_trail_map_.png
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Figure 5.7: A sketch map containing entities of three different dimensions.
We have two-dimensional entities (ocean, main island, small island, city, lake); one-dimensional entities
(rivermain, river arm, highway ring, highway central); and point (zero-dimensional) entities (lighthouse
main, lighthouse island).

maps showing the stores in a shopping mall, or maps of an airport, can also be modelled as complex
manifolds. Likewise, idealized representations of any kind of built environment are representable as
complex manifolds, see Figure 5.8 for an example. Depending on the application, buildings can be
modelled as containing several multiple floors, each again composed of rooms, hallways, and separating
walls, and with doors or windows as well as stairways, escalators, and elevators. We can include point
features, such as the location of fire extinguishers, power outlets, or water fountains. If necessary, we
can also include linear features such as wiring (electrical, communication) or utility piping (water, gas),
in an abstract model of a building.

Another subclass of M are arrangements of arbitrary (two-dimensional) polygons in any finite-
dimensional space as long as all non-decomposable polygons within any single composite manifold are
only joined (“glued”) along their one-dimensional boundaries. The polygons can be folded or curved in
a higher dimension, or form certain kind of boxes, such as a cereal box with slots and tabs—the example
discussed in the BoxWorld ontology in [GB11]. What kind of boxes can and cannot be modelled as
composite manifolds must be investigated in more detail in the future. A special class of arrangements
of polygons are 2-complexes composed of polytopes instead of simplices. In those, polygons only meet in
their boundaries and all bounding straight line segments and their endpoints are in the complex as well.
Such polygonal complexes are special kinds of polytopal complexes [Zie95] in which all polytopes are
two-dimensional, that is, they are polygons. Generally, polytopal complexes consist of a “nice” arrange-
ment of arbitrary polytopes, the cells, in some Euclidean space Rn with n > m for any m-polytope in the
structure. “Nice” means again that the face of every polytopes is in the structure as well and that poly-
topes only intersect in their faces (which are their boundaries). It is easy to see that every finite polytopal
complex of finite dimension is a structure in M. All triangulated irregular networks (TIN) [Peu+78], a
spatial representation popular in geographic information systems, and regular grids as used for raster
representations are special cases of polytopal complexes. Other special classes of polytopal complexes
include polyhedra assembled along their boundaries to more complex objects in three-dimensional space.
For example, the spatial structure of the BlocksWorld domain [Win72] frequently used as toy example in
AI planning could be model as two- or three-dimensional spatial arrangement; each block is a polyhedron
and no two blocks overlap. In CAD, CAM, and computer graphics so-called meshes of polygons (usually
simplices) are used to represent polyhedra. Such representations of solid objects are consequently also
in the class M.
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Figure 5.8: Top view and cross section of a building with escalators and an elevator. While the building
would intuitively be considered a 3D object, each floor can be treated as a 2D area, if we are, e.g., only
interested in navigating the building for which room heights are usually irrelevant (as long as they are
assumed to be of sufficient height). Escalators (es1 – es4 and ex1, ex2), elevators (el), and staircases (st)
could be treated as line segments as long as it is clear that, e.g., a person can navigate those lines (as
we usually assume a person or a car can navigate “lines” denoting streets on a map). Each floor would
then, for example, have various points from which it is possible to access other floors. For many tasks,
in particular navigation, such a simplified view would be sufficient. The bottom row shows the same
views in a abstract way. While the building may be considered a 3D entity (not visible), the floors are
2D areas, connected by one-dimensional line segments, which are abstractions of staircases, escalators,
and elevators. They connect floors and have access points (the point where they meet the floor). This
abstract representation is perfectly fine to solve any coarse navigational tasks, e.g., how to get from one
point to another point in the building or how to evacuate the building in the case of an emergency.

Polytopal complexes further generalize to so-called CW-complexes [LW69]. But the exact relationship
between CW-complexes and the class M remains to be investigated (Question 9).



Chapter 6

A basic first-order theory of
multidimensional mereotopological
space1

One way to overcome the restrictions in the expressivity of equidimensional mereotopologies is by allowing
spatial configurations that consist of entities of multiple dimensions. While a wealth of theories capturing
the mereotopological relations between spatial entities of equal dimension are known, only few theories
define relations between entities of different dimensions. But Freeman [Fre75] noted early on that many
relations used in everyday language have intrinsic dimensionality constraints in that they, for example,
neglect the width and/or thickness of some physical objects. In that sense, humans often use idealizations
of physical space and, since we are primarily concerned with abstract spatial entities, such idealizations
are appropriately captured by entities of different dimensions. Moreover, there are algorithms available
to effectively determine the minimal embedding dimension of a set of points in space [Dey+02], thereby
assigning a dimension to entities for which only some points are given.

Most work on non-equidimensional mereotopological relations, in particular in the field of geographic
space, focus on area-area, area-line, area-point, line-line, line-point, and point-point relations in two-
dimensional space, e.g., [BH11; CDFO93; EH91; McK+05]. This results in a large set of differing
relations of which many only differ in the dimensions of the involved entities. For example, McKenney
et al. [McK+05] distinguish 61 line-line relations alone, a set way too large for interaction with humans
as well as for automated reasoning. Moreover, only McKenney et al. explicitly define the dimension of
entities in their framework, but they rely on the topological definition of Lebesgue covering dimension.
TO provide such a topological definition of dimension in a logical theory requires us to first axiomatize
a large mathematical apparatus.

Truly multidimensional mereotopological theories where the absolute (or numeric) dimensions do not
matter have only been proposed by Galton [Gal04] and Gotts [Got96]. Both never axiomatize dimension
explicitly; instead Galton relies on boundaries to construct entities of increasingly lower dimensions, while
Gotts uses a single primitive relation of ‘including a chunk’, INCH , a rather unintuitive multidimensional
mereotopological relation, to topologically relate entities of potentially different dimensions.

1The work in this chapter is an extension and – to some extent – a simplification of [HG11a]. Some of the simplifications
have been previously used in [HG11b].
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We follow in the footsteps of Gotts by axiomatizing the mereotopological relations between two
entities independent of their dimensions and independent of boundaries, but using a notion of spatial
containment, Cont, that is more intuitive than Gott’s relation INCH . Together with a notion of relative
dimension, we can distinguish a small set of specialized topological relations which are not restricted
to specific absolute dimensions. In this dimension-independent approach to mereotopology we favour
neither the bottom-up approach (defining higher-dimensional entities in terms of points) employed in
classical geometry nor the top-down approach (taking higher-dimensional regions as foundational and
reconstructing dependent lower-dimensional entities) employed in equidimensional mereotopology. In-
stead, the objective here is to axiomatize topological and mereological relations in an unsorted theory
where entities of various dimensions co-exist as first-class domain objects, similar to Hilbert’s axiomati-
zation [Hil71] of Euclidean geometry. The challenge is to separate the relations that can hold between
entities regardless of their dimension from the relations that constrain the dimensions of the involved
entities. Addressing this challenge is the main purpose of this chapter, in which we develop a basic
theory of multidimensional mereotopology from first principles.

6.1 A naïve theory of relative spatial dimensions

Various notions of dimension have been employed within theories of qualitative space. We want to
axiomatize dimension in the weakest possible way which is still suitable for defining spatial relations
that are limited to entities of certain (relative) dimensions. For example we want to be able to express
that region A has a higher dimension than region B or the intersection of regions A and B has a lower
dimension than either one. Thereby it is unnecessarily restrictive to e.g., require that dimensions can
be added or subtracted or restrict the total number of distinct dimensions. In other words, the sought
axiomatization should be just strong enough to allow us to compare the dimensions of spatial entities.

A brief look at the various definitions of dimension in topology can be of help. There we find the small
and large inductive dimensions, the Lebesgue covering dimension [compare McK+05], the Hausdorff
dimension, and the notion of dimension in the theory of manifolds. [Eng95] gives a good overview of
dimension from the topological perspective. Other notions of dimensions, e.g., those used for vector
spaces or Hilbert spaces, are difficult to include in a qualitative theory of space.

A theory of dimension that suits our needs can be constructed reusing core ideas from inductive
definitions of dimension. However, the relevant topological definitions are either still overly restrictive or
rely on a heavy topological apparatus of which we would like to rid ourselves. In [HG11a] we presented
our most basic theory of (relative) dimension, called DI basic, which is based on three primitive relations:
two binary relations of relative dimension, <dim and =dim, and a unary relation denoting a zero region,
ZEX . The intended interpretations of x <dim y and x =dim y are ‘x has a lower dimension than y’ and
‘x and y have the same dimension’, respectively. This basic theory could be axiomatized equivalently
using ≤dim as the only primitive relation, which is a preorder. DI basic allows models with incomplete
information about the relative dimension between pairs of entities, i.e., some pairs of entities may
not be dimensionally comparable at all. This basic theory is already sufficiently strong to distinguish
mereotopological relations that depend on the relative dimension between two entities. Here, the theory
DI basic will not be discussed in more detail, we refer the interested reader to [HG11a].
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Instead we will work with a stronger theory (that we also used in [HG11b]), in which all entities are
dimensionally comparable. In this stronger theory denoted as

DI linear−unbounded = {D-A1 –D-A5, D-D1 –D-D7}

the classes of equidimensional entities are linearly ordered by <dim. More precisely, the relation <dim is
a strict weak order, whereas ≤dim is a total order. For these reasons, we call this stronger theory the
theory of linear (relative) dimension. It will be the focus of our discussion here. This theory can be
defined using <dim as the only primitive relation of relative dimension together with ZEX as primitive
relation denoting a zero region.

(D-D1) x >dim y ↔ x <dim y (greater dimension)
(D-D2) x =dim y ↔ x ≮dim y ∧ y ≮dim x (equal dimension)
(D-D3) x ≤dim y ↔ x <dim y ∨ x =dim y (lesser or equal dimension)
(D-D4) x ≥dim y ↔ x >dim y ∨ x =dim y (greater or equal dimension)
(D-D5) MaxDim(x)↔ ∀y [y ≤dim x] (maximal-dimensional entity)
(D-D6) MinDim(x)↔ ¬ZEX(x) ∧ ∀y [y <dim x→ ZEX(y)] (minimal nonzero dimension)
(D-D7) x ≺dim y ↔ x <dim y ∧ ∀z [z ≤dim x ∨ y ≤dim z] (next highest dimension)
(D-A1) x ≮dim x (< irreflexive)
(D-A2) x <dim y → y ≮dim x (< asymmetric)
(D-A3) x <dim y ∧ y ≤dim z → x <dim z (<dim transitive2)
(D-A4) ZEX(x) ∧ ZEX(y)→ x = y (unique ZEX)
(D-A5) ZEX(x) ∧ ¬ZEX(y)→ x <dim y (ZEX has minimal dimension)

Axiom Set 6.1: Axioms D-A1 –D-A5 and definitions D-D1 –D-D6 of DI linear−unbounded.

In addition to the standard definitions of the other ordering relations: >dim, =dim, ≤dim, and ≥dim

(D-D1 –D-D4), we define what it means for an entity to be of maximal or of minimal nonzero dimension
(D-D5 and D-D6). Finally, D-D7 defines the notion of the next-highest dimension, something like the
successor function used for the natural numbers. The definition will play a prominent role in Chapter 9.

The relation <dim is irreflexive, asymmetric, and transitive (a strict partial order; D-A1 –D-A3).
D-A4 and D-A5 ensure that a potential zero region (we reuse the term ZEX from [Got96]) is unique and
of lowest dimension. We do not claim that the zero region is ontologically meaningful. D-A10 demands
a lowest-dimensional entity (apart from ZEX) without preventing infinite-dimensional models. As this
paper will show, this theory is sufficiently strong to distinguish mereotopological relations that depend
on dimensions.

The theorems D-T1 –D-T3 verify that the defined relation =dim is indeed an equivalence relation,
i.e., that =dim is reflexive, symmetric, and transitive. We also verify that two entities x =dim y behave
equivalently with respect to other entities of differing dimension (D-T4, D-T5).

(D-T1) x =dim x (=dim reflexive)

(D-T2) x =dim y → y =dim x (=dim symmetric)
2Notice that the axiom D-A3 in [HG11b] contains a typo corrected here.
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(D-T3) x =dim y ∧ y =dim z → x =dim z (=dim transitive)

(D-T4) x =dim y ∧ z <dim x→ z <dim y (=dim renders <dim transitive)

(D-T5) x =dim y ∧ x <dim z → y <dim z (=dim renders <dim transitive)

Lemma 6.1. DI linear−unbounded � {D-T1 –D-T5}

While DI linear−unbounded and all other theories of relative dimension considered here are agnostic
about the existence of a zero region to accommodate extensions in which such region is either desirable or
convenient, an extensions by Z-A1 to DI 0

linear−unbounded or by NZ-A1 to DI¬0
linear−unbounded force/prevent

a zero region. Obviously, Z-A1 and NZ-A1 cannot be used together, a inconsistent theory would result.
In general, we denote the inclusion of Z-A1 or NZ-A1 by a superscript 0 or ¬0 in any theory.

(Z-A1) ∃xZEX(x) (existence of a ZEX)
(NZ-A1) ¬ZEX(x) (no ZEX exists)

Axiom Set 6.2: Axioms Z-A1 and NZ-A1.

(D-A6) ∃x [MinDim(x)] (a lowest nonzero dimensional entity exists)
(D-A7) ∃x [MaxDim(x)] (bounded ≡ a maximal dimension exists)
(D-A8) ¬MaxDim(x)→ ∃y [x ≺dim y] (discrete set of dimensions: next highest dimension)
(D-A9) ¬ZEX(x) ∧ ¬MinDim(x)→ ∃y [y ≺dim x] (discrete set of dimensions: next lowest dimension)

Axiom Set 6.3: Axioms D-A6 –D-A9 of the linear theory of relative dimension DI linear−bounded−discrete.

Neither of D-D5 –D-D7 force entities of lowest, highest, or next-highest dimension to exist. If we
want to enforce that, we need to extend the theory DI linear−unbounded to more restrictive theories of
bounded linear dimension and discrete bounded linear dimension. For most practical applications, it
makes sense to at least assume that a lowest dimension exists. This is enforced in

DI linear = DI linear−unbounded ∪ D-A6.

Other extensions of practical importance are the theory of bounded dimension DI linear−bounded, which
non-conservatively extends DI linear by D-A7, and DI linear−discrete, which non-conservatively extends
DI linear by D-A8 and D-A9. Except for some models that are only of theoretical topological relevance,
we would expect the set of different dimensions to be always discrete as in DI linear−discrete. The strongest
theory is

DI linear−bounded−discrete = DI linear−bounded ∪DI linear−discrete.

DI linear−bounded−discrete is the most restrictive theory of relative dimension of interest to our work. The
complete family of theories of relative dimension is depicted in Figure 6.1.
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DI hierarchy

+ D-A6

+ D-A7 + D-A8, D-A9

Figure 6.1: The hierarchy DI of theories of relative dimension.

6.2 Dimension-independent spatial relations

We proceed by examining the mereological and topological relations that can hold between spatial
entities independent of their dimension. On the mereological side this is spatial containment, denoted
by Cont(x, y), and on the topological side it is contact, denoted by C(x, y). Though we choose Cont
as spatial primitive, C would serve equally well as primitive which can define Cont. We first observed
and studied this interchangeability of a topological and mereological primitive in [HWG09] for the equi-
dimensional mereotopology of Asher & Vieu [AV95].

6.2.1 Containment as mereological relation

What parthood is to equi-dimensional mereotopology, containment is to dimension-independent mereo-
topology. In its point-set interpretation, we say ‘y contains x’, i.e., Cont(x, y), if x represents a nonempty
set of points and every point in space occupied by x is also occupied by y. A region can contain not
only a (smaller) region of the same dimension (equi-dimensional parthood), but also a lower-dimensional
entity. e.g., a 2D-surface can contain another 2D-surface, a line, or a point. Containment is a nonstrict
partial order. We again use ZEX to denote a zero region which neither contains nor is contained in any
other region3. For the basic theory of containment,

CObasic = {C-A1 –C-A4, D-A4},
3This is a somewhat arbitrary choice and justified primarily by its cognitive coherence. Mathematically, it would be fine

to assume that the zero region is contained in any other region, but using containment in this way seems counterintuitive.
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we make no assumption about the (non-)existence of a zero region, but we include again D-A4 so that
the zero region is unique if it exists at all. Two extensions are feasible: CO0

basic = CObasic ∪ {Z-A1} and
CO¬0

basic = CObasic ∪ {NZ-A1}.

(C-A1) ¬ZEX(x)↔ Cont(x, x) (Cont reflexive and definition of ZEX)
(C-A2) Cont(x, y) ∧ Cont(y, x)→ x = y (Cont antisymmetric)
(C-A3) Cont(x, y) ∧ Cont(y, z)→ Cont(x, z) (Cont transitive)
(C-A4) ZEX(x)→ ∀y [¬Cont(x, y) ∧ ¬Cont(y, x)] (nothing contains or is contained in the zero entity)

Axiom Set 6.4: Axioms C-A1 –C-A4 of the basic theory of containment CObasic.

Recall the characterization of the structures we intend to capture: compositions of manifolds with
boundaries. In particular, we perceive each entity as including its boundary (if there is one)—we do
not distinguish an entity from its interior. We will get more precise in the treatment of boundaries in
Chapter 9.

It is natural to assume that containment is extensional, that is, if two entities contain exactly the
same set of entities, then they are equal. If only a single entity satisfying ZEX exists, as posited by
D-A4, we can actually prove this weak kind of extensionality.

(C-T1) ∀z [Cont(z, x)↔ Cont(z, y)]→ x = y (Cont extensional)

Lemma 6.2. CObasic � C-T1

If one entity x is contained in another entity y, this implies that they could only be equal if y in
turn contains x. See Figure 6.2 for an example. Subsequently, we include C-T1 as an axiom, it will
simplify some of the automated proofs. A stronger version of extensionality requires that no two entities
contain exactly the same entities apart from themselves (known as strong supplementation from [CV99a],
compare axiom EP-E2).

6.2.2 Contact as definable topological relation

Now contact C is definable in terms of containment (C-D), resembling the definition for overlap,
∀x, y[O(x, y)↔ ∃z(P (z, x) ∧ P (z, y))], in many equi-dimensional mereotopologies.

(C-D) C(x, y)↔ ∃z [Cont(z, x) ∧ Cont(z, y)] (contact)

Axiom Set 6.5: Definition C-D of the theory COC.

In CObasic ∪ C-D (and all extensions thereof) the contact relation is provably reflexive, symmetric
and monotone with respect to containment (C-T2 to C-T5).

(C-T2) ¬ZEX(x)→ C(x, x) (C reflexive)

(C-T3) C(x, y)→ C(y, x) (C symmetric)

(C-T4) ZEX(x)→ ¬C(x, y) (nothing in contact with zero entity)

(C-T5) Cont(x, y)→ ∀z [C(z, x)→ C(z, y)] (Cont implies C monotone)
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x

y

Figure 6.2: A model of COC in which x 6= y is intended even though x, y ∈ M are in contact to all
entities (assuming the displayed entities are the only existing ones). Hence extensionality of C (C-E2)
is violated, but extensionality of Cont (C-T1) is satisfied because Cont(x, y) but ¬Cont(y, x).

Lemma 6.3. CObasic ∪ C-D � {C-T2 –C-T5}

The converse of C-T5 is not entailed and posited in a slightly weaker form as C-E1. The way C-E1
is expressed here is due to the fact that we do not want to force extensionality of C.

(C-E1) ¬ZEX(x) ∧ ∀z [C(z, x)→ C(z, y)] ∧ ∃z [C(z, y) ∧ ¬C(z, x)]→ Cont(x, y) ∧ x 6= y

(C strictly monotone implies Cont)
(C-E2) ∀z [C(z, x)↔ C(z, y)]→ x = y (C extensional)

Axiom Set 6.6: Extension axioms C-E1 and C-E2 of the theory CObasic.

We obtain
COC = {C-A1 –C-A4, D-A4, C-E1, C-D}.

It will turn that the axiom C-A5 is not needed throughout the thesis. In other words, no subsequent
results rely on this axiom.

As side-effect, C-D mereologically closes the set of all entities in a very crude way. Contact between
two entities requires the existence of a common contained entity—interpretable as intersection.

A useful and common assumption is extensionality of C (C-E2). It goes far beyond extensionality
of Cont as already required in CObasic: An entity x contained in y that is in contact to all entities in
contact to y, must be identical to y even if y is not contained in x, compare Figure 6.2.

6.3 Interaction of dimension and containment

The theories of containment, such as CObasic, can be combined with any extension of DI linear by axiom-
atizing the direct relationship between containment and relative dimension: if x is contained in y, then
x must have a dimension that is the same as or lower than that of y. We are particularly interested in
the theory

CODI linear = CObasic ∪DI linear ∪ {C-D, CD-A1}

as the weakest such combination.
Another common assumption is that the nonzero entities of lowest dimension are indivisible (CD-E1).

Indivisibility is justified as long as the nonzero entities of lowest dimension represent points. If the entities
of the lowest dimension represent lines or surfaces it is too strong an assumption. Though a necessary
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(CD-A1) Cont(x, y)→ x ≤dim y

(a contained entity has a dimension no greater than that of the entity it is contained in)

Axiom Set 6.7: Axiom CD-A1 for the basic theory of containment and linear dimension, CODI linear.

extension e.g., for incidence geometry, we do not include CD-E1 in our general theory of containment
and dimension.

(CD-E1) MinDim(x)→ ∀y [Cont(y, x)→ x = y] (entities of lowest dimension are indivisible)

Axiom Set 6.8: Extension Axiom CD-E1 of the CODI hierarchy.

We use CODI linear to define three types of contact depending on the dimension of the entities and
their common entity. We distinguish two types of strong contact and one type of weak contact. This
does not depend on further restrictions of the theory of relative dimension. But first we define the useful
notion of equi-dimensional parthood, i.e., containment between two entities of equal dimension (EP-D).
For convenience, we will often use the definable relation of proper parthood, PP (EPP-D).

(EP-D) P (x, y)↔ Cont(x, y) ∧ x =dim y (equidimensional parthood)
(EPP-D) PP(x, y)↔ P (x, y) ∧ x 6= y (equidimensional proper parthood)

Axiom Set 6.9: Definitions EP-D and EPP-D of the CODI hierarchy.

We verify that even in the relatively weak theory CODI linear parthood is a nonstrict partial order,
that is, reflexive, antisymmetric, and transitive (EP-T1 to EP-T3). Parthood further implies contact
(EP-T8). Other simple transitivity properties in interaction with dimension constraints (EP-T4 to
EP-T7) also hold in CODI linear.

(EP-T1) ¬ZEX(x)→ P (x, x) (P reflexive)

(EP-T2) P (x, y) ∧ P (y, x)→ x = y (P antisymmetric)

(EP-T3) P (x, y) ∧ P (y, z)→ P (x, z) (P transitive)

(EP-T4) P (x, y) ∧ z <dim x→ z <dim y (parthood preserves relative dimension)

(EP-T5) P (x, y) ∧ y <dim z → x <dim z (parthood preserves relative dimension)

(EP-T6) P (x, y) ∧ z =dim x→ z =dim y (parthood preserves relative dimension)

(EP-T7) P (x, y) ∧ z =dim y → x =dim z (parthood preserves relative dimension)

(EP-T8) P (x, y)→ C(x, y) (parthood requires contact)

(EP-T9) ∀z [P (z, x)↔ P (z, y)]→ x = y (P extensional)

Lemma 6.4. CODI linear ∪ {EP-D, EPP-D} � {EP-T1 –EP-T9}

Analogously to the extensionality of Cont (C-T1), EP-T9 does not mean that two entities which
have identical parts (apart from themselves) are necessarily identical. In other words, the notion of weak
supplementation (EP-E1, compare page 109) from [CV99a] may still fail.



Chapter 6. Basic multidimensional mereotopological space 104

Now we can characterize the relationship between containment and dimension using the parthood
relation. Recall that the axioms of relative dimension force <dim to be a strict partial order, while
the relations Cont and P both define nonstrict partial orders. We can then formally characterize the
relationship between these three relations as follows.

Theorem 6.1. In a modelM of CODI linear ∪ {EP-D}, PM and (<dim)M form a partition of ContM.

Proof. It suffices to prove:

CODI linear ∪ {EP-D} � Cont(x, y)→ P (x, y) ∨ x <dim y

and
CODI linear ∪ {EP-D} � ¬P (x, y) ∨ ¬x <dim y.

The first sentence follows immediately from CD-A1, EP-D, and D-D4 and the second sentence follows
from EP-D and D-D2.

In other words, the containment relation Cont can be broken down into two disjoint and exhaustive
subrelations P , which only holds for equidimensional entities, and <dim, which only holds for non-
equidimensional entities.

We also want to define a set of jointly exhaustive, pairwise disjoint subrelations of contact based on
the relative dimensions among the two entities and their shared entity. To do that, we first introduce a
few more definitions using parthood.

6.3.1 Maximal and minimal entities within a dimension

A special role in representations of space have entities of a given dimension that are not properly
contained in any other entity of the same dimensions. In classical geometries, these are, e.g., lines
or planes. ME-D1 defines the maximal entities within a dimension. Analogously, ME-D2 defines the
minimal entities of a dimension, that is, the entities that have no proper parts.

(ME-D1) Max(x)↔ ¬ZEX(x) ∧ ∀y [¬PP(x, y)] (maximal in a dimension)
(ME-D2) Min(x)↔ ¬ZEX(x) ∧ ∀y [¬PP(y, x)] (minimal in a dimension)

Axiom Set 6.10: Definitions ME-D1 and ME-D2 of the CODI hierarchy.

These notions of ‘maximal in a dimension’ and ’minimal in a dimension’, Max(x) and Min(x), should
not be confused with the notions of maximal and minimal dimension, MaxDim(x) and MinDim(x) as
defined earlier. Max(x) singles out the maximal entities within a single dimension, that is, the maximal
entities with respect to the order defined by parthood, while MaxDim(x) singles out the entities of
greatest dimension, i.e., the entities that are maximal with respect to the order defined by relative
dimension. In the intended structures, all atomic manifolds are minimal entities. Because each intended
structures has a finite domain, i.e., has only a finite number of atomic and composite manifolds, maximal
entities are guaranteed to exist.

In our work, the minimal and maximal entities will play key roles for many properties we intend
to prove and for proving satisfiability of select theories. Because our intended models as described in
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Chapter 5 are finite, we will often extend CODI linear ∪ {EP-D, EPP-D} by ME-E1. This axiom requires
models to be atomic, that is, every entity in the domain of a model must contain some atomic, i.e.,
minimal entity of the same dimension.

(ME-E1) ∀x
[
¬ZEX(x)→ ∃y[P (y, x) ∧Min(y)]

]
(atomic: every nonzero entity has a minimal part)

Axiom Set 6.11: Extension axiom ME-E1 of the CODI hierarchy.

6.3.2 Relative dimension distinguishes three types of contact

In this subsection we will define three kinds of contact relations that are definable in CODI linear. Together
those three relations are jointly exhaustive and pairwise disjunct subrelations of contact. They are very
natural in that they are often distinguished intuitively by humans. Unsurprisingly, they have occurred
in more specialized forms and under different names throughout the literature on topological spatial
relations, e.g., in [AV95; Ege89; RCC92].

Equidimensional strong contact: Partial overlap

Partial overlap (PO-D) is the strongest of our contact relations, it holds when two regions share a part,
that is, they overlap in a part4. Partial overlap is in CODI linear a reflexive and symmetric relation
requiring equi-dimensionality (PO-T1 to PO-T3). It is effectively what is known as overlap, O, in most
equidimensional mereotopologies.

(PO-D) PO(x, y)↔ ∃z [P (z, x) ∧ P (z, y)] (partial overlap)

Axiom Set 6.12: Definition PO-D of the CODI hierarchy.

(PO-T1) ¬ZEX(x)→ PO(x, x) (PO reflexive)

(PO-T2) PO(x, y)→ PO(x, y) (PO symmetric)

(PO-T3) PO(x, y)→ x =dim y (PO requires equidimensionality)

Lemma 6.5. CODI linear ∪ {EP-D, PO-D} � {PO-T1 –PO-T3}

Non-equidimensional strong contact: Incidence

Entities of different dimension can also be in strong contact. We generalize partial overlap to incidence
(Inc-D) by requiring that the common element is an equi-dimensional part of exactly one of them. Even
in the weak theory CODI linear incidence is irreflexive, symmetric, and prevents equi-dimensionality
(Inc-T1 to Inc-T3). Inc-T4 to Inc-T6 show its dimension constraint.

4The name ‘partial overlap’ for this relation here may be a little confusing because it differs from its use as base relation
in the RCC [RCC92] in which it is defined as PO(x, y)↔ O(x, y) ∧ ¬P (x, y) ∧ ¬P (y, x). The term ‘partial’ here refers to
the fact that the entities overlap in an equidimensional part, not just in some lower-dimensional entity. The relation PO
here allows one entity to be a part of the other.
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Figure 6.3: Examples of two partially overlapping entities.

(Inc-D) Inc(x, y)↔ ∃z[(Cont(z, x)∧P (z, y)∧ z <dim x)∨ (P (z, x)∧Cont(z, y)∧ z <dim y)] (incidence)

Axiom Set 6.13: Definition Inc-D of the CODI hierarchy.

(Inc-T1) ¬Inc(x, x) (Inc irreflexive)

(Inc-T2) Inc(x, y)→ Inc(y, x) (Inc symmetric)

(Inc-T3) x =dim y → ¬Inc(x, y) (equidimensionality prevents Inc)

(Inc-T4) Inc(x, y)→ x <dim y ∨ y <dim x (Inc requires comparability of entities)

(Inc-T5) Cont(x, y) ∧ x <dim y → Inc(x, y) (containment of a lower-dimensional entity requires Inc)

(Inc-T6) Inc(x, y) ∧ P (y, z)→ Inc(x, z) (Inc transitive with respect to parthood)

Lemma 6.6. CODI linear ∪ {EP-D, Inc-D} � {Inc-T1 – Inc-T6}

IP TP other entity other entity other entity

(a)

(j)

(i)

(h)

(f)

(g)
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(d)

(c)

(b)

Figure 6.4: Examples of two incident entities.
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Figure 6.5: Examples of two entities in superficial contact.

Weak contact: Superficial contact

In contrast to partial overlap and incidence, superficial contact SC (SC-D) is a weak contact in the
following sense: the shared entity must be of a lower dimension than both of the entities in contact
(SC-T4). SC-T1 provides an alternative definition more closely linked to contact. SC is provably
irreflexive and symmetric (SC-T2, SC-T3).

(SC-D) SC (x, y)↔ ∃z[Cont(z, x) ∧ Cont(z, y)] ∧ ∀z[Cont(z, x) ∧ Cont(z, y)→ z <dim x ∧ z <dim y]
(superficial contact)

Axiom Set 6.14: Definition SC-D of the CODI hierarchy.

(SC-T1) SC (x, y)↔ C(x, y) ∧ ¬∃z[Cont(z, x) ∧ P (z, y)] ∧ ¬∃z[P (z, x) ∧ Cont(z, y)]

(alternative definition of SC)

(SC-T2) ¬SC (x, x) (SC irreflexive)

(SC-T3) SC (x, y)→ SC (y, x) (SC symmetric)

(SC-T4) SC (x, y)→ ∃z [z <dim x ∧ z <dim y ∧ Cont(z, x) ∧ Cont(z, y)]

(SC requires a shared entity of a lower dimension)

Lemma 6.7. CODI linear ∪ {EP-D, SC-D} � {SC-T1 – SC-T4}

The relation of ‘external contact’, EC , as used in traditional equi-dimensional mereotopology [see
e.g. AV95; Coh+97b], where all regions are of the same dimension, is a special case of SC . The intended
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interpretation of EC (x, y) is that ‘x and y are connected in their boundaries only’. When x and y are of
maximal dimension, then SC (x, y) is equivalent to EC (x, y). However, entities of nonmaximal dimension
that are in superficial contact may or may not be in external contact. We will only be able to make such
a distinction in Chapter 9.

Exhaustiveness and disjointness

The three defined relations then form a set jointly exhaustive, pairwise disjoint (JEPD) subrelations of
contact in

CODI = CODI linear ∪ {C-D, EP-D, EPP-D, PO-D, Inc-D, SC-D, ME-D1, ME-D2}

which is merely a definitional extension of CODI linear. The same applies to CODI unbounded (which will
be of more interest in Section 8.2), to CODI with D-A6 omitted, and to all extensions of CODI like the
ones we will introduce in Chapter 7.

Theorem 6.2. In a modelM of CODI , POM, IncM, and SCM form a partition of CM.

Proof. It suffices to show that in CODI , PO, SC , and Inc are an exhaustive set of subrelations of contact
(CD-T1 to CD-T4) which are pairwise disjoint (CD-T5 to CD-T10).

(CD-T1) PO(x, y)→ C(x, y)

(CD-T2) SC (x, y)→ C(x, y)

(CD-T3) Inc(x, y)→ C(x, y)

(CD-T4) C(x, y)→ PO(x, y) ∨ SC (x, y) ∨ Inc(x, y)

(CD-T5) PO(x, y)→ ¬SC (x, y)

(CD-T6) PO(x, y)→ ¬Inc(x, y)

(CD-T7) SC (x, y)→ ¬PO(x, y)

(CD-T8) SC (x, y)→ ¬Inc(x, y)

(CD-T9) Inc(x, y)→ ¬PO(x, y)

(CD-T10) Inc(x, y)→ ¬SC (x, y)

CD-T1 –CD-T10 are automatically provable. This proves that PO, Inc, and SC are indeed jointly
exhaustive and pairwise disjoint subrelations of C in CODI and all extensions thereof.

Supplementation

An important principle in mereologies and in mereotopologies is supplementation [CV99a; Sim87]. Es-
sentially, supplementation requires that any x that has some proper part, has at least two proper parts,
namely complementary proper parts, that do not overlap. This weak definition of supplementation is
captured by EP-E1. A stronger notion of supplementation is captured by EP-E2, it says that any two
entities x and y that are not in parthood relation to each other must differ in at least one part, that
is, there is a part z of y that does not partially overlap x. While EP-E1 and EP-E2 are tailored to
equidimensional entities, we can generalize EP-E2 to the general multidimensional case. This results in
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EP-E3, formalizing the idea that any entity y that is not contained in x has a part z that is neither
incident with x nor overlaps x.

(EP-E1) PP(y, x)→ ∃z [P (z, x) ∧ ¬PO(z, y)] (weak supplementation)
(EP-E2) ¬ZEX(x) ∧ ¬ZEX(y) ∧ ¬P (y, x)→ ∃z

[
P (z, y) ∧ ¬PO(z, x)

]
(strong supplementation)

(EP-E3) ¬ZEX(x) ∧ ¬ZEX(y) ∧ ¬Cont(y, x)→ ∃z [P (z, y) ∧ ¬Inc(z, x) ∧ ¬PO(z, x)]
(strong supplementation of containment)

Axiom Set 6.15: Extension axioms EP-E1 –EP-E3 of the CODI hierarchy.

EP-E1 –EP-E3 are not theorems of CODI . One model M of CODI that is a counterexample to
EP-E1 contains two elements a, b ∈M such that 〈a, b〉 ∈ PM, 〈b, a〉 /∈ PM and for any c ∈M with c 6= b

we have
〈c, a〉 ∈ PM ⇐⇒ 〈c, b〉 ∈ PM.

In this model a and b are distinct even though all proper parts of b are also parts of a. This means that
the topological interior and the topological closure of a region may not be identical. Then the stronger
version thereof, strong supplementation [CV99a], as captured by EP-E2 may also fail.

Equally, strong supplementation for containment, captured by EP-E3, is not provable. For a specific
model of CODI let a, b ∈ M be two arbitrary domain entities. Let c denote the domain entity that
satisfies the existentially quantified formula

∃z[P (z, y) ∧ ¬Inc(z, x) ∧ ¬PO(z, x)]

for the variable assignments x := a and y := b. Observe that any domain entity d ∈M that is contained
in c, i.e., with 〈d, c〉 ∈ ContM, may also be contained in a as well. In other words, the formula

P (z, y) ∧ ¬Inc(z, x) ∧ ¬PO(z, x)→ ∀v[Cont(v, z)→ ¬Cont(v, x)]

may not be valid. This is intentional because a and b (or for that matter, any x, y that satisfy the
antecedent of EP-E3) may share entities of lower dimension, but no part of y can be contained in x.
This is adequately captured by ¬Inc(z, x) and ¬PO(z, x) in the antecedent of the above formula. Later
(on page 121), after we have introduced an intersection operation, we will be able to simplify EP-E3. In
the extensions of CODI by axioms that close all models under intersections and differences, we will be
able to prove EP-E1 –EP-E3.

6.4 Summary

In this chapter we have introduced a linear theory of relative dimension, DI linear, that makes the following
ontological assumptions:

• All entities are dimensionally comparable.

• The order over dimensions is linear.

• There is a lowest nonzero dimension.
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Weaker theories of dimension are feasible, such as DI basic−unbounded [HG11a], but are not of relevance
here. We have also considered extensions of DI linear by the following additional ontological assumptions:

• The order over dimensions is discrete (discrete dimensions).

• There is a highest dimension (bounded set of dimensions).

Likewise, we introduced a basic theory of spatial containment that works independently of the relative
dimension of the involved spatial entities. Though this theory is based on a mereological primitive
relation, it is also capable of defining the topological relation of contact.

By combining the basic theory of containment, CObasic cup C-D, with the linear theory of relative
dimension, DI linear, and adding CD-A1 to ensure their proper interaction, we defined a basic theory
of containment and linear dimensions, CODI linear. This theory can again be extended by the various
restrictions of the relative dimension relation from the DI hierarchy. The three resulting hierarchies and
their relationships are illustrated in Figure 6.6.

In this combined theory, we can further refine the topological relation of contact into three types
of contact: (partial) overlap, incidence, and superficial contact. Independent of the relative dimension
of the involved entities, these exhaustively classify contact. Moreover, these relations are disjoint kinds
of contact. The definitions of these specialized contact relations together with a few other definitions
form a definitional extension of CODI linear that we refer to as CODI . This theory will play a central
role throughout the thesis. That the three defined kinds of contact are jointly exhaustive and pairwise
disjunct (JEPD) has an important practical consequence: it allows us to define a spatial calculus from
these mereotopological relations, which is the multidimensional equivalent of the Region Connection

DI hierarchy

+ D-A6

+ D-A7 + D-A8,
   D-A9

CO hierarchy

CODI hierarchy

definitional 
extension

+ C-E1

definitional 
extension

Figure 6.6: The CODI hierarchy and its relationship to the DI and CO hierarchies. Theories of the
CODI hierarchy can be obtained as combination of theories of the dimension hierarchy DI and the small
hierarchy of containment, CO.
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Figure 6.7: The lattice of jointly exhaustive, pairwise disjoint binary relations resulting from CODI . On
the coarsest level it distinguishes the four symmetric relations PO, Inc, SC , and ¬C. On the finest level,
it distinguishes ten relations in total (including identity =, of which four are symmetric (PPO, SC , ¬C,
and =) while the three nonsymmetric relations P , Cont ∧ ¬P , and PInc∧ >dim come also as inverses,
denoted by superscript −1.

Calculus and related calculi (in particular the 9-intersection model by Egenhofer et al. [Ege89; Ege91;
EF91; EH91]).

The resulting lattice of binary relations with refinements between relations is depicted in Figure 6.7.
Note that the right-hand side of the lattice (the refinements of PO) together with ¬C are identical with
the five binary relations defined in the spatial calculus RCC-5 [Ren02].

Not all relations in this lattice have a explicit name; some are expressed by a sentence (such as proper
partial overlap, PPO which is PO ∧¬P ∧¬P−1 or PInc∧ x >dim y which is proper incidence where the
first participating entity is of greater dimension than the second participating entity). On the coarsest
level, we have four symmetric relations: PO, Inc, SC, and ¬C. By Theorem 6.2 those four relations are
jointly exhaustive and pairwise disjoint, that is, between any pair of entities in a model of CODI (with
the necessary definitions) exactly one of those relations holds.

The theory CODI with its various definitions will form the base theory for the remaining chapters.
We will extend this theory by additional axioms and new primitive, i.e., undefinable, relations to show
how to reconstruct other spatial theories from this weak theory. First, we will investigate how to close
this theory under standard mereological closure operations (intersection, difference, sum) in Chapter 7.
Using some of those closure axioms, we can then in Chapter 8 show how to extend CODI to reconstruct
other mereotopologies, such as the Region Connection Calculus and the INCH Calculus. By the nature
of the necessary axioms, this will confirm that CODI is indeed a weak multidimensional mereotopology.



Chapter 7

Closure operations in
multidimensional mereotopological
space

So far, we have not postulated the existence of any entities beyond the zero entity and entities of minimal
and maximal dimensions. Often, in mereotopology we want to ensure that certain other entities exist
as well, such as the intersection between two entities in an entity by itself. In this section we will study
ways to close the basic multidimensional mereotopology by introducing mereological closure operations of
intersection, difference, sum, and universal. For this task, we heavily rely on the insights gained about
mereological and topological closure operations in equidimensional mereotopologies from Chapter 4
and from Casati & Varzi’s exposition [CV99a]. Note that we are pragmatic about the existence of
additional entities forced by mereological closures (under one or multiple of the mereological closure
operations intersection, difference, sum, and universal)—we make no ontological assumptions whether the
introduced entities are ontologically meaningful; instead, we provide an various strength of the theories
that one can adopt on a case-by-case basis. Since it will be useful in some domains or applications, we
provide the axioms for the closures. They are particularly useful for modelling abstract space, just like
we will use this mereologically closed variant of CODI in Chapter 11, as opposed to modelling a space
of physical objects. Moreover, the closure operations allow us to define mereologically closed spatial
theories as extensions of the CODI hierarchy.

Since multidimensional mereotopologies have received much less attention than equidimensional me-
reotopologies, mereological closure operations among entities of different dimensions are not well under-
stood. Only [Gal96; Gal04; Got96] studied mereological closures in multidimensional mereotopologies
to some extent, but restricted their attention to mereological closures of entities of equal dimension with
axioms almost identical to those found in equidimensional mereotopology. Thereby they did not consider
the interesting cases of intersections, differences, or sums of entities of different dimension, altogether.
The lack of considering intersections of entities of different dimension particularly limits the usefulness
of those theories, while the lack of differences and sums can be justified because their adequacy is con-
troversial [CV99a]. But most problematic from an implementation point of view is that their closure
operations are not total functions, i.e., they do not apply to arbitrary pairs of entities.

112
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Here, we propose one way of closing our multidimensional mereotopology under intersections, differ-
ences, and sums. There are three properties that guide our axiomatization. First, all closure operations
shall be total functions, i.e., defined for any pair of entities—independent of their relative dimension—in
terms of the primitive and defined relations we introduced in the previous chapter. Secondly, all closure
operations shall behave as in equidimensional mereotopologies for entities of equal dimension. The sec-
ond condition ensures that equidimensional mereotopology can be defined as an extension of our theory
in the subsequent chapter. In particular, this implies that the entities of equal dimension in each model
of our theory form a Boolean algebra, a claim which Theorem 7.6 will verify. Thirdly, the resulting
entities must be again of uniform dimension in order to be representable by composite manifolds as the
domain entities of the intended class of structures.

There are drawbacks associated to our approach. In particular, the closure operations are kind
of ‘coarse’, they lose entities of smaller dimensions—something we cannot avoid if we want to ensure
that the entities resulting from the mereological closures are again of uniform dimension. For the same
reason, the definitions of the closure operations are not particularly elegant. For example, associativity
cannot be guaranteed for intersections, and distributivity cannot be guaranteed for entities of different
dimensions. We will study which of the standard properties of intersections, differences, and sums still
hold and which may fail.

We proceed as following: first we introduce the downward mereological closure operations inter-
section and difference in Section 7.1 and 7.2, respectively, resulting in the theory CODI ↓. As part of
Section 7.2, we generalize the so-called supplementation principles of equidimensional mereotopologies to
the multidimensional case and show that they become provable in CODI ↓ (Section 7.2.1) and introduce
the definable concept of self-connectedness (Section 7.2.3). At the end, we show that in atomic models
of CODI ↓, every entity is the sum of a set of minimal entities. This helps us that every structure in the
class of intended structures, M, as defined in Chapter 5, yields a model of CODI ↓ (Theorem 7.4). In
other words, the intended structures satisfy all axioms of CODI ↓.

Subsequently, we extend the theory by the upward mereological closure operations sum and universal
in Sections 7.3 and 7.4, resulting in the theory CODI l. The second core result of this chapter is
Theorem 7.6: it uses the partitioning of a model CODI ↓ into maximal sets of entities of equal dimension
from Theorem 6.1 and shows that each set in the partition forms a Boolean lattice with parthood P

defining its underlying partial order.
Along the way, we prove that each of the three closure operations are total function, i.e., are uniquely

defined for arbitrary pairs of domain entities (Theorems 7.1, 7.2, and 7.5) and that the universal is
uniquely defined (Theorem 7.7). In particular, the operations are defined functions, they are not prim-
itive. Hence, all theories we construct in this chapter will be extensions of the ‘containment-dimension
mereotopology’ CODI defined in the previous chapter. We also prove important intuitive properties
about the operations and their interaction. At the same time, we discuss properties that are valid
for equidimensional closures, but not generally valid in the multidimensional case. If possible, we give
relative dimension constraints of when such properties hold.

7.1 Intersections

The definition of contact from Chapter 6 already implies that two entities are only in contact if there
exists a common entity that is contained in both. We can capture all entities satisfying this condition
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(e)(b) (c) (g)(f)(a) (d)

Figure 7.1: The spatial configurations (a) to (f) are examples in which the entities shared by two entities
are not all of the same dimension. In (a), the entities share something that consists of a 2D region, a
1D line segment, and a point. This is not an entity of uniform dimension itself; the intersection consists
only of the 2D region. Similarly for the examples (b) to (f). In (g) the intersection is not connected, but
of uniform dimension. Thus both points are contained in the intersection of the two entities.

by a ternary intersection relation IntCont(z, x, y) meaning that ‘z is contained in both x and y’ (Int-D).
This naïve definition of the intersection of two entities can be of mixed dimension and is therefore not
always a domain entity, which are all of uniform dimension. For example, two two-dimensional areas can
intersect in a linear (one-dimensional) entity and in a separate point not contained in the linear entity
(compare Figure 7.1). Then, the intersection cannot be an element in the domain.

(Int-D) IntCont(z, x, y)↔ Cont(z, x) ∧ Cont(z, y) (intersection containment)

Axiom Set 7.1: Definition Int-D of the CODI hierarchy.

In CODI we can prove the following properties about IntCont.

(Int-T1) ¬ZEX(x)→ IntCont(x, x, x) (IntCont reflexive)

(Int-T2) IntCont(z, x, y)→ IntCont(z, y, x) (IntCont symmetric in the last two places)

(Int-T3) IntCont(z, x, y)→ IntCont(z, x, x) (IntCont reflexive in the last two places)

(Int-T4) ¬C(x, y)↔ ∀z [¬IntCont(z, x, y)] (empty intersection iff ¬C(x, y))

Lemma 7.1. CODI ∪ Int-D � {Int-T1 – Int-T4}

For two entities that partially overlap, that is, for two entities of identical dimension that share
a part of the same dimension, a stronger notion of closure under mereological intersection requires a
single, unique shared entity to exist (Int-E1), though this shared entity may consist of several scatted,
i.e., disconnected, pieces. This is essentially the closure operation in equidimensional mereotopologies.

(Int-E1) PO(x, y)→ ∀v [P (v, x) ∧ P (v, y)→ P (v, x · y)]
(intersection closure x · y for partially overlapping entities x, y)

Axiom Set 7.2: Extension axiom Int-E1 of the CODI hierarchy.

Int-E1 is not entailed by CODI ∪ Int-D. But instead of simply adding Int-E1 as an axiom, we
want to generalize this idea to the multidimensional case by defining the maximal intersection of highest
dimension among all entities shared by x and y. We define this maximal intersection of highest dimension
as the function x · y (Int-A1 – Int-A4). This intersection could still consist of two or more disconnected
parts, but now those must be at least of equal dimension. All other, lower-dimensional entities captured
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(Int-A1) ¬C(x, y)→ ZEX(x · y) (empty intersection)
(Int-A2) ¬ZEX(x · y)→ Cont(x · y, x) (x · y is contained in the intersecting entities)
(Int-A3) Cont(z, x) ∧ Cont(z, y)→ z ≤dim x · y

(x · y has a dimension greater or equal to all entities contained in both x and y)
(Int-A4) Cont(z, x) ∧ Cont(z, y) ∧ z =dim x · y ↔ P (z, x · y) (every entity of the

dimension of x · y that is contained in both x and y is a part of x · y and vice versa)

Axiom Set 7.3: Axioms Int-A1 – Int-A4 of CODI ↓.

by IntCont are lost in this functional intersection unless they are contained in a part of the intersection
of highest dimension. Then they are still contained in the intersection by transitivity of containment.

First, we want to verify that the intersection operation · as restricted by CODI ∪ {Int-A1 – Int-A4}
is indeed a total function.

Theorem 7.1. The operation · is a total function in CODI ∪ {Int-A1 – Int-A4}.

Proof. In order to proof that · is a total function, i.e., that x · y is uniquely defined for every pair x, y,
we must show that x · y is defined for every pair x, y and that it is unique.

Let x, y be arbitrary entities. We split the proof into two cases.

Case (I): Assume ¬C(x, y).
Then (x · y) /∈ ZEXM satisfies the constraints and by D-A4 x · y must also be unique (since there
is a unique element z ∈ ZEXM by D-A4).

Case (II): Assume C(x, y).
Then by C-D, there must exist some z ∈M such that Cont(z, x) and Cont(z, y). We now claim
that every such entity z of highest dimension is contained in x · y. By Int-A3, we have z≤dimx · y.

Subcase (II.i): Assume z<dimx · y.
Then some other entity v ∈ M with z<dimv must exist such that PMv, x · y) and thus
by Int-A2, Cont(v, x) and Cont(v, y). Hence z cannot be an entity of highest dimension
contained in both x and y and hence ¬PMz, x · y).

Subcase (II.ii): Assume z=dimx · y.
Then by Int-A4, we have PM(z, x · y). Hence, we can determine uniquely the set of parts of
x · y and by EP-T9 this uniquely identifies x · y.

Since all entities x, y ∈ M are either in contact or not, no other cases are possible. Therefore, the
intersection x · y is uniquely determined for arbitrary entities x, y ∈M.

Next we prove some essential properties of the intersection operation. We start by verifying that the
intersection operation is commutative (Int-T5) and behaves as expected for the three types of contact,
PO, Inc, and SC (Int-T7 to Int-T9). Moreover, Int-E1 is now a theorem in CODI ∪ {Int-A1 – Int-A4}.

(Int-T5) x · y = y · x (intersection commutative)

(Int-T6) ZEX(x · y)↔ ¬C(x, y) (zero intersection only for disconnected entities)
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p

l

r

s

Figure 7.2: Intersection · is not associative in this model of CODI ∪ {Int-A1 – Int-A4}. Consider
r · (s · p) = r · p = p 6= ∅ = l · p = (r · s) · p.

(Int-T7) PO(x, y)→ x =dim x · y =dim y

(PO: the max. intersection is of the same dimension as both intersecting entities)

(Int-T8) Inc(x, y) ∧ x <dim y → x · y =dim x ∧ x · y <dim y

(Inc: the max. intersection is of a lower dimension than one of the intersecting entities)

(Int-T9) SC (x, y)→ x · y <dim x ∧ x · y <dim y

(SC : the max. intersection is of a lower dimension than both intersecting entities)

Lemma 7.2. CODI ∪ {Int-A1 – Int-A4} � {Int-T5 – Int-T9, Int-E1}

In equidimensional mereotopology, the intersection operation is always associative, i.e., it satisfies

x · (y · z) = (x · y) · z.

But unlike the equidimensional case, the intersection operation in the multidimensional case is not always
associative as illustrated by Figure 7.2. Non-associativity only occurs for entities whose intersection is
nonuniform, i.e., whose intersection contains disconnected entities of differing dimensions. However, the
intersection operation satisfies a weaker form of associativity known as the left- and right-alternative
laws (Int-T11 and Int-T12). But first we prove that the intersection operation is idempotent (Int-T10),
a property that simplifies the proofs of Int-T11 and Int-T12.

(Int-T10) x · x = x (· idempotent)

(Int-T11) (x · x) · y = x · (x · y) (· left-alternative)

(Int-T12) y · (x · x) = (y · x) · x (· right-alternative)

Lemma 7.3. CODI ∪ {Int-A1 – Int-A4} � {Int-T10 – Int-T12}

Proof. First, idempotence (Int-T10) of the intersection operation follows directly from Int-A4 as the
automatic proof shows.

By commutativity (Int-T5) of · both left- and right-alternative (Int-T11 and Int-T12) are equivalent.
To prove either, it suffices to prove a simpler equivalent property according to the following logical
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derivation:

y · (x · x) = (y · x) · x

⇔ (x · x) · y = x · (x · y) (Int-T5)

⇔ x · y = x · (x · y) (Int-T10)

To prove Int-T11 and Int-T12, it thereby suffices to prove

(Int-T11′) x · y = x · (x · y) (· left- and right-alternative)

By EP-T2 it then suffices to prove the following two sentences about the parthood relations:

¬ZEX(x · y)→ P (x · y, x · (x · y))

¬ZEX(x · y) ∧ ¬ZEX(x · (x · y))→ P (x · (x · y), x · y)

which are again proved automatically.

As a result, we get the following weak characterization of the intersection operation in CODI ∪
{Int-A1 – Int-A4}.

Corollary 7.1. LetM be a model of CODI ∪ {Int-A1 – Int-A4} with domain M .
Then (M, ·) is a commutative alternative magma (groupoid).

Proof. M is a magma since the intersection operation · is closed in M , that is, for all x, y ∈ M ,
(x · y) ∈M . By Int-T5M is commutative, while by Lemma 7.3 it is alternative.

General associativity (Int-E2) nonconservatively extends CODI ∪ {Int-A1 – Int-A4}.

(Int-E2) x · (y · z) = (x · y) · z (· associative)

Axiom Set 7.4: Extension axiom Int-E2 of CODI ↓.

7.2 Differences

Models of equidimensional mereotopologies are usually closed under complementation. That is, in the
presence of a universal entity U (something that everything else is a part of), for every nonzero entity y a
complement y′ exists if y 6= U . Even if no universal entity exists, it is reasonable to require that relative
complements exists: an entity y with y /∈ ZEX that is a proper part of x has a relative complement
x− y if y 6= x. Relative complementation is better known as the difference, e.g., in set theory.

In order to ensure that the difference between two entities is always of a uniform dimension, we follow
an approach analogue to how we defined the intersection operation · by always taking the difference
of the largest dimension only. In particular, the difference whose minuend is of a greater dimension
than the subtrahend must always be the minuend itself (Dif-A2): we ignore lower-dimensional artefacts
for differences so that all entities are still of uniform dimension and are regular in their topological
interpretation. But for two entities of equal dimension, we define the difference so that it behaves as in
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x

y

(a) (b) (c)

y

yx x

Figure 7.3: Two examples in which nontrivial differences exist. In (a) both differences x− y and y − x
are defined as expected, while in (b) only the difference y − x is meaningful, while x − y = x. This is
because in (a) the intersection x · y is a proper part of both x and y and thus the differences x− (x · y)
and y − (x · y) must exist. In (b), the intersection x · y is a proper part of y but not a proper part of x
(even though it is contained in x), thus only the difference y− (x · y) differs from y. In (c) we have both
x− y = x and y − x = y since x · y<dimx, y.

equidimensional mereotopology [compare Gal96; Got96]. Then, for example, a line segment contained
in a line or a greater line segment requires that a difference exists—which is also a line segment, though
possibly disconnected. Equally, the difference between, e.g., two 2D areas is well-defined, compare
Figure 7.3(a). For two entities in contact, this idea extends to differences whose subtrahend is of
a greater dimension than the minuend (Dif-A3). For example, there exists a difference of uniform
dimension between a line and a two-dimensional area incident with the line; it is the line minus the
intersection between the line and the area, which is a (possibly disconnected) line segment which is a
part of the original line, compare Figure 7.3(b). This works in general because the intersection is always
of no greater dimension than either of the intersecting entities as captured by Dif-A3. Later, in Dif-T7,
we verify that the difference between x and y is indeed the difference between x and the intersection of
x and y.

Dif-A1 establishes the dimension of the difference between any two entities x and y, which is either
of the same dimension as x or is empty. While Dif-A2 captures the easy case of the difference between a
higher- and a lower-dimensional entity, Dif-A3a to Dif-A3c axiomatize the constitution of the difference
between two entities of which the minuend is of equal or lower dimension than the subtrahend. Dif-A4
captures the exact conditions when the difference may be empty: either the minuend is zero or the
minuend is contained in the subtrahend.

(Dif-A1) ¬ZEX(x− y)→ x− y =dim x (dimension of the difference x− y)
(Dif-A2) y <dim x→ x− y = x (difference x− y for a lower-dimensional y)
(Dif-A3a) x ≤dim y → [Cont(z, x) ∧ z · y <dim z → Cont(z, x− y)]
(Dif-A3b) x ≤dim y → [Cont(z, x− y)→ Cont(z, x)]
(Dif-A3c) x ≤dim y → [P (z, x− y)→ z · y <dim z]

(Dif-A3a –Dif-A3c: constitution of x− y when y has equal or greater dimension than x)
(Dif-A4) ZEX(x− y)↔ ZEX(x) ∨ Cont(x, y)

(zero difference x− y only when x is contained in y or x is a zero entity)

Axiom Set 7.5: Axioms Dif-A1 –Dif-A4 of CODI ↓.
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Note that because differences must exist for all pairs of entities, we always have ZEX(x− x). Hence
an entity x ∈ ZEXM must exist, that is, Z-A1 is a theorem of CODI ∪ {Dif-A1 –Dif-A4}.

Lemma 7.4. CODI ∪ {Dif-A1 –Dif-A4} � Z-A1

We define the ‘containment-dimension mereotopology with downwards closure’ as the theory

CODI ↓ = CODI ∪ {Int-A1 – Int-A4, Dif-A1 –Dif-A4}.

Note that CODI ↓ = CODI 0
↓ because of Lemma 7.4.

Again, we want to verify that the difference operation as axiomatized in CODI ↓ is a total function.
To ease this task, we first prove that the difference in CODI ↓ can be described in terms of parthood
alone. We do this by proving the following properties, which with Dif-T4 culminate in the desired
property Dif-T5.

(Dif-T1) ¬ZEX(x− y)→ P (x− y, x) (a nonempty difference x− y is part of x)

(Dif-T2) PP(y, x)→ PP(x− y, x) (for a proper part y of x, x− y is also a proper part of x)

(Dif-T3) ¬PO(x− y, y) (y and x− y do not partially overlap)

Lemma 7.5. CODI ↓ � {Dif-T1 –Dif-T3}

Proof. (Dif-T1) ¬ZEX(x− y)→ P (x− y, x).
Assume (x− y) /∈ ZEXM.
We consider two separate cases.

Case (I): Assume y<dimx.
Then x− y = x and hence P(x− y, x).

Case (II): Assume y≥dimx.
Then Cont(x−y, x−y) and hence by Dif-A3b Cont(x−y, x) which with x−y=dimx (Dif-A2)
leads to P(x− y, x).

Because any two entities x, y are either y<dimx or y≥dimx, Dif-T1 is valid.

(Dif-T2) PP(y, x)→ PP(x− y, x).
Consider the following logical derivation:

PP(y, x)→ ¬ZEX(x) ∧ PP(y, x) (C-A4)

→ ¬ZEX(x) ∧ ¬Cont(x, y) ∧ PP(y, x) (C-T1,EPP-D,EP-D)

→ P (x− y, x) ∧ PP(y, x) (Dif-T1)

→ P (x− y, x) ∧ P (y, x) (EPP-D)

→ P (x− y, x) ∧ P (y, x) ∧ ¬P (y, x− y) (Dif-A3c)

→ P (x− y, x) ∧ x 6= x− y (inverse of EP-T9)

→ PP(x− y, x) (EPP-D)

which proves PP(y, x)→ PP(x− y, x).
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(Dif-T3) ¬PO(x− y, y).
We consider two cases.

Case (I): Assume x<dimy.
Then x− y=dimx<dimy by Dif-A2, hence ¬PO(x− y, y).

Case (II): Assume x≥dimy.
Let us assume that z ∈M is an arbitrary part of x− y, i.e., PMz, x− y).
Then z · y<dimz by Dif-A3c, hence z cannot be a part of y. Thus ¬PO(x− y, y).

Because any two entities x, y are either x<dimy or x≥dimy, Dif-T3 is valid.

Dif-T1 to Dif-T3 are important since they capture all the parts of the difference that by EP-T9
uniquely characterize each difference. Subsequently, these theorems play a prominent role in proving
further properties about the difference and CODI ↓, in particular the supplementation axioms.

Next, we prove Dif-T4, before we proceed to the key lemma Dif-T5 that we will rely on for the
remainder of the chapter.

(Dif-T4) ¬PO(x− y, x · y) (x · y and x− y do not partially overlap)

Lemma 7.6. CODI ↓ � Dif-T4

Proof. We consider two cases.

Case (I): Assume x<dimy.
Then x · y<dimx=dimx− y by Dif-A2, hence ¬PO(x− y, x · y).

Case (II): Assume x≥dimy.
Let us assume that z ∈M is an arbitrary part of x− y, i.e., PM(z, x− y).
Then z · (x · y)≤dimz · y<dimz, hence z cannot be a part of x · y and thus ¬PO(x− y, x · y).

Because any two entities x, y are either x<dimy or x≥dimy, Dif-T4 is valid.

Now we are in a position to prove Dif-T5.

(Dif-T5) P (z, x− y)↔ P (z, x) ∧ ¬PO(z, x · y) (parts of the difference x− y)

Lemma 7.7. CODI ↓ � Dif-T5

Proof. We prove the two directions of the biconditional separately:

Direction (a): P (z, x− y)→ P (z, x) ∧ ¬PO(z, x · y).
Assume z is some part of x− y, then (x− y) /∈ ZEXM and hence x− y=dimx by Dif-A1.

We have two cases:

Case (I): Assume y<dimx.
Then x− y = x by Dif-A3b, hence P(z, x− y) implies P(z, x).

Case (II): Assume y≥dimx.
Then P(z, x − y) implies Cont(z, x) (by Dif-A2) and with z=dimx − y=dimx (Dif-A1) we
obtain P(z, x).
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Moreover, P(z, x− y) and ¬PO(x · y, x− y) (by Dif-T4) imply ¬PO(z, x · y).

Direction (b): P (z, x) ∧ ¬PO(z, x · y)→ P (z, x− y).
Assume z to be an arbitrary part of x with ¬PO(z, x · y).
Now suppose ¬P(z, x− y). Then we have two cases.

Case (I): Assume y<dimx.
Then by Dif-A2 x − y = x and thus P(z, x) if and only if P(z, x − y) which contradicts our
assumption that P(z, x).

Case (II): Assume y≥dimx.
Then by Dif-A3c we must have z · y ≮dim z in order for P(z, x) and ¬P(z, x − y) to hold.
Since we always have z · y≤dimz (by Int-A4), we must have z · y=dimz. Hence some part of
z, call it zP , is also contained in y (compare Int-A4). Since all parts of z are part of x, zP
is also a part of x · y (transitivity of parthood). Hence PO(z, x · y), which contradicts our
assumption that ¬PO(z, x · y).

The two directions together immediately imply x− y = x− (x · y) by EP-T9.

7.2.1 Supplementation principles

Our axiomatization of differences forces what is known from equidimensional mereotopology as weak
supplementation [compare CV99a], we introduced it as EP-E1 on page 121, in CODI ↓. Equally, strong
supplementation (EP-E2) becomes provable in CODI ↓. While weak and strong supplementation as
expressed in EP-E1 and EP-EP2 specifically only apply to entities of equal dimension, we can generalize
strong supplementation to the multidimensional case (EP-E3): any y that is not contained in x has a
part z whose intersection with x is of a lower dimension than that of z (and thus y).

(EP-E1) PP(y, x)→ ∃z [P (z, x) ∧ ¬PO(z, y)] (weak supplementation)
(EP-E2) ¬ZEX(x) ∧ ¬ZEX(y) ∧ ¬P (y, x)→ ∃z [P (z, y) ∧ ¬PO(z, x)] (strong supplementation)
(EP-E3) ¬ZEX(x) ∧ ¬ZEX(y) ∧ ¬Cont(y, x)→ ∃z [P (z, y) ∧ z · x <dim z]

(strong supplementation of containment)

Axiom Set 7.6: Extension axioms EP-E1 –EP-E3 of CODI , which are provable in CODI ↓.

Lemma 7.8. CODI ↓ � EP-E1

Proof. Assume PP(y, x).
Then by Dif-T2 we have PP(x − y, x) and thus P(x − y, x). From Dif-T3 we further conclude that
¬PO(x− y, y). Therefore z := x− y satisfies the existential in EP-E1.

Lemma 7.9. CODI ↓ � EP-E2

Proof. Assume x, y /∈ ZEXM and ¬P(y, x).
Note that we cannot have x = y. The following three cases remain:

Case (I): Assume x=dimy and ¬P(x, y).
Then z := y−x satisfies the consequence of the implication in EP-E2: we have (y−x) /∈ ZEXM by
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Dif-A4 (since ¬Cont(y, x) and y /∈ ZEXM) and thus P(y−x, y) by Dif-T1. Further, ¬PO(y−x, x)
by Dif-T3.

Case (II): Assume x=dimy and P(x, y).
Then PP(x, y) (since ¬P(y, x)) and ∃z [P(z, y) ∧ ¬PO(z, x)] follows from EP-E1.

Case (III): Assume x 6=dim y.
Then z := y satisfies the consequence of the implication in EP-E2: because of x 6=dim y we have
¬PO(x, y) (by PO-T3) but we still have P(y, y).

The Cases (I) and (II) cover all possible relations between x and y when x=dimy, while Case (III) covers
any other case. Once formalized as follows, the three cases are automatically provable.

Case (I) ¬ZEX(x) ∧ ¬ZEX(y) ∧ ¬P (y, x) ∧ x =dim y ∧ PO(x, y) ∧ ¬PP(y, x)
→ ∃z [P (z, y) ∧ ¬PO(z, x)]

Case (II) ¬ZEX(x) ∧ ¬ZEX(y) ∧ ¬P (y, x) ∧ x =dim y ∧ ¬PO(x, y)
→ ∃z [P (z, y) ∧ ¬PO(z, x)]

Case (III) ¬ZEX(x) ∧ ¬ZEX(y) ∧ ¬P (y, x) ∧ x 6=dim y

→ ∃z [P (z, y) ∧ ¬PO(z, x)]

For atomic theories, Varzi [Var07] proposed an alternative formalization of strong supplementation
(EP-E2′, adapted to our theory).

(EP-E2′) ¬ZEX(x) ∧ ¬ZEX(y) ∧ ¬P (y, x)→ ∃z [Min(z) ∧ P (z, y) ∧ ¬PO(z, x)]
(strong supplementation for atomic theories: every nonzero entity y that is not a part of x

has an atomic, i.e., minimal, part that is not a part of x)

Axiom Set 7.7: Extension axiom EP-E2′ of CODI .

We finally prove EP-E3, the multidimensional version of strong supplementation.

Lemma 7.10. CODI ↓ � EP-E3

Proof. Assume ¬Cont(y, x). We consider three cases.

Case (I): Assume y>dimx.
Then z := y satisfies the existential formula because we have P(y, y) and y · x≤dimx<dimy.

Case (II): Assume y=dimx.
Then by EP-E2, there exists a z ∈M such that P(z, y) and ¬PO(z, x). ¬PO(z, x) further implies
z · x<dimz because z=dimy=dimx. Hence the z that satisfies the existential formula in EP-E2
also satisfies the existential formula in EP-E3.

Case (III): Assume y<dimx.
Then z := y − x satisfies the existential formula because (y − x) /∈ ZEXM (from y /∈ ZEXM and
¬Cont(y, x)), so that P(y − x, y − x). Thus in turn implies (y − x) · x<dim(y − x) by Dif-A3c.

These three cases cover all possible dimension relations between x and y.
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A consequence of strong supplementation is that the relation of partial overlap PO is also exten-
sional (PO-E1), a key property of the theory CODI ↓ and essential for our subsequent study of the sum
operation.

(PO-E1) ∀z[PO(z, x)↔ PO(z, y)]→ x = y (PO extensional)

Axiom Set 7.8: Extension axiom PO-E1 of CODI , which is provable in CODI ↓.

Lemma 7.11. CODI ↓ � PO-E1

Proof. By EP-E2 and with D-A4 (there is a unique zero region) it suffices to prove the sentence

¬ZEX(x) ∧ ∀z[PO(z, x)→ PO(z, y)]→ P (x, y).

Now suppose x /∈ ZEXM, for all z ∈ M with PO(z, x) we also have PO(z, y), and ¬P(x, y). Then
PO(x, x) and thus PO(x, y), entailing y /∈ ZEXM. By EP-E2 there exists a v ∈M such that P(v, x)
and ¬PO(v, y). Because P (x, y) → PO(x, y) by PO-D, this contradicts our assumption that for all
z ∈M with PO(z, x) we also have PO(z, y).

Now, we can use Dif-T5 and PO-E1 to show that the difference operation is a total function.

Theorem 7.2. The operation − is a total function in CODI ↓.

Proof. We will show that the difference x−y is uniquely defined for arbitrary entities x, y. We distinguish
two cases based on the relative dimension between x and y.

Case (I): Assume x>dimy.
By Dif-A2, we have x− y = x, hence the difference is defined and unique.

Case (II): Assume x≤dimy.
If x ∈ ZEXM, then by Dif-A4, the difference x − y is uniquely defined as (x − y) = x ∈ ZEXM
(recall that there no more than one entity z ∈ ZEXM).
Now assume x /∈ ZEXM, then P(x− y, x) by Dif-T1 and hence x− y=dimx. The difference x− y
is, by PO-E1, uniquely defined by its parts. Let z be an arbitrary entity. We distinguish two
subcases.

Subcase (II.a): Assume x≤dimy and ¬P(z, x).
Then ¬P(z, x− y) by Dif-T5.

Subcase (II.b): Assume x≤dimy and P(z, x).
If ¬PO(z, x · y), then P(z, x− y) by Dif-T5. The assumption P(z, x) also implies PO(z, x),
so that we get

PO(z, x · y)↔ PO(z, y).

Hence we obtain ¬P(z, x− y) if PO(z, y), and P(z, x− y) otherwise.

Thus, for every z we can determine whether P(z, x − y) or not, and thus the difference x − y is
uniquely determined because of PO-E1.

Hence for arbitrary x and y, the difference x− y is uniquely defined.
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7.2.2 Interaction between intersections and differences

Next, we study the interaction between the difference and the intersection operations in CODI ↓. These
primarily verify our intuitions about the difference operation, while Dif-T6 will also come in handy for
later proofs.

(Dif-T6) x− y = x− (x · y) (x− y and x− (x · y) are identical)

Lemma 7.12. CODI ↓ � Dif-T6

Proof. We consider three cases.

Case (I): Assume (x− y) ∈ ZEXM.
Then either Cont(x, y) or x ∈ ZEXM by Dif-A4. If Cont(x, y), then x·y = x and thus (x−(x·y)) ∈
ZEXM by (x− x) ∈ ZEXM, while if x ∈ ZEXM we also have (x− (x · y)) ∈ ZEXM.

Case (II): Assume (x− (x · y)) ∈ ZEXM.
Then either x ∈ ZEXM or Cont(x, x · y). From x ∈ ZEXM we obtain (x − y) ∈ ZEXM by
Dif-A4. If Cont(x, x · y), then x = x · y, hence Cont(x, y) and again (x− y) ∈ ZEXM Dif-A4.

Case (III): Assume (x− y) /∈ ZEXM and (x− (x · y)) /∈ ZEXM.
To prove x− y = x− (x · y) it suffices (by EP-T9) to show that for all z ∈M,

P(z, x− y)↔ P(z, x− (x · y)).

By (Dif-T5), this amounts to showing the following equivalence:

P(z, x) ∧ ¬PO(z, x · y)↔ P(z, x) ∧ ¬PO(z, x · (x · y))

(Int-T11) and (Int-T10) let us simplify the right-hand side to obtain the following equivalent
sentence:

P(z, x) ∧ ¬PO(z, x · y)↔ P(z, x) ∧ ¬PO(z, x · y)

which is a tautology.

It is easy to see that the three cases are exhaustive.

(Dif-T7) x− y = x · (x− y) (x− y and its intersection with x are identical)

Lemma 7.13. CODI ↓ � Dif-T7

Proof. To prove x− y = x · (x− y) it again suffices by EP-T9 to show that for all z ∈M,

P(z, x) ∧ ¬PO(z, x · y)↔ P(z, x · (x− y)).

We show each direction individually.

Direction (a): P(z, x) ∧ ¬PO(z, x · y)→ P(z, x · (x− y)).
Let z be an entity so that P(z, x) and ¬PO(z, x · y) Then ¬PO(z, y), otherwise some part of z
would be contained in x · y and overlap x · y. Then P(z, x− y) by Dif-T5, i.e., z is a part of both
x and x− y. Hence P(z, x · (x− y) by Int-A4.
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Direction (a): P(z, x) ∧ ¬PO(z, x · y)← P(z, x · (x− y)).
We can safely assume that (x · (x − y)) /∈ ZEXM, otherwise it does not contain any parts at all
and the implications is vacuously true. Now assume (x− y) /∈ ZEXM, then P(x− y, x) (Dif-T1),
hence P(x − y, x · (x − y)) and therefore x=dimx − y=dimx · (x − y). Then for an arbitrary z,
P(z, x · (x−y)) implies that P(z, x) and P(z, x−y), the latter further requiring that ¬PO(z, x ·y)
by Dif-T5.

The two directions imply the equivalence of x− y and x · (x− y).

(Dif-T8) P (y, x)→ y = x− (x− y) (− involutary)

Lemma 7.14. CODI ↓ � Dif-T8

Proof. To prove that P (y, x)→ y = x−(x−y) we show separately that P (y, x) implies (a) P (y, x−(x−y))
and (b) P (x− (x− y), y) :

Part (a): P (y, x)→ P (y, x− (x− y)).
By Dif-T5 the implication is equivalent to the sentence

P (y, x)→ P (y, x) ∧ ¬PO(y, (x− y)).

Since the relation PO is symmetric, this immediately follows from Dif-T3.

Part (b): P (y, x)→ P (x− (x− y), y).
Assume P(y, x), then x=dimy.
We will show that for all z ∈M, if P(z, x− (x− y)) then P(z, y)].
Let z ∈ M be an arbitrary part such that P(z, x − (x − y)). Then P(z, x) by Dif-A3b and by
(x−(x−y)) /∈ ZEXM). We further have P(z, x−(x−y)) if P(z, x) and z ·(x−y)<dimz. Suppose
now ¬P(z, y), then z · y<dimy and by P(z, x) we would require P(z, x − y)—a contradiction to
z · (x− y)<dimz. Hence P(z, y) must hold.

Since P(y, x)→ P(y, x− (x− y)) and P(y, x)→ P(x− (x− y), y) we immediately obtain P(y, x)→ y =
x− (x− y) by EP-T2.

(Dif-T9) x = y ↔ ZEX(x− y) ∧ ZEX(y − x) (− anticommutative)

Lemma 7.15. CODI ↓ � Dif-T9

Proof. We prove the two directions of the implication individually.

Direction (a): x = y → ZEX(x− y) ∧ ZEX(y − x).
Assume x = y.
Then Cont(x, y) and Cont(y, x), hence (x− y) ∈ ZEXM and (y − x) ∈ ZEXM by Dif-A4.

Direction (b): x = y ← ZEX(x− y) ∧ ZEX(y − x).
Assume (x− y) ∈ ZEXM and (y − x) ∈ ZEXM.
Suppose x ∈ ZEXM, then by C-A4 we have ¬Cont(y, x) and hence y ∈ ZEXM by Dif-A4. In
this case x = y by D-A4.

Now suppose x /∈ ZEXM, then by Dif-A4 we must have Cont(x, y), which by C-A4 requires
y /∈ ZEXM so that again by Dif-A4 we must have Cont(y, x). By C-A2 we obtain x = y again.
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Figure 7.4: Non-distributivity of intersection over differences and of differences over intersections in
the models (a)–(c) of CODI ↓. In (a) intersection does not distributive over the difference because
r · (s − r) = r · s = p 6= ∅ = p − r = (r · s) − (r · s). In example (b), even though r, s, t are of identical
dimension the difference r − (s · t) is not left-distributive over the intersection (s · t), since we have
r − (s · t) ) (r − s) · (r − t). Example (c) shows that differences are not always right-distributive, we
have (r · s)− t = p− t = ∅ 6= p = r · s = (r − t) · (s− t).

The two directions together prove the biconditional in Dif-T9.

(Dif-T10) SC (x, y)→ x− y = x (difference between entities in superficial contact)

Lemma 7.16. CODI ↓ � Dif-T10

Proof. Assume SC(x, y).
Then by Int-T9 we obtain x · y<dimz and with P(x, x) we get P(x, x− y) by Dif-A3a. Hence (x− y) /∈
ZEXM and together with P(x− y, x) (by Dif-T1) we immediately conclude x = x− y by C-A2.

The following corollary is a consequence of Dif-T10. It essentially says that the intersection of two
entities x and y that are in superficial contact is contained in both x− y and y − x.

(Dif-T10′) SC (x, y)→ Cont(x · y, x− y) ∧ Cont(x · y, y − x)

(the intersection of two entities x, y in superficial contact is in x− y and y − x)

Corollary 7.2. CODI ↓ � Dif-T10′

Proof. Follows directly from Dif-T10 because Cont(x · y, x) and Cont(x · y, y).

Note that the intersection operation does not always distribute over the difference operation, that is,
we may encounter x · (y − z) 6= (x · y) − (x · z), even if x, y, and z are all of the same dimension. The
example in Figure 7.4(a) demonstrates this for the more restricted case where x = z, which amounts
to showing that x =dim y → x · (y − x) = (x · y) − x may not be true. In this restricted case, the
right-hand side is always the zero entity because of Cont(x ·y, x) but the left-hand side may not be zero,
i.e., CODI ↓ 2 ZEX(x · (y − x)).

Note further that differences do not distribute left over intersections; this is not surprising since it fails
even in equidimensional mereotopology, see Figure 7.4(b). That is, we may have x−(y·z) 6= (x−y)·(x−z)
even though x =dim y =dim z. However, contrary to the set theoretic difference, which distributes right
over set intersection, in CODI ↓ differences also do not always distribute right over intersections. We
may encounter (x ·y)−z 6= (x−z) ·(y−z) even if x =dim y =dim z; consider the example in Figure 7.4(c).
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7.2.3 Simple self-connectedness

For a moment, we will deviate from our main line of work in this chapter and define the concept of self-
connectedness in CODI ↓. This subsection will be relevant in later chapters of the thesis, in particular
in Chapters 9 and 11. Self-connectedness (we often use the shorter term ‘connectedness’ as long as it
is clear from the context that we deal with a single entity) in equidimensional theories of space relies
on the notions of (mereological or topological) sums and often also differences or complements [AV95;
Cla85]1. In the multidimensional mereotopology, self-connectedness becomes definable in the presence of
differences, similar to the definition in equidimensional mereotopology. We say an entity x is connected
if every proper part y of x is connected to its relative complement, the difference x − y. Later, in
Section 9.2, we will study other notions of connectedness, in particular internal connectedness, which
requires constraining the class of intended models further.

(Con-D) Con(x)↔ ∀y[PP(y, x)→ C(y, x− y)] (self-connectedness)

Axiom Set 7.9: Definition Con-D of CODI ↓.

It immediately follows that minimal entities as well as the zero entity are connected according to this
definition (Con-T1 and Con-T2).

(Con-T1) Min(x)→ Con(x) (minimal entities connected)

(Con-T2) ZEX(x)→ Con(x) (zero entity connected)

Lemma 7.17. CODI ↓ ∪ Con-D � {Con-T1, Con-T2}

Moreover, for connected entities, we can prove superficial connection (Con-T3) between a proper
part and its relative complement. The more general relationships between the intersection x · y and the
difference x− y involving a connected entity x are captured by Con-T4 and Con-T5.

(Con-T3) Con(x) ∧ PP(y, x)→ SC (y, x− y)

(a proper part of a self-connected entity is connected to its relative complement)

(Con-T4) Con(x) ∧ PO(x, y) ∧ ¬ZEX(x− y)→ SC (x · y, x− y) (if y partially overlaps

a self-connected entity x without containing it, then x · y is superficially connected to x− y)

(Con-T5) Con(x) ∧ Inc(x, y) ∧ x− y =dim x · y ∧ ¬ZEX(x− y)→ SC (x · y, x− y)

(if y is incident with a self-connected entity x without containing it, and the difference x− y is

of the same dimension as the intersection x · y, then x · y is superficially connected to x− y)

Lemma 7.18. CODI ↓ ∪ Con-D � {Con-T3 –Con-T5}

Proof. (Con-T3) Con(x) ∧ PP(y, x)→ SC (y, x− y).
Assume ConM(x) and PP(y, x).
By Con-D we derive C(y, x − y). By Dif-T3 we have ¬PO(y, x − y) and by Dif-T2 we have
PP(x − y, x), hence y=dimx − y and ¬Inc(y, x − y). Then by CD-T4 (contact is either proper
overlap, incidence, or superficial contact) we conclude SC(y, x− y).

1Clarke as well as Asher and Vieu use the term ‘connected individual’, CON . Cohn and Varzi [CV03] discuss some of
the intricacies of self-connectedness is more detail.
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Figure 7.5: A model of CODI ↓ (left) decomposed by intersections and differences into simple atomic
entities (points p1–p7, lines l3–l15, and areas a4–a9). The additional atomic entities that must exist
because of decomposability are shown in the figures in the middle and on the right.

(Con-T4) Con(x) ∧ PO(x, y) ∧ ¬ZEX(x− y)→ SC (x · y, x− y).
Assume ConM(x), PO(x, y), and (x− y) /∈ ZEXM.
Then Cont(x ·y, x) (Int-A2) and x ·y=dimx, hence P(x ·y, x). Moreover, we obtain P(x−y, x) by
Dif-T1. Since ¬PO(x− y, x · y), we actually have proper parthood PP(x− y, x) and PP(x · y, x).
From the latter, we obtain SC(x · y, x− (x · y)) by Con-T3, which is equivalent to SC(x · y, x− y)
by Dif-T6.

(Con-T5) Con(x) ∧ Inc(x, y) ∧ x− y =dim x · y ∧ ¬ZEX(x− y)→ SC (x · y, x− y).
Assume ConM(x), Inc(x, y), x− y=dimx · y, and (x− y) /∈ ZEXM.
Then, by Dif-A1, we have x=dimx − y=dimx · y. Then P(x · y, x) and P(x − y, x) and again
(similar to the proof for Con-T2) PP(x · y, x). Hence we obtain again SC(x · y, x− y) by Con-T1
and Dif-T6.

7.2.4 Decomposability of atomic models of CODI ↓
With extensionality of PO and a proper understanding of the interaction between intersections and
differences, we are now able to prove that any entity in an atomic model of CODI ↓ can be decomposed
into a set of minimal nonoverlapping parts, compare Figure 7.5. This property, called decomposability
[compare Var07], follows in mereology and equidimensional mereotopology from strong supplementation
(EP-E2) and PO-E1. Varzi [Var07] offers a detailed discussion of decomposition principles in mereology
and equidimensional mereotopology. Here, we want to confirm that this kind of decomposability of
atomic models also works in our multidimensional mereotopology.

An atomic model is one that satisfies ME-E1 from page 105: every nonzero entity contains some
minimal, i.e., indivisible, part. To show that atomic models are decomposable, it suffices to show that
atomic models are atomistic, i.e., are the sum of a set of minimal parts. Even though we have not yet
introduced sums, we can express that a model is atomistic if every other entity that partially overlaps
a given entity, overlaps in some minimal part. Then, the set of minimal parts an entity overlaps (or for
that matter, contains) uniquely defines the entity. In Section 7.3, we can express decomposability using
the sum operation in Sum-T9 on page 141.

The proofs comes in several parts. First, we prove that for any part y of x, every minimal entity
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contained in x is either contained in y or in the difference x− y (Dif-T11).

(Dif-T11) Min(z) ∧ Cont(z, x) ∧ P (y, x)→ [Cont(z, x− y) ∨ Cont(z, y)]

(minimal entities contained in x are contained in a part y of x or in its relative complement x− y)

Lemma 7.19. CODI ↓ � Dif-T11

Proof. Proof by contradiction.
Suppose P(y, x), Cont(z, x), ¬Cont(z, x− y), ¬Cont(z, y), and z ∈MinM.
Because we have Cont(z, x) and ¬Cont(z, x − y) we must have z · y ≮dim z by Dif-A3. Since we
always have z · y≤dimz, z · ydimz is the only option. But then some v must exist such that P(v, z) and
Cont(v, z · y). Since z ∈MinM, z has no other parts than itself; hence Cont(z, z · y). By the definition
of intersections we conclude that Cont(z, y) must hold, which contradicts our assumption.

As a special case of Dif-T11 we have Dif-T11′.

(Dif-T11′) P (y, x) ∧Min(z) ∧ P (z, x)→ P (z, x · y) ∨ P (z, x− y)

(any minimal part z of x is either contained in part y of x or in the difference x− y)

Lemma 7.20. CODI ↓ ∪ Dif-T11 � Dif-T11′

Now, we establish that every entity in an atomic model is uniquely defined by its minimal parts.

Theorem 7.3. Let M be an atomic model of CODI ↓, i.e., a model of CODI ↓ ∪ ME-E1. Then every
entity in the domain ofM is uniquely determined by its set of minimal parts, which are exhaustive and
pairwise non-overlapping.

Proof. LetM be an atomic model of CODI ↓ with domain M. Because it is atomic we have (by ME-E1):

M � ∀x
[
¬ZEX(x)→ ∃y[P (y, x) ∧Min(y)]

]
.

Recall that by PO-E1, every entity x ∈M in the model is uniquely defined by the extension of PO
involving x:

{〈x,w〉 | w ∈M} ⊆ POM.

We want to prove that any entity x ∈ M is uniquely defined by the subset of the extension of PO
relating x to minimal entities:

{〈x,w〉 | w ∈MinM} ⊆ POM.

We have two cases.

Case I: x is itself a minimal entity.
The only minimal entity x can partially overlap is itself, i.e., we have ¬PO(x, y) for any y 6= x.
Suppose x partially overlaps a minimal entity y 6= x. Then by ME-D1 and PO-D for all z ∈ M,
¬PP(z, x)] and there exists a z ∈ M such that P(z, x) and P(z, y). Hence the only z that can
be contained in both x and y is x itself. But then P(x, y) and thus either y is nonminimal or
equivalent to x.
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Case II: x is not a minimal entity.
By ME-D1, x contains at least some minimal part, call it y. By strong supplementation (EP-E2),
there exists a part z of x that does not partially overlap y. Because this entity z contains some
minimal part, x contains at least two distinct minimal parts. Therefore, x’s extension of PO with
respect to minimal entities must be different than that of any minimal entity.

Now suppose there exists another entity x′ 6= x that partially overlaps the same set of minimal
entities as x. From x′ 6= x, by EP-E2 there must exist a w such that P(w, x′) ∧ ¬PO(w, x). Such
a w would—by ME-E1—contain a minimal entity v. Then 〈x, v〉 /∈ POM but 〈x′, v〉 ∈ POM—a
contradiction to our assumption that x′ and x partially overlap the same set of minimal entities.

Clearly, the two cases are exhaustive. Then any entity is uniquely defined by its part that are minimal
entities.

Because (1) two distinct minimal entities cannot overlap and (2) any two entities that partially
overlap must share a minimal part, the set of minimal parts of an entity are exhaustive and pairwise
nonoverlapping.

In particular, we can recursively decompose any nonminimal entity x into a minimal part y (which
must exist) and its ‘remainder’—the difference x − y. If x − y is nonminimal, we can repeat this step.
Dif-T12 formalizes this notion that is dual to Dif-T11.

(Dif-T12) Cont(z, x) ∧ Cont(y − z, x)→ Cont(y, x)] (if the difference y − z is contained in x,

and z is a minimal entity z that is also contained in x, then y is contained in x)

Lemma 7.21. CODI ↓ ∪ ME-E1 � Dif-T12

Proof. Proof by contradiction.
Assume x, y, z to be arbitrary entities that satisfy Cont(z, x) and Cont(y − z, x).
Now suppose ¬Cont(y, x), then some v ∈M exists such that v ∈MinM, P(v, y), and ¬Cont(v, x) by
EP-E3 and ME-E1.
We distinguish two cases.

Case (I): Assume PO(v, z).
Then, because v is minimal, the only part v and z can share is v itself, thus P(v, z). From
Cont(z, x) we obtain Cont(v, x) by C-A3.

Case (II): Assume ¬PO(v, z).
Then P(v, y − z) by Dif-A3a and Cont(v, x) from Cont(y − z, x) and C-A3.

Clearly, the two cases are exhaustive, hence in any case we have Cont(v, x) in contradiction to our
supposition ¬Cont(v, x). Hence we must have Cont(y, x).

Because our intended structures are constructed from finite sets of manifolds, the resulting models are
necessarily of finite domain and thus atomic. Hence, the models of CODI ↓ already satisfy one property
of the intended structures: they are decomposable into sets of atomic entities.
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7.2.5 Satisfiability of CODI ↓
In Chapter 5 we introduced the intended structures, formally defined as the class M, that we want to
capture with CODI ↓. Let Mm be such an intended structure; we claim that its finite collection of atomic
m-manifolds of Mm is then captured by the set MinM in the corresponding model of CODI ↓. Any
composite m-manifold in Mm that is not an atomic m-manifold is composed of a set of at least two
atomic m-manifolds joined only in their boundaries, i.e., superficially, compare Definition 5.6. Those
composite manifolds must consist of two or more nonoverlapping parts; Theorem 7.3 then guarantees
that those are composed of minimal parts, which correspond to its atomic m-manifolds. Here, we will
show that any structure Mm in the class M yields a model of CODI ↓ in this way. That is, we show the
satisfiability of CODI ↓ with respect to the intended structures.

Theorem 7.4 (Satisfiability of CODI ↓). Let M be a complex manifold (a collection of composite man-
ifolds) in the class M of intended structures with domain Dom(M) (as defined in Definition 5.11) and
∅ ∈ Dom(M). Then there exists a corresponding modelM of CODI ↓ with finite domain M such that

1. µ : Dom(M)→M is a bijection;

and for all d1, d2 ∈ Dom(M),

2. µ(d) ∈ ZEXM ⇐⇒ Σd = ∅;

3. 〈µ(d1), µ(d2)〉 ∈ (<dim)M ⇐⇒
(

dim(d1) < dim(d2)
)

or
(
d1 = ∅ and d2 6= ∅

)
;

4. 〈µ(d1), µ(d2)〉 ∈ Cont ⇐⇒ Σd1 ⊆ Σd2 and d1 6= ∅.

Proof. Let M be an arbitrary structure in M. We then construct an interpretation M of CODI ↓
according to the conditions (1)–(4). In particular, we choose the domain M ofM such that a one-to-one
mapping µ between entities inDom(M) (including the empty set) and entities in M exists (condition (1)).
The conditions (2)–(4) define the extensions ZEXM, (<dim)M, and ContM, respectively.

It remains to show that this interpretation is a model of CODI ↓, i.e., that is satisfies the axioms
D-A1 –D-A6, C-A1 –C-A4, CD-A1, Int-A1 – Int-A4, Dif-A1, Dif-A2, Dif-A3a, Dif-A3b, Dif-A3c, Dif-A4,
Z-A1 with the definitions D-D1 –D-D7, EP-D, C-D, EPP-D, PO-D, Inc-D, SC-D, ME-D1, ME-D2.

D-A1 –D-A6 are satisfied because the dimensions in Euclidean spaces form a discrete linear order
with a lowest and maximal dimension for any finite set of manifolds.

From the mapping of⊆ between the areas of manifolds to the relation Cont between the corresponding
entities in condition (4), it is also straightforward to verify C-A1 –C-A4 and CD-A1.

What remains to be shown is that the axioms Int-A1 – Int-A4 and Dif-A1 –Dif-A4 are satisfied by
M. That is, we must show that for arbitrary d1, d2 ∈ Dom(M), there exist d3, d4 ∈ Dom(M) such that
µ(d3) = µ(d1) · µ(d2) satisfies Int-A1 – Int-A4 and such that µ(d4) = µ(d1) − µ(d2) satisfies Dif-A1 –
Dif-A4. To achieve this, we give explicit definitions of the operations · and − in M.

Part (I): µ(d1) · µ(d2) = µ(d3) satisfies Int-A1 – Int-A4 for some d3 ∈ Dom(M).
Assume d1, d2 are arbitrary entities in Dom(M).

Case (I.a): Assume d1 = ∅ or d2 = ∅.
Then we define d3 = ∅. Clearly, Σd3 ∈ Dom(M) and µ(d3) ∈M. By condition (2), we have
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(µ(d3)) ∈ ZEXM. By condition (4) we have

for all d ∈ Dom(M) [¬Cont(µ(d), µ(d3))] and

for all d ∈ Dom(M) [¬Cont(µ(d), µ(d1)) or ¬Cont(µ(d), µ(d2))]

so that Int-A1 – Int-A4 are trivially satisfied.

Case (I.b): Assume d1 6= ∅ and d2 6= ∅.
Then d1 ∩ d2 6= ∅ and by Definition 5.11(2), there exists a composite manifold d3 ∈ M such
that Σd3 ⊆ Σd1 ∩ Σd2 and such that for all d4 ∈M either d4 ⊆ d3 or dim(d4) � dim(d3).
We will use this d3 to define µ(d3) = µ(d1) ·µ(d2) and show that this satisfies Int-A1 – Int-A4.
Notice that Σd3 ⊆ Σd1 and Σd3 ⊆ Σd2 and thus Cont(µ(d3), µ(d1)) and Cont(µ(d3), µ(d2)).

(Int-A1): ¬C(µ(d1), µ(d2))→ (µ(d3)) ∈ ZEXM.
C(µ(d1), µ(d2)) follows from Cont(µ(d3), µ(d1)) and Cont(µ(d3), µ(d2)) by C-D, so that
the antecedent of Int-A1 is falsified and Int-A1 is satisfied.

(Int-A2): (µ(d3)) /∈ ZEXM → Cont(µ(d3), µ(d1)) ∧Cont(µ(d3), µ(d2)).
We already have both consequents of Int-A2: Cont(µ(d3), µ(d1)) and Cont(µ(d3), µ(d2)).

(Int-A3): Cont(z, µ(d1)) ∧Cont(z, µ(d2))→ z≤dimµ(d3).
Let z be an arbitrary entity such that Cont(z, µ(d1)) ∧Cont(z, µ(d2)). Then Σz ⊆ Σd1

and Σz ⊆ Σd2 and thus Σz ⊆ Σd1 ∩ Σd2. Hence by Definition 5.11(2) we must have
Σz ⊆ Σd3 or dim(z) < dim(d3). In the first case, we derive Cont(µ(d), µ(d3)) and thus
µ(d)≤dimµ(d3) by CD-A1. In the later case we obtain µ(d)<dimµ(d3) by condition (3).

(Int-A4) Cont(z, µ(d1)) ∧Cont(z, µ(d2)) ∧ z=dimµ(d3)↔ P(z, µ(d3)).
Direction (i): Cont(z, µ(d1)) ∧Cont(z, µ(d2)) ∧ z=dimµ(d3)→ P(z, µ(d3)).

Let z be an arbitrary entity such that

Cont(z, µ(d1)) ∧Cont(z, µ(d2)) ∧ z=dimµ(d3).

Then there exists a d ∈ Dom(M) such that µ(d) = z. Then Σd ⊆ Σd1 and Σd ⊆ Σd2

by condition (4) and dim(d) = dim(d3) by condition (3). By Definition 5.11(2) we
must have Σd ⊆ Σd3 and thus Cont(µ(d), µ(d3)) by condition (4). Together with
z = µ(d)=dimµ(d3) we obtain P (µ(d), µ(3)) by EP-D.

Direction (ii): P(z, µ(d3))→ Cont(z, µ(d1)) ∧Cont(z, µ(d2)) ∧ z=dimµ(d3).
Let z be an arbitrary entity such that P(z, µ(d3)).
Then there exists a d ∈ Dom(M) such that µ(d) = z. From EP-D we obtain
Cont(µ(d), µ(d3)) and z = µ(d)=dimµ(d3). From the former, we obtain Σd ⊆ Σd3 ⊆
Σd1 ∩ Σd2 and thus Cont(µ(d), µ(d1)) and Cont(µ(d), µ(d2)), all by condition (4).

We have thereby shown that in the case d1, d2 6= ∅ the d3 that is guaranteed to exist by
Definition 5.11(2) satisfies all axioms governing the intersection µ(d3) = µ(d1) · µ(d2).

Consequently, for any structure M for arbitrary d1, d2 ∈ Dom(M) there exists an entity d3 ∈
Dom(M) so that µ(d3) = µ(d1) · µ(d2) satisfies Int-A1 – Int-A4.
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Part (II): µ(d1)− µ(d2) = µ(d3) satisfies Dif-A1 –Dif-A4 for some d3 ∈ Dom(M).

Case (II.a): d1 = ∅.
Choose d3 = ∅. Then (µ(d1)) ∈ ZEXM and (µ(d3)) ∈ ZEXM by condition (2) so that
Dif-A4 is satisfied. By condition (4), for all d ∈ Dom(M) we have [¬Cont(µ(d), µ(d3))],
hence Dif-A1, Dif-A2, Dif-A1(a)–(c) are trivially satisfied.

Case (II.b): dim(Σd1 \ Σd2) < dim(d1).
Again we choose d3 = ∅. By the same argument as in case (II.a) Dif-A1, Dif-A2, Dif-A1(a)–
(c) are satisfied. Because by condition (4) we further have Cont(µ(d1), µ(d2)), Dif-A4 is also
satisfied.

Case (II.c): d1 6= ∅, dim(Σd1 \ Σd2) = dim(d1), and dim(Σd1 ∩ Σd2) < dim(d1).
We choose µ(d1)−µ(d2) = µ(d1). Clearly, d1 ∈ Dom(M) by our assumption. Dif-A1, Dif-A2,
Dif-A3(a), Dif-A3(b) and Dif-A4 are trivially satisfied.
It remains to prove Dif-A3(c). Assume P(z, µ(d1)) with z = µ(d) for some d ∈ Dom(M).
Then Cont(µ(d), µ(d1)) and µ(d)=dimµ(d1) by EP-D. Hence Σd ⊆ Σd1 and dim(µ(d)) =
dim(µ(d1)). We then have Σd ∩ Σd2 ⊆ Σd1 ∩ Σd2. By our assumption we obtain dim(Σd ∩
Σd2) < dim(Σd1) = dim(Σd). Hence we conclude µ(d) · µ(d2)<dimµ(d), the consequent of
Dif-A3(c).

Case (II.d): d1 6= ∅, dim(Σd1 \ Σd2) = dim(d1), and dim(Σd1 ∩ Σd2) = dim(d1).
Then by Definition 5.11(4), there exists a composite manifold d3 ∈ M such that d3 =
Σd1 \ Σd2. We will show that then µ(d3) = µ(d1)−µ(d2) satisfies all axioms Dif-A1 –Dif-A4.

(Dif-A1): (µ(d3)) /∈ ZEXM → µ(d3)=dimµ(d1).
We have dim(d3) = dim(Σd1 \ Σd2) = dim(d1) by assumption and thus µ(d3)=dimµ(d1)
by condition (3).

(Dif-A2): µ(d2)<dimµ(d1)→ µ(d3) = µ(d1).
Because by assumption dim(Σd1 ∩ Σd2) = dim(d1) and thus dim(d2) ≥ dim(d1). By
condition (3) we obtain µ(d2)≥dimµ(d1), thus violating the antecedent of Dif-A2 and
thus trivially satisfying Dif-A2.

(Dif-A3a): µ(d1)≤dimµ(d2)→ [Cont(µ(d3), µ(d1)) ∧ z · µ(d2)<dimz → Cont(z, µ(d3))].
Proof by contradiction: Assume d4 ∈ Dom(M) is an entity such that

Cont(µ(d4), µ(d1)) ∧ µ(d4) · µ(d2)<dimµ(d4)

and suppose
¬Cont(µ(d4), µ(Σd1 \ Σd2)).

Then Σd4 ⊆ Σd1 and dim(d4 ∩ d2) < dim(d4). Then Σd4 ⊆ Σd1 \ Σd2 because the
topological closure X restores all lower-dimensional sets in Σd4 ∩ Σd1 removed by Σd2.
Hence Cont(µ(d4), µ(d1 \ d2)) contrary to our supposition.

(Dif-A3b): µ(d1)≤dimµ(d2)→ [Cont(z, µ(d3))→ Cont(z, µ(d1))].
Assume d4 ∈ Dom(M) such that

µ(d4) · µ(d2)<dimµ(d4) and Cont(µ(d4), µ(Σd1 \ Σd2)).
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Then Σd4 ⊆ Σd1 \ Σd2 ⊆ Σd1 and hence Cont(µ(d4), µ(d1)).
(Dif-A3c): µ(d1)≤dimµ(d2)→ [P(z, µ(d3))→ z · µ(d2)<dimz].

Assume d4 ∈ Dom(M) such that

µ(d4) · µ(d2)<dimµ(d4) and P(µ(d4), µ(Σd1 \ Σd2)).

Then Σd4 ⊆ Σd1 \ Σd2 and thus dim(Σd4 ∩ Σd2) < dim(d4) (see proof of Dif-A3(a)).
Then some d5 ∈ Dom(M) exists with Σd5 ⊆ Σd4 ∩ Σd2 and µ(d5) = µ(d4) · µ(d2) for
which dim(d5) = dim(Σd4 ∩ Σd2) < dim(d4) holds. Thus µ(d4) · µ(d2)<dimµ(d4).

(Dif-A4): (µ(d3)) /∈ ZEXM ↔ (µ(d1)) ∈ ZEXM ∨Cont(µ(d1), µ(d2)).
(µ(d1)) /∈ ZEXM and ¬Cont(µ(d1), µ(d2)) follow by conditions (2) and (4) from our
assumption. By Dif-A1 we also have µ(d3)=dimµ(d1) and thus (µ(d3)) /∈ ZEXM.

Hence for arbitrary d1, d2 ∈ Dom(M) with d1 6= ∅, dim(Σd1 \Σd2) = dim(d1), and dim(Σd1∩
Σd2) = dim(d1), d3 = Σd1 \ Σd2 satisfies all axioms for µ(d3) = µ(d1)− µ(d2).

The cases (II.a) to (II.d) are clearly exhaustive, thus there always exists an entity d3 ∈ Dom(M)
with µ(d3) = µ(d1)− µ(d2) that satisfies the axioms Dif-A1 –Dif-A4.

This completes the satisfiability proof of CODI ↓.

Importantly, sharing a point between two manifolds d1 and d2 in M then really means their repre-
sentations µ(d1) and µ(d2) inM are in contact.

Notice that the Theorem 7.4(3) may “compact” the dimensions: if a complex 4-manifold M1 only
contains 1-manifolds, 2-manifolds, and 4-manifolds its representation as a model of CODI ↓ may be
identical to that of some complex 3-manifold. Moreover, other properties of the intended structures,
such as that any two atomic m-manifolds within a composite m-manifold may only intersect in their
boundaries, cannot yet be ensured in CODI ↓ simply because we cannot define this relation in CODI ↓,
compare our discussion in Section 7.5. In Chapter 9 we will address this shortcoming. Not being
able to define boundary contact does not necessarily mean that CODI ↓ is missing axioms that prevent
axiomatizability.

Axiomatizability could only be proved for the theory CODI ↓ ∪ ME-E1. It requires that every
model of CODI ↓ corresponds to some structure Mm. In the axiomatizability proof we can rely on
the mappings as defined in the conditions (1)–(4) of the Satisfiability Theorem. While we can easily
verify the conditions (1), (2), and (4) of Definition 5.11 from any model of CODI ↓, it is much more
difficult to show that for any model M, for any d ∈ M the corresponding entity %(d) ∈ Dom(M) is
indeed a manifold and that the conditions (1) and (2) of Definition 5.6 are satisfied. Also condition (3)
of Definition 5.11 cannot be proved from the theory CODI ↓—a shortcoming that we will address in
Chapter 9 by introducing the relation BCont that adequately captures the nonzero intersection that is
contained in ∆MF2 when ΣMF1 ∩∆MF2 6= ∅.

The following model of CODI ↓ and its attempted mapping to a structure inM will demonstrate this,
before we present a different mapping to overcome this problem.
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LetM be a model of CODI ↓ with domain

M = {a1, a2, a3, a4, l12, l13, l14, p, ze} and

ZEXM = {ze}

MinM = MaxM = mathbfM \ ZEXM.

Let further

MaxDimM = {a1, a2, a3, a4}

MinDimM = {p}

〈p, l12〉, 〈p, l13〉, 〈p, l14〉 ∈ ≺dim,

the latter completely defining ≺dim in the presence of the extensions MinDimM and MaxDimM. We
define

ContM = {〈l12, a1〉, 〈l13, a1〉, 〈l14, a1〉, 〈l12, a2〉, 〈l13, a3〉, 〈l14, a4〉, } ∪ {〈p, d〉 | d ∈M \ ZEXM}.

It is easily verified thatM is indeed a model of CODI ↓.
Intuitively, because there are three different dimensions in this model, we would attempt to construct

a structureM2 that corresponds to this model. In such a structure the atomic 2-manifold %(a1) intersects
three other atomic 2-manifolds (areas) %(a2), %(a3), and %(a4) each in atomic 1-manifolds (line segments),
namely %(l12), %(l13), and %(l14) which all intersect in a common 0-manifold (a point) %(p). Trying to
imagine such a spatial configuration suffices to understand that it is only possible if one of %(l12), %(l13),
and %(l14) is not entirely in the boundary of %(a1) (because no more than two nonoverlapping line
segments that are part of the boundary of a 2-manifold can meet in a single point), which violates
condition (1) or (2) of Definition 5.6. Hence the so-constructed structure M3 is not in M.

However, we can find a structure M3 in M that corresponds to M. We construct it as previously,
with the exception that %(a1) to %(a4) are now 3-manifolds (volumes), which intersect in line segments,
not in surfaces. Then, all of %(l12), %(l13), and %(l14) can be in the boundary of %(a1) at the same time,
thus satisfying Definition 5.6(1) and (2).

For this particular problem, we found a corresponding structure M in the class of intended structures
M. However, it is far from clear how this can be generalized in order to prove axiomatizability for the
finite models of CODI ↓. Additionally, we still need to prove that we can always find a structure M in
which all the singleton sets {MF} in M can be realized as manifolds without violating any of the other
axioms of CODI ↓. We leave this as an open question (Question 2).

7.3 Sums

The previous two sections have focused on downwards mereological closures. Similarly, we can close
models of the multidimensional mereotopology upwards by introducing sums. Postulating the existence
of sums of arbitrary entities may again lead to entities of nonuniform dimension. For example, the sum
consisting of a region, a line, and a set of points in which the line and the points are not contained in the
region is not of uniform dimension and as such cannot be an entity in a model of our multidimensional
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p

l1
l2

r1 r2

Figure 7.6: A nontrivial model of CODI ↓ ∪ {Sum-A1 – Sum-A4} with 8 entities including a zero entity.
We have three areal features r1, r2 and r3 = r1 + r2, three linear features l1, l2, and l3 = l1 + l2,
and a single point p. In this model, we have all three kinds of contact: Inc(r3, l3) (but ¬Cont(l3, r3)),
SC(r1, r2), and, e.g., PO(r1, r3). See codi/consistency/tptp/codi_down_sum_nontrivial.tptp.out for de-
tails of the model, in particular the extensions of the intersection, difference, and sum operations.

theory. But again, we can treat sums in the way we treated intersections and differences: sums are
defined as expected for entities of identical dimensions, while sums of entities of different dimensions are
defined as the sum of the entities of highest dimension among them (Sum-A2). Then, if x 6=dim y, not
everything contained in x or in y is automatically contained in x + y. In other words, the sum loses
everything that is not contained in an entity of its dimension. However, if x ≤dim y then everything
contained in y must also be contained in x + y (Sum-A3). Our axiomatization of closure under sums
requires models to be closed under intersections to work as expected.

(Sum-A1) x+ y = y + x (+ commutative)
(Sum-A2) x <dim y → x+ y = y (x+ y = y if x is of higher dimension than y)
(Sum-A3) x ≤dim y ∧ Cont(z, y)→ Cont(z, x+ y)

(+ monotone under containment for entities of the highest dimension)
(Sum-A4) Cont(z, x+ y) ∧ ¬Cont(z, x)→ Cont(z − x, y) (everything contained in the sum x+ y

is either contained in y or has a nonzero difference z − x contained in y)

Axiom Set 7.10: Axioms Sum-A1 – Sum-A4 of CODI l.

Figure 7.6 gives a nontrivial model of CODI ↓ extended by Sum-A1 – Sum-A4. In the extended theory
we can prove various properties (Sum-T1 – Sum-T6) which allow us to verify that the sum operation—as
previously shown for the intersection and difference operations—is also a total function (Theorem 7.5).
The properties not directly necessary for the proof of Theorem 7.5 will help us prove associativity of
sums (Sum-T7).

(Sum-T1) Cont(z, x+ y)→ ∃v[P (v, z) ∧ [Cont(v, x) ∨ Cont(v, y)]]

(every z contained in x+ y has some part contained in x or in y)

Lemma 7.22. CODI ↓ ∪ {Sum-A1 – Sum-A4}� Sum-T1

Proof. Assume Cont(z, x+ y).
Suppose Cont(z, x) then v := z is a part of z and contained in y. Equally if Cont(z, y).

Now suppose for all v with P(v, z) we had ¬Cont(v, x) ∧ ¬Cont(v, y).
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Then x=dimy (otherwise it would violate Sum-A2). Moreover, by Sum-A4, we have Cont(v− x, y).
This implies (v − x) /∈ ZEXM and thus v − x=dimv=dimz (by Dif-A1). Hence by Dif-A3c, some part
of v, call it vP , must exist whose intersection with x is of a lower dimension than v and which is thereby
also a part of v− x (by Dif-A3a). Since Cont(v− x, y) we would have Cont(vP , y)—a contradiction to
our supposition that all v with P(v, z) are neither contained in x nor in y.

Hence the supposition was false and the consequence of Sum-T1 must be true.

(Sum-T2) (x+ x) = x (+ idempotent)

Lemma 7.23. CODI ↓ ∪ {Sum-A1 – Sum-A4}� Sum-T2

Proof. From Sum-A3 we obtain Cont(x, x+ x).
Now suppose ∃y [Cont(y, x+ x) ∧ ¬Cont(y, x)].

Then by Sum-A4 we must have Cont(y − x, x), i.e., every part of y not contained in x must still be
in x—a contradiction in itself. Hence our supposition was false, and by antisymmetry of Cont (C-A2)
we obtain (x+ x) = x.

(Sum-T3) ZEX(x+ y)↔ ZEX(x) ∧ ZEX(y) (zero sum of zero entities)

Lemma 7.24. CODI ↓ ∪ {Sum-A1 – Sum-A4}� Sum-T3

Proof. Assume x, y ∈M with (x+ y) ∈ ZEXM but x /∈ ZEXM.
Suppose y /∈ ZEXM, then Cont(x, x) and Cont(y, y). Moreover, we have x(≤dim)My or y(≤dim)Mx.
Then by Sum-A3, we have either Cont(x, x+ y) or Cont(y, x+ y), which contradicts C-A4.
Now suppose y ∈ ZEXM. Then y(≤dim)Mx and with Cont(x, x) we again derive Cont(x, x + y) by
Sum-A3, which contradicts C-A4.

(Sum-T4) ZEX(y)→ x+ y = x (sum with zero entity)

Lemma 7.25. CODI ↓ ∪ {Sum-A1 – Sum-A4}� Sum-T4

(Sum-T5) x =dim y → x =dim x+ y (dimension of the sum of equidimensional entities)

Lemma 7.26. CODI ↓ ∪ {Sum-A1 – Sum-A4}� Sum-T5

Proof. Assume x=dimy.
We consider two cases.

Case (I): Assume x ∈ ZEXM.
Then y ∈ ZEXM and, by Sum-T3, (x+ y) ∈ ZEXM and thus x+ y=dimx.

Case (II): Assume x /∈ ZEXM.
Then we have, by Sum-A3, Cont(x, x + y) and thus x≤dimx + y. By Sum-T1, if we had x +
y>dimx, y, then some part v of x + y must be contained in x or y which contradicts CD-A1:
Cont(v, x)→ v ≤dim x. Thus x=dimx+ y.

This two cases exhaustively proof Sum-T5.
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Next we will essentially show that in the equidimensional case, our definition of sums is the definition
of sums as usually found in equidimensional mereotopologies:

(Sum-T6) x =dim y → ∀z[PO(z, x) ∨ PO(z, y)↔ PO(z, x+ y)]

(x+ y partially overlaps anything that overlaps either x or y)

Lemma 7.27. CODI ↓ ∪ {Sum-A1 – Sum-A4} � Sum-T6

Proof. We prove the two directions of the inner biconditional separately.

Direction (a): x =dim y ∧ (PO(z, x) ∨ PO(z, y))→ PO(z, x+ y).
Assume x=dimy and—without loss of generality—PO(z, x).
Then by Sum-A3, we immediately obtain PO(z, x+ y).

Direction (b): x =dim y ∧ PO(z, x+ y)→ PO(y, x) ∧ PO(z, x) ∨ PO(z, y).
Assume x=dimy and PO(z, x+ y) and ¬PO(z, x).
By PO(z, x+ y) there must be some part v that z and x+ y have in common. By Sum-T1, some
part of v, call it vP , must be contained in either x or y. Because ¬PO(z, x), this part cannot be
in x and hence must be in y. But then PO(v, y) and consequently PO(z, y).

The two directions immediately imply the biconditional in Sum-T6.

Now we can easily show that the sum operation as axiomatized in CODI ↓ ∪ {Sum-A1 – Sum-A4} is
a total function.

Theorem 7.5. The operation + is a total function in CODI ↓ ∪ {Sum-A1 – Sum-A4}.

Proof. Let x and y be arbitrary entities. If x 6=dim y, i.e., they are of differing dimension, their sum
x + y is uniquely defined by Sum-A2 (note that by Sum-A1 the sum operation is commutative). Now
assume x=dimy, then we can apply Sum-T6 which together with extensionality of PO (PO-E1, compare
Theorem 7.11) uniquely defines the sum x+ y.

From Sum-T6 we can also prove associativity of + (Sum-T7).

(Sum-T7) (x+ y) + z = x+ (y + z) (+ associative)

Lemma 7.28. CODI ↓ ∪ {Sum-A1 – Sum-A4} � Sum-T7

Proof. For the proof we distinguish several cases depending on the relative dimensions of x, y, and z.
The primary distinction lies with the relative dimension between x and y, that is, whether x<dimy,
x>dimy, or x=dimy. We use a secondary distinction based on the relative dimension between x and z
as necessary. All cases are straightforward applications of Sum-A2 except for the case x=dimy=dimz

with all of x, y, z being of nonzero dimension, we employ Sum-T6 in this case.

Case (I): Assume x<dimy. Then

(x+ y) + z = y + z (Sum-A2: x<dimz)

= x+ (y + z) (Sum-A2: x<dimy≤dimy + z)

Case (II): Assume x>dimy.
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Subcase (II.a): Assume x>dimy and x>dimz. Then

(x+ y) + z = x+ z (Sum-A2: x>dimy)

= x (Sum-A2: x>dimz)

= x+ (y + z) (Sum-A2: x>dimy + z)

Subcase (II.b): Assume x>dimy and x≤dimz. Then z>dimy and

(x+ y) + z = x+ z (Sum-A2: x>dimy)

= x+ (y + z) (Sum-A2: z>dimy)

Case (III): Assume x=dimy.

Subcase (III.a): Assume x=dimy and x>dimz. Then y>dimz and

(x+ y) + z = x+ y (Sum-A2: x+ y>dimz)

= x+ (y + z) (Sum-A2: y>dimz)

Subcase (III.b): Assume x=dimy and x<dimz. Then y<dimz and

(x+ y) + z = z (Sum-A2: x+ y<dimz)

= x+ z (Sum-A2: x<dimz)

= x+ (y + z) (Sum-A2: y<dimz)

Subcase (III.c): Assume x=dimy=dimz and x ∈ ZEXM.
Then y ∈ ZEXM, z ∈ ZEXM and thus ((x+ y) + z) ∈ ZEXM and (x+ (y + z)) ∈ ZEXM
by Sum-T3, so (x+ y) + z = x+ (y + z).

Subcase (III.d): Assume x=dimy=dimz and x /∈ ZEXM.
Then also y /∈ ZEXM and z /∈ ZEXM. We can use extensionality of PO (PO-E1) to prove

∀s[PO(s, (x+ y) + z)↔ PO(s, x+ (y + z))]

Consider the following equivalences:

PO(s, (x+ y) + z)

↔ PO(s, x+ y) ∨PO(s, z) (Sum-T6)

↔ PO(s, x) ∨PO(s, y) ∨PO(s, z) (Sum-T6)

↔ PO(s, x) ∨PO(s, y + z) (Sum-T6)

↔ PO(s, x+ (y + z)) (Sum-T6)

These cases cover all possible relative dimension constraints among x, y, and z, hence for all x, y, z we
have (x+ y) + z = x+ (y + z).
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7.3.1 Containment in sums

We now proceed to prove that every part in the sum x+y can be split into parts u and v so that P (u, x)
and P (v, y) but not PO(u, v) (Sum-T9) and, second, that the sum of two parts of z is also a part of
z (Sum-T10). In other words, the sum x + y does not contain a part that is neither in x, y, nor can
be divided into parts in x and y. To prove Sum-T9, we first prove Sum-T8—an important relationship
between the sum and difference for equidimensional entities—which complements the property Dif-T8.

(Sum-T8) P (y, x)→ x = y + (x− y) (any part y of x and the difference x− y cover x)

Lemma 7.29. CODI ↓ ∪ {Sum-A1 – Sum-A4} � Sum-T8

Proof. We can utilize extensionality of PO (PO-E1) in CODI ↓ and show the following two sentences,
which together imply Sum-T8:

P (y, x) ∧ PO(z, x)→ PO(z, y + (x− y)) (a)

P (y, x) ∧ PO(z, y + (x− y))→ PO(z, x) (b)

Part (a): P (y, x) ∧ PO(z, x)→ PO(z, y) ∨ PO(z, x− y).
By Sum-T6 we can rewrite (a) as

P (y, x) ∧ PO(z, x)→ PO(z, y) ∨ PO(z, x− y)

which is equivalent to

P (y, x) ∧ PO(z, x) ∧ ¬PO(z, x− y)→ PO(z, y) (a*)

To prove (a*), assume P(y, x), PO(z, x), and ¬PO(z, x− y).
Then there exists a v that is a part of x and z and thus part of x · z (note that we always have
x · z≤dimx, z). Now we use the contrapositive of one of the directions of the implication in Dif-T5,
namely

P (v, x) ∧ ¬P (v, x− y)→ PO(v, x · y)

From our assumption ¬PO(z, x− y) we conclude ¬P(v, x− y). Together with P(v, x), it implies
PO(v, x · y). Then we must have PO(v, y) (recall that by P(y, x) we have y=dimx), which with
P(v, z) results in PO(z, y), the consequent of (a*).

Part (b): P (y, x) ∧ PO(z, y + (x− y))→ PO(z, x).
We prove instead (b*), from which (b) follows by Sum-T6

P (y, x) ∧ [PO(z, y) ∨ PO(z, x− y)]→ PO(z, x) (b*)

We will consider the two cases resulting from the disjunction in (b*) individually

P (y, x) ∧ PO(z, y)→ PO(z, x) (b*.1)
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P (y, x) ∧ PO(z, x− y)→ PO(z, x) (b*.2)

(b*.1) Assume P(y, x) and PO(z, y).
Then by transitivity of parthood: if a v exists that is part of y and z, then v is also part of x
and thus PO(z, x).

(b*.2) Assume P(y, x) and PO(z, x− y).
P(y, x) implies P(x − y, x) by Dif-T1; hence PO(z, x − y) implies, again by transitivity of
parthood, PO(z, x).

Hence (b*) holds.

The two part, (a) and (b), together imply that x and (x · y) + (x− y) are equivalent.

An important case of Sum-T8 concerns the intersection x·y for which we can prove x = (x·y)+(x−y)
even if x · y is not a part of x (note that it is always contained in x):

(Sum-T8’) x = (x · y) + (x− y) (x · y and x− y cover x)

Corollary 7.3. CODI ↓ ∪ {Sum-A1 – Sum-A4} � Sum-T8’

Proof. Because x · y ≤dim x always holds, it suffices to consider the following two cases.

Case (I): Assume x · y<dimx.
Then

x · y + (x− y) = x− y (Sum-A2: x · y<x)

= x− (x · y) (Dif-T6)

= x (Dif-A2: x · y<x)

Case (II): Assume x · y=dimx.
Then P(x · y, x), which implies

x = (x · y) + (x− (x · y)) (Sum-T8)

= (x · y) + (x− y) (Dif-T6)

In either case we have w = (w · x) + (w − x).

Sum-T8’ essentially proves the first property of the u, v that Sum-T9 claims to exist when a part z
is not contained in x or y but is contained in their sum x+ y.

(Sum-T9) x =dim y ∧ Cont(w, x+ y) ∧ ¬Cont(w, x) ∧ ¬Cont(w, y)

→ ∃u, v[w = u+ v ∧ ¬PO(u, v) ∧ P (u,w) ∧ Cont(u, x) ∧ P (v, w) ∧ Cont(v, y)]

(everything contained in x+ y but contained neither in x nor in y is the sum of

two nonoverlapping parts contained in x and y)

Lemma 7.30. CODI ↓ ∪ {Sum-A1 – Sum-A4} � Sum-T9
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Proof. Assume x=dimy, Cont(w, x+ y), ¬Cont(w, x), and ¬Cont(w, y).
The assumption further implies x=dimy≥dimz and we have x /∈ ZEXM and y /∈ ZEXM by Cont-A4.

We want to show that the consequent of Sum-T9 is satisfied for u := w · x and v := w − x. In order
to do so we must show (a) to (f):

(a) w = (w · x) + (w − x)

(b) ¬PO(w · x,w − x)

(c) P(w · x,w)

(d) Cont(w · x, x)

(e) P(w − x,w)

(f) Cont(w − x, y)

Part (a): w = (w · x) + (w − x).
By Sum-T8’.

Part (b): ¬PO(w · x,w − x).
By Dif-T4.

Part (c): P(w · x,w).
By Sum-A4, we can use Cont(w, x + y) together with ¬Cont(w, y) to conclude Cont(w − y, x).
Hence w − y is nonempty (by C-A4) and further w − y=dimw by Dif-A1. Since P(w − y, w) (by
Dif-T1), w− y must be a part of the intersection (w− y) · x and thus also of the intersection w · x
(which cannot be of larger dimension than w, i.e., of larger dimension than w − y) by Int-A4.

Part (d): Cont(w · x, x).
By Int-A2 because (w · x) /∈ ZEXM by Part (c).

Part (e): P(w − x,w).
By Sum-A4, we can use Cont(w, x + y) together with ¬Cont(w, x) to conclude Cont(w − x, y).
Hence (w − x) /∈ ZEXM and then P(w − x,w) by Dif-T1.

Part (f): Cont(w − x, y).
Follows by Sum-A4 from Cont(w, x+ y) together with ¬Cont(w, x).

We have shown that some u and v exists, namely u := w · x and v := w − x, that satisfy all conditions
of the consequent of Sum-T9.

We actually proved something stronger than Sum-T9, namely that the entities w · x and w − x split
any w not contained in x or y into entities that are contained in x and y, respectively. This gives us the
following stronger property:

Corollary 7.4. CODI ↓ ∪ {Sum-A1 – Sum-A4} �

Cont(w, x+ y) → Cont(w, x) ∨ Cont(w, y) ∨

[w = (w · x) + (w − x) ∧ P (w · x,w) ∧ P (w − x,w) ∧

¬PO(w · x,w − x) ∧ Cont(w · x, x) ∧ Cont(w − x, y)] .
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This guarantees that everything contained in the sum x+ y is either entirely in x or in y, or can be
split into w · x and w − x which are nonoverlapping parts of w that cover w and are contained in x and
y, respectively.

Sum-T9 will also be helpful for the next theorem (Sum-T10), which shows that the sum of two parts
of z is also a part of z and vice versa.

(Sum-T10) x =dim y ∧ ¬ZEX(x)→ ∀z[Cont(x, z) ∧ Cont(y, z)↔ Cont(x+ y, z)]

(the sum x+ y is part of z iff x and y are part of z)

Lemma 7.31. CODI ↓ ∪ {Sum-A1 – Sum-A4} � Sum-T10

Proof. We prove the two directions of the inner biconditional separately.

Direction (a): x =dim y ∧ ¬ZEX(x) ∧ ¬ZEX(y)→ ∀z(Cont(x, z) ∧ Cont(y, z)← Cont(x+ y, z)).
Assume x=dimy, x /∈ ZEXM, and Cont(x+ y, z).
Then x=dimy=dimx + y (by Sum-T5) implies P(x, x + y), which together with Cont(x + y, z)
implies Cont(x, z) by transitivity of parthood (because x /∈ ZEXM). The same argument works
for y to conclude Cont(y, z) (because of x=dimy and x /∈ ZEXM we also have y /∈ ZEXM).

Direction (b): x =dim y ∧ ¬ZEX(x) ∧ ¬ZEX(y)→ ∀z(Cont(x, z) ∧ Cont(y, z)→ Cont(x+ y, z)).
Assume x=dimy, x /∈ ZEXM, and Cont(x, z), Cont(y, z).
Suppose ¬Cont(x + y, z) then ∃w[P(w, x + y) ∧ ¬Cont(w, z)]. By Sum-T9, we can split w into
the parts w · x and w − x which are parts of x, y, respectively. In particular, the greatest part of
x+ y, namely x+ y itself, can be split in that way: (x+ y) · x and (x+ y)− x; the former clearly
being x and the latter being y (it will have exactly all parts of y), each of which is contained in z.
Hence, no part of x+ y can be not contained in z and our supposition is false, and the consequent
of Sum-T10 must be true.

These two directions immediately entail the biconditional in Sum-T10.

7.3.2 Interaction between sums and intersections

Next, we will look at properties of the sum operation + in interaction with the other two mereological
closure operations, intersection · and difference −. First we study the interaction with intersections.
Since the intersection and sum operations are commutative, we do not have to distinguish left- from
right-distributivity in our study.

Contrary to the set-theoretic operations, our intersection operation is not distributive over the sum
operation. In other words, we do not always have x · (y + z) = (x · y) + (x · z), see Figure 7.7(a) for
an example. However, we do have distributivity when y and z are of the same dimension (Sum-T11),
but not if y 6=dim z but x has the same dimension as either y or z, compare Figure 7.7(b). Note that if
x<dimy even x · (x+ y) = x (the consequent of Sum-T12) may fail, compare Figure 7.7(c).

(Sum-T11) y =dim z → x · (y + z) = (x · y) + (x · z)

(· distributive over y + z when y and z are of equal dimension)

Lemma 7.32. CODI ↓ ∪ {Sum-A1 – Sum-A4} � Sum-T11
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Figure 7.7: Non-distributivity of intersection over sums. Example (a) shows that intersections do not
always distribute over sums; we have r · (l+ q) = r · l = p 6= p+ q = (r · l) + (r · q). (b) gives an example
with two entities of equal dimension still not being distributive because the entities inside the sum on
the left side are not of equal dimension: r · (s + l) = r · s = p 6= p + q = (r · s) + (r · l). In (c) the
intersection does not absorb the sum, i.e., we have l · (l + r) = l · r = p 6= l. Example (d) shows that
sums do not always distribute over intersections: l + (r · s) = l +m 6= m = r · s = (l + r) · (l + s), even
though r and s are of equal dimension.

Proof. We consider three cases, (I)–(III), based on the relative dimension of x · y and x · z. For each case
we show the following two directions

∀w [P (w, x · (y + z))→ P (w, (x · y) + (x · z))] (a)

∀w [P (w, (x · y) + (x · z))→ P (w, x · (y + z))] (b)

which, by EP-T2 amount to x · (y + z) = (x · y) + (x · z).
For all cases, assume y=dimz (the antecedent of Sum-T11).

Case (I): Assume x · y=dimx · z.

Direction (I.a):
By Sum-T5 we also have x · y=dimx · z=dimx · (y + z).
Let w be an arbitrary part of x · (y + z). Then Cont(w, x) and Cont(w, y + z) by Int-A4. If
we have Cont(w, x) or Cont(w, y) we can immediately conclude P(w, (x · y) + (x · z)). Now
suppose neither Cont(w, x) nor Cont(w, y), then by Corollary 7.4 we must have

Cont(w, x) ∧Cont(w · y, y) ∧Cont(w − y, z) ∧ w = (w · y) + (w − y)

⇒Cont(w · y, x · y) ∧Cont(w − y, x · z) ∧ w = (w · y) + (w − y)

⇒Cont(w · y, (x · y) + (x · z)) ∧Cont(w − y, (x · y) + (x · z))

∧ w = (w · y) + (w − y)

⇒Cont((w · y) + (w − y), (x · y) + (x · z)) ∧ w = (w · y) + (w − y) (Sum-T10)

⇒Cont(w, (x · y) + (x · z))

Direction (I.b):
Let w be an arbitrary part of (x · y) + (x · z).
If Cont(w, x · y) or Cont(w, x · z) then Cont(w, x · (y+ z)) because y=dimz=dimy+ z. Now
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suppose neither Cont(w, x · y) nor Cont(w, x · z), then by Corollary 7.4,

Cont(w · (x · y), (x · y)) ∧Cont(w − (x · y), (x · z)) ∧

w = (w · (x · y)) + (w − (x · y))

⇒Cont(w · (x · y), x · (y + z)) ∧Cont(w − (x · y), x · (y + z)) ∧ (∗)

w = (w · (x · y)) + (w − (x · y))

⇒Cont(w, x · (y + z)) (Sum-T10)

For the step (∗) we use the fact that P(y, y + z) (recall that y=dimz), hence if Cont(w ·
(x · y), (x · y)) we also have Cont(w · (x · y), (x · (y + z))). Equally, from P(z, y + z) and
Cont(w − (x · y), (x · z)) we obtain Cont(w − (x · y), (x · (y + z))).

Case (II): Assume x · y<dimx · z.

Direction (II.a):
From x · y<dimx · z we know by Sum-A2 that (x · y) + (x · z) = x · z. Hence it suffices to show
that

∀w [P(w, x · (y + z))→ P(w, x · z)]

Let w be an arbitrary part of x · (y + z). Then Cont(w, x) and Cont(w, y + z). Suppose
y>dimz, then y + z = y (by Sum-A2) and x · y≥dimx · z in contradiction to our assumption.
Hence y≤dimz must hold.

Subcase (II.a.i): Assume y<dimz.
Then y + z = z and Cont(w, y + z) imply Cont(w, z), hence Cont(w, x · z) and with
y + z=dimz also P(w, x · z).

Subcase (II.a.ii): Assume y=dimz.
Suppose ¬Cont(w, z). Then because x ·y<dimx · z, w cannot be a part of x · (y+ z) even
if Cont(w, y) because the dimension of x · y is lower than the dimension of x · (y + z)
which has to be at least the dimension of x · z. However, ¬P(w, x · (y + z)) contradicts
our initial assumption. Hence our supposition ¬Cont(w, z) was wrong and we must have
Cont(w, z). Consequently we also have P(w, x · z).

(Direction II.b):
Let w be an arbitrary entity so that P(w, (x · y) + (x · z)), then from x · y<dimx · z we have
P(w, (x · z)) which directly implies P(w, (x · (y + z))) when y=dimz.

Case (III): Assume x · y<dimx · z.
The proof is analogous to that of case (II).

These cases cover all possible relative dimension constraints between x · y and x · z. Hence in any case,
(a) and (b) hold and therefore

P(x · (y + z), (x · y) + (x · z)) ∧ P ((x · y) + (x · z), x · (y + z)),

and thus x · (y + z) = (x · y) + (x · z) if y=dimz.
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(Sum-T12) x ≥dim y → x · (x+ y) = x (· absorbs + for x ≥dim y)

Lemma 7.33. CODI ↓ ∪ {Sum-A1 – Sum-A4} � Sum-T12

Proof. We have two cases.

Case (I): Assume x ∈ ZEXM.
Then ¬C(x, x+ y) by C-T4 and (x · (x+ y)) ∈ ZEXM by Int-A1. Hence x = x · (x+ y).

Case (II): Assume x /∈ ZEXM.
Let us further assume x≥dimy, the antecedent of Sum-T12.
We want to show that Cont(x·(x+y), x) and Cont(x, x·(x+y)) which together imply x = x·(x+y)
by antisymmetry of Cont.

Cont(x · (x+ y), x) trivially holds by Int-A2 since (x+ y) /∈ ZEXM.

Cont(x, x · (x+ y)) iff Cont(x, x+ y), which holds by Sum-A3 because x≥dimy.

The two cases are trivially exhaustive, hence in any case x = x · (x+ y).

Sum-T13 shows when the intersection operation does not absorb the sum operation.

(Sum-T13) x <dim y → x · (x+ y) = x · y (nonabsorption of + by · when x <dim y)

Lemma 7.34. CODI ↓ ∪ {Sum-A1 – Sum-A4} � Sum-T13

Proof. We consider two cases.

Case (I): Assume x ∈ ZEXM.
Then ¬C(x, x+ y) by C-T4 and (x · (x+ y)) ∈ ZEXM by Int-A1. Equally, (x · y) ∈ ZEXM since
¬C(x, y). Thus x · (x+ y) = x · y.

Case (II): Assume x /∈ ZEXM.
Then x+ y = y (by Sum-A2 and x<dimy) and thus x · (x+ y) = x · y.

The two cases are trivially exhaustive, hence x · (x+ y) = x · y always holds if x<dimy.

Moreover, sums only distribute over intersections, i.e., x+ (y · z) = (x+ y) · (x+ z) if y and z are of
the same dimension and x is either of a lower dimension than their intersection or of the same or greater
dimension than both of y and z (Sum-T14). Because we always have y · z ≤dim y, z, this essentially rules
out that x is in between the dimension of y, z and the dimension of y · z. Consider Figure 7.7(d) which
show that in such cases distributivity may fail.

(Sum-T14) y =dim z ∧ [x <dim y · z ∨ x ≥dim y]→ x+ (y · z) = (x+ y) · (x+ z)

(+ distributive over y · z when y and z are of equal dimension)

Lemma 7.35. CODI ↓ ∪ {Sum-A1 – Sum-A4} � Sum-T14

Proof. Assume y=dimz and (x<dimy · z or x≥dimy).
We distinguish the following three cases.
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Case (I): Assume x>dimy, z≥dimy · z. Then

x+ (y · z) = (x+ y) · (x+ z)

x = x · x (Sum-A2: x>dimy, z(y · z))

Case (II): Assume x=dimy, z≥dimy · z.
Consider the following computation which applies Corollary 7.4, Sum-T8’, Sum-T10, and the
assumption x=dimy=dimz.

P(w, (x+ y) · (x+ z)))

⇔ P(w, x+ y) ∧P(w, x+ z))

⇔ P(w, x) ∨ [P(w, y) ∧P(w, z)] ∨

[w = (w · x) + (w − x) ∧P(w · x, x) ∧P(w − x, y) ∧P(w − x, y)]

⇔ P(w, x) ∨P(w, y · z) ∨ [w = (w · x) + (w − x) ∧P(w · x, x) ∧P(w − x, y · z)]

⇔ P(w, x+ (y · z))

Case (III): Assume x<dimy · z≤dimy, z. Then

x+ (y · z) = (x+ y) · (x+ z)

y · z = y · z (Sum-A2: x<dimy, z(y · z))

These three cases cover all cases where y=dimz and [x < y·z∨x≥dimy]. Case (I) covers the first condition
of the disjunction while cases (II) and (III) cover the second condition, splitting it into x=dimy and
x>dimy. Hence, we proved

y=dimz ∧ [x<dimy · z ∨ x>dimy]→ x+ (y · z) = (x+ y) · (x+ z).

Sum-T15 proves that the sum operation always absorbs the intersection operation.

(Sum-T15) x+ (x · y) = x (+ absorbs ·)

Lemma 7.36. CODI ↓ ∪ {Sum-A1 – Sum-A4} � Sum-T15

Proof. We consider two cases.

Case (I): Assume x ∈ ZEXM.
Then ¬C(x, y) and thus (x, y) ∈ ZEXM and thus x+ (x · y) = x.

Case (II): Assume x /∈ ZEXM.
Then by Cont(x · y, x) we immediately obtain x + (x · y) = x no matter whether x · y<dimx or
x · y=dimx.

The two cases are trivially exhaustive; in any case x+ (x · y) = x.
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Summarily, Sum-T11 and Sum-T14 establish that for equidimensional entities x, y, and z, the inter-
section and sum operation are distributive over the other. While Sum-T12 and Sum-T13 show how the
intersection operation absorbs a sum, Sum-T15 shows how the sum operation absorbs a product.

7.3.3 Interaction between sums and differences

Next, we study the interaction between sums and differences. While differences do not distribute left
over sums even in set theory or in the equidimensional case, differences do distribute right over sums for
equidimensional entities. This also works in cases when z is of a different dimension than x and y as
long as x and y are of the same dimension (Sum-T16).

(Sum-T16) x =dim y → (x+ y)− z = (x− z) + (y − z) (− right-distributive over +)

Lemma 7.37. CODI ↓ ∪ {Sum-A1 – Sum-A4} � Sum-T16

Proof. We split the proof into four cases.

Case (I): Assume x ∈ ZEXM.
Then y ∈ ZEXM; together they imply ((x+ y)− z) ∈ ZEXM and ((x− z) + (y − z)) ∈ ZEXM.

Case (II): Assume x /∈ ZEXM and z<dimx. Consider the following computation:

(x+ y)− z = (x− z) + (y − z)

⇔ (x+ y)− z = x+ y (Sum-A2: z<dimx, y)

⇔ x+ y = x+ y (Sum-A2: z<dimx+ y=dimx, y)

Case (III): Assume x /∈ ZEXM and z=dimx.
To show the equivalence of (x+ y)− z and (x− z) + (y− z) it suffices by EP-T9 to prove parthood
in two directions, (a) and (b).

Direction (III.a): ∀w [P(w, (x+ y)− z)→ P(w, (x− z) + (y − z))].
Assume w is an arbitrary entity such that P(w, (x+ y)− z).
Then

P(w, (x+ y)− z)

⇒ ¬PO(w, z) ∧P(w, x+ y)

⇒ ¬PO(w, z) ∧ [P(w, x) ∨P(w, y) ∨ [w = (w · x) + (w − x) ∧

P(w · x,w) ∧P(w − x,w) ∧P(w · x, x) ∧P(w − x, y)]]

The last step follows from Corollary 7.4.

Subcase (III.a.i): Assume P(w, x).
Then P(w, x− z) and hence we immediately conclude P(w, (x− z) + (y − z)).

Subcase (III.a.ii): Assume P(w, y).
Then P(w, y − z) and hence we immediately conclude P(w, (x− z) + (y − z)).

Subcase (III.a.iii): Assume ¬P(w, x) and ¬P(w, y).
Then the last case of the disjunction must hold; we have ¬PO(w ·x, z) and ¬PO(w−x, z)
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because of ¬PO(w, z). Together with P(w ·x, x) and P(w−x, y) we obtain P(w ·x, x−z)
and P(w−x, y−z). In particular, x−z and y−z must be nonzero. Hence (x−z)+(y−z)
is nonzero and x=dimy=dimx − z=dimy − z=dim(x − z) + (y − z). By transitivity of
parthood, we get

P(w · x, (x− z) + (y − z)) and P(w − x, (x− z) + (y − z))

and consequently P(w, (x− z) + (y − z)) by Sum-T10.

In either case P(w, (x+ y)− z) implies P(w, (x− z) + (y − z))].

Direction (III.b): ∀w [P(w, (x− z) + (y − z))→ P(w, (x+ y)− z)].
Assume w is an arbitrary entity such that P(w, (x− z) + (y − z)).
Then

P(w, (x− z) + (y − z))

⇔ P(w, x− z) ∨P(w, y − z) ∨ ∃u, v[w = u+ v ∧P(u, x− z) ∧P(v, y − z)]

⇔ [P(w, x) ∧ ¬PO(w, z)] ∨ [P(w, y) ∧ ¬PO(w, z)] ∨

∃u, v[w = u+ v ∧P(u, x) ∧ ¬PO(u, z) ∧P(v, y) ∧ ¬PO(v, z)]

⇔ [P(w, x) ∧ ¬PO(w, z)] ∨ [P(w, y) ∧ ¬PO(w, z)] ∨

∃u, v[w = u+ v ∧P(u, x+ y) ∧P(v, x+ y)¬PO(u+ v, z)]

⇔ [P(w, x) ∧ ¬PO(w, z)] ∨ [P(w, y) ∧ ¬PO(w, z)] ∨ [P(w, x+ y) ∧ ¬PO(w, z)]

⇔ ¬PO(w, z) ∧P(w, x+ y)

⇔ P(w, (x+ y)− z)

Case (IV): Assume z>dimx.
The proof is analogous to case (III) except that we now use ¬Inc(w, z) instead of ¬PO(w, z)
throughout, leaving the conclusions unchanged.

These cases cover all possible relative dimension constraints between x=dimy and z.

We can also prove two cancellations properties between sums and differences (Sum-T17, Sum-T18).

(Sum-T17) x <dim y → ZEX((x+ y)− y) (cancellation of + and −)

(Sum-T18) x <dim y → ZEX(y − (x+ y)) (cancellation of + and −)

Lemma 7.38. CODI ↓ ∪ {Sum-A1 – Sum-A4} � {Sum-T17, Sum-T18}

Sum-T19 guarantees that for some cases (z ≤dim x), sums distribute left or right (recall commuta-
tivity of sums) over differences while obeying the special property of differences.

(Sum-T19) z ≤dim x→ x+ (y − z) = (x+ y)− (z − x) (if z ≤dim then x+ distributes over y − z)

Lemma 7.39. CODI ↓ ∪ {Sum-A1 – Sum-A4} � Sum-T19

Proof. We consider a total of six cases. The first case covers z ∈ ZEXM, while the remaining cases with
z /∈ ZEXM make a distinction based on the relative dimension between x and y, i.e., y<dimx, y=dimx,



Chapter 7. Closure operations in multidimensional mereotopological space 150

and y>dimx. For all cases we use the common assumption z≤dimx. We will use a secondary distinction
between z<dimx and z=dimx as necessary.

Note that z /∈ ZEXM also implies x /∈ ZEXM.

Case (I): Assume z ∈ ZEXM.
Let us further assume z≤dimx, the antecedent of Sum-T19.
Then x+ (y − z) = x+ y = (x+ y)− (z − x) by Sum-T4 and Dif-A4 because (z − x) ∈ ZEXM.

Case (II): Assume z /∈ ZEXM, y<dimx, and z<dimx.

x+ (y − z) = (x+ y)− (z − x)

x = x− (z − x) (Sum-A2: y − z=dimy<dimx)

x = x (Sum-A2: z − x=dimz<dimx)

Case (III): Assume z /∈ ZEXM, y<dimx, and z=dimx.

x+ (y − z) = (x+ y)− (z − x)

x = x− (z − x) (Sum-A2: y − z=dimy<dimx)

It remains to show that x = x− (z − x). P(x− (z − x), x) is trivial, to prove P(x, x− (z − x)) let
w be an arbitrary part of x, i.e., P(w, x). Then ¬PO(w, z − x) and thus P(w, x− (z − x)) (both
by Dif-A1).

Case (IV): Assume z /∈ ZEXM, y=dimx, and z<dimx.

x+ (y − z) = (x+ y)− (z − x)

x+ y = x+ y (Sum-A2: z − x=dimz<dimy=dimx+ y)

Case (V): Assume z /∈ ZEXM, y=dimx, and z=dimx.
To show the equivalence of (x+ y)− z and (x− z) + (y− z) it suffices by EP-T9 to prove parthood
in either direction, (a) and (b).

Direction (V.a): ∀w (P(w, x+ (y − z))→ P(w, (x+ y)− (z − x))).
Assume that w is an arbitrary entity so that P(w, x+ (y − z)).
Then:

P(w, x+ (y − z))

⇒ P(w, x) ∨P(w, y − z) ∨

∃u, v[w = u+ v ∧P(u,w) ∧P(v, w) ∧P(u, x) ∧P(v, y − z)]]

We split the proof into three subcases (i)–(iii).

Subcase (V.a.i): Assume P(w, x).
Then we obtain P(w, x+y) and ¬PO(w, z−x) by Dif-A3c because x=dimy. We conclude
P(w, (x+ y)− (z − x)) by Dif-A3a.
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Subcase (V.a.ii): Assume P(w, y − z).
We must have P(w, y)∧¬PO(w, z) by Dif-A3b and Dif-A3c. We then obtain P(w, x+y)
and ¬PO(w, z− x) by Dif-A3c because x=dimy and conclude P(w, (x+ y)− (z− x)) by
Dif-A3a.

Subcase (V.a.iii): Assume there exists u, v such that w = u+ v, P(u,w), P(v, w), P(u, x),
and P(v, y − z)]].
We have P(u, x+ y) and P(v, y − z). The latter implies P(v, y) and as such P(v, x+ y).
Then we must have P(w, x+y). P(v, y−z) also entails ¬PO(v, z). Hence ¬PO(v, z−x)
while from P(u, x) we entail ¬PO(u, z− x). Together those imply ¬PO(w, z− x) which
lets us conclude P(w, (x+ y)− (z − x)).

Direction (V.b): ∀w (P(w, (x+ y)− (z − x))→ P(w, x+ (y − z))).
Assume w to be an entity with P(w, (x+ y)− (z − x)).
Then P(w, x+ y) and ¬PO(w, (x+ y) · (z − x), so that ¬PO(w, (z − x)) must hold.
By Sum-T9, it suffices to prove that P(w · z, x+ (y − z)) and P(w − z, x+ (y − z)), because
all other parts of x+ (y − z) are sums of parts of w · z and w − z.

Part (V.b.i): P(w · z, x+ (y − z)).
We know Cont(w · z, w) and we have two subcases: either w · z<dimw or P(w · z, w).
If w · z<dimw, then P(w, x+ (y− z)) if and only if P(w, x+ y). Since the later holds by
our assumption, we obtain P(w, x+ (y − z)).
Now assume P(w · z, w).
We then obtain P(w · z, x + y) and ¬PO(w · z, z − x) (by transitivity of P and by
Dif-T5. The later requires P(w · z, x), again by Dif-T5, because P(w · z, z). Hence,
P(w · z, x+ (y − z)).

Part (V.b.ii): P(w − z, x+ (y − z)).
Again, we have P(w − z, x + y), but we also have ¬PO(w − z, z) by Dif-T3 and hence
P(w − z, x+ (y − z)) if and only if P(w − z, x+ y). Since we assumed P(w − z, x+ y),
we obtain P(w − z, x+ (y − z)).

Case (VI): Assume z /∈ ZEXM, y>dimx, and z≤dimx.

x+ (y − z) = (x+ y)− (z − x)

y − z = y − (z − x) (Sum-A2: y − z=dimy>dimx)

y = y (Sum-A2: y>dimz ∧ y>dimz − x)

Note that case (VI) covers both y>dimx=dimz and y>dimx>dimz. Hence, these six cases cover all
possible relative dimension constraints between x, y and z in which x≤dimz (as by the antecedent of
Sum-T19).

Sum-T20 considers the case of Sum-T19 where z = x.

(Sum-T20) x+ (y − x) = (x+ y) (special case when + distributes over −)

Lemma 7.40. CODI ↓ ∪ {Sum-A1 – Sum-A4} � Sum-T20
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Proof. follows from Sum-T19 by the following computation using z = x (z≤dimx is trivially satisfied in
this case):

x+ (y − z) = (x+ y)− (z − x) (Sum-T19)

x+ (y − x) = (x+ y)− (x− x) (x = z)

x+ (y − x) = (x+ y) (Dif-A4)

7.3.4 Interaction between sums, differences, and intersections

As a final step of our study of how the sum axioms interact with all the previous axioms, we will look
at the mutual interaction between intersections, differences, and sums for equidimensional entities as
expressed in Sum-T21 and Sum-T22.

(Sum-T21) x =dim y =dim z → x− (y · z) = (x− y) + (x− z)

Lemma 7.41. CODI ↓ ∪ {Sum-A1 – Sum-A4} � Sum-T21

Proof. Assume x, y, z are arbitrary entities such that x=dimy=dimz.
We will prove ∀v[PO(v, x− (y · z))↔ PO(v, (x− y) + (x− z))] in six cases.

Case (I): Assume ¬PO(v, x).
Then both ¬PO(v, x− (y · z)) and ¬PO(v, (x− y) + (x− z)).

Case (II): Assume PO(v, x), ¬PO(v, y), and ¬PO(v, z).
Then PO(v, x− (y · z))↔ PO(v, x)↔ PO(v, (x− y) + (x− z)).

Case (III): Assume PO(v, x), ¬PO(v, y), and PO(v, z).
Then ¬PO(v, y · z) and hence PO(v, x − (y · z)). But we also have PO(v, x − y) and hence
PO(v, (x− y) + (x− z)).

Case (IV): Assume PO(v, x), PO(v, y), and ¬PO(v, z).
Argument analogue to case (III).

Case (V): Assume PO(v, x), PO(v, y), PO(v, z), and y · z<dimx.
We have x = x− (y · z) by Dif-A2 because y · z<dimx.

We can split v into v · y and v − y. We then have ¬PO(v · y, z), otherwise y · z<dimx would be
falsified. Hence P(v · y, x− z) and thus P(v · y, (x− y) + (x− z)). We further have ¬PO(v− y, y)
by Dif-T3. Hence P(v − y, x − y) by Dif-A3a and thus P(v − y, (x − y) + (x − z)). Because
v = (v · y) + (v − y), we can apply Sum-T8’ and obtain P(v, (x − y) + (x − z)). In other words,
every part contained in x is also contained in (x−y)+(x−z). Since trivially P(x−y)+(x−z), x),
we obtain x = (x− y) + (x− z) as well.

Case (VI): Assume PO(v, x), PO(v, y), PO(v, z), and y · z=dimx.
We can split v into v · y and v − y. The former can be further split into (v · y) · z and (v · y)− z,
while the latter can be further split into (v − y) · z and (v − y)− z.

We will prove separately that these four entities partially overlap x − (y · z) if and only if they
partially overlap (x− y) + (x− z).
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Part (VI.a): (v · y) · z.
We have P((v·y)·z, y) and P((v·y)·z, z), thus P((v·y)·z, y·z) and hence ¬PO((v·y)·z, x−(y·z)).
And at the same time, ¬PO((v · y) · z, (x− y) + (x− z)).

Part (VI.b): (v · y)− z.
Consider the following two derivations:

¬PO((v · y)− z, z)⇒¬PO((v · y)− z, y · z)

⇒PO((v · y)− z, x− (y · z))↔ PO((v · y)− z, x)

and

¬PO((v · y)− z, z)⇒PO((v · y)− z, x− z)↔ PO(v, x)

⇒PO((v · y)− z, (x− y) + (x− z))↔ PO((v · y)− z, x)

Hence,

PO((v · y)− z, x− (y · z))↔ PO((v · y)− z, x)↔ PO((v · y)− z, (x− y) + (x− z)).

Part (VI.c): (v − y) · z.
Consider the following two derivations:

¬PO((v − y) · z, y)⇒¬PO((v − y) · z, y · z)

⇒PO((v − y) · z, x− (y · z))↔ PO(v, x)

and at the same time

¬PO((v − y) · z, y)⇒PO((v − y) · z, x− y)↔ PO(v, x))

⇒PO((v − y) · z, (x− y) + (x− z))↔ PO(v, x))

Hence, PO((v − y) · z, x− (y · z))↔ PO((v − y) · z, x)↔ PO((v − y) · z, (x− y) + (x− z)).

Part (VI.d): (v − y)− z.
By the same derivations used in Part (IV.b) and (IV.c), we obtain

PO((v − y)− z, x− (y · z))↔ PO((v − y)− z, x)↔ PO((v − y)− z, (x− y) + (x− z)))

Since each of (v · y) · z, (v · y)− z, (v− y) · z, and (v− y)− z is a part of x− (y · z) iff it is a part of
(x− y) + (x− z), and they sum up to v (by repeated application of Sum-T8’), this implies that for
all v with PO(v, y)∧PO(v, z)∧ y · z=dimx we have PO(v, x− (y · z))↔ PO(v, (x− y) + (x− z)).

These six cases cover all possible relationships between v and y, z (note that we cannot have y · z>dimx

because y · z≤dimy=dimx), in either case we have PO(v, x− (y · z))↔ PO(v, (x− y) + (x− z)).

(Sum-T22) x =dim y =dim z ∧ ¬Cont(x, y + z)→ x− (y + z) = (x− y) · (x− z)

Lemma 7.42. CODI ↓ ∪ {Sum-A1 – Sum-A4} � Sum-T22
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Proof. Note that x =dim x−(y+z) =dim (x−y)·(x−z) as long as (x−y) /∈ ZEXM and (x−z) /∈ ZEXM.
If (x − y) ∈ ZEXM, we have x ∈ ZEXM or Cont(x, y) by Dif-A4. If (x − z) ∈ ZEXM, we have
x ∈ ZEXM or Cont(x, z) by Dif-A4. We can neither have Cont(x, y) nor have Cont(x, z) because of
¬Cont(x, y + z); while x ∈ ZEXM requires (x− (y + z)) ∈ ZEXM as well.

For the remainder we can safely assume (x−y), (x−z) /∈ ZEXM as well as x=dimx−(y+z)=dim(x−
y) · (x− z).
We will show that then

x=dimy=dimz ∧ ¬Cont(x, y + z)→ ∀v(P(v, x− (y + z))↔ P(v, (x− z) · (x− z)))

which follows from the following equivalences for an arbitrary v:

P(v, x− (y + z)↔P(v, x) ∧ ¬PO(v, y + z)

↔P(v, x) ∧ ¬PO(v, y) ∧ ¬PO(v, z)

↔P(v, x− y) ∧P(v, x− z)

↔P(v, (x− y) · (x− z))

The direction ← of the last step only works because of ¬Cont(x, y + z) which requires a part of x to
exist that is neither contained in y nor in z and thus both in x − y and in x − z, and consequently in
(x− y) · (x− z).

This concludes our study of the interaction of the three mereological closure operations intersection,
difference, and sum.

7.3.5 A model-theoretic characterization of CODI ↓ ∪ {Sum-A1 – Sum-A4}

We can now strengthen Theorem 6.1, which established that a model of CODI can be partitioned into two
substructures: one of containment within a dimension (parthood) and another one of lower-dimensional
containment, to models equipped with downwards and upwards mereological closures for all entities. We
can show that the extension of the containment relation of a model of CODI ↓ ∪ {Sum-A1 – Sum-A4}
is always partitioned into jointly exhaustive, pairwise disjoint substructures of parthood, each of them
being a Boolean lattice. Contact within each structure arises only as partial overlap PO, while contact
across structures arises as incidence Inc. Superficial contact SC may arise within or across structures,
but is only identifiable across structures, since the shared entity cannot be in the same structure.

More formally, each entity x that is maximal in its dimension, i.e., each x ∈ MaxM, in a model
of CODI ↓ ∪ {Sum-A1 – Sum-A4} has a parthood structure that is a mereological field, i.e., a Boolean
algebra with the least (‘zero’) entity removed.

Theorem 7.6. LetM be a model of CODI ↓ ∪ {Sum-A1 – Sum-A4} with domain M of finite size ≥ 2.
For each max ∈MaxM we define the following equivalence class of equidimensional entities

Bmax = {d | d ∈M and 〈d,max〉 ∈ (=dim)M} ∪ ZEXM.

Then
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1. Each set Bmax defines a structure Mmax = 〈Bmax,×,+,−, ze,max〉 that is a substructure of M
closed under −, +, and × where:

x× y =

x · y if 〈x, y〉 ∈ POM,

ze otherwise.

2. Each structureMmax is a Boolean algebra with unique complementation defined as x′ = max− n.

3. For any d ∈M, there exists some max such that d ∈ Bmax,

4. Any d ∈M \ {ze} is in at most one Bmax.

Proof. 1. We need to show that (x× y), (x− y), (x+ y) ∈ Bmax for any x, y ∈ Bmax.

Assume x, y to be arbitrary entities in Bmax.
Then x=dimy by definition.

If PO(x, y), we have x × y = x · y which has the same dimension as x and y by Int-T7, hence
(x× y) ∈ Bmax. Otherwise, x× y = ze with ze ∈ Bmax by definition.

By Dif-A1, we have x− y=dimx and thus (x− y) ∈ Bmax unless (x− y) ∈ ZEXM in which case
x− y = ze ∈ Bmax.

By Sum-T5, we have x+ y=dimx if x=dimy and thus (x+ y) ∈ Bmax.

2. Any distributive bounded lattice equipped with an operation of unique complementation is a
Boolean lattice.

First we show that each of the structuresMmax = 〈Bmax,×,+,−, ze,max〉 is a bounded distribu-
tive lattice if we define for all x, y ∈ Bmax,

x ≤ y ⇔ P(x, y) ∨ x ∈ ZEXM.

Let a, b, c be arbitrary entities in Bmax. Then a=dimb=dimc and thereby:

• a ≤ b+ b (+ defines a supremum or join operation),

• a× b ≤ a (× defines a infimum or meet operation),

• ze ≤ a (ze is a lower bound),

• a ≤ max (max is an upper bound),

• a × (b + c) = (a × b) + (a × c) (× distributive; by · being distributive by Sum-T11 together
withMmax being closed under × and +),

• a+ (b× c) = (a+ b)× (a+ c) (+ distributive; by Sum-T14 together withMmax being closed
under × and +).

It remains to show that the structureMmax = 〈Bmax,×,+,−, ze,max〉 defines a unique comple-
mentation operation. Choose x′ = max − x for all x ∈ Bmax, then:

• x+ x′ = max (by Sum-T20: x+ (max − x) = x+ max = max),

• x · x′ = ze (by Dif-T3 ¬PO(x,max − x)).
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Since max−x is uniquely defined by Dif-T3 through a complete description of its part, x′ = max−x
is a unique complementation operation.

HenceMmax = 〈Bmax,×,+,−, ze,max〉 is a Boolean lattice.

3. We will show that for any d ∈M there exists a max ∈M such that max ∈MaxM and max=dimd.

Assume d /∈ ZEXM.
Then if d ∈ MaxM we immediately have d ∈ Bd. Suppose d /∈ MaxM, then by the definition
of Max (ME-D1), there exists some entity d1 such that PP(d, d1). Either d1 ∈ MaxM, or there
exists a d2 such that PP(d1, d2). Since the domain is finite, some dn ∈MaxM must exist. Since
PP(di−1, di) implies di−1=dimdi, we obtain also d=dimdn by transitivity of =dim. Hence d ∈ Bdn .
Consequently, for any d /∈ ZEXM some max ∈M exists such that d ∈ Bmax.

Now assume d ∈ ZEXM.
Since the domain contains some e /∈ ZEXM we have d ∈ Be by definition.

4. Suppose there exists a d ∈ M \ {ze} such that d ∈ Bmax and d ∈ Bmax′ . Then we have
max=dimd=dimmax

′ and as such Bmax = Bmax′ by the definition of the sets Bmax and Bmax′ .
Thus the sets Bmax partition the domain M of a model of CODI ↓ ∪ {Sum-A1 – Sum-A4}, with each

structureMmax = 〈Bmax,×,+,−, ze,max〉 defining a Boolean algebra that is a substructure ofM.

By the Satisfiability Theorem (Theorem 7.4), every structure M in the class of intended structures
M corresponds to a model of CODI ↓. If such structure M corresponds to a model of CODI ↓ ∪ {Sum-
A1 – Sum-A4}, the collections MFm ∈M with identical m form a Boolean algebra. A complex manifold
Mm is then a collection of Boolean structures of composite manifolds for each dimension n ≤ m. Note
though that not every structure M in the class of intended structures M is a model of CODI ↓ ∪ {Sum-
A1 – Sum-A4}, since the structures in M are not required to be closed under sums of equidimensional
manifolds.

Note further that the characterization in Theorem 7.6 is restricted to models with finite domains
because we cannot guarantee the existence of sums of infinitely many entities (at least not without
employing infinite axiom schemas or second-order logic). However, it is straightforward to see that the
theorem extends to infinite models of CODI ↓ ∪ {Sum-A1 – Sum-A4} in which there exists a maximal
entity of each dimension. However, more commonly, only a maximal entity of greatest dimension, a
so-called universal entity, is postulated to exist. Next, we will extend our theory in such a way.

7.4 Universals

As a consequence of Theorem 7.6 all finite models of CODI ↓ ∪ {Sum-A1 – Sum-A4} have a unique
maximal element in every dimension. However, this does not mean that the maximal entity of maximal
dimension will contain all other entities in a finite model. To ensure that such a universal entity exist, a
constant u can be introduced to denote a universal entity which must contain every other entity (except
the zero entity).

We can now combine the downwards closed multidimensional mereotopology CODI ↓ with upwards
closures of sums and a universal to obtain the upwards and downwards closed theory

CODIl = CODI ↓ ∪ {Sum-A1 – Sum-A4, U-A1}.
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(U-A1) ¬ZEX(x)→ Cont(x, u) (universal u contains everything)

Axiom Set 7.11: Axiom U-A1 of CODI l.

In CODI l the universal is implicitly of highest dimension (U-T1) and maximal in its dimension
(U-T2).

(U-T1) MaxDim(u) (universal u is of highest dimension)

(U-T2) Max(u) (universal u is maximal in its dimension)

Lemma 7.43. CODI l � {U-T1, U-T2}

By satisfying U-T1, all models of CODI l also satisfy D-A7 and are thus models of DI linear−bounded.

Lemma 7.44. CODI l � DI linear−bounded

Proof. Recall that DI linear−bounded = DI linear ∪ D-A7. With CODI l being an extension of DI linear it
suffices to prove D-A7, which follows immediately from U-T1.

However, this does not work in the other direction, that is U-A1 is a stronger axiom than D-A7, that is,

CODI↓ ∪ {Sum-A1 – Sum-A4} ∪D-A7 2 U-A1

Obviously, we can identify the maximal dimension in a model of CODI ↓ ∪ {Sum-A1 – Sum-A4} ∪
D-A7. However, U-A1 may fail for two separate reasons. First, entities of a lower dimension might not
necessarily be contained in an entity of highest dimension. Secondly, we can construct a model with
an infinite number of entities of highest dimension with no explicit maximal entity in that dimension.
Even though the sum for every pair of entities of highest dimension may exist, not necessarily the sum
of all entities of highest dimension exists. This is essentially the distinction drawn between first-order
definable Closure Mereotopology (CMT) and General Closure Mereotopology (GMT).

Just as we showed that the mereological closure operations are uniquely defined (and total), for
completeness we must prove that the universal is a uniquely defined constant.

Theorem 7.7. The constant u is uniquely defined in CODI l.

Proof. For any model with a nonzero entity x, U-A1 requires some entity u to exist. Now, suppose it is
not uniquely defined, that is two distinct entities u1, u2 ∈ M satisfy U-A1. Since u1, u2 /∈ ZEXM, we
automatically have Cont(u1, u2) and Cont(u2, u1) by U-A1, which in turn leads to u1 = u2 by Cont
being antisymmetric (C-A2). This contradicts our assumption of u1 and u2 being distinct.

Next, we confirm that the universal does behave as expected with respect to the mereological closure
operations.

(U-T3) x · u = x (the intersection of x with the universal is x)

(U-T4) ZEX(x− u) (empty difference between an entity and the universal)

(U-T5) x+ u = u (the sum involving the universal is again the universal)



Chapter 7. Closure operations in multidimensional mereotopological space 158

Lemma 7.45. CODI l � {U-T3 –U-T5}

Proof. For x ∈ ZEXM these are trivial. For x /∈ ZEXM all three properties follow directly from
Cont(x, u).

Moreover, we can show that the De Morgan laws hold for the equidimensional entities of highest
dimension in CODI l. Note that the complement x of an entity of highest dimension can be represented
as u− x, since we have:

• x+ (u− x) = x+ u = u by Sum-T20 (x+ x′ = >),

• ¬PO(x, u− x) by Dif-T3 (x · x′ = ⊥),

• u− (u− x) = x by Dif-T8 (x′′ = x).

Hence every entity of highest dimension, i.e., every x ∈MaxDimM has in u− x a complement defined,
which is unique since all parts of u − x are uniquely defined by Dif-A3 and hence u − x is unique by
EP-T9. Then the DeMorgan laws can be stated as U-T6 and U-T7 (U-T7 only guarantees it for two
entities which together do not cover the entire space).

(U-T6) MaxDim(x) ∧MaxDim(y)→ u− (x · y) = (u− x) + (u− y)

(U-T7) MaxDim(x) ∧MaxDim(y) ∧ x+ y 6= u→ u− (x+ y) = (u− x) · (u− y)

Lemma 7.46. CODI l � {U-T6, U-T7}

Proof. Follow directly from Sum-T21 and Sum-T22 if we choose x := u, y := x, and z := y. Note that
because of x, y, U ∈MaxDimM we have x=dimy=dimu.

This essentially means that the theorems Sum-T21 and Sum-T22 are generalized versions of the
De Morgan laws, i.e., they are the De Morgan laws relative to a given entity, which may differ from
the unique greatest entity. Both theorems are only guaranteed to work for any three equidimensional
entities, with Sum-T22 additionally presupposing ¬Cont(x, y + z).

If we want to ensure that for every dimension a unique maximal entity exists, we can extend CODI l
by U-E1. Note that it does not suffice to postulate

∀x[¬ZEX(x)→ ∃y(x =dim y ∧Max(y))]

because this allows for multiple maximal entities that not are in parthood relation to one another.

(U-E1) ∀x[¬ZEX(x)→ ∃y∀z(z =dim x→ P (z, y))] (unique maximal entity in each dimension)
(U-E2) Con(U) (universal entity self-connected)

Axiom Set 7.12: Extension axioms U-E1 and U-E2 of CODI l.

U-E1 trivially holds in all finite models of CODI ↓ ∪ { Sum-A1 – Sum-A4} and thus in all finite models
of CODI l—we used this property for the proof of Theorem 7.6 on page 154. Then it is also easy to see
how Theorem 7.6 extends to infinite models of CODI ↓ ∪ { Sum-A1 – Sum-A4, U-E1}.
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But in CODI ↓ U-E1 is still not sufficient to prove U-A1 because even though U-E1 requires a unique
greatest entity of maximal dimension to exist, it is not guaranteed that this entity contains all entities
of lower dimensions.

A final possible extension requires the universal entity to be self-connected (U-E2). Ideally, we want
to say that it is internally self-connected, but we cannot yet define this stronger condition in the CODI
hierarchy.

7.5 Summary

The theories in this and the previous chapter and the metatheoretical relationships among them are
illustrated in Figure 7.8. The two main theories we discussed in this chapter are CODI ↓, which is closed
under intersections and differences, and CODI l, which is closed under intersections, differences, sums,
and universals. The merits of closure under sums are debatable in mereotopology, an abundance of
undesirable or irrelevant sums has been given, for example in [CV99a]. But we have a much stronger
reason to not enforce closure under sums: the class M of intended structures is not compatible with
closure under sums. This is for two reasons: not all structures in M are closed under sums—something
we could easily fix by extending the definition of a complex manifold—but more importantly, closure
under sums may require entities to exist that are not composite manifolds because constituent atomic
manifolds may intersect in their interiors. To be clear, we do not intend to disallow spatial configuration
in which two atomic or composite manifolds intersect in their interiors, but we do not want to call the
sum of two such manifolds a composite manifold itself, in line with Definition 5.6. That said, such a
sum cannot correspond to an entity in the corresponding model of CODI ↓. For these reasons we will
work primarily with CODI ↓, sometimes extended by U-A1.

In Section 7.2.5 we were able to show the satisfiability of CODI ↓. Because of the inherent problems
with closures under sums, we do not attempt to provide a satisfiability theorem for CODI l. To do so, we
would need to restrict sums to entities which do not intersect in the interior of their constituent atomic
manifolds, which in turn requires us to distinguish the interior from the boundary of minimal entities (the
entities that correspond to atomic manifolds) in CODI ↓. Presently, two nonisomorphic structures—one
in the class M and one that violates Definition 5.6(1) or (2)—may be elementarily equivalent models of
CODI ↓. In other words, two such models may be indistinguishable by CODI ↓ (and any extension thereof
with the same lexicon such as CODI l), that is, no first-order sentence in the language of CODI ↓ can
distinguish those models. See Figure 7.9 for an example. To address this problem, we need to introduce
a new primitive relation that, in combination with CODI ↓, can define how any two of Figure 7.9(b)
to Figure 7.9(e) are different. Obviously, the difference lies in whether two entities share an interior
or boundary point. An extension of CODI ↓ by an adequate additional primitive relation that allows
such distinction is presented in Chapter 9. Once we can distinguish between the spatial configurations
of Figure 7.9(b) to Figure 7.9(e), we can revisit the axioms Sum-A1 to Sum-A4 and constrain them so
that sums which cannot be represented by composite m-manifolds are disallowed. In essence, we will
be able to logically distinguish sums that represent composite manifolds as defined in Definition 5.6 in
Chapter 5 from sums that do not represent composite manifolds.

Meanwhile, it is still helpful to maintain the sum notation without forcing sums to exist for every
pair of entities. For this purpose, we can rewrite the axioms Sum-A1 to Sum-A4 using a ternary relation
Sum(x, y, z) that means x + y = z if the sum x + y exists. This results in Sum′-A1 to Sum′-A4. We
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DI hierarchy

+ D-A6

+ D-A7 + D-A8,
   D-A9

CO hierarchy

CODI hierarchy

+ Int-A1 - Int-A4,
   Dif-A1 - Dif-A4

+ Sum-A1 - Sum-A4,
   U-A1

+ Sum'-A0
    - Sum'-A5

Figure 7.8: The theories of the hierarchy CODI and their relationship to theories of the dimension
hierarchy DI and the containment hierarchy CO. The different closure operations further extend the
CODI hierarchy developed in Chapter 6. The theories CODI ↓ and CODI l can be again combined with
stronger theories of dimension.

add Sum′-A0 to ensure that the sum of any two entities is unique (if it exists)—a property that was
implicit in the sum function. We further add Sum′-A5 as necessary condition of when a given entity z
can be called the sum of two equidimensional entities x and y: everything that partially overlaps z must
partially overlap either x or y (and vice versa).

We use + as a nontotal function defined as x+ y = z ↔ Sum(x, y, z) in the theory

CODI ′↓ = CODI ↓ ∪ {Sum′-A0 – Sum′-A5}.



Chapter 7. Closure operations in multidimensional mereotopological space 161

(Sum′-A0) Sum(x, y, z) ∧ Sum(x, y, v)→ v = z

(Sum′-A1) Sum(x, y, z)→ Sum(y, x, z)
(Sum′-A2) x <dim y → Sum(x, y, y)
(Sum′-A3) Sum(x, y, z) ∧ x ≤dim y ∧ Cont(v, y)→ Cont(v, z)
(Sum′-A4) Sum(x, y, z) ∧ Cont(v, z) ∧ ¬Cont(v, x)→ Cont(v − x, y)
(Sum′-A5) x =dim y ∧ Sum(x, y, z)→ ∀v[PO(v, z)↔ PO(v, x) ∨ PO(v, y)]

Axiom Set 7.13: Axioms Sum′-A0 – Sum′-A5 of CODI ′↓.

(e)(b) (c)(a) (d)

l1

l2

l1 l1 l1 l1

l2
l2

l2
l2

p
p

p

p p

Figure 7.9: Five spatial configurations that are equivalent models M of CODI l with domain M =
{ze, p, l1, l2, l1+l2} and ZEXM = {ze}. We want to discriminate four of them—the are different intended
structures. The extension of relative dimension is defined as (<dim)M = {〈ze, p〉, 〈ze, l1〉, 〈ze, l2〉, 〈ze, l1+
l2〉, 〈p, l1〉, 〈p, l2〉, 〈p, l1+l1〉} and the extension of containment as ContM = {〈p, p〉, 〈p, l1〉, 〈p, l2〉, 〈p, l1+
l2〉, 〈l1, l1〉, 〈l1, l1 + l2〉, 〈l2, l2〉, 〈l2, l1 + l2〉, 〈l1 + l2, l1 + l2〉}. l2 + l2 is the universal entity in each
configuration. While (a)–(d) are unintended spatial configurations because l1 and l2 are fused at interior
points, i.e., l1 + l2 does not represent a complex manifold, (e) is in the intended class of structures. In
other words, the entity l1 + l2 is only in (e) a composite manifold as defined in Chapter 5, while in
(a)–(d) it is a complex manifold, but not a composite manifold. While we eventually want to distinguish
between any pair out of configurations (b)–(e), we do not aim to distinguish (a) from (b) since their
difference is not qualitative in nature.



Chapter 8

Relationship to other
mereotopologies1

In this chapter we relate the theories of the CODI hierarchy to other spatial theories with similar expres-
siveness. In particular, we show how to extend CODI theories to reconstruct two mereotopologies—the
well-known equidimensional Region Connection Calculus (RCC) [Coh+97b] and the multidimensional
INCH Calculus [Got96].

This work serves several purposes. Firstly, we confirm that the CODI theories really mereotopo-
logies. On the one side, they are axiomatically less restricted than the RCC as shown in Section 8.1S,
and, by the axioms we need to extend CODI to restrict models to the RCC and the results from Chap-
ter 4, consequently less restricted than any equidimensional mereotopologies. Of course, the nonlogical
language of the CODI theories must be more expressive than that of equidimensional mereotopologies,
because we want to deal with multidimensionality. On the other side, the language of CODI is equally
expressive as the language of the INCH calculus, an independently developed multidimensional mereo-
topology. In fact, our main result in Section 8.2 shows that the INCH Calculus and CODI l have only
minor differences in their axiomatic restrictiveness. We prove this by showing that extensions of the
INCH Calculus and of CODI l are definably equivalent; the axioms we need to add in those extensions
capture the logical difference between the two theories.

Secondly, we cross-verify our axiomatizations with other independently developed spatial theories.
For the relationship to the Region Connection Calculus, this verifies our axiomatization as the RCC
has been extensively studied and is well-understood. For the relationship to the INCH Calculus, whose
models are much less understood, it is more of a two-way verification: we can identify logical sentences
entailed by one of the two theories but not the other and then contemplate whether those are reasonable
assumptions or whether those demonstrate a problem with the axiomatization.

Thirdly, the results in this chapter are steps towards full integration of the different equidimensional
and multidimensional mereotopologies. It makes their common and differing assumptions explicit and
also establishes that CODI and INCH have equally expressive languages, the CODI language is strictly
more expressive than that of the RCC: two distinct models of CODI may have elementarily equivalent
RCC representations, i.e., the RCC cannot distinguish those models.

Finally, our work makes previously implicit dimension constraints explicit, such as those of the RCC
1The work in this chapter extends work previously published as [HG11a].
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relations external contact EC , or of the INCH relations ‘includes an equidimensional chunk of’ INCH
and ‘lower-dimensional element’ EL.

The chapter is structured as follows. Section 8.1 studies the relationship to the RCC: Section 8.1.1
and 8.1.2 review the first-order axiomatization and its algebraic representation as Boolean Contact
Algebras, Section 8.1.3 presents the main result—the construction of Boolean Contact Algebras as
substructures of models of CODI l that satisfy C-extensionality, and Section 8.1.4 discusses the reverse
interpretation. Section 8.1.5 summarizes our findings about the relationship between CODI l and the
RCC. Section 8.2 studies the relationship to the INCH Calculus: Section 8.2.1 reviews the original
axiomatization and Section 8.2.2 proposes a correction to match the intuitive understanding. The main
results are contained in Sections 8.2.3 to 8.2.5, first testing of which axioms of CODI are satisfied by the
INCH Calculus and vice versa, and then introducing extensions to each theory to finalize the definable
equivalence between extensions of CODI l and the INCH Calculus. Section 8.2.6 summarizes our findings
about the INCH Calculus as well as the relationship between the INCH Calculus and the CODI theories.

8.1 Equidimensional mereotopology:
The Region Connection Calculus

The Region Connection Calculus (RCC) is one of the most prominent equidimensional mereotopologies.
However, there are two different theories that are both called RCC, a first-order theory arising from
the complete set of axioms proposed in [RCC92] and a spatial calculi that only considers the jointly
exhaustive, pairwise disjoint binary qualitative relations between regions. Of course, the spatial calculus
can be expressed in first-order logic, but relies on fewer axioms and definitions than the original full
first-order theory. We will focus here on the first-order theory and show how it can be constructed as
an extension of CODI l.

8.1.1 The first-order theory of RCC

RCC as a first-order theory defines various relations using connection C as only primitive relation. In
the first-order theory, additional functions, that is, a constant u denoting the unique universal element,
a unary function compl(x), and the binary functions sum(x, y), prod(x, y), and diff(x, y), are defined
[RCC92] which are not part of the spatial calculi. Moreover, a unary relation Con(x) can be introduced
to denote when an entity is self-connected; we do not include this definition here. The first-order
theory comes in a continuous and a discrete version. The original continuous theory includes the axioms
RCC8, which requires each region to have some nontangential proper part, and RCC4′, which requires
a region x to be disconnected from all regions of whose complement x is a nontangential part, i.e.,
¬C(x, y)↔ NTPP(x, compl(y)). The discrete version of RCC leaves RCC8 and RCC4′ out.

While the original theory allows different definitions of equivalence [Ste00], with the help of the
additional axiom RCC-Ext [DWM99; DWM01] the theory is restricted to the intended mereological
identity. The theory used in this section leaves out the axioms RCC8 and RCC′ since we are primarily
concerned with atomic models, but we include RCC-Ext. In that way, the following definition has been
adopted from [Ste00] to fit our purposes here. Notice that it does not include the function diff(x, y),
which is definable as prod(x, compl(y)).

Definition 8.1. A model of the RCC consists of a base set U = R ∪ {n} with {n} /∈ R, a distinguished
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element u ∈ R, a unary operation compl : R \ {u} → R \ {u}, binary operations sum : R×R → R and
prod : R×R → R ∪ {n}, and a binary relation C on R satisfying the axioms RCC1 –RCC7, RCC-Ext
with the definitions RCC-P, RCC-PP, RCC-O, RCC-EC, and RCC-NTPP.

(RCC1) ∀x∈R [C(x, x)]
(RCC2) ∀x, y∈R [C(x, y)→ C(y, x)]
(RCC3) ∀x∈R [C(x, u)]
(RCC4) ∀x∈R, y∈R \ {u} [O(x, compl(y))↔ ¬P (x, y)]
(RCC5) ∀x, y, z∈R [C(x, sum(y, z))↔ C(x, y) ∨ C(x, z)]
(RCC6) ∀x, y, z∈R [C(x, prod(y, z))↔ ∃w∈R [P (w, y) ∧ P (w, z)) ∧ C(x,w)]]
(RCC7) ∀x, y∈R [prod(x, y)∈R ↔ O(x, y)]
(RCC-Ext) ∀x, y∈R [P (x, y) ∧ P (y, x)→ x = y]
(RCC-P) ∀x, y∈R [P (x, y)↔ ∀z∈R(C(z, x)→ C(z, y))]
(RCC-PP) ∀x, y∈R [PP(x, y)↔ (P (x, y) ∧ ¬P (y, x))]
(RCC-O) ∀x, y∈R [O(x, y)↔ ∃z∈R (P (z, x) ∧ P (z, y))]
(RCC-EC) ∀x, y∈R [EC (x, y)↔ (C(x, y) ∧ ¬O(x, y))]
(RCC-NTPP) ∀x, y∈R [NTPP(x, y)↔ (PP (x, y) ∧ ¬∃z∈R (EC (z, x) ∧ EC (z, y))]

Axiom Set 8.1: Axioms RCC1 –RCC7 and RCC-Ext and definitions RCC-P, RCC-PP, RCC-O,
RCC-EC, and RCC-NTPP of the theory RCC .

We define the first-order theory as

RCC = {RCC1 –RCC7, RCC-Ext, RCC-P,RCC-PP, RCC-O, RCC-EC, RCC-NTPP}.

Other defined relations are not of primary interest here.

RCC as spatial calculus

The first-order theory RCC gives rise to a lattice of binary relation based on eight different base relations
DC , EC , PO, TPP, NTPP, TPP−1, NTPP−1, and the equivalence relation EQ. The lattice of relations
in depicted in Figure 8.1. Those base relations together with a weak composition table form what is
known as a qualitative spatial calculus, usually referred to as RCC-8 [CCR93], while a subset of those
relations consisting of DC , EC , PO, PP, and PP−1 defines the RCC-5 calculus, see e.g.R̃enz-Topology-
02. Other sets of relations are also possible, see [DWM01]. Reasoning in this setting is restricted to
consistency checking of a subset of the powerset of the binary relations, very much like a Constraint
Satisfaction Problem (CSP). In this setting, all non-binary relations as well as all functions from the
first-order theory RCC are completely ignored; we cannot reason about them. For our purposes here,
we are not further concerned with spatial calculi.

8.1.2 The algebraic structures of the first-order RCC

Both [Ste00] and [DWM99] showed that the models of the strict RCC are Boolean algebras equipped
with a special contact relation. If a model satisfies axiom RCC8, then its Boolean algebra is atomless and
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Figure 8.1: The lattice of jointly exhaustive, pairwise disjoint binary base relations from the RCC.

its contact relation becomes connected, i.e., the contact relation satisfies the connection axiom [DW04].

(RCC4′) ∀x∈R, y∈R \ {u} [C(x, compl(y))↔ ¬NTPP(x, y)]
(RCC8) ∀x∈R ∃y∈R [NTPP (y, x)]

Axiom Set 8.2: Axioms RCC4′ and RCC8 extending the theory RCC .

These algebraic structures provide an alternative way of studying the models of the first-order
theory RCC . Each model of RCC is a Boolean contact algebra (BCA), that is, a Boolean algebra
L = 〈L, 0, 1,+, ·〉 equipped with a contact relation C that satisfies the axioms C0 –C4 and C-Ext, com-
pare Definition 4.23. 0 and 1 denote the empty and the universal region; ⊥ denotes the unary function
of complementation compl, and + and · denote the binary functions sum and prod. Recall that we
introduced the infix notation in Chapter 4 to distinguish the contact relation in a contact algebra from
the contact relation in a logical axiomatization.

From previous work we know that the models of the theory RCC are definably equivalent to BCAs
(as defined in Definition 4.23) and vice versa:

Theorem 8.1. [DW04] Any model of RCC is definably equivalent to a BCA removed of its null element.

The algebraic representation of RCC models as BCAs is particular helpful in separating the mere-
ological substructure from the topological substructure of RCC models (compare Chapter 4): while the
Boolean algebra captures the structure of the mereological relation of parthood, the topological relation
of contact is axiomatized in BCAs by C0 –C4 and C-Ext. While we are primarily interested in the first-
order theory RCC , we will exploit the more compact and mathematically more elegant axiomatization
of the BCAs.

8.1.3 The RCC interprets substructures of models of CODI l
Now we want to examine how the theory RCC can be seen as an extension of our multidimensional
mereotopology with up- and downwards closures, CODI l. Instead of showing an equivalence between
two first-order theories, we utilize the metatheoretic results from Theorem 8.1 and Theorem 7.6 and
simply provide a mapping between the two Boolean structures.
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In order to restrict CODI l to models of equidimensional mereotopology we cannot—somewhat
counter-intuitively—completely prohibit entities of lower dimensions. Otherwise, ‘external connection’
EC in the RCC, a special case of superficial contact SC , must have an empty extension by SC-T4. This
would reduce the mereotopology to a pure mereology with overlap as only contact relation. Instead, we
base the mapping to BCAs on the set Bu of entities of maximum dimension as defined in Theorem 7.62.
Recall that a maximum dimension is guaranteed to exist by D-A7, which must be satisfied because
CODI l is an extension of DI linear−bounded (compare Lemma 7.44). Note that there exists a unique zero
entity in Bu. We extract BCAs from the models of CODI l as follows.

(C-E3) MaxDim(x) ∧MaxDim(y)→ [x = y ↔ ∀z[MaxDim(z)→ (C(z, x)↔ C(z, y))]]
(extensionality of C among regions of maximal dimension)

Axiom Set 8.3: Extension axiom C-E3 of CODI l.

Theorem 8.2. LetM be a model of CODI l ∪ C-E3.
Then the structureMu = (〈Bu,×,+,′ , ze,u〉,C) with

1. 〈Bu,×,+,′ , ze,u〉 defined as in Theorem 7.6(1) and

2. for all x, y ∈ Bu, xCy ⇔ 〈x, y〉 ∈ CM

is a BCA.

Proof. AssumeM is a model of CODI l ∪ C-E3.
By Theorem 7.6(2), 〈Bu,×,+,′ , ze,u〉 is a Boolean algebra. For the structureMu to be a BCA, it remains
to show that the defined contact relation C satisfies C0 –C4 and C-Ext (compare Definition 4.23).

(C0): 0¬Cx.
Follows directly from C-T4.

(C1): x 6= 0→ xCx.
Follows directly from C-T2.

(C2): xCy ↔ yCx.
Follows directly from C-T3.

(C3): xCy ∧ y ≤ z → xCz.
We define the partial order for all x, y ∈ Bu as in the proof of Theorem 7.6(2) as

x ≤ y ⇔ 〈x, y〉 ∈ PM or x ∈ ZEXM.

Then, ≤ defines the partial order of the Boolean algebra 〈Bu,×,+,′ , ze,u〉. Because of C-T5 and
EP-D, we conclude

P(y, x) ∧C(z, y)→ C(z, x)

for all x, y ∈ Bu so that C3 is valid.
2We can use this method to construct a set of RCC models from a given model of CODIl by recursively iterating

through the dimensions, starting from highest to lowest. At each stage, we can construct an RCC model from the entities
of maximal dimension and afterwards delete the entities of maximal dimension from the CODIl model. Then use the
entities of next-highest dimension, which automatically become the new entities of maximal dimension, to construct another
RCC model. This results in a stack of RCC models, one for each dimension of an CODIl model.
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(C4): xC(y + z)→ xCy ∨ xCz.
Assume xC(y + z) for arbitrary x, y, z ∈ Bu.
Then by Theorem 7.6(1), C(x, y + z) so that by C-D there must exist a w ∈ Bu such that
Cont(w, x) and Cont(w, y + z)]. By Corollary 7.4, Cont(w, y + z)] entails

Cont(w, y) ∨Cont(w, z) ∨ [w = (w · y) + (w − y) ∧Cont(w · y, y) ∧Cont(w − y, z)]

That means some entity contained in w is contained in either y or z, hence by C-T5, either C(x, y)
or C(x, z). Thus C4 follows immediately.

(C-Ext): ∀z(zCx↔ zCy)↔ x = y.
Is explicitly posited as C-E3 because b ∈ Bu = MaxDimM.

Hence the structureMu = (〈Bu,u, ze,×,+,′ 〉,C) is an BCA.

In other words, for any modelM of CODI l ∪ C-E3, the substructureMu is a BCA. Note that C-E3
postulates extensionality of C among all entities of maximal dimension, while the scope of the general
axiom for C-extensionality (C-E2) is over all entities, regardless of their dimension. It is not difficult to
see that C-E3 is much stronger than C-E2, that is:

Lemma 8.1. CODI l ∪ C-E2 2 C-E3

Proof. Consider a modelM with domain M consisting of three entities of highest dimension x, y, and
u = x + y, and three entities of lowest dimension p, q, p + q ∈ MinDimM, and ze ∈ ZEXM. Let the
containment relation be defined as

ContM = {〈x, u〉, 〈y,u〉, 〈l, x〉, 〈l, y〉, 〈l,u〉, 〈p, x〉, 〈p,u〉, 〈q, y〉, 〈q,u〉, 〈p+ q,u〉} ∪ {〈x, x〉 : x ∈M \ {ze}}.

It can be easily verified that this is a model of CODI l ∪ C-E2, i.e., that the contact relation C

is extensional among the seven entities of the model. See Figure 8.2 for a depiction of the model, the
containment relations and the extension of C inM and inMu.

8.1.4 The difficulty of interpreting RCC models in CODI theories

We have shown that every model of CODI l ∪ C-E3 has a substructure that is a BCA and thus a model
of RCC . We are also interested in the reverse direction: is every BCA a substructure of a model of
CODI l ∪ C-E3? In order to show this, we must show how we can extend an arbitrary given BCA so
that is satisfies all axioms of CODI l (note that C-E3 is satisfies trivially, we only introduced it because
it is satisfied by all BCAs). The difficulty lies in the fact that a BCA may have entities in external
contact EC , but in order to define a corresponding model that preserves this contact relation as SC ,
we have to introduce new entities of lower dimension because any kind of contact in CODI requires an
actual shared entity to exist.

Notice that the RCC theory cannot distinguish whether three entities that are pairwise in external
contact, are actually in contact at one or more points common to all three entities or whether they are
only in pairwise external contact. Consider Figure 8.3 for an example of three different situations that
are all identical with respect to their extension of C in RCC. Likewise, we cannot distinguish similar
situations involving more than three entities. This lies in the nature of equidimensional mereotopology
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Figure 8.2: A spatial configuration and its modelM of CODI l that satisfies C-E2 (C-extensionality) but
does not satisfy C-E3 (C-extensionality among entities of highest dimension). The top row gives from
left to right a pictorial view of the model, the containment relations (non-equidimensional containment
is depicted as single lines, parthood as double lines), and the ordering by relative dimension (highest
dimension at the top; each dashed box contains entities of equal dimensions, while parthood within a
dimension is indicated by double lines). The middle row shows the Boolean lattice of the corresponding
parthood relation in Mu as defined by Theorem 7.6. In the bottom row, we have the non-extensional
contact relation inMu on the left and the extensional contact relation inM on the right.

and its language that is strictly weaker than that of CODI , and will make the construction of a model
of CODI from a BCA much easier. We can simply introduce a single entity of lowest dimension for each
pair of entities in external contact in the BCA.

However, we have no guarantee that the resulting model of CODI l correctly captures the intended
structure. This is due to the fact that the RCC abstracts away much more information from the
intended structure than CODI l. Once we have abstracted away additional knowledge—such as the
relative dimensions of superficial contact—we cannot retrieve this information from the RCC model. In
this light, CODI l is a less abstract representation of the intended structures compared to the RCC, that
is, CODI has a more expressive nonlogical language than RCC . For any given structure in the class
of intended structures M, the CODI l model stores knowledge about how the entities of all dimension
are topologically and mereologically related to one another. An RCC model of the same structure can
only store knowledge about how the entities of a single dimension are topologically and mereologically
related to one another. Whether there is a natural, “minimal”, way to extend every RCC model to
a model of CODI l remains an open question (Question 3). One way to extend an RCC model, as
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Figure 8.3: Three spatial configurations that are identical models of RCC . Only the atomic entities are
labelled, the universal is the entire gray-shaded region (including its outer boundary). In the configura-
tion on the left, a, b, and c are externally connected in a single point, while in the middle configuration
a, b, and c are only pairwise externally connected (a with b, a with c, and b with c). In the right
configuration, a, b, and c share a point, but each of a, b, and c share pairwise more points not shared
with the third. In this sense, in the left configuration, the entire set of points (only a single point) that
creates the external contact between a, b, and c is common to all, while in the right configuration only
a subset of the points that create the external contact is common to all. In the middle configuration,
the external contact is strictly pairwise, that is the subset of points common to all three of a, b, and c
is empty.

suggested by Michael Winter, is via its topological representation from [DW05a]. Clusters of entities,
which are maximal sets of pairwise connected entities very similar to the ultrafilters used in the Stone
representation theorem, represent points in the constructed topological space. We could use those points
as lower-dimensional entities we need to introduce in a corresponding model of CODI l.

8.1.5 Summary

In this section we have shown that the entities of maximal dimensions of a model of CODI l form
a Boolean Contact Algebra if the model satisfies C-E3, i.e., if the entities of maximal dimension are
extensional with respect to the contact relation. Since it is well-known that Boolean Contact Algebras
are isomorphic to models of the RCC, we immediately know that the RCC definably interprets the
theory CODI l ∪ C-E3. Similar results could be obtained for all entities of some dimension in a model
of CODI l ∪ C-E3 because the entities of any particular dimension form a Boolean lattice. Through this
relative interpretation, we confirmed that CODI l is indeed a mereotopology that differs from the RCC
in that it may contain entities of various dimensions in a single model and can describe spatial relations
between entities of different dimensions, which is not possible in the RCC. In that sense the RCC is a
more abstract spatial model than CODI l, which limits our ability to reconstruct a model of CODI l
from a given model of the RCC. Any model of the RCC gives rise to a set of models of CODI l.

Notice that even though we did not discuss boundaries in CODI l, the extracted substructure of a
model of CODI l ∪ C-E3 that is a RCC model may have entities in external contact. This is only the
case because we restrict the substructure to the entities of highest dimension of the model of CODI l ∪
C-E3; for those we can define boundaries and thus also use the relations EC (external contact) and TPP
and NTPP (tangential and nontangential proper parthood) without changing their intended meaning.
In that sense, the RCC models constructed from models of CODI l ∪ C-E3 as in Theorem 8.2 are true
RCC-8 models and not just RCC-5 models, i.e., the resulting models are not restricted to the base
relations ¬C, PP, PP−1, PO, and =. In general, the distinction between tangential and nontangential
parthood is not definable in models of CODI l as we will discuss in more detail in Chapter 9—but this
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is because tangential containment is not definable for entities of nonmaximal dimension.

8.2 Multidimensional mereotopology: The INCH Calculus

Apart from our work here, only two multidimensional mereotopology are fully axiomatized: the work
by Galton [Gal96] and the INCH Calculus by Gotts [Got96]. Neither has been studied in much detail.
Galton’s theory is based on the notion of boundary, which is used to establish a dimensionality ordering
which arises from the treatment of boundaries as entities of next-lowest dimension. Because we have
no means yet to define boundaries, we cannot formally relate our theories from the CODI hierarchy to
Galton’s work.

Gott’s work, on the other hand, is based on a single primitive relation INCH , which is used to define
a concept of relative dimensionality GED similar to our relation ≥dim. In some sense, INCH (x, y) is
a multidimensional topological relation. It is a dimensionally restricted form of contact: the second
argument y must share something with the first argument x that is of the dimension of y. This is not
too different from our approach in CODI where containment Cont is a multidimensional mereological
relation, though it is the most general such relation (CD-A1 does not restrict containment to certain pairs
of entities, but instead only captures a property that all pairs of entities in containment relation satisfy).
Naturally, the question arises how the theories in the CODI hierarchy relate to the INCH Calculus.
To understand this relationship, we will integrate the INCH Calculus into the CODI hierarchy. More
precisely, we find an extension of the INCH Calculus that is definably equivalent to a theory in the
CODI hierarchy. This will not only make the relationship between the INCH Calculus and the CODI
hierarchy clear, but at the same time it will help us better understand ontological assumptions that are
implicit in the INCH Calculus and, to a lesser degree, in the CODI theories.

The section is structured as following. First, we introduce the INCH Calculus and prove some
properties about it. We also give axioms that map the primitive relation INCH of the INCH Calculus to
the primitive relations of CODI and vice versa. As it turns out, the combination of those mappings prove
a property, called I-A7′, that is not provable from the INCH Calculus alone. Thus, the intuitive mappings
of the INCH Calculus to CODI actually nonconservatively extend the original INCH Calculus. However,
one would expect I-A7′ to hold in the INCH Calculus. Therefore, we extend its original axiomatization
INCH original by this property to obtain the theory INCH calculus. In Subsection 8.2.3 we show that the
so-extended INCH Calculus together with the additional axiom I-E1 definably interprets CODI 0. In
Subsection 8.2.4 we then show that the theory CODI l, the theory CODI extended by mereological
closure operations, together with a new axiom C-E4 definably interprets the corrected INCH Calculus.
Finally, Subsection 8.2.5 identifies two more properties, I-E2 and I-E3, that are necessary to prove all
axioms of CODI l ∪ C-E4 from INCH calculus. Hence, the theories CODI l ∪ C-E4 and INCH calculus ∪
{I-E1 – I-E3} are definably equivalent. In the summary section, we will discuss how INCH calculus and
CODI l differ in their ontological assumptions, which manifest themselves in I-E1 – I-E3 and C-A4.

8.2.1 The original INCH Calculus: INCH original

The INCH Calculus is a multidimensional mereotopology whose axiomatization revolves around the only
primitive relation INCH (x, y) with the intended interpretation of ‘x includes a chunk (a part) of y’. We
define

INCH original = {I-D1 – I-D9, I-A1 – I-A10}
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to denote Gott’s original axiomatization [Got96]. We maintain the original numbering of definitions and
axioms.

(I-D1) CS(x, y)↔ ∀z[INCH (x, z)→ INCH (y, z)] (x is a constituent of y)
(I-D2) OV (x, y)↔ INCH (x, y) ∧ INCH (y, x) (overlap)
(I-D3) CO(x, y)↔ ∃z [¬ZEX I(z) ∧ CS(z, x) ∧ CS(z, y)] (connection)
(I-D4) CH (x, y)↔ INCH (x, y) ∧ ∀z [OV (x, z)→ OV (y, z)]

(x is a chunk (equidimensional part) of y)
(I-D5) EL(x, y)↔ CS(x, y) ∧ ¬INCH (x, y) (x is a (lower-dimensional) element of y)
(I-D6) ZEX I(x)↔ ¬INCH (x, x) (zero entity)
(I-D7) GED(x, y)↔ ZEX I(y) ∨ ∃z [INCH (x, z) ∧ INCH (z, y)] (greater or equal dimension)
(I-D8) ED(x, y)↔ GED(x, y) ∧GED(y, x) (equal dimension)
(I-D9) GD(x, y)↔ GED(x, y) ∧ ¬GED(y, x) (greater dimension)
(I-A1) x = y ↔ ∀z [INCH (x, z)↔ INCH (y, z)] (extensionality)
(I-A2) x = y ↔ ∀z [INCH (z, x)↔ INCH (z, y)] (extensionality)
(I-A3) INCH (x, y)→ INCH (x, x) (INCH reflexive)
(I-A4) GED(x, y) ∨GED(y, x) (dimensional comparability)
(I-A5) GED(x, y) ∧GED(y, z)→ GED(x, z) (GED transitive)
(I-A6) INCH (x, y) ∧ INCH (y, z) ∧ INCH (z, x)→ INCH (y, x) (INCH transitive)
(I-A7) INCH (x, y)→ ∃z [CS(z, x) ∧OV (z, y)]

(INCH (x, y) requires a constituent of x to overlap with y)
(I-A8) CH (x, y)→ CS(x, y) (a chunk is a constituent)
(I-A9) ED(x, y)→ ∃z∀w [INCH (z, w)↔ INCH (x,w) ∨ INCH (y, w)]

(a sum z = x+ y exists for equidimensional entities x and y)
(I-A10) ED(x, y)→ ∃z∀w [INCH (z, w)↔ ∃v [INCH (v, w) ∧ CH (v, x) ∧ ¬OV (v, y)]]

(a difference z = x− y exists for equidimensional entities x and y)

Axiom Set 8.4: Axioms I-A1 – I-A10 and definitions I-D1 – I-D9 of the theory INCH calculus.

In addition to the theorems I-T1 to I-T4 already proved in [Got96], we prove I-T5 to I-T13, which
will come in handy throughout the section. I-T5 confirms that a chunk of an entity is an equidimensional
constituent thereof; I-T6 shows that the zero entity is a constituent of every entity; I-T7 shows that no
nonzero entity can be a constituent of the zero entity; I-T8 confirms a requirement for an entity to
INCH another; I-T9 shows that INCH is symmetric for equidimensional entities; I-T10 shows that if all
chunks of an entity x are constituents of another entity y, then the entity x itself is a constituent of y;
I-T11 proves that constituency can be defined in terms of constituents; I-T12 shows that ‘being a chunk’
requires monotonicity with respect to overlap; and I-T13 proves transitivity of ‘being a chunk’.

(I-T1) INCH (x, y)→ GED(x, y) (Theorem 1 of [Got96])

(I-T2) OV (x, y)→ ED(x, y) (Theorem 2 of [Got96])

(I-T3) CS(x, y)↔ EL(x, y) ∨ CH (x, y) (Theorem 3 of [Got96], depends on I-A8)
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(I-T4) x = y ↔ ∀z[OV (z, x)↔ OV (z, y)] (Theorem 4 of [Got96], extensionality of OV )

(I-T5) CH (x, y)↔ CS(x, y) ∧ ED(x, y) ∧ ¬ZEX(x) (a chunk is an equidimensional constituent)

(I-T6) ZEX I(x)→ CS(x, y) (the zero entity is a constituent of every entity)

(I-T7) ZEX I(x) ∧ ¬ZEX I(y)→ ¬CS(y, x) (no nonzero entity is a constituent of the zero entity)

(I-T8) ∃z[CS(z, x) ∧ CH (z, y)]→ INCH (x, y)

(if x has a chunk of y as constituent, then x includes a chunk of y, i.e., INCH (x, y))

(I-T9) ED(x, y) ∧ INCH (x, y)→ INCH (y, x)

(for entities x, y of equal dimension, INCH (x, y) implies INCH (y, x))

(I-T10) ∀z[CH (z, x)→ CS(z, y)]→ CS(x, y)

(if every chunk of x is a constituent of y, then x is a constituent of y)

(I-T11) ∀z[CS(z, x)→ CS(z, y)]↔ CS(x, y)

(x is a constituent of y iff every constituent of x is a constituent of y)

(I-T12) CH (x, y)→ ∀z[OV (x, z)→ OV (y, z)]

(any entity z that a chunk x of y overlaps, y must also overlap)

(I-T13) CH (x, y) ∧ CH (y, z)→ CH (x, z) (CH transitive)

Lemma 8.2. INCH original � {I-T1 – I-T13}

The objective of this section is to find the theory in the CODI hierarchy that is definably equivalent
to the INCH Calculus. Showing that such as theory, let us call it T for now, is definably equivalent to
INCH original involves two separate proofs: (1) we express the relation INCH , which is the only primitive
of INCH original, in terms of the primitive and defined relations of T in a so-called mapping axiom I-
M1. Ideally, we can show that all axioms of the INCH Calculus are provable from T together with the
mapping axiom:

T ∪ I-M1 |= INCH original

That would establish that the INCH Calculus is interpreted by T . For the reverse direction, we express
the primitive relations ZEX , <dim, and Cont of T , a theory in the CODI hierarchy and thus defined
by the primitives in the nonlogical language thereof, in terms of INCH and its defined relations from
INCH original resulting in three mapping axioms I-M1′, I-M2′, and I-M3′. Ideally, we then want to show
that all axioms of T are provable from INCH original together with these mapping axioms:

INCH original ∪ {I-M1’, I-M2’, I-M3’} |= T

That would show that T is interpreted by INCH original.
As it turns out, we cannot quite achieve the objective in its ideal form. INCH original entails some

sentences that are not entailed by any of our CODI theories, while even the least restrictive CODI
theories entail sentences that are not entailed by INCH original. Hence, we nonconservatively extend
either theory by the missing axioms (without changing their nonlogical languages), and establish mutual
interpretability and thus definable equivalence between the two extended theories. This helps us to
understand the relationship between INCH original and the theories in the CODI hierarchy.
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As candidate mappings between CODI and INCH original we have extracted I-M1 (expressing the only
primitive relation INCH of INCH original in terms of relations of CODI ) and I-M1′ – I-M3′ (expressing
the primitive relations of CODI in terms of relations of INCH original) from the textual description of the
intended models of the INCH Calculus.

(I-M1) INCH (x, y)↔ ∃z [Cont(z, x) ∧ Cont(z, y) ∧ z =dim y] (mapping of INCH )

Axiom Set 8.5: Mapping axiom I-M1 from CODI theories to INCH theories.

(I-M1′) Cont(x, y)↔ CS(x, y) ∧ ¬ZEX I(x) (mapping of Cont)
(I-M2′) ZEX(x)↔ ZEX I(x) (mapping of ZEX)
(I-M3′) x <dim y ↔ GED(y, x) ∧ ¬GED(x, y) (mapping of <dim)

Axiom Set 8.6: Mapping axioms I-M1′ – I-M3′ from INCH theories to CODI theories.

8.2.2 The corrected INCH Calculus: INCH calculus

Our attempts to find a theory definably equivalent to INCH original revealed that the following sentence,
which should intuitively hold in the INCH Calculus according the verbal description of its relations, is
not a theorem of the original axiomatization:

(I-A7′) INCH (x, y)→ ∃z[CS(z, x) ∧ CH (z, y)]
(INCH (x, y) requires x to include some chunk of y as constituent)

Axiom Set 8.7: Axiom I-A7′ extending INCH original to the theory INCH calculus.

I-A7′ is slightly stronger than the original axiom I-A7. If we replaced I-A7 by I-A7′ in INCH original,
then I-A7 is entailed. The sentence I-A7′ can be derived by substitutions of the mapping axioms I-M1,
I-M1′, I-M2′, and I-M3′. First notice that I-M1′ and I-M2′ have the consequence:

(I-M1′′) ¬ZEX(x)→ [CS(x, y)↔ Cont(x, y)] (theorem of I-M1′, I-M2′)

When we substitute the mappings I-M3′, and I-M1′′ into I-M1, we get the following bidirectional
implications which should always hold in the INCH Calculus according to the verbal descriptions of the
defined relations CS , GED, and ZEX in [Got96]:

INCH (x, y)↔∃z[Cont(z, x) ∧ Cont(z, y) ∧ z =dim y] (I-M1)

↔∃z[Cont(z, x) ∧ Cont(z, y) ∧ ¬ZEX(z) ∧ z =dim y] (C-A4)

↔∃z[CS(z, x) ∧ CS(z, y) ∧ ¬ZEX(z) ∧ z =dim y] (I-M1′′)

↔∃z[¬ZEX(z) ∧ CS(z, x) ∧ CS(z, y) ∧ z ≤dim y ∧ y ≤dim z] (D-D3,4)

↔∃z[¬ZEX(z) ∧ CS(z, x) ∧ CS(z, y) ∧GED(y, z) ∧GED(z, y)] (I-M3′)

↔∃z[¬ZEX(z) ∧ CS(z, x) ∧ CS(z, y) ∧ ED(y, z)] (I-D8)

↔∃z[CS(z, x) ∧ CH (z, y)] (I-T5)
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c = a+ b
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Figure 8.4: The mereological relation CH of a model of INCH original that violates I-A7′. We have
CH (x, y) if and only if there is a directed path of length ≥ 0 from x to y in the structure.

While we proved that the direction← of the last line is a theorem of INCH original (I-T8), the direction
→ of the last line, captured by I-A7′, is not valid in INCH original.

Lemma 8.3. INCH original 2 I-A7′

Proof. A counterexample has been automatically generated by the automated model finder Paradox3,
see inch/consistency/inch_original_notI-PA7.clif.

Consider a model M of INCH original with domain M = {a, b, c, d, e, ze}. The model is completely
specified by the extension of INCH :

INCHM ={〈x, x〉 | x ∈M \ {ze}} ∪

{〈a, b〉, 〈a, c〉, 〈a, e〉, 〈b, a〉, 〈b, c〉, 〈b, d〉, 〈c, a〉, 〈c, b〉, 〈c, d〉, 〈c, e〉, 〈d, b〉, 〈d, c〉}

In particular we have

EDM ={〈x, y〉 | x ∈M \ {ze}} ∪ {〈ze, ze〉}

CHM ={〈a, a〉, 〈a, c〉, 〈b, b〉, 〈b, c〉, 〈c, c〉, 〈d, b〉, 〈d, c〉, 〈d, d〉〈e, a〉, 〈e, c〉, 〈e, e〉}

CSM =CHM ∪ {〈ze, x〉 | x ∈M \ {ze}}

In other words, all entities except for ze are of equal dimension and the CH relation is thus equivalent
to the CS except that ze is a constituent of any no-zero entity, but ze is not a chunk of any entity. The
extension of the CH relation is displayed in Figure 8.4.

It is easy to verify that this is a model of INCH original. However, we have

〈b, a〉 ∈ INCHM and for all z ∈M,
(
〈z, a〉 ∈ CSM or 〈z, b〉 /∈ CHM

)
.

Hence
M � INCH(b, a) ∧ ¬∃z[CS(z, a) ∧CH(z, b)],

so that I-A7′ is clearly not satisfied in M. The only chunks of b are b and d, but neither b nor d is a
constituent of a.

To rule out unintended models of the INCH Calculus that violate I-A7′, we extend INCH original by
I-A7′ and work from now on with the theory

INCH calculus = INCH original ∪ I-A7′

instead. This extension seems particularly reasonable given that I-A7′ captures an intuitive property
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that the verbal description of the relation INCH (x, y)—‘x includes a chunk of y’—suggests. This new
axiom I-A7′ strengthens I-A7.

Lemma 8.4. INCH calculus\ {I-A7} � I-A7

Proof. Consider the following logical derivation:

INCH (x, y)→ ∃z[CS(z, x) ∧ CH (z, y)] I-A7′

→ ∃z[CS(z, x) ∧ CH (z, y) ∧ INCH (z, y)] I-D4

→ ∃z[CS(z, x) ∧ CH (z, y) ∧ INCH (z, z)] I-A3

→ ∃z[CS(z, x) ∧ CH (z, y) ∧OV (z, z)] I-D2

→ ∃z[CS(z, x) ∧ ∧OV (y, z)] I-D4

→ ∃z[CS(z, x) ∧OV (z, y)] I-D2

The last line is I-A7.

From INCH calculus we can prove the property I-T14, which is not provable from INCH original.

(I-T14) OV (x, y)→ ∃z[CH (z, x) ∧ CH (z, y)] (overlapping entities share a chunk)

Lemma 8.5. INCH calculus � I-T14

For the remainder of the chapter we will exclusively work with the corrected version INCH calculus of
the INCH Calculus.

8.2.3 INCH calculus ∪ I-E1 interprets CODI 0

In order to find a theory in the language of CODI that is definably equivalent to INCH calculus, we start
off with exploring which axioms of CODI are provable and which are not provable from INCH calculus

together with the mapping axioms I-M1′, I-M2′ and I-M3′. Thereby we identify a subtheory of CODI 0

interpretable by INCH calculus. At the same time we want to identify the subset of axioms of INCH calculus

that are sufficient to prove all the axioms of CODI 0 that are provable from INCH calculus. For this purpose
we define two subtheories of INCH calculus, namely the theories

INCH weak = {I-A1 – I-A5, I-D1 – I-D6}

and
INCH weak−closed = INCH weak ∪ {I-A9, I-A10},

and attempt to prove the axioms of CODI 0 from them. Recall that CODI 0 is defined by the axioms of
CObasic and of DI linear together with CD-A1 and Z-A1.

In the presence of the mapping axioms I-M1′ to I-M3′ all the axioms of basic containment, CObasic,
are provable in INCH weak:

Lemma 8.6. INCH weak ∪ {I-M1′ – I-M3′} |= CObasic

However, in the presence of the definition of contact (C-D), C-A5 is not provable even in the stronger
theory INCH weak−closed, we can automatically generate a counterexample to C-A5.
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Lemma 8.7. INCH weak−closed ∪ {I-M1′ – I-M3′, C-D} 2 C-A5

Proof. Counterexample provided in inch/consistency/inch_calculus_notC-A5.clif.

The axioms of the theory of linear relative dimension, DI linear, are all provable with the exception of
D-A6. Again, we use the mapping axioms as well as the definitions D-D1 to D-D6.

Lemma 8.8. INCH weak ∪ {I-M1′ – I-M3′} ∪ {D-D1 –D-D6} |= {D-A1 –D-A5}

D-A6 is not provable even in the complete INCH Calculus INCH calculus.

Lemma 8.9. INCH calculus ∪ {I-M1′ – I-M3′} ∪ {D-D1 –D-D6} 2 D-A6

Proof. All counterexamples have an infinite domain and must be constructed manually. They consist of
an infinite chain of entities with successively lower dimension but each having a dimension greater than
that of the zero entity.

CD-A1 is also provable in INCH weak with I-M1′ and I-M3′.

Lemma 8.10. INCH weak ∪ {I-M1′ – I-M3′} ∪ {D-D1 –D-D6} |= CD-A

Finally, Z-A1 is provable in INCH weak−closed with the mapping axioms, but is not provable in the
weaker theory INCH weak. The automated proof require I-A10 (existence of differences for equidimen-
sional entities).

Lemma 8.11. INCH weak−closed ∪ {I-M1′ – I-M3′} |= Z-A1.

Lemma 8.12. INCH weak ∪ {I-M1′ – I-M3′} 2 Z-A1

Proof. Counterexample provided in inch/theorems/inch_weak_Z-A1.clif.

That means all the axioms of CODI 0 except for D-A6 are provable from the theory INCH weak−closed.
Except for Z-A1, they are all provable in the less restricted theory INCH weak. That means INCH weak

is an extension of CODI unbounded.
Arguably, a minimal dimension should also exist for models of the INCH Calculus. Therefore, we

extend INCH calculus by I-E1, which will not only ease the mapping between the INCH Calculus and
CODI 0 but also contributes to a more complete axiomatization of the INCH Calculus. As Gotts [Got96]
intended the INCH Calculus to formalize common-sense topology, it is only naturally to assume a
minimal dimension. Equally, we could argue for axioms forcing the dimensions to be a discrete ordering
(similar to D-A8 and D-A9). But this exceeds our primary intention of establishing a mapping between
the INCH Calculus and one of our theories.

(I-E1) ∃x[¬ZEX I(x) ∧ ∀y(¬ZEX (y)→ GED(y, x))]
(a nonzero entity of minimal dimension must exist)

Axiom Set 8.8: Extension axiom I-E1 of INCH calculus.

Then we can prove D-D6 from INCH weak ∪ I-E1.

Lemma 8.13. INCH weak ∪ I-E1 ∪ {I-M1′ – I-M3′} ∪ {D-D1 –D-D6} � D-A6
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Summarily, we further obtain the following two corollaries.

Corollary 8.1. INCH weak ∪ I-E1 ∪ {I-M1′ – I-M3′} � CODI

Proof. Follows immediately from Lemmas 8.6, 8.8, 8.10, and 8.13.

Corollary 8.2. INCH weak−closed ∪ I-E1 ∪ {I-M1′ – I-M3′} � CODI 0

Proof. Follows immediately from Lemmas 8.6, 8.8, 8.10, 8.11, and 8.13.

Thus, in the CODI hierarchy, CODI 0 is the weakest theory of interest for a representation of the
INCH Calculus extended by I-E1. Note that the axioms I-A6, I-A7, and I-A8 are not necessary to prove
any of the axioms of CODI 0. We will explore those axioms in more detail later.

8.2.4 CODI l ∪ C-E4 interprets the INCH Calculus

Unfortunately, the theory CODI 0 is not strong enough to interpret the INCH Calculus given the mapping
axiom I-M1 for INCH . There exist sentences that are not entailed by CODI 0, but whose translations
are theorems of INCH calculus. Before we identify such sentences, we first identify the subset of axioms
of INCH calculus that are provable from CODI 0 given I-M1.

The axioms I-A3, I-A6, and I-A7 of the INCH Calculus become immediately provable in the theory
CODI 0 in the presence of the definitions I-D1 to I-D5 together with the mapping I-M1.

Lemma 8.14. CODI 0 ∪ {I-D1 – I-D9, I-M1} � {I-A3, I-A6, I-A7}

Furthermore, the relation ZEX in CODI 0 maps to the relation ZEX I of the INCH Calculus. Because
of this interchangeability of ZEX and ZEX I , we subsequently denote both by ZEX unless the distinction
is relevant.

(I-M2) ZEX I(x)↔ ZEX(x) (mapping of ZEX I)
(I-M3) GED(y, x)↔ x ≤dim y (mapping of GED)

Axiom Set 8.9: Mapping axioms I-M2 and I-M3 from CODI theories to INCH theories.

Lemma 8.15. CODI 0 ∪ {I-D1 – I-D9, I-M1} � I-M2

Surprisingly, I-M3 (equivalent to I-M3′) is not provable.

Lemma 8.16. CODI 0 ∪ {I-D1 – I-D9, I-M1, I-M2} 2 I-M3

Proof. The following computation proves the direction GED(y, x)→ x ≤dim y:

GED(y, x)

⇔ZEX I(x) ∨ ∃z[INCH (y, z) ∧ INCH (z, x)] (I-D7)

⇔ZEX(x) ∨ ∃z[∃v(Cont(v, y) ∧ P (v, z)) ∧ ∃w(Cont(w, z) ∧ P (w, x))] (I-M1, I-M2)

⇒ZEX(x) ∨ ∃z[y ≥dim z ∧ z ≥dim x] (EP-D, CD-A1)

⇒ZEX(x) ∨ y ≥dim x (D-A3)

⇒y ≥dim x (D-A5)
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Now consider a model of CODI 0 that contains two entities that are not in contact and thus do not
include a chunk of each other, but are still dimensionally comparable. Such model is a counterexample
to I-M3, it violates the direction GED(y, x)← x ≤dim y. See inch/theorems/codi_linear_I-M3.clif for the
counterexample.

Thus, I-A4 and I-A5 are also not directly provable from CODI 0.
To establish a correspondence between GED and ≤dim we require the additional axiom C-E4. It

essentially requires two dimensionally comparable entities to have parts that are contained in a common
entity.

(C-E4) x ≤dim y →
[
ZEX(x) ∨ ∃z, v, w[P (v, x) ∧ Cont(v, z) ∧ P (w, z) ∧ Cont(w, y)]

]
(manifestation of relative dimension through a common entity z)

Axiom Set 8.10: Extension axiom C-E4 of CODI .

Lemma 8.17. CODI 0 ∪ C-E4 ∪ {I-D1 – I-D9, I-M1, I-M2} � I-M3

Proof. We already showed GED(y, x)→ x ≤dim y in Lemma 8.16.
The missing direction GED(y, x)← x ≤dim y can be proved automatically.

With the help of I-M3 we can prove I-E1, I-A4, and I-A5.

Lemma 8.18. CODI 0 ∪ {I-D1 – I-D9, I-M1} � I-E1

Lemma 8.19. CODI 0 ∪ C-E4 ∪ {I-D1 – I-D9, I-M1 – I-M3} � {I-A4, I-A5}

Given the mappings I-M1, I-M2, and I-M3 in CODI 0 ∪ C-E4 the other defined dimension relations
ED and GD of the INCH Calculus correspond to our dimension predicates =dim and >dim, respectively
(I-M4, I-M5). We further verify that partial overlap PO is equivalent to OV in the INCH Calculus
(I-M6).

(I-M4) ED(x, y)↔ x =dim y (mapping of ED)
(I-M5) GD(x, y)↔ y <dim x (mapping of GD)
(I-M6) OV (x, y)↔ PO(x, y) (mapping of OV )

Axiom Set 8.11: Mapping axioms I-M4 – I-M6 from CODI theories to INCH theories.

Lemma 8.20. CODI 0 ∪ C-E4 ∪ {I-D1 – I-D9, I-M1 – I-M3} � {I-M4, I-M5, I-M6}

Other mappings, in particular those for CS and CH , are not yet provable from the theory CODI 0

extended by C-E4 and the mappings I-M1 to I-M6. CS and CH rely on extensionality of INCH (I-A1 and
I-A2) and extensionality of OV (I-T4) which are so far not guaranteed in CODI 0. To prove extensionality
of INCH (I-A1, I-A2) from CODI 0 we have to further extend the theory by closures under intersection
and differences (Int-A1 to Int-A4, Dif-A1 to Dif-A4), effectively using the theory CODI ↓ = CODI 0 ∪
{Int-A1 – Int-A4, Dif-A1 –Dif-A4, Inc-D, Con-D} that we defined in Chapter 7.

From this more restricted theory together with C-E4 and the mapping I-M1, we can prove the
mappings I-M7 and I-M8 as well as extensionality of INCH .
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(I-M7) CS(x, y)↔ Cont(x, y) ∨ ZEX(x) (mapping of CS)
(I-M8) CH (x, y)↔ P (x, y) (mapping of CH )

Axiom Set 8.12: Mapping axioms I-M7 and I-M8 from CODI theories to INCH theories.

Lemma 8.21. CODI ↓ ∪ C-E4 ∪ {I-D1 – I-D9, I-M1 – I-M6} � I-M7

Proof. An automatic proof of the direction Cont(x, y) ∨ ZEX(x)→ CS(x, y) is provided.
We were unable to automatically prove the direction CS(x, y) → Cont(x, y) ∨ ZEX(x). But we can

simplify the proof by considering the following equivalences:

CS(x, y)→ Cont(x, y) ∨ ZEX(x)

⇔∀z[INCH (x, z)→ INCH (y, z)]→ Cont(x, y) ∨ ZEX(x) (I-D1)

⇔¬ZEX(x) ∧ ¬Cont(x, y)

→ ¬∀z[INCH (x, z)→ INCH (y, z)] (contrapositive)

⇔¬ZEX(x) ∧ ¬Cont(x, y)→ ∃z[INCH (x, z) ∧ ¬INCH (y, z)]

⇔¬ZEX(x) ∧ ¬Cont(x, y)→ ∃z[∃v[Cont(v, x) ∧ P (v, z)] ∧ ¬∃w[Cont(w, y) ∧ P (w, z)]] (I-M1)

⇔¬ZEX(x) ∧ ¬Cont(x, y)→ ∃z, v[Cont(v, x) ∧ P (v, z) ∧ ∀w[P (w, z)→ ¬Cont(w, y)]]

For any choice of z, if the formula ∀w[P (w, z)→ ¬Cont(w, y)] is satisfied, this formula is also satisfied
for any v such that P (v, z). Thus, it suffices to prove the special case z := v (∗):

¬ZEX(x) ∧ ¬Cont(x, y)→ ∃z, v[Cont(v, x) ∧ P (v, z) ∧ ∀w[P (w, z)→ ¬Cont(w, y)]]

⇐¬ZEX(x) ∧ ¬Cont(x, y)→ ∃z[Cont(z, x) ∧ ∀w[P (w, z)→ ¬Cont(w, y)]] (∗)

⇐¬ZEX(x) ∧ ¬Cont(x, y)→ ∃z[P (z, x) ∧ z · y <dim z] (EP-D, Int-A3)

The last step follows from P (z, x)→ Cont(z, x) (EP-D) together with the sentence

∀y, z
[
z · y <dim z → ∀w[Cont(w, y)→ ¬P (w, z)]

]
.

If the consequent P∀w[Cont(w, y) → ¬P (w, z)] were false, we would have z · y =dim z by Int-A3,
contradicting the antecedent.

The last sentence itself is identical to EP-E3 (a theorem of CODI ↓) is is thereby valid in CODI ↓.
Hence, CS(x, y)→ Cont9x, y) ∨ ZEX(x) is valid in CODI ↓ ∪ C-E4 ∪ {I-D1 – I-D9, I-M1 – I-M6}.

Lemma 8.22. CODI ↓ ∪ C-E4 ∪ {I-D1 – I-D9, I-M1 – I-M6} � I-M8

Proof. An automatic proof of the direction CH (x, y)→ P (x, y) is provided.
The proof of the direction CH (x, y) ← P (x, y) requires strong supplementation (EP-E2) or its con-
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sequence PO-E1. The following equivalences manually prove the latter direction:

CH (x, y)→ P (x, y) (I-M8R)

⇔INCH (x, y) ∧ ∀z[OV (x, z)→ OV (y, z)]→ P (x, y) (I-D4)

⇔INCH (x, y) ∧ ∀z[PO(x, z)→ PO(y, z)]→ P (x, y) (I-M6)

⇔∃z[Cont(z, x) ∧ P (z, y)] ∧ ∀z[PO(x, z)→ PO(y, z)]→ P (x, y) (I-M1)

⇐¬ZEX(x) ∧ ¬ZEX(y) ∧ ∀z[PO(x, z)→ PO(y, z)]→ P (x, y) (C-A1)

The last sentence is valid by PO-E1 as shown in the proof of PO-E1 from CODI ↓ on page 7.11.

Though I-A8 (CH (x, y) → CS(x, y)) was not provable in CODI 0, it now easily follows from Lem-
mas 8.21 and 8.22 in CODI ↓: It amounts to proving

∀x, y[P (x, y)→ Cont(x, y)].

Lemma 8.23. CODI ↓ ∪ C-E4 ∪ {I-D1 – I-D9, I-M1 – I-M8} � I-A8

Proof. Consider the following implications:

CH (x, y)→P (x, y) (I-M8)

→Cont(x, y) (EP-D)

→CS(x, y) (I-M7)

Finally, I-M7 and I-M8 also let us prove the mappings I-M9 and I-M10 for EL and CO. The latter
requires contact, C, to be defined as in C-D.

(I-M9) EL(x, y)↔ (Cont(x, y) ∧ x <dim y) ∨ ZEX(x) (mapping of EL)
(I-M10) CO(x, y)↔ C(x, y) (mapping of CO)

Axiom Set 8.13: Mapping axioms I-M9 and I-M10 from CODI theories to INCH theories.

Lemma 8.24. CODI ↓ ∪ C-E4 ∪ {I-D1 – I-D9, I-M1 – I-M8} � {I-M9, I-M10}

Summarily, all mappings I-M2 – I-M10 have thus been proved from the mapping I-M1 alone in
CODI ↓ ∪ C-E4 ∪ {I-D1 – I-D9:

Corollary 8.3. CODI ↓ ∪ C-E4 ∪ {I-D1 – I-D9, I-M1} � {I-M2 – I-M10}

Proof. Follows from the Lemmas 8.15, 8.17, 8.20, 8.21, 8.22, and 8.24.

The mappings I-M1 to I-M10 completely define all relations of the INCH Calculus in terms of
CODI ↓ ∪ C-E4. With regards to the axioms of the INCH Calculus, it remains to prove I-A1, I-A2,
I-A9, and I-A10. We start by proving extensionality of INCH , i.e., I-A1 and I-A2.
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Lemma 8.25. CODI ↓ ∪ C-E4 ∪ {I-D1 – I-D9, I-M1 – I-M8} � I-A1

Proof. The direction x = y → ∀z[INCH (x, z) ↔ INCH (y, z)] is trivial. For the converse direction,
consider the following equivalence:

∀z[INCH (x, z)↔ INCH (y, z)]→ x = y

⇔∀z[∃v(Cont(v, x) ∧ P (v, z))↔ ∃w(Cont(w, y) ∧ P (w, z))]→ x = y (I-M1)

Case (I): x, y ∈ ZEXM.
Then by D-A4 we immediately obtain the desired consequence x = y.

Case (II): y ∈ ZEXM and x /∈ ZEXM.
The choice of z := x violates the antecedent because Cont(x, x) ∧ P(x, x) makes the left side of
the biconditional true, but ∀w[¬Cont(w, y)] always makes the right side of the biconditional false.

Case (III): y /∈ ZEXM and x ∈ ZEXM.
Analogue to the previous case of ZEX(y).

Case (IV): x, y /∈ ZEXM and 〈y, x〉 ∈ (<dim)M.
Consider the choice z := x. Then there exists a v ∈M so that the left side of the biconditional is
true, namely v := x, which results in bf Cont(x, x)∧P(x, x) which is trivially true by x /∈ ZEXM.
But the right side of the biconditional is always falsified because ∀w[P(w, x)→ ¬Cont(w, y)].

Case (V): x, y /∈ ZEXM and 〈x, y〉 ∈ (<dim)M.
Analogue to Case (IV).

Case (VI): x, y /∈ ZEXM and 〈x, y〉 ∈ (=dim)M.
By EP-T2 it suffices to prove that

∀z
[
∃v[Cont(v, x) ∧P(v, z)]→ ∃w[Cont(w, y) ∧P(w, z)]

]
→ P(x, y) (∗)

Suppose the antecedent of (∗) is satisfied for arbitrary x, y ∈M of a model of CODI ↓ ∪ C-E4 but
its consequent is not, i.e., , 〈x, y〉 /∈ P . Because x, y /∈MM and 〈x, y〉 ∈ (=dim)M, we must have
〈x, y〉 /∈ ContM. Then by EP-E3, there exists a z ∈M \ZEXM such that bfP (z, x)∧ z · y<dimz.
Consider the choice v := z in the antecedent of (∗), which amounts to

Cont(z, x) ∧P(z, z)→ ∃w[Cont(w, y) ∧P(w, z)].

While Cont(z, x) and P(z, z) are trivially satisfied for this z, the consequent cannot be satisfied:
if such a w ∈M exists then Cont(w, z ·y). Because 〈w, z〉 ∈ PM and 〈z ·y, z〉 ∈ (≤dim)M we must
have 〈z ·y, z〉 ∈ (=dim)M by Int-A2. This contradicts our earlier assumption of 〈z ·y, z〉 ∈ (<dim)M
and thus 〈z · y, z〉 /∈ (=dim)M by D-D2.

The cases (I)–(VI) cover all possible relative dimensions between x and y. Thereby we proved I-A1.

The proof of I-A2 is very similar:

Lemma 8.26. CODI ↓ ∪ C-E4 ∪ {I-D1 – I-D9, I-M1 – I-M8} � I-A2
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Proof. The direction x = y → ∀z[INCH (z, x) ↔ INCH (z, y)] is trivial. For the converse direction,
consider the following equivalence:

∀z[INCH (z, x)↔ INCH (z, y)]→ x = y

⇔∀z[∃v(Cont(v, z) ∧ P (v, x))↔ ∃w(Cont(w, z) ∧ P (w, y))]→ x = y (I-M1)

Case (I): x, y ∈ ZEXM.
Then by D-A4 we immediately obtain the desired consequence x = y.

Case (II): x ∈ ZEXM and y /∈ ZEXM.
Then for all v ∈m we must have ¬P(v, x) which always falsifies the left side of the biconditional.
For the biconditional to be true, for any z ∈ M \ ZEXM we cannot have P(z, y) because we
already have Cont(z, z). Hence y ∈ ZEXM, a contradiction to our assumption.

Case (III): X /∈ ZEXM and y ∈ ZEXM.
Analogue to Case (II) where x ∈ ZEXM.

Case (IV): x, y /∈ ZEXM and 〈x, y〉 ∈ (<dim)M.
Then we can choose z := x and v := x, which results in Cont(x, x) and P(x, x), which are trivially
true, but for all w ∈M with P(w, y) we have ¬Cont(w, x). Therefore the antecedent is falsified.

Case (V): x, y /∈ ZEXM and 〈y, x〉 ∈ (<dim)M.
Analogue to Case (IV).

Case (VI): x, y /∈ ZEXM and 〈x, y〉 ∈ (=dim)M.
By EP-T2 it suffices to prove that

∀z
[
∃v[Cont(v, z) ∧P(v, x)]→ ∃w[Cont(w, z) ∧P(w, y)]

]
→ P(x, y) (∗)

Suppose the antecedent of (∗) is satisfied but its consequent is not, i.e., , ¬P(x, y). Because
x, y /∈ ZEXM and 〈x, y〉 ∈ (=dim)M by our assumption, we must have ¬Cont(x, y). Then by
EP-E3, there exists a (z ∈M \ZEXM such that 〈z, x〉 ∈ PM and 〈z · y, z〉 ∈ (<dim)M. Consider
the choice v := z in the antecedent of (∗), which amounts to

Cont(z, z) ∧P(z, x))→ ∃w(Cont(w, z) ∧P(w, y)).

While Cont(z, z) and P(z, x) are trivially satisfied for this z, the consequent cannot be satisfied:
note that z=dimx=dimy=dimw and by Cont(w, z · y) we further have z · y=dimw=dimz, which
contradicts our earlier assumption 〈z · y, z〉 ∈ (<dim)M.

The cases (I)–(VI) cover all possible relative dimensions between x and y. Thereby we proved I-A2.

Next, we prove the closure under differences for equidimensional entities (I-A10).

Lemma 8.27. CODI ↓ ∪ C-E4 ∪ {I-D1 – I-D9, I-M1 – I-M8} � I-A10

Proof. We have the following equivalence:

ED(x, y)→ ∃z∀w
[
INCH (z, w)↔ ∃v [INCH (v, w) ∧ CH (v, x) ∧ ¬OV (v, y)]

]
⇔x =dim y → ∃z∀w

[
INCH (z, w)↔ ∃v[INCH (v, w) ∧ P (v, x) ∧ ¬PO(v, y)]

]
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by substituting ED, CH , and OV using the mapping axioms I-M4, I-M8, and I-M6. The latter sentence
is satisfied if z := x− y satisfies it:

x =dim y → ∀w
[
INCH (x− y, w)↔ ∃v[INCH (v, w) ∧ P (v, x) ∧ ¬PO(v, y)]

]
We can split this further into two sentences, which we will prove separately:

(a) x =dim y ∧ INCH (x− y, w)→ ∃v[INCH (v, w) ∧ P (v, x) ∧ ¬PO(v, y)]

(b) x =dim y ∧ ∃v[INCH (v, w) ∧ P (v, x) ∧ ¬PO(v, y)]→ INCH (x− y, w)

Direction (a):

x =dim y ∧ INCH (x− y, w)→ ∃v[INCH (v, w) ∧ P (v, x) ∧ ¬PO(v, y)]

⇔x =dim y ∧ Cont(w, x− y)→ ∃v
[
∃z[Cont(z, v) ∧ P (z, w)] ∧ P (v, x) ∧ ¬PO(v, y)

]
Choose v := x− y and z := w, then this amounts to showing

x =dim y ∧ Cont(w, x− y)→ Cont(w, x− y) ∧ P (w,w)) ∧ P (x− y, x) ∧ ¬PO(x− y, y)]

Assume the antecedent to be true, then the consequent is also true:

• Cont(w, x− y) by the antecedent;

• P (w,w) trivially with Cont(w, x− y) implying ¬ZEX(w);

• P (x− y, x) by Cont(w, x− y) implying ¬ZEX(x− y) together with Dif-T1;

• ¬PO(x− y, y) by Dif-T3.

Hence sentence (a) is valid.

Direction (b):

x =dim y ∧ ∃v[INCH (v, w) ∧ P (v, x) ∧ ¬PO(v, y)]→ INCH (x− y, w)

⇔x =dim y ∧ ∃v[∃z(Cont(z, v) ∧ P (z, w)) ∧ P (v, x) ∧ ¬PO(v, y)]→ ∃z[Cont(z, x− y) ∧ P (z, w)]

⇐x =dim y ∧ ∃v[P (w · v, w) ∧ P (v, x) ∧ ¬PO(v, y)]→ ∃z[Cont(z, x− y) ∧ P (z, w)]

Assume the antecedent is true. From P (v, x) ∧ ¬PO(v, y) we obtain ¬PO(v, x · y) and further by
Dif-T5 P (v, x− y). Then also Cont(w · v, x− y) by transitivity of Cont. Moreover, P (w · v, w) by
the antecedent. Hence z := w · v satisfies the consequent.

The two directions (a) and (b) together imply the property I-A10.

Finally, we tackle closure under sums for equidimensional entities. This is not provable from CODI ↓ ∪
C-E4, but requires an explicit extension that enforces closures under sums. We use CODI l for that pur-
pose. Notice that even though CODI l also defines sum for two entities that are not of equal dimension,
this sum is always one of the entities (compare Sum-A2 on page 136).

Lemma 8.28. CODI l ∪ C-E4 ∪ {I-D1 – I-D9, I-M1 – I-M8} � I-A9



Chapter 8. Relationship to other mereotopologies 184

Proof. We have the following equivalence

ED(x, y)→ ∃z∀w [INCH (z, w)↔ INCH (x,w) ∨ INCH (y, w)]

⇐x =dim y → ∀w[INCH (x+ y, w)↔ INCH (x,w) ∨ INCH (y, w)]

⇔x =dim y → ∀w
[
∃z[Cont(z, x+ y) ∧ P (z, w)]↔ ∃z[P (z, w) ∧ (Cont(z, x) ∨ Cont(z, y)]

]
We can split this further into two sentences, which we will prove separately:

(a) x =dim y ∧ ∃z[Cont(z, x+ y) ∧ P (z, w)]→ ∃v[P (v, w) ∧ (Cont(v, x) ∨ Cont(z, y))]

(b) x =dim y ∧ Cont(z, x)→ Cont(z, x+ y)

Direction (a): The sentence is satisfied for all w ∈M if the following is satisfied for all z ∈M:

x=dimy ∧Cont(z, x+ y)→ ∃v
[
P(v, z) ∧ [Cont(v, x) ∨Cont(z, y)]

]
,

which is equivalent to

x=dimy ∧Cont(z, x+ y) ∧ ¬∃v[P(v, z) ∧Cont(v, x)]→ ∃v[P(v, z) ∧Cont(z, y)].

If either Cont(z, x) or Cont(z, y), this is trivially satisfied by choosing v := z for the first or second
occurrence, respectively. Now assume that ¬Cont(z, x) and ¬Cont(z, y). Then by Sum-T9, there
must exist a v ∈ M such that P(v, z) and Cont(v, y), which satisfies our consequent. Hence
direction (a) is also satisfied.

Direction (b): x =dim y ∧ Cont(z, x)→ Cont(z, x+ y) follows directly from Sum-A3.

The two directions (a) and (b) together entail I-A9.

Thus, the theory CODI ↓ ∪ C-E4 definably interprets the corrected INCH Calculus, INCH calculus,
amended by I-E1.

Corollary 8.4. CODI l ∪ C-E4 ∪ {I-D1 – I-D9, I-M1} � INCH calculus ∪ I-E1

Proof. Follows immediately from the Lemmas 8.14, 8.18, 8.19, 8.23, 8.25, 8.26, 8.27, and 8.28 together
with Corollary 8.3.

This interpretability of the INCH Calculus by CODI l ∪ C-E4 should convince the reader that
CODI l is in fact a multidimensional mereotopology with well-defined closure operations. We essentially
used the INCH Calculus, an independently developed theory, to cross-verify our axiomatization CODI l.
Of course, any omission or error in the axiomatization of the INCH Calculus could potentially pose
also a problem for our axiomatization. Nevertheless, this kind of relative interpretation helps us to
increase our confidence in either axiomatization. An immediate consequence is that CODI 0 is indeed a
weak multidimensional mereotopology that lacks mereological closures, since we already established the
relationship between CODI l and CODI 0 in Chapter 7.

However, the reverse question is still unanswered: Does INCH calculus ∪ I-E1 definably interpret
CODI l ∪ C-E4 as well? We will tackle this question in the next subsection.



Chapter 8. Relationship to other mereotopologies 185

8.2.5 INCH calculus ∪ {I-E1 – I-E3} and CODI l ∪ C-E4 are definably equivalent

We already finished a significant portion of the work necessary to prove that the INCH Calculus extended
by I-E1 interprets CODI l ∪ C-E4 by showing in Section 8.2.3 that the INCH Calculus interprets CODI 0,
a subtheory of INCH calculus ∪ I-E1 (see Corollary 8.2 on page 177). Hence, we also have the following
corollary:

Corollary 8.5. INCH calculus ∪ I-E1 ∪ {I-M1′ – I-M3′} � CODI 0

What remains to be shown is that the other axioms, in particular those enforcing closures under
intersections (Int-A1 – Int-A4), differences (Dif-A1 –Dif-A4), sums (Sum-A1 – Sum-A4), and universals
(U-A1) are also provable from INCH calculus ∪ I-E1 for suitable mappings of ·, −, and +. We use
I-M4 – I-M6′ as mappings.

(I-M4′) x+ y =


x if GD(x, y)
y if GD(y, x)
z : ∀w[INCH (z, w)↔ INCH (x,w) ∨ INCH (y, w)] if ED(x, y)

(I-M5′) x · y = z : CS(z, x) ∧ CS(z, y) ∧ ∀w[CS(w, x) ∧ CS(w, y)→ GED(z, w)] ∧
∀w[ED(w, z) ∧ CS(w, x) ∧ CS(w, y)→ CS(w, z)]

(I-M6′) x− y =


x if GD(x, x · y)
z : ∀w

[
INCH (z, w)↔
∃v[INCH (v, w) ∧ CH (v, x) ∧ ¬OV (v, x · y)]

]
if ED(x, x · y)

Axiom Set 8.14: Mapping axioms I-M4′ – I-M6′ from INCH theories to CODI theories.

We have to prove that these mappings specify functions, i.e., for every pair x, y there is a unique
z and that the specified functions satisfy the axioms Int-A1 – Int-A4, Dif-A1 –Dif-A4, and Sum-A1 –
Sum-A4. Crucial to this proof is that the mappings I-M4′ to I-M6′ are really defined functions, i.e., that
they do not force additional entities to exist. Only mappings that do not nonconservatively extend the
underlying theory INCH calculus are adequate mappings, otherwise they would be axioms restricting the
models of INCH calculus in some way.

Lemma 8.29. INCH calculus ∪ I-E1 ∪ {I-M1′ – I-M6′} defines + as a total function.

Proof. We show that such a z = x + y always exists and is uniquely defined for all pairs x, y. We
distinguish the following three cases.

Case (I): Assume 〈x, y〉 ∈ EDM.
Then, by I-A9, an entity z ∈M that satisfies the condition

∀w[INCH (z, w)↔ INCH (x,w) ∨ INCH (y, w)]

must exist. If two distinct z1, z2 ∈M would satisfy this condition, then

∀w[INCH (z1, w)↔ INCH (z2, w)],
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which by I-A1 implies z1 = z2. Hence the sum z = x+ y is uniquely defined.

Case (II): Assume 〈x, y〉 ∈ GDM.
Then x+ y = x is always uniquely defined.

Case (III): Assume 〈y, x〉 ∈ GDM.
Then x+ y = y is always uniquely defined.

The following logical equivalences show that those three cases are all possible cases:

∀x, y[GED(x, y) ∨GED(y, x)] (I-A4)

⇔∀x, y
[
[GED(x, y) ∧GED(y, x)] ∨ [GED(x, y) ∧ ¬GED(y, x)] ∨ [¬GED(x, y) ∧GED(y, x)]

]
⇔∀x, y

[
ED(x, y) ∨ ∨[GED(x, y) ∧ ¬GED(y, x)] ∨ [¬GED(x, y) ∧GED(y, x)]

]
(I-D8)

⇔∀x, y[ED(x, y) ∨GD(x, y) ∨GD(y, x)] (I-D9)

The three cases (I) to (III) are exhaustive for every pair x, y. Hence, I-M4′ defines + as a total function.

But the INCH Calculus in not closed under intersections in the same way CODI l is closed. Though
Gotts [Got96] claims that the intersection prod(x, y) is definable as diff (x, diff (x, y)) this is only true if
x and y are of equal dimension, i.e., ED(x, y), because otherwise the difference is not required to exist
in the INCH Calculus. To enforce closure under intersections, we add I-E2.

(I-E2) CO(x, y) → ∃z
[
CS(z, x) ∧ CS(z, y) ∧ ∀w[CS(w, x) ∧ CS(w, y) → GED(z, w)] ∧ ∀w[CS(w, x) ∧

CS(w, y) ∧ ED(w, z)→ CS(w, z)]
]

(for two connected entities x, y, a maximal shared constituent of maximal dimension exists)

Axiom Set 8.15: Extension axiom I-E2 of INCH calculus.

Lemma 8.30. INCH calculus ∪ I-E1 2 I-E2

Proof. By the definition of CO, we have

CO(x, y)→ ∃z[¬ZEX I(z) ∧ CS(z, x) ∧ CS(z, y)]

as a theorem of INCH calculus ∪ I-E1. We will construct counterexamples to either of the other two
conditions separately.

First, we construct a model of INCH calculus ∪ I-E1 that contains two connected entities a, b ∈ M
with 〈a, b〉 ∈ COM, whose set of shared constituents does not contain an entity of greatest dimension,
i.e., no z ∈ M exists with CS(z, a), CS(z, b) and for all w ∈ M, CS(w, a) ∧CS(w, b) → GED(z, w)].
Obviously, this can only happen in an infinite model, more precisely, in a model with an infinite number
of constituents of both x and y with increasing dimensions. In other words, x and y must be of infinite
dimension and must share infinite constituents, none of which has a dimension higher than all others,
but x and y do not share a chunk.
More formally, we can define the modelM as following. M has the domain of entities

M = {a, b, d, ze, c0, c1, c2, . . . , c∞}



Chapter 8. Relationship to other mereotopologies 187

with the extension of the only primitive relation INCH defined as

INCHM ={〈a, ci〉, 〈a, c0〉, 〈a, d〉, 〈b, ci〉, 〈b, c0〉, 〈b, d〉, 〈ci, c0〉, 〈d, a〉, 〈d, b〉, 〈d, ci〉}

∪ {〈x, x〉 | x ∈M \ {ze}} ∪ {〈ci, cj〉 | i ≥ j > 0}.

The extensions of the defined relations ZEX I and GED are

ZEXIM = {ze}

and

GEDM ={〈ci, c0〉, 〈ci, ze〉, 〈c0, ze〉} ∪ {〈x, y〉 | x ∈ {a, b, d} and y ∈M}

∪ {〈x, x〉 | x ∈M} ∪ {〈ci, cj〉 | i ≥ j > 0}.

We can further determine the extensions of CS and CH as

CSM ={〈a, d〉, 〈b, d〉, 〈ci, a〉, 〈ci, b〉, 〈ci, d〉, 〈c0, a〉, 〈c0, b〉, 〈c0, ci〉, 〈c0, d〉}

∪ {〈x, x〉 | x ∈M} ∪ {〈ze, x〉 | x ∈M} ∪ {〈cj , ci〉 | i ≥ j > 0}

and

CHM = {〈a, d〉, 〈b, d〉} ∪ {〈x, x〉 | x ∈M \ {ze}}

COM = {〈x, y〉 | x, y ∈M \ {ze}}

From the specification of INCHM it is easy to see thatM satisfies I-A1, I-A2, and I-A3. From the
specification of GEDM we can also verify that I-A4 and I-A5 are satisfied. Because the extension of
INCH is antitransitive, i.e., if INCH(x, y) and INCH(y, z) then we never have INCH(z, x), I-A6 is also
satisfied. I-A7′ is always satisfied if we choose the existentially quantified variable in I-A7′ to be z := y.
I-A8 is satisfied because CHM ⊆ CSM. Moreover, I-A9 and I-A10 are trivially satisfied, because b, d, c1
are the only distinct entities of equal dimension, we have d+ c1 = b, b− d = c1 and b− c1 = d. Finally,
x := c0 satisfies I-E1: c0 /∈ ZEXM and for any y /∈ ZEXM we have 〈y, c0〉 ∈ GEDM.

In the final part of the proof, we construct a model of INCH calculus ∪ I-E1 that contains two connected
entities a, b ∈M with 〈a, b〉 ∈ COM for which no common constituent z ∈M exists such that all entities
of the same dimension that are constituents of either are also constituents of z. Thereby, the constructed
model will violate the second condition in the consequent of I-E2. More precisely, in this model no z ∈M
exists with CS(z, a), CS(z, b) and such that for all w ∈M, CS(w, a)∧CS(w, b)∧ED(w, z)→ CS(w, z)].
The model is similar to the previous one except that instead of a infinite chain of entities ci of decreasing
dimension we use an infinite chain of increasingly bigger, nested entities of equal dimension as the
constituents of both a and b. The model must contain two additional distinct elements a′, b′ ∈M with

〈a′, a〉, 〈a′, d〉, 〈b′, b〉, 〈b′, d〉 ∈ CHM but

〈a′, a′〉, 〈a′, b〉, 〈a′, b′〉, 〈a′, c0〉, 〈a′, ci〉, 〈a′, ze〉〈b′, a′〉, 〈b′, b〉, 〈b′, b′〉, 〈b′, c0〉, 〈b′, ze〉, 〈b′, ci〉 /∈ CHM and

〈x, a′〉, 〈x, b′〉 /∈ CHM for all x ∈M \ {a′, b′}
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to ensure that I-A1 and I-A2 are satisfied. The extension of INCH and GED are defined as follows:

INCHM ={〈x, y〉 | x, y ∈M \ {a′, b′, ze}} ∪ {〈a, a′〉, 〈a′, a〉, 〈a′, d〉, 〈b, b′〉, 〈b′, b〉, 〈b′, d〉, 〈d, a′〉, 〈d, b′〉},

GEDM ={〈x, y〉 | x ∈M \ {ze} and y ∈M} ∪ 〈ze, ze〉.

Even though any pair ci, cj has a sum (the larger entity of the two), no maximal entity exists that is a
constituent of both a and b and of which all other ci are constituents of.

This verifies that we really need both of the additional conditions imposed by I-E2 to guarantee
intersections to exist for any two entities. But with the help of I-E2, it is easily provable that the
intersection x · y as defined in I-M5′ is indeed a total function.

Lemma 8.31. INCH calculus ∪ {I-E1, I-E2} ∪ {I-M1′ – I-M6′} defines · as a total function.

Proof. We must show that x · y is uniquely defined for all pairs x, y. We distinguish the following two
cases for arbitrary x, y ∈M of a modelM of INCH calculus ∪ {I-E1, I-E2}.

Case (I): Assume 〈x, y〉 /∈ COM.
Then there exists no z ∈M\ZEXM such that CS(z, x) and CS(z, y). Hence the unique z ∈MM

that exists by Corollary 8.5 and D-A4 satisfies the definition of I-M5′. By I-T6 we have CS(z, x),
CS(z, y), and CS(z, z). Because for any other w ∈ M, CS(w, x) ∧ CS(w, y) cannot hold, the
remaining two conditions are trivially satisfied.

Case (II): Assume 〈x, y〉 ∈ COM.
By I-E2, a z ∈M must exist that satisfies the condition for z = x · y. Suppose two distinct such z
exists, call them z1 and z2. Then, we have CS(z1, x)∧CS(z1, y) and CS(z2, x)∧CS(z2, y). Thus,
we must have GED(z1, z2) as well as GED(z2, z1), which by I-D8 results in ED(z1, z2). Hence,
the antecedent of the last condition of I-E2 can be invoked, so that CS(z1, z2) and CS(z2, z1) must
hold. With the mapping I-M1′ we obtain Cont(z1, z2) and Cont(z2, z1), which together imply
z1 = z2 by Corollary 8.5 and C-A2. However, this contradicts our initial assumption that z1 and
z2 are distinct.

For all pairs x, y ∈ M either 〈x, y〉 ∈ COM or not; hence the two cases are exhaustive and x · y is
uniquely defined for all pairs x, y ∈M.

Lemma 8.32. INCH calculus ∪ {I-E1,I-E2} ∪ {I-M1′ – I-M6′} defines − as a total function.

Proof. We must show that x − y is uniquely defined for arbitrary pairs x, y ∈ M of a model M of
INCH calculus ∪ {I-E1, I-E2}.

Case (I): ED(x, x · y) and ED(y, x).
Then, by I-A10, an entity z ∈M that satisfies the condition

∀w
[
INCH(z, w)↔ ∃v[INCH(v, w) ∧CH(v, x) ∧ ¬OV(v, y)]

]
must exist. If two distinct z1, z2 would satisfy this condition, then

∀w[INCH(z1, w)↔ INCH(z2, w)],

which by I-A1 implies z1 = z2. Hence the difference z = x− y is uniquely defined.
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Case (II): ED(x, x · y) and GD(y, x).
Then by Lemma 8.31 the entity x · y is uniquely defined. Then again, by I-A10, an entity z ∈M
that satisfies the condition

∀w
[
INCH(z, w)↔ ∃v[INCH(v, w) ∧CH(v, x) ∧ ¬OV(v, x · y)]

]
must exist. If two distinct z1, z2 would satisfy this condition, then

∀w[INCH(z1, w)↔ INCH(z2, w)],

which by I-A1 implies z1 = z2. Hence the difference z = x−y is uniquely defined as z = x− (x ·y).

Case (III): GD(x, x · y).
I-M6′ uniquely defines x− y = x.

Finally, we show that these three cases are the only possible ones for arbitrary pairs x, y ∈ M. Recall
that

∀x, y[ED(x, y) ∨GD(x, y) ∨GD(y, x)]

is a theorem of INCH original (compare proof of Lemma 8.29), which also applies to y := x · y. By
I-M5′, there exists a uniquely defined x · y for any pair of x, y ∈M. This intersection has the property
CS(x · y, x). The latter implies Cont(x · y, x) or (x · y) ∈ ZEXM by Corollary 8.5. If (x · y) ∈ ZEXM
then ¬GD(x · y, x). Now suppose (x · y) /∈ ZEXM, that is, Cont(x · y, x). Then x · y≤dimx must hold
(CD-A1), which in turn requires GED(x, x·y), thus preventing GD(x·y, x) by I-D9. Hence, GD(x, x·y)
and ED(x, x · y) are the only two possibilities, which we covered.

Notice that I-M5′ requires CS(x · y, y) and hence GED(y, x · y). If we have ED(x, x · y), we can
immediately deduce GED(y, x) and thus either ED(y, x) or GD(y, x) must hold. Hence the cases (1)
and (2) cover all possibilities when ED(x, x · y).

Consequently, the function x− y is uniquely defined for any pair x, y ∈M.

Lemma 8.33. INCH calculus ∪ {I-E1, I-E2} ∪ {I-M1′ – I-M6′} ∪ {EP-D, EPP-D, PO-D} |= {Int-A1 –
Int-A4}

Proof. (Int-A1) ¬C(x, y)↔ ZEX(x · y).
Consider the following logical equivalences:

ZEX(x · y)

⇔∀z[¬ZEX(z)→ ¬CS(z, x) ∨ ¬CS(z, y)] (I-M5′)

⇔∀z[¬Cont(z, x) ∨ ¬Cont(z, y)] (I-M1′)

⇔¬C(x, y) (C-D)

(Int-A2) ¬ZEX(x · y)→ Cont(x · y, x).
I-M5′ implies ∀x, y[CS(x · y, x)]. Then the assumption ∀x, y[¬ZEX(x · y)] immediately implies
∀x, y[Cont(x · y, x)] by I-M1′.

(Int-A3) Cont(v, x) ∧ Cont(v, y)→ v ≤dim x · y
Assume Cont(v, x) and Cont(v, y) for arbitrary x, y, v ∈M.
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Then CS(v, x) and CS(v, y) by I-M1′ and thus GED(x·y, v) by I-M5′, which translates to v≤dimx·
y by I-M3′, D-D3, and I-D8.

(Int-A4) Cont(v, x) ∧ Cont(v, y) ∧ v =dim x · y ↔ P (v, x · y).
Note that if v ∈ ZEXM, then Int-A4 is trivially satisfied. For v /∈ ZEXM consider the following
computation:

Cont(v, x) ∧ Cont(v, y) ∧ v =dim x · y ↔ P (v, x · y)

⇔Cont(v, x) ∧ Cont(v, y) ∧ v =dim x · y ↔ Cont(v, x · y) ∧ v =dim x · y (EP-D)

⇔CS(v, x) ∧ CS(v, y) ∧ ED(v, x · y)↔ CS(v, x · y) ∧ ED(v, x · y)

The last step follows from I-M1′, I-M3′, D-D2, and I-D8. Both directions of the biconditional in
the last line follow directly from I-M5′.

Lemma 8.34. INCH calculus ∪ {I-E1, I-E2} ∪ {I-M1′ – I-M6′} ∪ {EP-D, EPP-D, PO-D} |= {Dif-A1 –
Dif-A4}

Proof. Note that we prove Dif-A3a last, to make use of Dif-A3b and Dif-A4 in its proof.

(Dif-A1) ¬ZEX(x− y)→ x− y =dim x.
Assume (x− y) /∈ ZEXM. We distinguish two cases.

Case (I): Assume 〈x, x · y〉 ∈ GDM.
Then x− y = x by I-M6′ and thus x− y=dimx.

Case (II): Assume 〈x, x · y〉 ∈ EDM.

Subcase (II.a): Assume 〈x, x · y〉 ∈ EDM and x ∈ ZEXIM.
Then for all v ∈ M, ¬CH(v, x) and thus for all v ∈ M, ¬INCH(x − y, v)] by I-M6′.
Hence ¬INCH(x − y, x − y), thus (x − y) ∈ ZEXM by I-M2′ and D-A4. We conclude
x− y=dimx.

Subcase (II.b): Assume 〈x, x · y〉 ∈ EDM, x /∈ ZEXIM, and 〈x, x · y〉 ∈ CHM.
Then by I-D4, I-A3, I-D6 (x · y) /∈ ZEXIM.
Then by I-T12 and I-D4, for all z ∈M,

CH(z, x)→ OV(z, x · y)].

Then the left-hand side of the biconditional in I-M6′ will never be satisfied for any w ∈M.
Hence for all w ∈M, ¬INCH(x− y, w) so that (x− y) ∈ ZEXIM by I-A3, contrary to
our initial assumption that (x− y) /∈ ZEXM. Hence this case is irrelevant.

Subcase (II.c): Assume 〈x, x · y〉 ∈ eDM, x /∈ ZEXIM, and 〈x, x · y〉 /∈ CHM.
From the assumption ¬CH(x, x · y) we obtain

¬INCH(x, x · y) or there exists a v ∈M such that [OV(x, v) ∧ ¬OV(x · y, v)]

using I-D4. We distinguish two subcases depending on whether the last of the two con-
ditions is satisfied.
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Subcase (II.c.i): Assume that for all v ∈M, OV(x, v)→ OV(x · y, v)].
Then ¬INCH(x, x · y) must hold by the previous equation and thus by I-A7′, no
z ∈M exists such that

CS(z, x) ∧CH(z, x · y)].

Note that (x · y) /∈ ZEXM because ED(x, x · y) and x /∈ ZEXM.
Then, CS(x · y, x) and CH(x · y, x · y). Hence some z ∈M exists such that

CS(z, x) ∧CH(z, x · y),

a contradiction to our earlier statement that no such z may exist. Thus, this case
cannot occur.

Subcase (II.c.ii): Assume there exists a v ∈M such that OV(x, v) and ¬OV(x · y, v).
Consider the following logical derivation:

∃v[OV (x, v) ∧ ¬OV (x · y, v)]

⇔∃v[INCH (v, x) ∧ ¬OV (x · y, v)] (I-D2)

⇒∃v
[
∃u[CS(u, v) ∧ CH (u, x)] ∧ ¬OV (x · y, v)

]
(I-A7′)

⇒∃v
[
∃u[CH (u, v) ∧ CH (u, x)] ∧ ¬OV (x · y, v)

]
(I-T2, I-T5)

⇒∃u[CH (u, x) ∧ ¬OV (u, x · y)] (I-T12)

⇒∃u[INCH (u, x) ∧ ¬OV (u, x · y)] (I-D4)

⇒∃u[INCH (u, x) ∧ CH (x, x) ∧ ¬OV (u, x · y)] (I-A3)

⇒INCH (x− y, x) (I-M6′)

⇒GED(x− y, x) (I-T1)

That is, we conclude that GED(x − y, x) from our assumption that there exists a
v ∈M such that OV(x, v) and ¬OV(x · y, v).
Now suppose GD(x− y, x). For any w ∈M with CH(w, x− y) we have INCH(x−
y, w) by I-D4 and I-T2 and thus there exists a v ∈M such that

INCH(v, w) ∧CH(v, x) ∧ ¬OV(v, x · y) (8.34.1)

according to I-M6′. However, for any such v with CH(v, x) we have

v=dimx<dimx− y=dimw (8.34.2)

by our supposition GD(x− y, x) and I-T5, I-D8, I-D9, and I-M3′. At the same time
INCH(v, w) requires GED(v, w), which is equivalent to

v≥dimw (8.34.3)

Conditions (8.34.2) and (8.34.3) contradict another, consequently no v that satisfies
Equation (8.34.1) can exist for any w. Hence, our supposition GD(x−y, x) was false,
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and we must have
GED(x− y, x) ∧ ¬GD(x− y, x)

and thus ED(x − y, x). Therefore, x − y =dim x, our desired conclusion, follows by
I-M3′ and D-D2.

Clearly, (II.c.i) and (II.c.ii) are exhaustive subcases of (II.c) because the assumption of
(II.c.ii) is the negation of the assumption of (II.c.i).

The three subcases (II.a)–(II.c) are exhaustive subcases of (II).

The cases (I) and (II) are exhaustive for any pair x, y; the argument is the same as in the proof of
Lemma 8.32. Hence Dif-A1 is valid.

(Dif-A2) y <dim x→ x− y = x.
Assume y<dimx for arbitrary x, y ∈M.
We also have (x · y)inZEXM or Cont(x · y, y) by Int-A2 (which we just proved in Lemma 8.33)
so that x · y≤dimy<dimx. We obtain GD(x, x · y) by I-M3′ and I-D9, so that x− y = x by I-M6′.
Hence, Dif-A2 is satisfied for all x, y ∈M.

(Dif-A3b) x ≤dim y → [Cont(z, x− y)→ Cont(z, x)].
We distinguish the following cases.

Case (I): Assume (x− y) ∈ ZEXM.
Then no z exists such that Cont(z, x− y), hence Dif-D3b holds trivially.

Case (II): Assume (x− y) /∈ ZEXM and GD(x, x · y).
Then by I-M6′ x = x − y and hence for all z ∈ M, Cont(z, x − y) implies Cont(z, x) as
desired.

Case (III): Assume (x− y) /∈ ZEXM and ED(x, x · y).
Consider the following logical derivation

Cont(z, x− y)

⇒CS(z, x− y) (I-M1′)

⇒∀w[INCH (z, w)→ INCH (x− y, w)] (I-D1)

⇒∀w
[
INCH (z, w)→ ∃v[INCH (v, w) ∧ CH (v, x)]

]
(I-M6′)

⇒∀w
[
INCH (z, w)→ ∃v[∃u[CS(u, v) ∧ CH (u,w)] ∧ CH (v, x)]

]
(I-T8)

⇒∀w
[
INCH (z, w)→ ∃u[CS(u, x) ∧ CH (u,w)]

]
(I-M1′,C-A3)

⇒∀w[INCH (z, w)→ INCH (x,w)] (I-PA7′)

⇒CS(z, x) (I-D1)

⇒Cont(z, x) ∨ ZEX(z) (I-M1′)

⇒Cont(z, x)

The last step follows from the first line: Cont(z, x− y) entails ¬ZEX(z).
Then for any z ∈M, if Cont(z, x− y) then Cont(z, x) as desired.

As argued before, the cases (I) to (III) are exhaustive for any pair x, y ∈ M. Hence Dif-A3b is
satisfied.
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(Dif-A3c) x ≤dim y → [P (z, x− y)→ z · y <dim z].
We distinguish three cases.

Case (I): Assume (x− y) ∈ ZEXM.
Then ∀z[¬P(z, x− y)] and thus Dif-A3c trivially holds.

Case (II): Assume (x− y) /∈ ZEXM and ED(x, x · y).
Consider the following logical derivation:

P (z, x− y) ∧ z · y ≮dim z

⇒P (z, x− y) ∧ z · y ≥dim z ∧ Cont(z · y, z) (Int-A2)

⇒P (z, x− y) ∧ z · y =dim z ∧ Cont(z · y, z) ∧ Cont(z · y, y) (CD-A1)

⇒z =dim x− y ∧ Cont(z, x− y) ∧ z · y =dim z ∧ Cont(z · y, z) ∧ Cont(z · y, y) (EP-D)

⇒ED(z, x− y) ∧ CS(z, x− y) ∧ ED(z · y, z) ∧ CS(z · y, z) ∧ CS(z · y, y) (I-M1′,I-M3′)

⇒CH (z, x− y) ∧ CH (z · y, z) ∧ CS(z · y, y) (I-T5)

⇒CH (z, x− y) ∧ ∃w[CH (w, z) ∧ CS(w, y)] (I-D4,I-A7′)

⇒∃w[CH (w, z) ∧ CH (w, x− y) ∧ CS(w, y)] (C-A3)

⇒∃w[CH (w, z) ∧ CH (w, x− y) ∧ CH (w, x) ∧ CS(w, y)] (Dif-A3b)

⇒∃w[CH (w, z) ∧ CH (w, x− y) ∧ CH (w, x · y)] (I-M5′)

⇒∃w[INCH (x− y, w) ∧ CH (w, x) ∧ CH (w, x · y)] (I-D2,I-D4)

⇒∃w[∃v[INCH (v, w) ∧ CH (v, x) ∧ ¬OV (v, x · y)] ∧ CH (w, x) ∧ CH (w, x · y)] (I-M6′)

⇒∃w[∃v[OV (v, w) ∧ CH (v, x) ∧ ¬OV (v, x · y)] ∧ CH (w, x) ∧ CH (w, x · y)] (I-T9)

⇒∃w
[
∃v[∃u[CH (u, v) ∧ CH (u,w)] ∧ CH (v, x) ∧ ¬OV (v, x · y)] ∧ CH (w, x · y)

]
(I-T14)

⇒∃w
[
∃v[CH (v, w) ∧ ¬OV (v, x · y)] ∧ CH (w, x) ∧ CH (w, x · y)

]
(I-T13)

⇒∃w
[
∃v[CH (v, w) ∧ ¬OV (v, x · y)] ∧ ∀v[CH (v, w)→ OV (w, x · y)]

]
(I-D4)

The last line is self-contradictory, hence no entity z ∈M\ZEXM with ED(x, x·y), P(z, x−y)
and z · y≮≮≮dimz can exist. Thus for all z ∈ M \ ZEXM with ED(x, x · y) and P(z, x − y) ,
Dif-A3c must hold.

Case (III): Assume (x− y) /∈ ZEXM and GD(x, x · y).
Consider the following logical derivation:

∃z[P (z, x− y) ∧ z · y ≮dim z]

⇒∃z[P (z, x− y) ∧ z · y =dim z] (Int-A2,CD-A1)

⇒∃z
[
P (z, x− y) ∧ ∃u[P (u, z) ∧ P (u, y)]

]
(Int-A4,PO-D)

⇒∃z
[
P (z, x) ∧ ∃u[P (u, z) ∧ P (u, y)]

]
(x = x− y by I-M6′)

⇒∃u[P (u, x) ∧ P (u, y)] (C-A3,D-T3)

⇒x · y =dim x (Int-T7)

⇒ED(x · y, x) (I-M3′)

Therefore, for arbitrary x, y ∈M with (x− y) /∈ ZEXM and GD(x, x · y) there cannot exist
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a z ∈M such that P(z, x− y) and z · y≮≮≮dimz, because we can then derive a contradiction in
ED(x · y, x). Hence for all z ∈M \ ZEXM with GD(x, x · y) and P(z, x − y), Dif-A3 must
hold.

As argued before, the three cases (I)–(III) are exhaustive for all pairs x, y ∈M.

(Dif-A4) ZEX(x − y) ↔ ZEX(x) ∨ Cont(x, y). We prove the two directions of the biconditional
individually.

Direction (a): ZEX(x− y)→ ZEX(x) ∨ Cont(x, y).
We distinguish two cases:

Case (a.i): Assume ED(x, x · y).
Assume (x− y) ∈ ZEXM and x /∈ ZEXM.
We will show that x · y = x and thus, because fro, ∀x, y[¬ZEXx · y → Cont(x · y, y)]
(Int-A2) we immediately obtain Cont(x, y) because we already have (x · y) /∈ ZEXM
because x /∈ ZEXM and ED(x, x · y)).
To prove x · y = x, it suffices to prove:

CH(x · y, x) ∧CH(x, x · y).

CH(x·y, x) is trivial, considering that x /∈ ZEXM and ED(x, x·y) imply (x·y) /∈ ZEXM,
which in turn implies Cont(x · y, x) by Int-A2. With ED(x, x · y), we obtain CH (x · y, x)
by I-M1′ and I-T5.
To prove CH(x, x · y), we use the definition of CH (I-D4) and prove instead

INCH(x, x · y) ∧ ∀z[OV(z, x)→ OV(z, x · y)].

From CH(x · y, x), which we just proved, we obtain INCH(x, x · y) by I-D2 and I-D4.
Notice that

∀z[CH(z, x)→ OV(z, x · y)]. (8.34.4)

suffices to prove
∀z[OV(z, x)→ OV(z, x · y)] (8.34.5)

by the following logical derivation:

OV (z, x)

⇒∃u[CH (u, z) ∧ CH (u, x)] (I-T14)

⇒∃u[CH (u, z) ∧OV (u, x · y)] (Equation 8.34.4)

⇒OV (z, x · y)] (I-D2,I-A7′)

Finally, consider the following derivation:

ZEX(x− y)

⇒∀w[¬INCH (x− y, w)] (I-A3, I-D6,I-M2′)

⇔∀w¬∃v[INCH (v, w) ∧ CH (v, x) ∧ ¬OV (v, x · y)] (I-M6′)
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⇔∀w, v[INCH (v, w) ∧ CH (v, x)→ OV (v, x · y)]

⇒∀v[CH (v, x)→ OV (v, x · y)] (choose w = v)

Because we assumed (x−y) ∈ ZEXM, CH(z, x)→ OV(z, x ·y)] holds for all z ∈M and
thus Equation 8.34.5 is satisfied for all z ∈ M. Hence CH(x, x · y) and thus x = x · y.
Consequently, we have Cont(x, y) as desired.

Case (a.ii): Assume GD(x, x · y).
Assume (x− y) ∈ ZEXM.
Then the assumption GD(x, x ·y) lets us deduce x−y = x by I-M6′ and thus x ∈ ZEXM
so that the desired sentence is satisfied for any x, y with GD(x, x·y) and (x−y) ∈ ZEXM.

As argued before, the two cases (a.i) and (a.ii) exhaustively cover arbitrary pairs of entities
x, y.

Direction (b): ZEX(x− y)← ZEX(x) ∨ Cont(x, y).
If x ∈ ZEXM, then for all v ∈ M, ¬CH(v, x) by I-T5. Hence, by I-M6′ no w exists such
that INCH(x− y, w), so that (x− y) ∈ ZEXM immediately follows.
If Cont(x, y), then x · y = x and thus ED(x, x · y). Then I-M6′ is equivalent to

∀w[INCH(x− y, w)↔ ∃v[bfINCH (v, w) ∧CH(v, x) ∧ ¬OV(v, x)]

Because CH (v, x) → OV (v, x), we conclude for all w ∈ M, ¬INCH(x − y, w). Hence
(x− y) ∈ ZEXM as desired.

The two direction (a) and (b) together entail Dif-A4.

(Dif-A3a) x ≤dim y → [Cont(z, x) ∧ z · y <dim z → Cont(z, x− y)].
We distinguish the following cases.

Case (I): Assume (x− y) ∈ ZEXM.
By Dif-A4, x ∈ ZEXM or Cont(x, y). If x ∈ ZEXM, then for all z ∈M, ¬Cont(z, x) and
thus Dif-A3a holds trivially.
If Cont(x, y) then Cont(z, x) results in Cont(z, y) and thus z · y = z and z · y≮≮≮dimz. Hence
Dif-A3a holds trivially again.

Case (II): Assume (x− y) /∈ ZEXM and GD(x, x · y).
Then by I-M6′ we have x = x− y and therefore for all z ∈M, Cont(z, x)→ Cont(z, x− y).
Hence Dif-A3a holds in this case.

Case (III): (x− y) /∈ ZEXM and ED(x, x · y).
Assume z to be an arbitrary entity with Cont(z, x) (implying z /∈ ZEXM) and z · y<dimz.
Because of our assumption (x − y) /∈ ZEXM, we have x − y=dimx by Dif-A1. Because
Dif-A3b requires Cont(x− y, x), we can thus assume CH(x− y, x) by I-M1′.
If for all z ∈M, CH(v, x) implies CS(v, x− y), we are done: then CS(x, x− y) by I-T10 and
thus x = x− y, satisfying Dif-A3a trivially.
Now let us suppose there exists a z ∈M such that CH(z, x) and not CS(z, x− y)].
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Consider the following logical derivation:

∃z[CH (z, x) ∧ ¬CS(z, x− y)]

⇔∃z
[
CH (z, x) ∧ ∃w[INCH (z, w) ∧ ¬INCH (x− y, w)]

]
(I-D1)

⇔∃w
[
¬INCH (x− y, w) ∧ ∃z[INCH (z, w) ∧ CH (z, x)]

]
⇔∃w

[
¬∃v[INCH (v, w) ∧ CH (v, x) ∧ ¬OV (v, x · y)] ∧ ∃z[INCH (z, w) ∧ CH (z, x)]

]
(I-M6′)

⇔∃w
[
∀v[INCH (v, w) ∧ CH (v, x)→ OV (v, x · y)] ∧ ∃z[INCH (z, w) ∧ CH (z, x)]

]
⇒∃z[CH (z, x) ∧OV (z, x · y)] (v := z)

⇒∃z[CH (z, x) ∧ INCH (x · y, z)] (I-D2)

⇒∃z
[
CH (z, x) ∧ ∃v[CH (v, z) ∧ CS(v, x · y)]

]
(I-A7′)

⇒∃z
[
CH (z, x) ∧ ∃v[CH (v, z) ∧ CS(v, y)]

]
(I-M5′)

⇒∃z[CH (z, x) ∧ CS(z, y)] (I-T13)

⇒∃z[CH (z, x) ∧ CS(z, z · y)] (I-M5′)

⇒∃z[CH (z, x) ∧ z · y =dim z] (I-M5′)

Hence z · y≮≮≮dimz and thus Dif-A3a is satisfied in this case as well.

As argued before, the cases (I)–(III) are exhaustive for any pair x, y ∈M. Hence Dif-A3a is valid.

Altogether, all of Dif-A1 –Dif-A4 are satisfied in the a model of INCH calculus ∪ {I-E1, I-E2} using the
mappings I-M1′ – I-M6′ and the definitions EP-D, EPP-D, PO-D.

Lemma 8.35. INCH calculus ∪ {I-E1, I-E2} ∪ {I-M1′ – I-M6′} ∪ {EP-D, EPP-D, PO-D} |= {Sum-A1 –
Sum-A4}

Proof. (Sum-A1) x+ y = y + x.
We distinguish three cases.

Case (I): Assume GD(x, y).
Then by I-M4′ we have x+ y = x = y + x.

Case (II): GD(y, x).
Then by I-M4′ we have x+ y = y = y + x.

Case (III): ED(x, y).
Then by I-M4′ we have

∀w[INCH(x+ y, w)↔ INCH(x,w) ∨ INCH(y, w)]

and
∀w[INCH(y + x,w)↔ INCH(y, w) ∨ INCH(x,w)],

so that
∀w[INCH(x+ y, w)↔ INCH(y + x,w)],

and hence x+ y = y + x by I-A1.

The three cases (I) to (III) are clearly exhaustive for arbitrary pairs x, y ∈M.
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(Sum-A2) x <dim y → x+ y = y.
From x <dim y we obtain GD(y, x) by I-M3′ and I-D9. Then by I-M4′ x+ y = y.

(Sum-A3) x ≤dim y ∧ Cont(z, y)→ Cont(z, x+ y).
Assume x≤dimy.
Then either GD(y, x) or ED(x, y) by I-M3′. We consider these two cases separately.

Case (I): Assume GD(y, x).
Then by I-M4′ x+ y = y and thus for all z ∈M, Cont(z, y) implies Cont(z, x+ y).

Case (II): ED(x, y).
Consider the following logical derivation:

ED(x, y)→ ∀w[INCH (x+ y, w)↔ INCH (x,w) ∨ INCH (y, w)] (I-M4′)

⇒ED(x, y)→ ∀w[INCH (y, w)→ INCH (x+ y, w)]

⇒ED(x, y)→ CS(y, x+ y) (I-D1)

⇒ED(x, y)→ ∀w[CS(z, y)→ CS(z, x+ y)] (I-T11)

⇒ED(x, y)→ ∀w[Cont(z, y)→ Cont(z, x+ y)] (I-M1′)

so that Sum-A3 holds when ED(x, y).

The cases (I) and (II) are clearly exhaustive for arbitrary pairs x, y with x ≤dim y.

(Sum-A4) Cont(z, x+ y) ∧ ¬Cont(z, x)→ Cont(z − x, y).
We distinguish three cases.

Case (I): Assume GD(x, y).
Then by I-M4′ we have x+y = x, and thereby for all z ∈M, Cont(z, x+y) implies Cont(z, x)
so that Sum-A4 is trivially satisfied.

Case (II): Assume GD(y, x).
Then by I-M4′ we have x+ y = y.
We prove the contrapositive

¬Cont(z − x, y)→ ¬Cont(z, x+ y) ∨Cont(z, x).

Note that Cont(w, z − x) → Cont(w, z) by Dif-A3b. Hence, if ¬Cont(z − x, y) then
¬Cont(z, y). But by x + y = y this would mean that ¬Cont(z, x + y), thereby satisfy-
ing the contrapositive.

Case (III): Assume ED(x, y).
To prove Sum-A4, let us suppose its consequent is false, that is, we suppose ¬Cont(z − x, y)
for arbitrary x, y, z ∈M with ED(x, y). Recall that by I-D1, I-M1′,

¬Cont(z − x, y)↔ ∃w[INCH (z − x,w) ∧ ¬INCH (y, w)].

We distinguish two subcases.

Subcase (III.a): Assume ED(x, y) and ED(z, z · x).
Assume Cont(z − x, y).
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If (z−x) ∈ ZEXM, then either z ∈ ZEXM or Cont(z, x). In the first case, ¬Cont(z, x+
y) immediately follows by C-A4. Thus, in either case the antecedent of Sum-A4 is falsified,
so that Sum-A4 holds.
Now assume (z − x) /∈ ZEXM and consider the following logical derivation:

¬Cont(z − x, y) ∧ ¬ZEX(z − x)

⇒¬CS(z − x, y) (I-M1′)

⇒∃w[CH (w, z − x) ∧ ¬CS(w, y)] (I-T10)

⇒∃w[CH (w, z − x) ∧ ∃u[INCH (w, u) ∧ ¬INCH (y, u)]] (I-D1)

⇒∃w[CH (w, z − x) ∧ ¬INCH (y, w)] (w := u)

⇒∃w[¬INCH (y, w) ∧ INCH (z − x,w)] (I-D4,I-T9)

⇒∃w
[
¬INCH (y, w) ∧ ∃v[INCH (v, w) ∧ CH (v, z) ∧ ¬OV (v, z · x)]

]
(I-M6′)

⇒∃v[¬INCH (y, v) ∧ CH (v, z) ∧ ¬OV (v, z · x)] (I-D4)

⇒∃v[CH (v, z) ∧ ¬INCH (x, v) ∧ ¬INCH (y, v)] (∗)

⇒∃v[INCH (z, v) ∧ ¬INCH (x, v) ∧ ¬INCH (y, v)] (I-T9)

⇒∃v[INCH (z, v) ∧ ¬INCH (x+ y, v) (I-M4′)

⇒¬CS(z, x+ y) (I-D1)

⇒¬Cont(z, x+ y) (I-M1′)

Where step (∗) follows from:

CH (v, z) ∧ ¬OV (v, z · x)

⇒CH (v, z) ∧ ¬∃u[CH (u, v) ∧ CH (u, z · x)] (I-T14)

⇒CH (v, z) ∧ ¬∃u[CH (u, v) ∧ CH (u, z) ∧ CS(u, x)] (I-M5′)

⇒∀u[CH (u, v)→ ¬CS(u, x)]

⇒¬INCH (x, v) (I-A7′)

Hence Sum-A4 is satisfied in this case.
Subcase (III.b): ED(x, y) and GD(z, z · x).

Consider the following computation:

GD(z, z · x) ∧ ¬Cont(z − x, y)

⇒∀w[CH (w, z)→ ¬INCH (w, x)] ∧ z − x = z ∧ ¬Cont(z − x, y) (I-M5′)

⇒∀w[CH (w, z)→ ¬INCH (w, x)] ∧ ¬CS(z, y) (I-M1′)

⇒∀w[CH (w, z)→ ¬INCH (w, x)] ∧ ∃w[CH (w, z) ∧ ¬INCH (w, y)] (I-T10,ED(x, y))

⇒∃w[CH (w, z) ∧ ¬INCH (w, y) ∧ ¬INCH (w, x)]

⇒∃w[INCH (w, z) ∧ ¬INCH (w, y) ∧ ¬INCH (w, x)] (I-D4,I-T9)

⇒∃w[INCH (z, w) ∧ ¬INCH (y, w) ∧ ¬INCH (x,w)] (I-T9)

⇒∃w[INCH (z, w) ∧ ¬INCH (x+ y, w)] (I-M4′)
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l1
l2

a1

Figure 8.5: A model M of INCH calculus ∪ {I-E1, I-E2} with domain M = {a1, l1, l2, l1 + l2, ze}.
The model can be specified by its extension INCHM = {〈a1, a1〉, 〈a1, l1〉, 〈a1, l1 + l2〉, 〈l1, l1〉, 〈l1, l1 +
l2〉, 〈l2, l2〉, 〈l2, l1 + l2〉, 〈l1 + l2, l1〉, 〈l1 + l2, l2〉, 〈l1 + l2, l1 + l2〉}. With the mappings I-M1′ to I-M6′,
we further have the defined extensions ContM = {〈a1, a1〉, 〈l1, l1〉, 〈l1, l2〉, 〈l2, l2〉, 〈l1 + l2, l1 + l2〉},
ZEXM = {ze}, and (<dim)M = {〈l1, a1〉, 〈l2, a1〉, 〈l1 + l2, a1〉, 〈ze, a1〉, 〈ze, l1〉, 〈ze, l2〉, 〈ze, l1 + l2〉}.

⇒¬CS(z, x+ y) (I-D1)

⇒¬Cont(z, x+ y) (I-M1′)

which falsifies the antecedent of Sum-A4, and hence Sum-A4 is satisfied in this case.

As argued before, (III.a) and (III.b) are exhaustive subcases of Case (III) for any triple x, y, z.

The three cases (I) to (III) are clearly exhaustive for any pair x, y.

However, as it turns out, U-A1 is not provable.

Lemma 8.36. INCH calculus ∪ {I-E1, I-E2} ∪ {I-M1′ – I-M6′} 2 U-A1

Proof. A counterexample is provided in inch/consistency/inch_calculus_extended_notI-E3.clif; it is also
specified in Figure 8.5.

Therefore, we extend the INCH Calculus by an extra axiom I-E3, which guarantees an entity to exist
of which every other is a constituent.

(I-E3) ∃u∀x[CS(u, x)] (an entity exists of which every entity is a constituent)

Axiom Set 8.16: Extension axiom I-E3 of INCH calculus.

This is basically a translation of U-A1 into the nonlogical language of the INCH Calculus. Extending
the INCH Calculus by this extra axiom, we are able to prove U-A1.

Lemma 8.37. INCH calculus ∪ {I-E1 – I-E3} ∪ {I-M1′ – I-M6′} � U-A1

Proof. Consider the following logical derivation:

∃u∀x[CS(x, u)] (I-E3)

⇒∃u∀x[¬ZEX(x)→ Cont(x, u)] (I-M1′)

where the last line is U-A1.

Summarily, Corollary 8.5 together with the Lemmas 8.29 to 8.37 show that all axioms of CODI l are
consequences of INCH calculus ∪ {I-E1-I-E3} when we use I-M1′ – I-M6 as mapping axioms. The following
corollary captures this.
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Corollary 8.6. INCH calculus ∪ {I-E1-I-E3} ∪ {I-M1′ – I-M6′} ∪ {EP-D, EPP-D, PO-D} � CODI l

To show that the theories CODI l ∪ C-E4 and INCH calculus ∪ {I-E1 – I-E3} are definably equivalent,
two final steps remain. First, we must prove C-E4 from INCH calculus ∪ {I-E1 – I-E3} and, second, we
must show that the axioms I-E1 to I-E3 are consequences of CODI l ∪ C-E4 together with the mapping
axioms. Only then we know that we do not have introduced restrictions that are not provable in CODI l.

Lemma 8.38. INCH calculus ∪ {I-E1 – I-E3} ∪ {I-M1′ – I-M6′} ∪ {EP-D, EPP-D, PO-D} � C-E4

Proof. Consider the following computation:

GED(y, x)→ ZEX I(x) ∨ ∃z[INCH (y, z) ∧ INCH (z, x)] (I-D7)

⇒GED(y, x)→ ZEX(x) ∨ ∃z[INCH (y, z) ∧ INCH (z, x)] (I-M2′)

⇒GED(y, x)→ ZEX(x) ∨ ∃z
[
∃w[CS(w, y) ∧ CH (w, z)] ∧ ∃v[CS(v, z) ∧ CH (v, x)]

]
(I-A7′)

⇒x ≤dim y → ZEX(x) ∨ ∃z
[
∃w[CS(w, y) ∧ CH (w, z)] ∧ ∃v[CS(v, z) ∧ CH (v, x)]

]
(I-M3′)

⇒x ≤dim y →
[
ZEX(x) ∨ ∃z, v, w[P (v, x) ∧ Cont(v, z) ∧ P (w, z) ∧ Cont(w, y)]

]
(I-M1′,EP-D)

This proves C-E4.

Lemma 8.39. CODI l ∪ C-E4 ∪ {I-D1 – I-D9, I-M1 – I-M10} � {I-E1 – I-E3}

Proof. (I-E1): ∃x[¬ZEX I(x) ∧ ∀y(¬ZEX(y)→ GED(y, x))].
Already proved in Lemma 8.18.

(I-E2): CO(x, y) → ∃z
[
CS(z, x) ∧ CS(z, y) ∧ ∀w[CS(w, x) ∧ CS(w, y) → GED(z, w)] ∧ ∀w[CS(w, x) ∧

CS(w, y) ∧ ED(w, z)→ CS(w, z)]
]
.

By the following axioms and theorems

• I-M1 to I-M10 (the mapping axioms),

• Int-A1: C(x, y)→ ¬ZEX(x · y), and

• I-T6: ZEX I(x)→ CS(x, y),

I-E2 is equivalent to (note that I-A2 requires z /∈ ZEXM):

C(x, y)→ ∃z
[
Cont(z, x) ∧ Cont(z, y) ∧ ∀w[Cont(w, x) ∧ Cont(w, y)→ w ≤dim z] ∧

∀w[Cont(w, x) ∧ Cont(w, y) ∧ w =dim z → Cont(w, z)]
]

which is always satisfied for the choice z := x · y because

• Cont(x · y, x) and Cont(x · y, y) by Int-A2,

• ∀w[Cont(w, x) ∧ Cont(w, y)→ w ≤dim x · y] by Int-A3, and

• ∀w[Cont(w, x) ∧ Cont(w, y) ∧ w =dim z → Cont(w, x · y)] by Int-A4.

(I-E3): ∃u∀x[¬ZEX I(x)→ INCH (u, x)].
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Consider the following computation:

∃u∀x[¬ZEX(x)→ Cont(x, u)] (U-A1)

⇒∃u∀x[¬ZEX I(x)→ CS(x, u)] (I-M1, I-M2)

⇒∃u∀x[CS(x, u)] (I-T6)

This proves I-E3.

8.2.6 Summary

As a result of the proofs in this section, particularly in Subsections 8.2.4 and 8.2.5, it follows that
CODI l ∪ C-E4 and INCH calculus∪ {I-E1 – I-E3} are definably equivalent spatial theories.

Theorem 8.3. CODI l ∪ C-E4 and INCH calculus∪ {I-E1 – I-E3} are definably equivalent.

Proof. Immediate from Corollaries 8.4 and 8.6 together with Lemmas 8.38 and 8.39.

This theorem maps a slightly extended version of the INCH Calculus to a theory in the CODI hi-
erarchy. Though neither CODI l definably interprets INCH calculus nor INCH calculus definably interprets
CODI l, the two theories are still closely related. Theorem 8.3 shows that CODI l and INCH calculus only
differ in the following ontological assumptions:

• CODI l does not assume C-E4, which is an assumption of INCH calculus. In other words, in models
of CODI l two entities may be dimensionally comparable without sharing a common entity. This
has deeper consequences, in particular every model of the INCH Calculus must consist of a single
connected component in the sense that all entities are indirectly connected.

• INCH calculus does not assume I-E1. In other words, models of INCH calculus may not contain a
nonzero entity of lowest dimension. This is enforced by D-A6 in CODI l.

• INCH calculus does not assume I-E2. That is, models of INCH calculus may not be closed under
intersections. This is particularly the case when the intersection would be of a lower dimension
than both of the intersecting entities. In other words, two entities in a model of INCH calculus may
have a zero intersection even though they are in superficial contact, i.e., they share a common
lower-dimensional entity.

• INCH calculus does not assume I-E3, i.e., in a model of INCH calculus there may not exist an entity
of which all other entities are constituents of.

Nevertheless, our result integrates the INCH Calculus into the CODI hierarchy. It shows that the
theory INCH calculus is definable using only the primitive relations Cont, <, and ZEX from CODI . The
relationship between INCH original, INCH calculus, and the CODI hierarchy is illustrated in Figure 8.6.

The integration greatly enhances our understanding of two theories. In our particular case, the
integration helped to identify restrictions and shortcomings of the INCH Calculus. Particularly, proving
the interpretation helped to discover the problem of the missing axiom I-A7′ and helped to identify that
the INCH Calculus lacks the guarantee that a nonzero entity of minimal dimension exists (I-E1). I-E1
should probably be added to the INCH Calculus since it is difficult to conceive intended models in which
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CODI
hierarchy

+ C-E4+ I-E1,
   I-E2, 
   I-E3

+ I-A7'

+ D-A6

+ Int-A1 - Int-A4,
   Dif-A1 - Dif-A4

+ Sum-A1 - Sum-A4,
   U-A1

definably
interpreted in 

definably
equivalent

Figure 8.6: The relationship of the original INCH Calculus and the corrected INCH Calculus to the
CODI hierarchy.

I-E1 would not hold. But this is a ontological problem, not a logical problem. Equally, whether or not to
add I-E2 and I-E3 is a matter of ontological choice and the particular domain of interest. On the other
side, C-E4 is an inherent limitation of the INCH Calculus, if we do not want to make this ontological
assumption, we cannot use INCH Calculus as our theory of choice.

From a methodological point of view, this section has demonstrated that establishing relative inter-
pretability between two theories can be extremely insightful even if the relationship between two theories
(or a theory and a hierarchy of theories as in our case) is not a relative interpretation in either direc-
tion. By extending either of the two theories by axioms that are not provable in the theory itself, but
whose translations are theorems of the other theory, we identified the differences between the two theo-
ries. As result, we identified nonconservative extensions of INCH original and of CODI that are definably
equivalent. The structure of the section emphasizes that such an integration of two theories in different
languages (or a theory and a hierarchy) requires an interactive approach and is usually not achieved in
one shot. We started by proving axioms of CODI from the INCH Calculus in Section 8.2.3. The ones
that were not provable required us to introduce an extension to INCH calculus, namely I-E1. Then in
Section 8.2.4 we proved the axioms of INCH calculus as well as I-E1 from CODI , which required us to
introduce C-E4. Finally, though most of the axioms of CODI l were provable from INCH calculus ∪ I-E1,
we still needed to introduce I-E2 and I-E3 to prove all axioms of CODI l (Section 8.2.5). To complete
the proof of definable equivalence, we had to ensure that the extensions I-E1 – I-E3 were indeed provable
in CODI l.

This section corrects and extends the result from [HG11a; HG11b] in various ways. Firstly, it shows
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that the interpretation as stated in [HG11a; HG11b] is not a faithful interpretation since there exist
sentences whose translations are consistent with INCH original but which contradict D-A6 in CODI 0. For
this reason we have introduced I-E1.

Secondly, it became clear that the original mapping axioms I-M1 to I-M10 were used too liberally
in [HG11a; HG11b]: they nonconservatively extend CODI 0. In other words, we only proved the in-
terpretability of a nonconservative extension of CODI 0 in terms of the theory INCH original (which has
been called INCH calculus in [HG11a; HG11b]). In this sense, the original result in [HG11a; HG11b]) is
not wrong, but less meaningful because we did not make explicit which extension of CODI 0 definable
interpretability had been proved for, because the extra axiom was hidden within the mapping axioms.
Now, we have made the additional axiom explicit in the form of C-E4.

Finally, we significantly strengthen our original result [HG11a; HG11b]) by proving the interpret-
ability of a theory in the language of CODI instead of maintaining I-A1, I-A2, and I-A8 to I-A10 as
extensions axioms. Now, it is clear that those axioms are reflected in the axioms that extend CODI 0 to
CODI l.



Chapter 9

Boundaries in multidimensional
mereotopological space

Boundaries are a key concept within topology and mereotopology. All the different conceptions and
aspects of boundaries, borders, and surfaces comprise a far too broad topic to be covered satisfactorily
in a single chapter. Instead, this chapter continues our investigation of qualitative space in the spirit of
the previous chapters by concentrating on boundaries as they occur in abstract space.

As we discussed before, the concept of a boundary is not definable in the language of CODI . More
precisely, the relation ΣMF1 ⊆ ∆MF2 that is definable in every intended structure is not definable in
CODI . Hence, we must extend the nonlogical language. For that purpose, we introduce a primitive
notion of boundary-containment, BCont(x, y), that refines the containment relation and has the intended
interpretation ΣMF1 ⊆ ∆MF2 where MF1 and MF2 are the manifolds captured by x and y, respectively.
This constructs the new hierarchy CODIB. In the CODIB hierarchy, the primitive relation BCont will
enable us to capture condition (3) of the definition of our class of intended structuresM (Definition 5.11)
more adequately. For this to work as desired, we must restrict the class of intended structures M by an
extra condition on the dimension ordering, resulting in the class Mdense in Section 9.1.

We will show that two prevalent conceptions of boundaries in abstract space, namely (1) bodiless, thin
boundaries and (2) bulky, thick boundary regions can be modelled in the CODIB theories. Intriguingly,
both boundary conceptions can coexist in a single theory—we do not have to choose one over the other.
We will start in Section 9.3 by defining thin boundaries, i.e., boundaries that are of a lower dimension
than the entities that are bounded by them, and later proceed to thick boundaries, i.e., boundaries of the
same dimension as the entities that they bound, in Section 9.4. among other uses, thick boundaries are
suited to capture the abstract space regions occupied by physical (material) surfaces, independent of their
granularity. Along the way we define interior and tangential containment and interior and tangential
parthood, which are exhaustive and disjoint subrelations of containment and parthood, respectively,
as we will show in Sections 9.3.4 and 9.4.1. boundary-containment and boundary parthood are then
subsumed by tangential containment or parthood, respectively.

One of the key results of this chapter is the satisfiability proof for CODIB↓ (Theorem 9.2), which
shows that every model in the classMdense is not only a model of the theory CODI ↓, but also satisfies all
axioms pertaining to the primitive notion of boundary-containment. The class Mdense is introduced in
Section 9.1 as a minor restriction of the class of intended structures, M, from Chapter 5. This restriction

204
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lets us also define the notion of ‘internal self-connectedness’, an essential concept in the axiomatization
of boundaries that refines self-connectedness as axiomatized earlier, in Section 9.2.

In Section 9.5 we define refinements of contact based on whether the interior or boundary of an entity
is in contact to the interior or boundary of a second entity. The set of four resulting relations IO, IBC ,
IBC−1, and BO exhaustively classify contact (Theorem 9.4), though their extensions are not necessarily
disjoint. The chapter finishes with a proof (Theorem 9.5) that those four relations together with another
five defined relations that express whether an entity’s interior, boundary, or exterior overlaps the second
entity’s exterior and vice versa are capable of defining the manifold-equivalents of the nine topological
intersections proposed by Egenhofer et al. [Ege89; Ege91; EF91; EH91].

To place our work in context, some words about how bodiless and bulky boundaries in abstract space
can be used to capture the space occupied by material boundaries that reside in our conceptualization
in physical space. In abstract space, we can simultaneously have bodiless and bulky boundaries as
spatial entities of different dimensions. All purely fiat boundaries, i.e., boundaries that do not describe
a physical discontinuity, seem to reside only in abstract space because of their artificial nature1. Once
we link physical space to its underlying abstract space, we can also talk about physical, i.e., bona-fide
boundaries. For example, material surfaces are probably best modelled as occupying regions of the same
dimension as the bounded physical object. In other words, the abstract regions of physical boundaries
are bulky. But at the same time, we can talk about physical interfaces: their underlying abstract regions
are bodiless. Our distinction between abstract and physical space allows bodiless boundaries of touching
or adjacent objects to coincide: we can have bodiless boundaries of two distinct physical objects that
happen to occupy some shared region of space. Thus, the two competing notions of boundaries are
compatible and not mutually inconsistent. If we talk about the space physical objects occupy, then their
physical boundaries require boundaries in the underlying abstract model of space to exist, but not all
abstract spatial boundaries coincide with some physical boundaries. In Chapter 11 we will present a
theory that relates physical to abstract space. Though we will not explicitly model boundaries in the
physical space, it is possible to do so by using the abstract boundaries introduced in the present chapter.

9.1 A restriction of the intended structures

The logical theories we propose in this chapter are based on an additional constraint being imposed upon
the class of intended models Mm, namely that there exists a composite manifold of every dimension
0 ≤ n ≤ m. We define the restricted class of intended structures Mdense as follows.

Definition 9.1. Let Mm be a complex m-manifold. We say Mm has a dense dimension ordering and
write Mm

dense if and only if for all n with n ≤ m there exists a manifold MFn ∈Mm.
The class of all complex manifolds with a dense dimension ordering is denoted as Mdense.

This restricts the interpretation of the relation of relative dimension <dim more than previously in
1We rely on the distinction between fiat and bona-fide boundaries introduced by Smith and Varzi [Smi95; SV97; SV00].

In their characterization, fiat boundaries depend on a cognitive act whereas bona-fide exist in material space independently
of any cognitive act. Usually, fiat boundaries are induced and agreed upon by laws or social norms. Fiat boundaries may
still coincide with a bona-fide boundary. In fact, often a bona-fide boundary is specifically erected to make a fiat boundary
physical. For example, countries mark their borders or chose to build a fence to demarcate their terrestrial borders and to
discourage people from illegally crossing. Then the fiat boundary that demarcates two countries spatially coincides with a
physical boundary created by the fence. This is the same as a country boundary coinciding with a river. Other times, fiat
boundaries, such as between countries, may not be physically visible, but only enforced through border patrols. We call
such a boundary fiat even though crossing it may have physical consequences.
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M and in the models of CODI . The restriction shall ensure that the relation ≺dim is interpreted as

〈d1, d2〉 ∈ (≺dim)M ⇐⇒ dim(d1) + 1 = dim(d2) (Prec-CODIB)

for all atomic or composite manifolds d1, d2 ∈M. Within CODI we previously used the following weaker
interpretation (compare Theorem 7.4 and Definition D-D6) of ≺dim, which is implied by the intended
interpretation of <dim and the subsequent logical definition of ≺dim.

〈d1, d2〉 ∈ (≺dim)M ⇐⇒ dim(d1) < dim(d2) and no d3 ∈M exists

such that
(

dim(d1) < dim(d3) < dim(d2)
)

(Prec-CODI)

This restriction cannot be expressed axiomatically in CODI itself, i.e., any model of CODI may
be interpreted in this way, but may also be interpreted differently. However, many of the axioms and
definitions we will introduce in this chapter only apply to models that satisfy the restricted interpretation
of ≺dim from (Prec-CODIB). In other words, a model of CODI that has only interpretations that violate
(Prec-CODIB) may not be extensible to a model of the theory CODIB presented in this chapter. This
does not mean, all models of CODIB can only be interpreted in ways that satisfy (Prec-CODIB). In
particular, the axiom BC-A3 is not valid for models which do not satisfy the interpretation (Prec-
CODIB).

Such a restricted reading of ≺dim allows us to define a—previously undefinable—refined notion of
self-connectedness. For completeness, we will introduce this notion at this point, even though it departs
from the main objective of this chapter. It will become extremely useful later in the chapter.

9.2 Internal self-connectedness

We already defined a simple notion of self-connectedness, Con, in CODI↓ on page 127. Once we restrict
the class of intended structures to those that contain an entity of each dimension, we can define a
stronger notion of self-connectedness called internal self-connectedness [CV03], ICon(x), meaning the
interior of x is a single piece. This relation is also known as ‘strong self-connectedness’ SSC (x) in
equidimensional mereotopologies [compare BGM96; CV99a; CR08]. We say a connected entity x is
internally self-connected if the intersection between every proper part y of x and the difference x− y is
of exactly one dimension lower than x itself (ICon-D). For this definition to work as expected we require
(Prec-CODIB) to assure that the next-lowest dimension is actually the next lowest Euclidean dimension
as expressed by ≺dim.

For completeness, we also define a notion called uniform self-connectedness, which is a different
strengthening of self-connectedness. A self-connected entity x is uniformly self-connected if all entities
z in the intersection of a proper part y of x and the difference x− y are contained in the intersection of
highest dimension y · (x− y) (UCon-D). See Figure 9.1 for examples and counterexamples for the three
different notions of self-connectedness.

Just as every minimal entity and the zero entity are self-connected, they are also internally self-
connected and uniformly self-connected. This follows directly from ICon and UCon specializing Con.
ICon and UCon are neither exhaustive nor disjoint subrelations of Con.

Because minimal entities have no proper parts, they are trivially internally and uniformly self-con-
nected. This matches our understanding that those correspond to m-manifolds with boundaries, which
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(ICon-D) ICon(x)↔ Con(x) ∧ ∀y[PP (y, x)→ y · (x− y) ≺dim x] (internal self-connectedness)
(UCon-D) UCon(x)↔ Con(x) ∧ ∀y, z[PP (y, x) ∧ Cont(z, y) ∧ Cont(z, x− y)→ Cont(z, y · (x− y))]

(uniform self-connectedness)

Axiom Set 9.1: Definitions ICon-D and UCon-D of the CODI hierarchy.

intuitively must be internally and uniformly self-connected, in the intended class of structures Mdense.

(ICon-T1) Min(x) ∨ ZEX(x)→ ICon(x) (minimal and zero entities are internally self-connected)

(UCon-T1) Min(x) ∨ ZEX(x)→ UCon(x) (minimal and zero entities are uniformly self-connected)

Lemma 9.1. CODI↓ ∪ {Con-D, ICon-D, UCon-D} � {ICon-T1, UCon-T1}

Often, we want to assume that the universal entity—if it exists as in the extension CODI l with
{Con-D, ICon-D, UCon-D}—to be internally self-connected (ICon-E1).

(ICon-E1) ICon(u) (the universal region must be internally self-connected)

Axiom Set 9.2: Extension axiom ICon-E1 of the theory CODI l.

Later in Chapter 11, we often need to express that the sum of two complementary parts is in-
ternally self-connected without directly referring to the sum, which may not always exist as such. To
accommodate this need, we explicitly define a binary predicate called strongly connected—or abbreviated
s-connected—CS(x, y), to capture this case. Instead of relying on the sum, we define s-connectedness
analogous to ICon-D. Two entities are s-connected, CS(x, y), if they are superficially connected and share
an entity z of the next-lower dimension than x and y, i.e., z ≺dim, x, y (CS-D). Observe that only entities
x and y of equal dimension can be s-connected. For example, two 3D bodies are s-connected if they
touch in a 2D surface, but not if they only touch in a line segment or in points.

In the presence of CS-D, we can rewrite the definition of internal self-connectedness (ICon-D) to
resemble the definition of self-connectedness (Con-D) by using s-connection CS instead of general con-
nection C.

(ICon-T2) ICon(x)↔ Con(x) ∧ ∀y[PP (y, x)→ CS(y, x− y)]

(alternative definition of internal self-connectedness)

(b) (c)(a) (d)

Figure 9.1: Examples of the different kinds of self-connectedness: (a) is not self-connected, (b) is in-
ternally but not uniformly self-connected, (c) is uniformly but not internally self-connected, and (d) is
internally and uniformly self-connected.
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(CS-D) CS(x, y)↔ SC (x, y) ∧ x =dim y ∧ x · y ≺dim x (s-connectedness)

Axiom Set 9.3: Definition CS-D of the CODI hierarchy.

We obtain the definitional module

CON = {Con-D, ICon-D, UCon-D, CS-D},

which serves as a definitional extension of CODI ↓ and any extension thereof. We will include those
definitions in all theories of the CODIB hierarchy we are about to define in this chapter.

After this brief detour, we will now return to the main pursuit of this chapter.

9.3 Lower-dimensional boundaries

First we will capture so-called abstract, i.e., ‘bodiless’ spatial boundaries that are of a lower dimension
than the entities they bound. For this reason we also call those abstract boundaries ‘thin’ boundaries.
In the subsequent section, we show how abstract boundaries can be used to define ‘bulky’—or ‘thick’—
boundaries that are of the same dimension as the entities they bound.

9.3.1 Boundary-containment

It is widely agreed upon that boundaries are ‘dependent’ entities in the sense that they cannot exist
without their respective host, compare e.g., [Mas+03; Str88; Var08]. However, we can think of at least
two different dependencies. The first one is dependency upon a single host; both abstract space and
physical space allow such an interpretation. But abstract space also allows an interpretation in which
a boundary is dependent upon two spatial regions meeting in a common boundary (what Stroll calls
the ‘interface’ interpretation, compare [Str88]). We capture the dependency upon a single host, but
have to be aware of its limitations. Effectively, we can only axiomatize to the extent of the second
interpretation in that we rely on two entities meeting at a boundary. In other words, we have no way to
conclusively state whether a lower-dimensional entity that is contained only in a single entity is in that
entity’s boundary or not unless we are explicitly told so. We may miss some entities that naturally make
up the boundary of an entity, in particular ‘outer’ boundaries such as the border of a map. Consider
the map in Figure 9.2 showing part of the eastern United States: From this map alone we do not know
whether the Appalachians stretch beyond the boundaries of the United States. Likewise, for any isolated
spatial entity, we cannot say with certainty whether a lower-dimensional contained entity is contained
in its boundary or not, that is, we have no way of knowing whether it represents a closed or a bounded
manifold.

We introduce the primitive relation of boundary-containment BCont(x, y), a specialization at the
intersection of containment Cont(x, y) and incidence Inc(x, y), to express that ‘x is contained in the
boundary of y’. While x must be of a lower dimension than y, we do not require that it is necessarily of
the next lowest dimension. Consistent with the meaning of the Cont relation, x can be of any dimension
lower than y. The intended meaning of BCont is not definable in the theory CODI↓—as mentioned
earlier and demonstrated in Figures 9.3 and 9.4. Because CODI ′↓ and CODI l do not introduce new
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Figure 9.2: A map showing part of the east coast of the United States, including the Appalachians.
From this map, we do not know whether the entire Appalachians are shown and whether part of the
boundary of the United States coincides with the boundary of the Appalachians.
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Figure 9.3: Four 3D spatial configurations in the class of intended structures whose representations
are equivalent models of CODI ′↓, i.e., CODI ′↓ and thus CODI ↓ cannot distinguish those spatial con-
figurations. But the four are not equivalent in CODIB↓ (CODI ↓ extended by an axiomatization
of an additional primitive relation of boundary-containment), that is, they are distinct models of
CODIB↓. They differ in their extensions of BCont: in the left model neither 〈l2, a1〉 ∈ BContM
nor 〈l2, a2〉 ∈ BContM, in the two models in the middle exactly one of them holds, and in the right
model 〈l2, a1〉, 〈l2, a2〉 ∈ BContM.

primitive relations over CODI ↓, neither of them can satisfactorily define boundary-containment. For
the purposes of distinguishing whether entities share interior or boundary points, we temporally work
with CODI ↓; later we reintroduce Sum′-A0 to Sum′-A5 and supplement the axioms for the ternary sum
relation that force sums for entities that only share boundary points. This will allow us to logically
capture the composite manifold resulting from the sum of two composite manifolds whose constituent
manifolds only overlap in boundaries.

The five axioms BC-A1 –BC-A5 constrain the relation BCont and its interaction with all other
relations previously introduced in CODI . First, boundary-containment specializes containment and
incidence (BC-A1). Boundary-contained entities are guaranteed to exist in x when two entities x and
y are in superficial contact and x has a “local” codimension of zero and is minimal (BC-A2). x has a
local codimension of zero if and only of x y are both contained in a common entity v that is of the same
dimension as x. The common entity v is the local space of interest. For example, a 1D minimal line
segment l and a 2D area a that are in superficial contact and that are both contained in some greater 2D
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Figure 9.4: Three 2D spatial configurations in the class Mdense whose corresponding models in CODI ′↓
are equivalent. Recall that the intended structures only allow manifolds in a composite manifold to
share boundaries. So if a3 is the composite manifold composed of a1 and a2, l1 must be contained in
the boundary of both a1 and a2 and l1 cannot be contained in the boundary of a3. Equally, p1 must be
both in the boundary of a1 and a2, while it may or may not be in the boundary of a3. This problem
cannot be avoided as long as we define boundaries as separating two entities: since a3 is the universal
entity, it has no complement because it is not contained in anything larger. This problem causes also
uncertainty about l2: it may or may not be in the boundary of a2.

(BC-A1) BCont(x, y)→ Cont(x, y) ∧ Inc(x, y)
(boundary-containment as special kind of containment and incidence)

(BC-A2) SC (x, y) ∧Min(x) ∧ Cont(z, x) ∧ Cont(z, y) ∧ P (x, v) ∧ Cont(y, v)→ BCont(z, x)
(if x is a minimal entity and z is contained in the superficially connected entities x and y that are
embedded in an entity v of the dimension of x, that is x has locally a codimension of zero, then z
is contained in the boundary of x)

(BC-A3) SC (x, y) ∧ P (x, v) ∧ P (y, v) ∧ Cont(z, x) ∧ Cont(z, y) ∧ z ≺dim v → ¬BCont(z, v)
(any z contained in two superficially connected parts x and y of v that is of

the next-lowest dimension of v is not in the boundary of v)
(BC-A4) BCont(x, y) ∧ P (y, z) ∧ ∀v, w[P (v, z) ∧ ¬PO(v, y) ∧ P (w, x)→ ¬Cont(w, v)]→ BCont(x, z)

(if x is boundary-contained in y, y is a part of z, and every part w of x cannot be contained
in some part v of z that does not partially overlap y, then x is also boundary-contained in z)

(BC-A5) BCont(x, y) ∧ Cont(z, x)→ BCont(z, y) (BCont transitive with respect to Cont)

Axiom Set 9.4: Axioms BC-A1 –BC-A5 of the theory CODIB.

area requires the line segment l to touch the area a in its boundary. Note that in this example, the line
segment may be touched by the area in its boundary (the endpoints of the line segment) or in its interior
because the line segment can never have a local codimension of zero with respect to an area. As another
example, two 2D areas in superficial contact share a boundary if they are contained in a (greater) 2D
area (such as a plane) or if the entire space is 2D (then the entire space serves as local reference). But
if the two 2D areas are only contained in a common 3D entity, we cannot say whether their boundaries
are in contact or not—they could be connected in their interiors instead. For example, two half spheres
(spheres removed of their northern hemisphere) may touch each other at their south poles only. BC-A2
does not apply to nonminimal entities as demonstrated by the example in Figure 9.5.

BC-A3 captures when something is definitely not contained in the boundary of v: any internal
boundary shared by superficially connected parts of x and y of the next-lower dimension than v cannot
be in the boundary of v, compare Figure 9.6. This axiom implicitly captures the restriction of the
intended models of M to Mdense. In a model in the class (M \ Mdense) BC-A3 does not hold. Also,
BC-A3 may not hold for physical boundaries: a physical material object may have nonoverlapping parts
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Figure 9.5: Example demonstrating that we cannot omit the requirement Min(x) in the antecedent of BC-
A2. In this configuration we have 〈l1+l2, l3〉 ∈ BContM, 〈l1+l2, l1+l2+l3〉 ∈ PM, 〈p, l1+l2〉, 〈p, l3〉 ∈
ContM, but 〈p, l1 + l2〉 /∈ BContM. This is because (l1 + l2) /∈MinM.
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Figure 9.6: Spatial configurations that justify BC-A3. (a) illustrates why an internal boundary of x+ y
of next-lowest dimension cannot be contained in the boundary of v, while (b) gives an example why
anything of even lower dimension (no matter whether it superficially connects x and y) may still be
contained in the boundary of v.

that are sharing a boundary that is an ‘internal boundary’ or a fissure or crack, compare Section 11.3.
BC-A4 states when an x boundary-contained in a part y of z is boundary-contained in z: when a

part w of x is contained in a part v of z that does not overlap y.
BC-A5 ensures that boundary-containment is transitive with respect to containment: any z contained

in some x, the latter being boundary-contained in y, is itself boundary-contained in y.
The extension of CODI by the axioms BC-A1 –BC-A5 ensures that every y that is boundary-con-

tained in x is of a lower dimension than x and that BCont specializes Cont (BC-T1). Irreflexivity
(BC-T2) and asymmetry (BC-T3) of BCont are also provable.

(BC-T1) BCont(x, y)→ Cont(x, y) ∧ x <dim y

(BCont requires the contained entity to be a lower dimension than the container; ‘thin’ boundary)

(BC-T2) ¬BCont(x, x) (BCont irreflexive)

(BC-T3) BCont(x, y)→ ¬BCont(y, x) (BCont asymmetric)

Lemma 9.2. CODI ∪ {BC-A1 –BC-A5} � {BC-T1 –BC-T3}

Proof. To prove BC-T1 assume BCont(x, y) for some x, y ∈M.
By BC-A1 we obtain Cont(x, y) and Inc(x, y), the former requiring x≤dimy (CD-A1) and the latter
implying x<dimy or y<dimx (Inc-T4). Hence, we must have x<dimy.

BC-T2 and BC-T3 follow directly from x<dimy and the respective properties of <dim (D’-A1, D’-A2).
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In the presence of U-A1, BC-A2 also yields the property BC-T4.

(BC-T4) SC (x, y) ∧Min(x) ∧MaxDim(x) ∧ Cont(z, x) ∧ Cont(z, y)→ BCont(z, x)

(anything contained in two superficially connected entities x and y with x being of codimension zero,
i.e., x being of maximal dimension, is in the boundary of x)

Lemma 9.3. CODI ∪ {BC-A1 –BC-A5} ∪ U-A1 � BC-T4

Proof. Consider the following computation:

SC (x, y) ∧Min(x) ∧MaxDim(x) ∧ Cont(z, x) ∧ Cont(z, y)

→SC (x, y) ∧Min(x) ∧ Cont(z, x) ∧ Cont(z, y) ∧ ¬ZEX(x) ∧ ¬ZEX(y) (C-A4)

→SC (x, y) ∧Min(x) ∧ Cont(z, x) ∧ Cont(z, y) ∧ Cont(x, u) ∧ Cont(y,u) U-A1

→SC (x, y) ∧Min(x) ∧ Cont(z, x) ∧ Cont(z, y) ∧ P (x, u) ∧ Cont(y,u) EP-D

→BCont(z, x) (BC-A2)

Further properties, such as BCont being closed under intersections, differences, and sums also directly
follow from BC-A1 –BC-A5, but are of lesser importance here.

Next, we want to distinguish bounded entities, i.e., those that have some entities contained in their
boundary, from closed entities (CL-D), i.e., those that do not have entities in their boundary2, as defined
for m-manifolds in Section 5.2. For example, a sphere (the surface of a ball) is closed, but also a plane,
which extends into the infinite, is called closed.

(CL-D) Closed(x)↔ ∀y[¬BCont(y, x)] (a closed entity has nothing in its boundary)

Axiom Set 9.5: Definition CL-D of the theory CODIB.

We define the theory CODIB = CODI ∪ {BC-A1 –BC-A5, CL-D, ICon-D, UCon-D}. In CODIB we
can prove that all entities of minimal dimension are closed manifolds (BC-T5) and thus cannot boundary-
contain any entities. This matches the understanding that 0-manifolds (points) have an empty manifold
boundary and are therefore closed (compare Definition 5.4).

(BC-T5) MinDim(x)→ Closed(x) (entities of minimal dimensions are closed)

Lemma 9.4. CODIB � BC-T5

Proof. Assume x ∈M such that x ∈MinDimM.
Then no y ∈M exists such that y<dimx and thus by BC-T1, no y ∈M exists such that BCont(y, x).
Hence x ∈ ClosedM.

2Note that this is the manifold notion of ‘closed’, not the topological notion of ‘closed’.
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9.3.2 Interior containment

Now we can state when an entity contains another in its boundary. It is only logical to also want to
express that an entity contains another in its interior. Note that Cont(x, y) without BCont(x, y) does
not necessarily mean x is contained in the interior of y: it may be partly in the boundary of y and partly
in the interior of y. We define interior containment, ICont(x, y), meaning that ‘x is entirely contained
in the interior of y’ in the theory CODIB as ‘nothing contained in x is contained in the boundary of y’
(IC-D).

(IC-D) ICont(x, y)↔ Cont(x, y) ∧ ∀z[Cont(z, x)→ ¬BCont(z, y)] (interior containment)

Axiom Set 9.6: Definition IC-D of the theory CODIB.

Interior containment is the multidimensional equivalent of nontangential parthood NTPP in equidi-
mensional mereotopology as defined, e.g., through nontangential proper parthood, NTPP, for the RCC
in Section 8.1.1.

The following properties are provable for interior containment. First, interior containment specializes
containment (IC-T1). Moreover, interior and boundary-containment are disjoint, that is, nothing can be
contained both in the interior and the boundary (IC-T2). A closed entity has nothing in its boundary
and hence any entity contained in a closed entity must be contained in its interior (IC-T3), in particular,
ICont is reflexive for closed entities (IC-T4). For bounded entities, ICont is antireflexive (IC-T5).
Finally, Cont is monotone with respect to ICont (IC-T6): some x contained in y is contained in the
interior of z if y is contained in the interior of z.

(IC-T1) ICont(x, y)→ Cont(x, y) (ICont specializes Cont)

(IC-T2) ¬ICont(x, y) ∨ ¬BCont(x, y) (ICont and BCont disjoint)

(IC-T3) Closed(x) ∧ Cont(y, x)→ ICont(y, x)

(everything contained in a closed entity is contained in its interior)

(IC-T4) Closed(x) ∧ ¬ZEX(x)→ ICont(x, x) (ICont reflexive for closed entities)

(IC-T5) ¬Closed(x)→ ¬ICont(x, x) (ICont antireflexive for non-closed entities)

(IC-T6) Cont(x, y) ∧ ICont(y, z)→ ICont(x, z) (Cont transitive with respect to ICont)

Lemma 9.5. CODIB ∪ {IC-D} � {IC-T1 – IC-T6}

9.3.3 Tangential containment

When x is contained in y, but neither entirely contained in the interior of y nor entirely contained in
the boundary of y, then we say x is tangentially contained in y. TC-D defines TCont(x, y) meaning ‘x
is tangentially contained in y’ in the theory CODIB. Tangential containment is the multidimensional
equivalent of tangential parthood TP known from equidimensional mereotopology.

Similarly to interior containment, tangential containment specializes containment (TC-T1); moreover,
boundary-containment further specializes tangential containment (TC-T2). A closed entity has nothing
in its boundary and thus nothing tangentially contained (TC-T3). In particular, TCont is antireflexive
for closed entities (TC-T4). For non-closed entities, TCont is reflexive (TC-T5).
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(TC-D) TCont(x, y)↔ Cont(x, y) ∧ ∃z[Cont(z, x) ∧ BCont(z, y)] (tangential containment)

Axiom Set 9.7: Definition TC-D of the theory CODIB.

(TC-T1) TCont(x, y)→ Cont(x, y) (TCont specializes Cont)

(TC-T2) BCont(x, y)→ TCont(x, y) (boundary-containment specializes tangential containment)

(TC-T3) Closed(x)→ ∀y[¬TCont(y, x)] (closed entities cannot tangentially contain anything)

(TC-T4) Closed(x)→ ¬TCont(x, x) (TCont antireflexive for closed entities)

(TC-T5) ¬Closed(x)→ TCont(x, x) (TCont reflexive for non-closed entities)

Lemma 9.6. CODIB ∪ {TC-D} � {TC-T1 –TC-T5}

While by BC-A1 parts (of equal dimension) cannot be contained in the lower-dimensional boundary
of an entity, parts can be contained tangentially.

9.3.4 Exhaustiveness and disjointness of ICont and TCont

We can now prove that tangential containment and interior containment are jointly exhaustive and
disjoint subrelations of containment in the theory CODIB ∪ {IC-D, TC-D}.

Theorem 9.1. In a modelM of CODIB ∪ {IC-D, TC-D}, IContM and TContM partition ContM.

Proof. From IC-T1 and TC-T1 we already know that ICont and TCont are specializations of Cont. For
IContM and TContM to form a partition of ContM, we additionally must prove that the extensions
of ICont and TCont are disjoint (BC-T6) and exhaustive subrelations of the extension of Cont (BC-T7).

(BC-T6) ¬ICont(x, y) ∨ ¬TCont(x, y) (ICont and TCont are disjoint)

(BC-T7) Cont(x, y)→ ICont(x, y) ∨ TCont(x, y)

(ICont and TCont are exhaustive subrelations of Cont)

This means that ICont and TCont are exhaustive and disjoint specializations of Cont, with BCont
and (TCont∧¬BCont) further specializing TCont into two disjoint and exhaustive types of containment.

9.3.5 Satisfiability of CODIB↓
Our main intention of this chapter is to fully capture the class of intended structures Mdense in a logical
theory. The extension of CODI to CODIB is a step in this direction. But we will also need the closure
under intersections and differences as axiomatized in CODI ↓.

We now introduce one more axiom requiring BCont(x, y) to be defined in terms of boundary-con-
tainment of all minimal parts z of x (BC-A6). Of course, this axiom assumes atomicity, i.e., the axiom
ME-E1, as well. Without ME-E1, any entity x without any minimal parts would vacuously satisfy the
right-hand side and thereby be boundary-contained in all entities—an undesired consequence.
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(BC-A6) BCont(x, y)↔ ¬ZEX(x) ∧ ∀z[P (z, x) ∧Min(z)→ BCont(z, y)]
(BCont(x, y) defined in terms of boundary-containment of the minimal parts of x)

Axiom Set 9.8: Axiom BC-A6 of the theory CODIB↓.

BC-A6 is a quite useful property for many applications. For example, a CAD program may come
equipped with a set of predefined basis entities, e.g., polygons, circles, lines, (hyper)cubes, for which the
boundaries are well-defined. Then for any more complex entities constructed as compositions of those
basic entities, the boundary is equally well-defined.

We define the theory

CODIB↓ = CODIB ∪ CODI ↓ ∪ {BC-A6, ME-E1, IC-D, TC-D}.

We can extend the satisfiability result of CODI ↓ to CODIB↓ by showing that the axioms of BCont
are satisfied by any structure in Mdense. This is only possible once we give an additional intended
interpretation of BCont. As discussed before and illustrated by Figure 9.7, we have to rely on the
correct interpretation of BCont to capture boundaries accurately. Any outer boundaries of maximal
entities, such as the boundaries of l3 and l4 in Figure 9.8 cannot be defined without BCont as primitive.
In the spatial configuration on the right in Figure 9.8 we cannot know whether 〈q, l3〉 ∈ BContM and
〈q, l4〉 ∈ BContM unless explicitly told.

Theorem 9.2 (Satisfiability of CODIB↓). Let M be a collection in the class Mdense with domain
Dom(M) (as defined in Definition 5.11) and ∅ ∈ Dom(M). Then there exists a corresponding modelM
of CODIB↓ with finite domain M such that

1. µ : Dom(M)→M is a bijection;

a1

l1

l2

a2

a3 = a1 + a2
a1

l1

l2

a2

a3 = a1 + a2

a1

l1
l2

a2

a3 = a1 + a2

Figure 9.7: Three spatial configurations with different placements of a one-dimensional entity within
a two-dimensional entity. In all three spatial configuration it is clear from their extensions in CODI ↓
that l1 must be in the boundary of a1 and a2, i.e., that l1 is an inner boundary of a3. However,
we only have 〈l2, a2〉 ∈ ContM (and, by transitivity, 〈l2, a3〉 ∈ ContM) but may or may not have
〈l2, a2〉, 〈l2, a3〉 ∈ BContM. In the left and in the center configuration we have 〈l2, a2〉 /∈ BContM,
while 〈p, a2〉 /∈ ContM) is only certain in the left configuration. In the center configuration we cannot
tell with certainty whether or not 〈p, a2〉 ∈ BContM, only if we know that a2 is completely displayed we
would know. Likewise, in the right configuration, we may have 〈p, a2〉, 〈l, a2〉 ∈ BContM but it is only
certain if we know that a2 is completely displayed. The same applies to 〈p, a3〉, 〈l, a3〉 ∈ BContM. In
other words, we have no information whether or not l2 is located on the outer boundary of the maximal
entity a3. The justification is that a2 (and thus a3) may stretch beyond our “map” or “view” of the
world so that even though l2 is in the boundary of our view, it is not contained in the boundary of a2
because a2 stretches beyond what we see.
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2. for all d ∈ Dom(M),
µ(d) ∈ ZEXM ⇐⇒ Σd = ∅;

3. for all d1, d2 ∈ Dom(M),

〈µ(d1), µ(d2)〉 ∈ (<dim)M ⇐⇒
(
dim(d1) < dim(d2)

)
or
(
d1 = ∅ and d2 6= ∅

)
;

4. for all d1, d2 ∈ Dom(M),

〈µ(d1), µ(d2)〉 ∈ ContM ⇐⇒ Σd1 ⊆ Σd2 and d1 6= ∅;

5. for all d1, d2 ∈ Dom(M),

〈µ(d1), µ(d2)〉 ∈ BContM ⇐⇒ Σd1 ⊆ ∆d2 and d1 6= ∅.

Proof. LetM be a finite collection in the classMdense with domainDom(M) as defined in Definition 5.11.
By Definition 9.1, M is also a collection in the class M. Then by Theorem 7.4 a model M′ of CODI ↓
exists that satisfies Theorem 9.2(1)–(4). If we can extend this modelM′ by specifying an interpretation
of BContM using Theorem 9.2(5) without changing the extension of any other primitive relation, that
is, with

• ContM = ContM′,

• (<dim)M = (<dim)M′ , and

• ZEXM = ZEXM′,

to a model of CODIB↓, we are done. Because BC-A1 to BC-A6 and ME-E1 are the only additional
axioms of CODIB↓ and the only ones that mention BCont, we only need to prove that those axioms are
satisfied by the specification of BContM as specified in Theorem 9.2(5).

Note that ME-E1 is trivially satisfied because the domain Dom(M) is finite. We now verify that the
axioms BC-A1 to BC-A6 are satisfied by the extended modelM.

a1

l1

l2

a2

a3 = a1 + a2
a1

l1
a2

a3 = a1 + a2

l4
p l3

l4
q l3l2

p

Figure 9.8: Two similar spatial configurations with the right one relying on the correct interpretation of
BCont that is not definable in CODI ↓. In the spatial configuration on the left all relevant boundaries,
where two entities are superficially connected, are captured properly. In the spatial configuration on the
right, the boundary point q of both l3 and l4 is only captured if the sum l3 + l4 exists (as composite
manifold). Otherwise, we only know Cont(q, l3) and Cont(q, l4) for sure, but the axioms do not stipulate
whether BCont(q, l3) and BCont(q, l4) hold.
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(BC-A1): BCont(x, y)→ Cont(x, y) ∧ Inc(x, y).
Assume BCont(µ(d1), µ(d2)) for some d1, d2 ∈ Dom(M).
We want to prove that Cont(µ(d1), µ(d2)) and Inc(µ(d1), µ(d2)).
By BCont(µ(d1), µ(d2)) we have d1 6= ∅ and Σd1 ⊆ ∆d2. Since ∆d1 ⊆ Σd1, we immediately
obtain Cont(µ(d1), µ(d2)) by Theorem 7.4(1).

To show Inc(µ(d1), µ(d2)) we must show that there exists a z such that z = µ(d3) for some
d3 ∈ Dom(M) and

Cont(µ(d3), µ(d1)) ∧Cont(µ(d3), µ(d2)) ∧ µ(d3)=dimµ(d2) ∧ µ(d3) <dim µ(d1) or

Cont(µ(d3), µ(d1)) ∧Cont(µ(d3), µ(d2)) ∧ µ(d3)=dimµ(d1) ∧ µ(d3) <dim µ(d2)

We will show that d3 = d1 ∈ Dom(M) satisfies the second condition. We have

• Cont(µ(d1), µ(d1)) because d1 6= ∅,

• Cont(µ(d1), µ(d2)) from above,

• µ(d1)<dimµ(d2) from Theorem 7.4(3) since dim(Σd1) ≤ dim(∆d2) < dim(Σd2),

• µ(d1)=dimµ(d1) trivially;

thus Inc(µ(d3), µ(d2)).

(BC-A2): SC (x, y) ∧Min(x) ∧ P (x, v) ∧ Cont(y, v) ∧ Cont(z, x) ∧ Cont(z, y)→ BCont(z, x).
Assume

SC(µ(d1), µ(d2)) ∧ µ(d1)∈Min ∧P(µ(d1), µ(d4)) ∧

Cont(µ(d2), µ(d4)) ∧Cont(µ(d3), µ(d1)) ∧Cont(µ(d3), µ(d2))

for some d1, d2, d3, d4 ∈ Dom(M). We want to prove that BCont(µ(d3), µ(d1)).

P(µ(d1), µ(d4)) implies Cont(µ(d1), µ(d4)) and µ(d1)=dimµ(d4) by EP-D. Additionally,
SC(µ(d1), µ(d2)) implies µ(d1) · µ(d2)<dimµ(d2) by SC-D, and thus Cont(µ(d2), µ(d4) − µ(d1))
holds by Cont(µ(d2), µ(d4)) and Dif-A3(a). From the assumption Cont(µ(d3), µ(d2)) we then ob-
tain Cont(µ(d3), µ(d4)− µ(d1)) by C-A3. As proved in Theorem 7.4, there must exist a manifold
d5 ∈ Dom(M) such that µ(d5) = µ(d4)− µ(d1). Then Σd3 ⊆ Σd5 by Theorem 9.2(4).

From Cont(µ(d3), µ(d1)) we also obtain Σd3 ⊆ Σd1 by Theorem 9.2(4). Because d4 is a composite
manifold, d1 is an atomic manifold d1 ∈ d4 (by µ(d1)∈Min and by Cont(µ(d1), µ(d4))), and d5 is
a composite submanifold of d4, we conclude that d1 and d5 can only intersect in their boundaries
(compare Definition 5.6). With Σd3 ⊆ Σd1 and Σd3 ⊆ Σd5 we immediately conclude d3 ⊆ ∆d1

and BCont(µ(d3), µ(d1)) by Theorem 9.2(5).

(BC-A3): SC (x, y) ∧ P (x, v) ∧ P (y, v) ∧ Cont(z, x) ∧ Cont(z, y) ∧ zprecdimv → ¬BCont(z, v).
Assume

SC(µ(d1), µ(d2)) ∧P(µ(d1), µ(d4)) ∧P(µ(d2), µ(d4)) ∧

Cont(µ(d3), µ(d1)) ∧Cont(µ(d3), µ(d2)) ∧ µ(d3)≺dimµ(d4)
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for arbitrary d1, d2, d3, d4 ∈ Dom(M).
We want to prove that ¬BCont(µ(d3), µ(d4)).

Because Σd3 ∈ Σd1 and Σd3 ∈ Σd2 by Cont(µ(d3), µ(d1)), Cont(µ(d3), µ(d2)), where d1 and d2

are both subsets of the atomic manifolds in d4 (by P(µ(d1), µ(d4)) and by P(µ(d2), µ(d4))), we can
calculate ∆id4 (compare Definition 5.8) using d1 as base set and successively add manifolds from
d2 until we obtain the interior boundaries of d4 that are contained in both d1 and d2. Every time
we come across a part of µ(d3), i.e., a manifold d′3 in d2 and in d1 that includes a subset of d3 of
the same dimension as d3, that set d′3 gets added to ∆id4 because for any pair of atomic manifolds
in d1 and d2 that share such a d′3 we have:

• Σd′3 ⊆ ∂d1,

• Σd′3 ⊆ ∂d2, and

• µ(d′3)≺dimµ(d4).

Because every such d′3 will be eventually encountered (recall that Σd3 ⊆ Σd2), every such part
of d3 will get added to ∆id4, eventually resulting in Σd3 ⊆ ∆id4. Then by Theorem 9.2(5), we
immediately obtain BCont(µ(d3), µ(d4)), the desired consequence.

(BC-A4): BCont(x, y)∧P (y, z)∧ ∀v, w[P (v, z)∧¬PO(v, y)∧P (w, x)→ ¬Cont(w, v)]→ BCont(x, z).
Assume that d1, d2, d3 are arbitrary entities in Dom(M) with BCont(µ(d3), µ(d1)), P(µ(d1), µ(d2))
and such that for all di, dj ∈ Dom(M),

P(µ(di), µ(d2)) ∧ ¬PO(µ(d1), µ(di)) ∧P(µ(dj), µ(d3))→ ¬Cont(µ(dj), µ(di)).

Then by Theorem 9.2(4) and (5) we have Σd3 ⊆ ∆d1 and Σd1 ⊆ Σd2, and thus Σd3 ⊆ Σd2.

If d2 is an atomic manifold, we immediately obtain d1 = d2 and thereby Σd3 ⊆ ∆d1 = ∆d2 and
thus BCont(µ(d3), µ(d2)) by Theorem 9.2(5). For the remainder of the proof, assume that d2 is
a non-atomic manifold.

Now suppose the consequent is not satisfied, i.e., ¬BCont(µ(d3), µ(d2)) and therefore Σd3 * ∆d2

by Theorem 9.2(5). Because the area Σd3 is the sum of the areas of d3’s atomic manifolds, some
atomic manifold d4 ∈ d3 must exist (with Σd4 ⊆ Σd3) such that Σd4 * ∆d2. Recall further that
dim(d4) < dim(d2) and Σd4 ⊆ Σd3 ⊆ ∆d1 and Σd1 ⊆ Σd2. Then we still have Σd4 ⊆ Σd2.

Then by Definitions 5.8 and 5.9 there must exist an atomic manifold d5 6= d1 with d5 ∈ d2 (with
Σd5 ⊆ Σd2) such that Σd4 ⊆ Σd5. In other words, d4 must be contained in atomic manifolds
d1 and d5 that constitute d2. Thereby Σd4 ⊆ ∆id2 by Definition 5.8 and thus Σd4 * ∆d2 by
Definitions 5.9.

Because d5 and d1 are distinct atomic manifolds in d2, they cannot share any manifold of equal
dimension, hence ¬PO(µ(d1), µ(d5)). Since d4 is an atomic manifold in d3 they both have the same
dimension by Definition 5.6(2). Hence P(µ(d4), µ(d3)) by Theorem 9.2(4) and EP-D. Moreover,
Σd4 ⊆ Σd5 and thus Cont(µ(d4), µ(d5)) by Theorem 9.2(4). Altogether, we have

P(µ(d5), µ(d2)) ∧ ¬PO(µ(d1), µ(d5)) ∧P(µ(d4), µ(d3)) ∧Cont(µ(d4), µ(d5))
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which contradicts our assumption

[P(µ(di), µ(d2)) ∧ ¬PO(µ(d1), µ(di)) ∧P(µ(dj), µ(d3))→ ¬Cont(µ(dj), µ(di))]

for di = d5 and dj = d4. Hence our supposition ¬BCont(µ(d3), µ(d2)) was false and BC-A4 is
satisfied.

(BC-A5): BCont(x, y) ∧ Cont(z, x)→ BCont(z, y).
Assume BCont(µ(d1), µ(d2)) and Cont(µ(d3), µ(d1)) for arbitrary d1, d2, d3 ∈ Dom(M).
Then Σd3 ⊆ Σd1 ⊆ ∆d2 and by transitivity of the subset relation we immediately obtain Σd3 ⊆
∆d2 which amounts to BCont(µ(d3), µ(d2)) by Theorem 9.2(5).

(BC-A6): BCont(x, y)↔ ¬ZEX(x) ∧ ∀z[P (z, x) ∧Min(z)→ BCont(z, y)].
We prove the two directions of the biconditional individually.

Direction (a): BCont(x, y)→ ¬ZEX(x) ∧ ∀z[P (z, x) ∧Min(z)→ BCont(z, y)].
Assume BCont(µ(d1), µ(d2)), P(µ(d3), µ(d1)), and µ(d3) ∈Min for arbitrary d1, d2, d3 ∈
Dom(M).
From Theorem 9.2(5) and (1) µ(d1) /∈ZEX follows immediately.
We have Σd3 ⊆ Σd1 and Σd1 ⊆ ∆d2 by Theorem 9.2(4) and (5). Thus Σd3 ⊆ Σd1 ⊆ ∆d2

and we immediately obtain BCont(µ(d3), µ(d2)) by Theorem 9.2(5).

Direction (b): BCont(x, y)← ¬ZEX(x) ∧ ∀z[P (z, x) ∧Min(z)→ BCont(z, y)].
Assume d1, d2 are arbitrary entities in Dom(M) such that µ(d1) /∈ ZEX and for all di ∈
Dom(M), [P(µ(di), µ(d1)) ∧Min(z)→ BCont(µ(di), µ(d2))].
Then any atomic manifold ei with Σe1 ⊆ Σd1 is contained in the boundary of d2, i.e., Σei ⊆
∆d2. Because Σd1 =

⋃
i Σei by Definition 5.7, we immediately obtain Σd1 ⊆ ∆d2 and thus

BCont(µ(d1), µ(d2)) (with µ(d1) /∈ZEX implying d1 6= ∅).

The two directions together prove BC-A6.

By the theorem’s assumption the extended model satisfies all axioms of CODI ↓ and we only added
an interpretation of the new primitive relation BCont without altering the interpretations of the other
relations and functions. For BCont we proved that the axioms BC-A1 to BC-A6 are satisfied. Hence,
it is guaranteed that the extended structure satisfies all axioms of CODI ↓ ∪ {BC-A1 –BC-A6, ME-E1}
and thus of CODIB↓.

While Theorem 9.2 proves that every structure Mdense in the class of intended structures Mdense

corresponds to a model of CODIB↓ (satisfiability), the reverse (axiomatizability) is not true. We would
need to restrict the models to those with finite domain, which we cannot do in first-order logic by the
Löwenheim-Skolem Theorem: every theory with an arbitrarily large finite model must have an infinite
model. But whether there are finite models of CODIB↓ that do not correspond to structures in the
class Mdense is an open question. But at least the condition that two atomic manifolds that are part
of a composite manifold can only meet in their boundaries is enforced in CODIB↓, which we could not
enforce previously in CODI ↓. More precisely, for any a, b∈MinM for some model M of CODIB↓, we
have %(a)− ∩ ∆%(b) = ∅. This captures an important condition imposed upon the class of intended
structures in Definition 5.11.
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9.3.6 Thin boundary

For any non-closed, i.e., bounded entity x, we may require an entity to exist that denotes the complete
‘thin’ boundary as a function boundary(x) that satisfies BC-A1 but contains all entities contained in
the boundary of x (BC-E1). BC-E1 nonconservatively extends CODIB↓ because it forces some special
sums to exist. For closed entities, the boundary will be the zero entity that must exist in CODI ↓, a
subtheory of CODIB↓.

(BC-E1) Cont(x,boundary(y))↔ BCont(x, y)
(boundary(y) is the maximal ‘thin’ boundary defined in terms of BCont(x, y))

Axiom Set 9.9: Extension axiom BC-E1 of the theory CODIB.

The following three properties verify that the boundary function behaves as expected for closed and
bounded, that is, non-closed, entities and that entities of minimal dimension are closed.

(BC-T8) ¬Closed(x)→ BCont(boundary(x), x) (the boundary of x is boundary-contained in x)

(BC-T9) Closed(x)→ ZEX(boundary(x)) (zero region as boundary of closed entities)

Lemma 9.7. CODIB↓ ∪ BC-E1 � {BC-T8, BC-T9}

Proof. (BC-T8): ¬Closed(x)→ BCont(boundary(x), x).
Assume x /∈ClosedM.
We distinguish two cases.

Case (I): Suppose boundary(x)∈ZEXM.
Then by BC-E1, for all y ∈M we have ¬BCont(y, x) and hence x∈ClosedM—a contradic-
tion to our assumption.

Case (II): Suppose boundary(x) /∈ZEXM.
Then Cont(boundary(x),boundary(x)), leading to BCont(boundary(x), x) by B-D1.

Clearly, the two cases are exhaustive.

(BC-T9): Closed(x)→ ZEX(boundary(x)).
Assume x∈ClosedM and suppose boundary(x) /∈ZEXM.
Then Cont(boundary(x),boundary(x)) by C-A1 and BCont(boundary(x), x) by BC-E1, the
latter contradicting CL-D, which requires ∀y[¬BCont(y, x)].

9.3.7 Closure under sums representing composite manifolds

One of our motivations of introducing boundary-containment was to disallow sums of entities that
intersect in their interior (compare Definition 5.6(1),(2)) in our axiomatic theory because those sums do
not correspond to m-manifolds in the class of intended structures. The axiom BC-A2 achieves this.

Now, we can close the models of the theory CODIB↓ by adding axioms that require sums of entities
x and y to exist if x and y do not meet in interiors of any of their minimal parts. Obviously, the axioms
Sum-A1 – Sum-A4 of CODI l are too strong. Instead of requiring sums to exist for arbitrary entities as
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in CODI l, we only want sums that themselves represent composite manifolds again. To achieve this,
we will use the axioms Sum′-A0 – Sum′-A5 introduced at the end of Chapter 7 in the theory CODI ′↓.
Those axiomatize the properties of sums through a ternary relation Sum(x, y, z) read as x+ y = z, but
CODI ′↓ does not force any sums to exist. It only forces sums that already exist to be called so (compare
Sum′-A2, Sum′-A5). We now introduce Sum’-A6, which requires sums of entities that do not meet in
their interior to exist as well. This is a weaker form of the axioms requiring arbitrary sums to exist.

(Sum′-A6) x =dim y ∧ ∀z
[
Cont(z, x) ∧ Cont(z, y) ∧Min(z) → ∃u, v[P (u, x) ∧ P (v, y) ∧ BCont(z, u) ∧

BCont(z, v)]
]
→ ∃z[Sum(x, y, z)] (the sum of equidimensional entities x, y must exist

if x and y only touch in boundaries of minimal parts)

Axiom Set 9.10: Axiom Sum′-A6 of the theory CODIBl.

We define the theory

CODIBl = CODIB↓ ∪ {Sum′-A0 – Sum′-A6, U-A1},

which is intuitively the theory CODI ↓ extended by the axiomatization of BCont and closed under
universals and under sums where the sum is guaranteed to represent a composite manifold. As in CODI ′↓,
the operation + defined as x+ y = z ↔ Sum(x, y, z) is a nontotal function in CODIBl.

CODIBl excludes certain sums (Sum‘-T1), namely the sums of entities that intersect in the interior
of constituent minimal parts.

(Sum′-T1) x =dim y ∧ P (v, x) ∧Min(v) ∧ Cont(z, v) ∧ Cont(z, y) ∧ SC (x, y) ∧ ¬BCont(z, v)
→ ¬∃w[Sum(x, y, w)] (no sum of equidimensional entities x, y in superficial contact exists

if some minimal part v of x shares a z with y that is not contained in the boundary of v)

Lemma 9.8. CODIBl � Sum′-T1

Proof. Assume x, y, z, v are arbitrary entities in M such that x=dimy, P(v, x), v∈MinM, Cont(z, v),
Cont(z, y), SC(x, y), and ¬BCont(z, v).
Suppose some w ∈ M exists such that Sum(x, y, w) contrary to the consequent of Sum′-T1. From
Sum(x, y, w) and x=dimy we obtain P(x,w) and P(y, w) by Sum′-A3. By transitivity of containment
we then get, in contradiction to BC-A2,

SC(v, y) ∧P(v, w) ∧ v∈MinM ∧P(y, w) ∧Cont(z, w) ∧Cont(z, y) ∧ ¬BCont(z, v).

Note that for a given intended structure, the resulting model of CODIBl may not be an extension
of the resulting model of CODI l. Consider a spatial configuration in which a manifold l1 with empty
boundary (such as a circle) which intersects another manifold l2 of equal dimension. In the corresponding
model of CODI l, the sum l1 + l2 would be forced to exist, but in the corresponding model of CODIBl
no sum l1 + l2 can exist. However, the corresponding model of CODI l can also be interpreted in a
intended structure where l1 has a nonempty boundary at which it intersects l2, compare Figure 9.9.
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Figure 9.9: Two spatial configurations that have elementarily equivalent models of CODI l but distinct
models of CODIBl. Both spatial configurations are elementarily equivalent models of CODI l with
ContM = {〈l1, l1〉, 〈l1, l1 + l2〉, 〈l2, l2〉, 〈l2, l1 + l2〉, 〈p, p〉, 〈p, l1〉, 〈p, l2〉, 〈p, l1 + l2〉} and (<dim)M =
{〈p, l1〉, 〈p, l2〉, 〈p, l1 + l2〉, 〈ze, p〉, 〈ze, l1〉, 〈ze, l2〉, 〈ze, l1 + l2〉}. However, their models of CODIBl dif-
fer: the left configuration results in model M′ with ContM′ = {〈l1, l1〉, 〈l2, l2〉, 〈p, p〉, 〈p, l1〉, 〈p, l2〉},
(<dim)M′ = {〈p, l1〉, 〈p, l2〉, 〈ze, p〉, 〈ze, l1〉, 〈ze, l2〉}, and BContM′ = {} whereas the right configu-
ration results in model M′′ with ContM′′ = ContM, (<dim)M′′ = (<dim)M, and BContM′′ =
{〈p, l1〉, 〈p, l2〉}. WhileM is clearly a substructure ofM′′, it is not a substructure ofM′. That is, only
M′′ is an extension of the modelM.

It is not difficult to see that extending any model ofM of CODIBl that corresponds to a structure
Mdense in the class of intended structuresMdense to a minimal model that satisfies the axioms Sum′-A0 –
Sum′-A6 and U-A1 will again correspond to a structure in the class Mdense. However, this result is
only of interest once we prove that every model of CODIB↓ corresponds to some structures in the class
Mdense, i.e., once we have an axiomatizability proof for CODIB↓.

The restriction of the intended models of CODIBl to structures in Mdense allows us to place more
stringent requirements on the universal entity, such as requiring it to be internally self-connected (U-E3)
instead of only being self-connected as proposed as axiom U-E2 in Chapter 7. Such axiom can be added
as seems fit for particular applications.

(U-E3) ICon(U) (universal entity is internally self-connected)

Axiom Set 9.11: Extension axiom U-E3 of the theory CODIBl.

For the remainder of this chapter we will work with the theory CODIB↓ and not with CODIBl. But
because CODIBl is an extension of CODIB↓, all results equally apply to CODIBl. All definitions we
will introduce—except for that of external overlap EO—can also be used in the theory CODIB.

9.4 Equidimensional boundaries

Alternatively to lower-dimensional, i.e., ‘thin’ boundaries, so-called ‘bulky’ or ‘thick’ boundaries are also
of interest. If a region of space represents a physical object, the thick boundary of the region could be
used to represent the space associated with the surface (or ‘physical boundary’) of the object, compare
Section 11.3. Contrary to a thin boundary, which is a pure abstraction with a lower dimension than
the bounded region, a thick boundary is indeed part of the bounded region in that it is of the same
dimension as the bounded region. Taking the United States as example, we can determine its land border
states, i.e., its states that border some other country (Canada or Mexico) as in Figure 9.10, or its coastal
border, i.e., its states that have a ocean coastline. Equally, we can determine the states in the United
States and the provinces in Canada that form the land border of the Great Lakes, compare Figure 9.11.
As another example, we may want to capture all the walls in a building, i.e., the space that separates
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rooms from one another or from the outside—assuming we rely on a construction drawing where the
walls have non-negligible thickness. While for many purposes the thickness of walls may be negligible,
for other purposes we may treat walls as ‘parts’ of the building that occupy a three-dimensional chunk
of space to, e.g., account for the reduced effectively usable space.

9.4.1 Tangential and interior parts

First, we define tangential and interior parthood as the equidimensional equivalents of tangential and
interior containment (TP-D, IP-D).

(TP-D) TP(x, y)↔ P (x, y) ∧ TCont(x, y) (tangential part)
(IP-D) IP(x, y)↔ P (x, y) ∧ ICont(x, y) (interior part)

Axiom Set 9.12: Definitions TP-D and IP-D of the CODIB hierarchy.

We can prove the following properties for tangential and interior parthood, which are analogue to
those for tangential and interior containment, compare Sections 9.3.2 and 9.3.3.

(TP-T1) Closed(x)→ ∀y[¬TP(y, x)] (closed entity has no tangential parts)

(TP-T2) ¬Closed(x)→ TP(x, x) (TP reflexive for non-closed entity)

(TP-T3) Closed(x) ∧ ¬ZEX(x)↔ IP(x, x) (IP reflexive iff nonzero entity is closed)

Lemma 9.9. CODIB↓ ∪ {TP-D, IP-D} � {TP-T1 –TP-T3}

Considering the definitions TP-D and IP-D and the fact that P specializes Cont, an immediate
consequence of Theorem 9.1 is that tangential and interior parthood are jointly exhaustive and disjoint
subrelations of parthood in CODIB↓ ∪ {TP-D, IP-D}.

Theorem 9.3. In a modelM of CODIB↓ ∪ {TP-D, IP-D}, IPM and TPM partition PM.

Proof. Because by the definitions TP-D and IP-D we already know that TP and IP are specializations
of P , it suffices to prove the following theorems:

(TP-T4) ¬TP(x, y) ∨ ¬IP(x, y) (TP and IP are disjoint)

(TP-T5) P (x, y)→ TP(x, y) ∨ IP(x, y) (TP and IP are exhaustive subrelations of P )

These follow from Theorem 9.1.

Note that if in a model all entities—apart from the zero entity—are of equal dimension, then no entity
can have a tangential part. This is because tangential containment is defined in terms of boundary-
containment, which in turn can only hold between entities of differing dimension. This is a limitation
of our axiomatization based on boundary-containment as primitive relation. In the case of all entities
being equidimensional, it would be more appropriate to use boundary parthood (either in its strong
or weak form, compare BP-D and SBP-D further down) as primitive relation instead of boundary-
containment. We do not explore this alternative approach here, it has already been studied in the
various equidimensional mereotopologies, such as [AV95; RCC92] that define relations of tangential and
nontangential parthood.
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Figure 9.10: Thick boundaries of the United States. If states are the smallest spatial units (minimal
entities), then the olive shaded states represent the thick land border of the United States. Equally, the
thick border of Mexico (with the US only) is shaded turquoise, treating again states as minimal entities.
In this example the thick border of Mexico is incomplete: it is only with respect to the displayed
countries.
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There are actually two slightly different kinds of tangential parthood, namely weak and strong tan-
gential parthood, based on the dimension of the boundary that the tangential part contains. While
TP-D captures the notion of weak tangential parthood (simply referred to as tangential parthood in the
sequel), strong tangential parthood additionally requires in addition that the tangential part contains a
part of the original entity’s boundary, not just an entity of a lower dimension than the boundary but
contained in the boundary. For example, in a 2D area, a part is a strong tangential part if it contains
a 1D part of the boundary of the 2D area. A part that only contains a single point (or a set of points)
of the boundary of the 2D area is not strongly tangential. The definition STP-D captures this notion of
strong tangential parthood.

(STP-D) STP(x, y)↔ TP(x, y) ∧ ∃z[Cont(z, x) ∧ BCont(z, y) ∧ z ≺dim y]
(strong tangential parthood)

Axiom Set 9.13: Definition STP-D of the CODIB hierarchy.

Figure 9.11: The thick border of North America with respect to the Great Lakes with states as smallest
spatial units (minimal entities).
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Clearly, STP specializes TP thus all properties of TP also apply to STP.

9.4.2 Boundary parts

From tangential and strong tangential parthood two kinds of boundary parthood arise. First, consider
the weak case: we want every minimal tangential part and sums of minimal tangential parts to be
boundary parts. We can express this axiomatically as BP-D: x is a boundary part of y if every part z
of x is a tangential part of y. Likewise, x is a strong boundary part of y if every part z of x is a strong
tangential part of y (SBP-D).

(BP-D) BP(x, y)↔ P (x, y) ∧ ∀z[P (z, x)→ TP(z, y)] ((weak) boundary part)
(SBP-D) SBP(x, y)↔ P (x, y) ∧ ∀z[P (z, x)→ STP(z, y)] (strong boundary part)

Axiom Set 9.14: Definitions BP-D and SBP-D of the CODIB hierarchy.

The following properties become provable in the definitional extension of CODIB↓.

(BP-T1) BP(x, y)→ TP(x, y) (BP specializes TP)

(BP-T2) SBP(x, y)→ BP(x, y) (SBP specializes BP)

(BP-T3) TP(x, y) ∧Min(x)→ BP(x, y) (minimal tangential parts are boundary parts)

(BP-T4) STP(x, y) ∧Min(x)→ SBP(x, y)

(minimal strong tangential parts are strong boundary parts)

(BP-T5) Closed(x)→ ∀y[¬BP(y, x)] (closed entities have no boundary parts)

(BP-T6) Closed(x)→ ∀y[¬SBP(y, x)] (closed entities have no strong boundary parts)

Lemma 9.10. CODIB↓ ∪ {TP-D, IP-D, STP-D, BP-D, SBP-D} � {BP-T1 –BP-T6}

Proof. (BP-T1): BP(x, y)→ TP(x, y).
Assume x, y ∈M with BP(x, y).
We can choose z := x in BP-D to obtain TP(x, y).

(BP-T2): SBP(x, y)→ BP(x, y).
Assume x, y ∈M with SBP(x, y).
Then for all z ∈ M ∀z[P (z, x) → STP(z, y)] by SBP-D and with STP-D we get for all z ∈ M
P(z, x) implies TP(z, y)] which requires BP(x, y) by BP-D.

(BP-T3): TP(x, y) ∧Min(x)→ BP(x, y).
Assume x, y ∈M with TP(x, y) and x∈MinM.
Then by definition of x /∈MinM no proper part of x can exist, i.e., P(z, x)→ z = x. Then for all
z ∈M, P(z, x)→ TP(z, y) is equivalent to TP(x, y) which holds by assumption; hence BP(x, y)
by definition BP-D.

(BP-T4): STP(x, y) ∧Min(x)→ SBP(x, y).
Analogue to BP-T3.
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Figure 9.12: A spatial configuration in which a non-closed minimal entity is not tangentially contained
in itself. This configuration can be directly captured as a model of CODIB↓. We do not specify
the complete model here, let it suffice that 〈p, l〉, 〈l, x〉, 〈l, y〉, 〈l, x + y〉 ∈ (<dim)M, x, y ∈ MinM
〈p, x〉, 〈p, y〉, 〈l, x〉, 〈x, x+y〉, 〈y, x+y〉 ∈ ContM, and 〈p, x〉, 〈p, y〉 ∈ BContM. Then boundaryM(x) =
boundaryM(y) = p and thus x /∈ClosedM. But 〈p, x〉 ∈ (≺dim)M and 〈l, x〉 /∈ BContM, thus p and
l are the only lower-dimensional entities contained in x, hence 〈x, x〉 /∈ SBPM.

(BP-T5): Closed(x)→ ∀y[¬BP(y, x)].
Assume x ∈M with x∈ClosedM.
Then by TP-T1, we have for all z ∈M, ¬TP(y, x) and by the contrapositive of BP-T1 further for
all z ∈M, ¬BP(y, x).

(BP-T6): Closed(x)→ ∀y[¬SBP(y, x)].
Assume x ∈M with x∈ClosedM.
Then by TP-T1, we have for all z ∈M ¬TP(y, x) and thus ¬STP(y, x) for all z ∈M by STP-D
and by the contrapositive of BP-T2 with BP-D1 we also have ¬SBP(y, x) for all z ∈M.

Notice that some non-closed minimal entity are not their own strong tangential part, that is

∀x[¬Closed(x) ∧Min(x)→ SBP(x, x)]

is not entailed by CODIB↓. Figure 9.12 gives an example in which the property fails. This example
should suffice to convince the reader that the property is not valid in CODIB↓.

9.4.3 Thick boundary

Just as BC-E1 requires a ‘thin’ boundary of non-closed entities to exist, we can require a ‘think’ boundary
(BC-E2) or a strong ‘thick’ boundary (BC-E3) to exist.

(BC-E2) Cont(x, thickboundary(y))↔ BP(x, y) (‘thick’ boundary)
(BC-E3) Cont(x, strongthickboundary(y))↔ SBP(x, y) (strong ‘thick’ boundary)

Axiom Set 9.15: Extension axioms BC-E2 and BC-E3 of the CODIB hierarchy.

By defining a notion of (strong) thick boundary we have achieved our goal for this section. It is
not clear which of the two definitions—thick boundary or strong thick boundary—is better suited for
practical matters. It may even turn out that their minuscule difference does not matter for most practical
purposes.

Next, we will use the definitions of boundaries to distinguish types of contacts that manifest them-
selves in whether interiors or boundaries are in contact. For this purpose, we will exclusively use the
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lower-dimensional, ‘thin’ boundaries. However, we could define the same set of contact relations using
‘thick’ boundaries instead.

9.5 Boundary and interior contact

The main purpose of this section is to show that we can define Egenhofer’s nine topological relations
between two entities [Ege89; Ege91; EF91; EH91] that distinguish interior, boundary, and exterior
contact in multidimensional configurations of space independent of the dimensions and codimensions
of either entity. More precisely, we give six definitions (three symmetric ones and three nonsymmetric
ones) that suffice to define Egenhofer’s nine topological relations in models of CODIB↓.

(IO-D) IO(x, y)↔ ∃z[Min(z) ∧ Cont(z, x) ∧ Cont(z, y) ∧ ¬BCont(z, x) ∧ ¬BCont(z, y)]
(interior overlap: the interiors of x and y are in contact)

(IBC-D) IBC (x, y)↔ ∃z[Cont(z, x) ∧ ¬BCont(z, x) ∧ BCont(z, y)]
(interior-boundary contact: the interior of x is in contact to the boundary of y)

(BO-D) BO(x, y)↔ ∃z[BCont(z, x) ∧ BCont(z, y)]
(boundary overlap: the boundaries of x and y are in contact)

(IEC-D) IEC (x, y)↔ ¬ZEX(x) ∧ ¬ZEX(y) ∧ ¬Cont(x, y)
(interior-exterior contact: the interior of x is in contact to the exterior of y)

(BEC-D) BEC (x, y)↔ ∃z[BCont(z, x) ∧ ¬Cont(z, y)]
(boundary-exterior contact: the boundary of x is in contact to the exterior of y)

(EO-D) EO(x, y)↔ ∃z[¬ZEX((z − x)− y)] (exterior overlap: the exteriors of x and y are in contact)

Axiom Set 9.16: Definitions IO-D, IBC-D, BO-D, IEC-D, BEC-D, and EO-D of CODIB↓.

From the definitions of IO, BO and EO it is easy to see that those relations are symmetric. We
can further prove that the relations IO, BO, IBC and the inverse IBC−1 are exhaustive subrelations of
contact C in CODIB↓. Note that they are not disjoint subrelations of contact, i.e., more than one of
them can hold simultaneously between two entities.

Theorem 9.4. In a modelM of CODIB↓ ∪ {IO-D, IBC-D, BO-D} for all x, y ∈M,

〈x, y〉 ∈ CM ⇐⇒ 〈x, y〉 ∈ IOM or 〈x, y〉 ∈ IBCM or 〈y, x〉 ∈ IBCM, or 〈x, y〉 ∈ BOM.

Proof. We need to prove that the relations IO, BO, and IBC as well as the inverse relation IBC−1 are
subrelations of C and that those are exhaustive subrelations of C.

(BC-T10) IO(x, y)→ C(x, y) (IO is a subrelation of C)

(BC-T11) BO(x, y)→ C(x, y) (BO is a subrelation of C)

(BC-T12) IBC (x, y)→ C(x, y) (IBC is a subrelation of C)

(BC-T13) IBC (y, x)→ C(x, y) (IBC−1 is a subrelation of C)

(BC-T14) C(x, y)→ IO(x, y) ∨ BO(x, y) ∨ IBC (x, y) ∨ IBC (y, x) (exhaustive subrelations of C)
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BC-T10 to BC-T13 are automatically provable.

To prove BC-T14, assume x, y to be arbitrary entities in M such that C(x, y).
Then by C-D some z ∈ M exists such that Cont(z, x) and Cont(z, y). Let us consider the set of all
entities z that are contained in x and y. We distinguish the following cases.

Case (I): some z ∈M exists such that BCont(z, x) and TCont(z, y).
Then by TC-D, some v is contained in z and is boundary-contained in y. Hence BCont(v, x) and
BCont(v, y) , thus 〈x, y〉 ∈ BOM by BO-D.

Case (II): some z ∈M exists such that TCont(z, x) and BCont(z, y).
Analogous to Case (I) we obtain 〈x, y〉 ∈ BOM.

Case (III): not Case (I) or (II) but some z ∈M exists such that BCont(z, x) and BCont(z, y).
Then there must exist an entity v such that BCont(v, z) and BCont(v, x). Because the conditions
of the Cases (I) and (II) are not satisfied, we must have ¬BCont(v, y) and thus 〈y, x〉 ∈ IBCM
by IBC-D.

Case (IV): not Case (I)–(III) but some z ∈M exists such that ICont(z, x) and TCont(z, y).
Then there must exist an entity v such that Cont(v, z) and BCont(v, y). By ICont(z, x) we
further have ¬BCont(z, x) and thus ¬BCont(v, x). Then 〈x, y〉 ∈ IBCM by IBC-D.

Case (V): not Case (I)–(IV) but some z ∈M exists such that TCont(z, x) and ICont(z, y).
Analogous to Case (IV) we obtain IBC (y, x).

Case (VI): not Case (I)–(V).
Because no z satisfies either TCont(z, x) or TCont(z, y) (because the Cases (III)–(V) do not
apply), no z ∈ M satisfies TCont(z, x) and BCont(z, y) (TC-T2). Because some z ∈M exists
with BCont(z, x) and BCont(z, y)], a v∈M that is a minimal part of z is guaranteed to exist by
ME-E1 and satisfies

v∈MinM ∧Cont(v, x) ∧Cont(v, y) ∧ ¬BCont(v, x) ∧ ¬BCont(v, y)]

by transitivity of Cont (C-A3) and of BCont (BC-A5). We immediately conclude 〈x, y〉 ∈ IOM
by IO-D.

Recall that by BC-T7 the sentence

Cont(x, y)→ ICont(x, y) ∨ TCont(x, y)

holds. Therefore, by the construction of the Cases (I)–(VI), those six cases are exhaustive. In either case
we have at least one of 〈x, y〉 ∈ BOM, 〈x, y〉 ∈ IBCM, 〈y, x〉 ∈ IBCM, or 〈x, y〉 ∈ IOM, i.e., BC-T4 is
always satisfied.

Note that the relations IEC , BEC , their inverses IEC−1 and BEC−1, and EO, which all involve the
exterior of one of the two entities in relation, do not make any claim about the entities being in contact;
instead they only say that one of the entities in question is not contained in the other. In that sense,
the four relations IO, IBC , IBC−1, and BO are sufficient to describe the 4-intersection relations [EF91]
between two composite manifolds of possibly different dimension in any space of the same or higher
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dimension. That is, all 16 relations identified between two spatial objects can be realized by manifolds,
not just the eight relations that apply to two spatial entities of equal dimension in a space of equal
dimension, such as between two-dimensional areas in Rn [EF91].

In our final step for this chapter, we show that the nine relations IO, IBC , IBC−1, IEC , IEC−1,
BO, BEC , BEC−1, and EO capture the intended topological meaning of whether one entity’s interior,
boundary, or exterior shares a point with a second entity’s interior, boundary, or exterior, where the
entities can be arbitrary composite manifolds of different dimensions located in a space that is of equal
or higher dimension. To achieve this, we map the six relations IO, IBC , IEC , BO, BEC , and EO—we
do not need to consider the inverse relations separately—to their manifold counterparts expressed using
the manifold operations Θ, ∆, and −. Θ, ∆, and − denote the interior, boundary, and exterior of
a manifold, respectively, analogue to the topological operations A◦, ∂A, and A−. Through this work
we generalize the 9-intersection relations of Egenhofer and associates [EF91; EH91] that was originally
restricted to regions of equal dimension in a space of codimension zero. Specifically, we can define the
nine intersection relations, often captured as a 3 × 3 matrix called the 9-intersection matrix, as logical
relations. Each value in the matrix indicates whether the intersection of A’s interior (top row), boundary
(center row), and exterior (bottom row) with the interior (left column), boundary (center column), and
exterior (right column) of B is nonempty. Expressed using the logical relations, we want to prove that
the 9-intersection matrix looks as follows:

R(A,B) =

 IO(A,B) IBC (A,B) IEC (A,B)
IBC (B,A) BO(A,B) BEC (A,B)
IEC (B,A) BEC (B,A) EO(A,B)


We formalize this relationship by using the definitions of interior Θ, boundary ∆, and exterior − of
composite manifolds in a complex manifolds (compare Sections 5.3 and 5.4).

Theorem 9.5. Let M be a structure in Mdense with domain Dom(M) of composite manifolds and let
M be the corresponding model of CODIB↓ as constructed in Theorem 9.2.
Then for all d1, d2 ∈ Dom(M),

1. 〈d1, d2〉 ∈ IOM ⇐⇒ Θd1 ∩Θd2 6= ∅;

2. 〈d1, d2〉 ∈ IBCM ⇐⇒ Θd1 ∩∆d2 6= ∅;

3. 〈d1, d2〉 ∈ IECM ⇐⇒ Θd1 ∩ d−2 6= ∅ and d2 6= ∅;

4. 〈d1, d2〉 ∈ BOM ⇐⇒ ∆d1 ∩∆d2 6= ∅;

5. 〈d1, d2〉 ∈ BECM ⇐⇒ there exists a d3 ∈ Dom(M) with d3 6= d1 and ∆d1 ∩ d−2 ∩ Σd3 6= ∅;

6. 〈d1, d2〉 ∈ EOM ⇐⇒ d−1 ∩ d
−
2 6= ∅.

Proof. We prove each of the properties (1)–(6) individually in each direction.

1. 〈d1, d2〉 ∈ IOM ⇐⇒ Θd1 ∩Θd2 6= ∅.

Direction (a): 〈d1, d2〉 ∈ IOM ⇒ Θd1 ∩Θd2 6= ∅.
Assume 〈d1, d2〉 ∈ IOM.
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Then there exists a di ∈ Dom(M) such that

µ(di)∈MinM ∧Cont(µ(di), µ(d1)) ∧Cont(µ(di), µ(d2)) ∧

¬BCont(µ(di), µ(d1)) ∧ ¬BCont(µ(di), µ(d2))

by IO-D. Then there exists an atomic nonzero manifold d3 ∈ Dom(M) such that

Cont(µ(d3), µ(d1)) ∧Cont(µ(d3), µ(d2)) ∧

¬BCont(µ(d3), µ(d1)) ∧ ¬BCont(µ(d3), µ(d2)).

Assume such d3 exists. Then we can distinguish three exhaustive cases.

Case (a.i): Assume ICont(µ(d3), µ(d1)).
Then Σd3 ⊆ Σd1 by Theorem 9.2(4) from Cont(µ(d3), µ(d1)).
Now suppose Σd3 ∩ ∆d1 6= ∅. Then Σd3 ∩ Σd1 6= ∅ However, because d3 is an atomic
manifold, it cannot share a manifold of its own dimension with d1. Hence dim(Σd3 ∩
Σd1) < dim(d3). Then we also have dim(Σd3 ∩ ∆d1) < dim(d3), so that we can apply
Definition 5.11(3): there exists a collection M′ ⊆M such that (

⋃
d∈M′ Σd

)
= Σd3 ∩∆d1.

Any d4 ∈M′ satisfies Σd4 ⊆ Σd3 and Σd4 ⊆ ∆d1. But then by Theorem 9.2(4),(5):

Cont(µ(d4), µ(d3)) and BCont(µ(d4), µ(d1))

and thus ¬ICont(µ(d3), µ(d1)) by IC-D. This contradictions our assumption; hence we
cannot have Σd3∩∆d1 6= ∅ and therefore Σd3∩∆d1 = ∅, which together with Σd3 ⊆ Σd1

let us conclude Σd3 ⊆ Θd1 as expected.
Then Σd3 ⊆ Σd2 follows from our assumption Cont(µ(d3), µ(d2)), and Σd3 * ∆d2 follows
from ¬BCont(µ(d3), µ(d2)). Hence Σd3 ∩ Θd2 6= ∅ so that Σd3 ∩ Θd2 ∩ Θd1 6= ∅ and
thereby Θd1 ∩Θd2 6= ∅, our desired consequence.

Case (a.ii): Assume ICont(µ(d3), µ(d2)).
Analogously to Case (a.i).

Case (a.iii): Assume ¬ICont(µ(d3), µ(d1)) and ¬ICont(µ(d3), µ(d2)).
We must have TCont(µ(d3), µ(d1))∧TCont(µ(d3), µ(d2)) by BC-T7. But because d3 is
an atomic manifold, d3 cannot contain other manifolds of equal dimension. That means
only lower-dimensional entities contained in d3 can be contained in the boundary of d1 or
d2. But since the area Σd3 can never be covered by a finite collection of lower-dimensional
manifolds; there will always exist a point in Σd3 that is in the interior of d1 and d2. Hence
Θd1 ∩Θd2 6= ∅.

The three cases (a.i)–(a.iii) are trivially exhaustive. Hence we can always conclude Θd1 ∩
Θd2 6= ∅ when 〈d1, d2〉 ∈ IOM.

Direction (b): 〈d1, d2〉 ∈ IOM ⇐ Θd1 ∩Θd2 6= ∅.
Assume Θd1 ∩Θd2 6= ∅.
Then Σd1 ∩ Σd2 6= ∅ and hence there exists a collection of manifolds M′ such that⋃

d∈M′
Σd = Σd1 ∩ Σd2
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by Definition 5.11(2) with some atomic manifold d3 ∈M′ such that Σd3 ⊆ Σd1, Σd3 ⊆ Σd2,
and Σd3 ∩Θd1 ∩Θd2 6= ∅ (by Θd1 ∩Θd2 6= ∅. By the latter we can have neither Σd3 ⊆ ∆d1

nor Σd3 ⊆ ∆d2. Hence,

¬BCont(µ(d3), µ(d1)) ∧ ¬BCont(µ(d3), µ(d2))

by Theorem 9.2(5). From Σd2 ⊆ Σd1 and Σd3 ⊆ Σd2 we also obtain

Cont(µ(d3), µ(d1)) ∧Cont(µ(d3), µ(d2))

by Theorem 9.2(4). Those two conditions together and the fact that d3 is atomic and thus
µ(d3)∈MinM let us conclude 〈d1, d2〉 ∈ IOM according to IO-D.

2. 〈d1, d2〉 ∈ IBCM ⇐⇒ Θd1 ∩∆d2 6= ∅.

Direction (a): 〈d1, d2〉 ∈ IBCM ⇒ Θd1 ∩∆d2 6= ∅.
Assume d1, d2 ∈ Dom(M) with 〈d1, d2〉 ∈ IBCM.
Then by IBC-D there exists a z with z = µ(d3) where d3 ∈ Dom(M) such that

Cont(µ(d3), µ(d1)) ∧ ¬BCont(µ(d3), µ(d1) ∧BCont(µ(d3), µ(d2))

Then Σd3 6= ∅, Σd3 ⊆ Σd1, Σd3 * ∆d1, and Σd3 ⊆ ∆d2 by Theorem 9.2(4) and (5). Hence,
Σd3 ∩Θd1 6= ∅ and thus Θd1 ∩∆d2 6= ∅, the desired conclusion.

Direction (b): 〈d1, d2〉 ∈ IBCM ⇐ Θd1 ∩∆d2 6= ∅.
Assume d1, d2 ∈ Dom(M) with Θd1 ∩∆d2 6= ∅.
Then by Definition 5.11(2) there exists a collection of atomic manifolds M′ ⊆ M such that(⋃

d∈M′ Σd
)

= Σd1∩Σd2. Because Θd1∩∆d2 6= ∅, some d3 ∈M′ exists with d3∩Θd1∩∆d2 6=
∅. Then there exists a collection of manifolds M′′ ⊆M such that

(⋃
d∈M′′ Σd

)
= Σd3 ∩∆d2,

again by Definition 5.11(2). In particular, some d4 ∈M′′ exists with d4 ∩ Θd1 6= ∅ and thus
Σd4 * ∆d1. We also have Σd4 ⊆ Σd3 ⊆ Σd1 and Σd4 ⊆ ∆d2. By Theorem 9.2(4) and (5) we
obtain:

Cont(µ(d4), µ(d1)) ∧ ¬BCont(µ(d4), µ(d1) ∧BCont(µ(d4), µ(d2))

which proves 〈d1, d2〉 ∈ IBCM by IBC-D.

3. 〈d1, d2〉 ∈ IECM ⇐⇒ Θd1 ∩ d−2 6= ∅ and d2 6= ∅.

Direction (a): 〈d1, d2〉 ∈ IECM ⇒ Θd1 ∩ d−2 6= ∅.
Assume d1, d2 ∈ Dom(M) with 〈d1, d2〉 ∈ IECM.
Then ¬Cont(µ(d1), µ(d2)), µ(d1) /∈ZEXM, and µ(d2) /∈ZEXM by IEC-D and there exists a
z = µ(d3) with d3 ∈ Dom(M) such that

µ(d3)∈MinM ∧P(µ(d3), µ(d1)) ∧ ¬Cont(µ(d3), µ(d2))

by EP-E3 and ME-E1. By Theorem 9.2(1),(3),(4) d3 ∈M must be an atomic manifold such
Σd3 ⊆ Σd1 and Σd3 * Σd2. Because d3 is atomic, either d2 is of lower dimension than d3

or d3 and d2 can only meet in the boundary of d3. In the latter case, any interior point
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p ∈ Θd3 satisfies p /∈ Σd2. In the former case d2 cannot completely cover the interior of d3

and thus some point p ∈ Θd3 satisfies p /∈ Σd2. In either case p ∈ Θd1 and p ∈ d−2 and thus
Θd1 ∩ d−2 6= ∅ as well as d2 6= ∅.

Direction (b): 〈d1, d2〉 ∈ IECM ⇐ Θd1 ∩ d−2 6= ∅.
Assume Θd1 ∩ d−2 6= ∅ and d2 6= ∅.
Then some point p exists such that p ∈ Θd1 ⊆ Σd1 and p /∈ Σd2. Hence Σd1 * Σd2 and
thus ¬Cont(µ(d1), µ(d2)) by Theorem 9.2(4). By IEC-D, we get 〈d1, d2〉 ∈ IECM because
Σd1 6= ∅ by Θd1 ∩Θd−2 6= ∅ and d2 6= ∅.

4. 〈d1, d2〉 ∈ BOM ⇐⇒ ∆d1 ∩∆d2 6= ∅.

Direction (a): 〈d1, d2〉 ∈ BOM ⇒ ∆d1 ∩∆d2 6= ∅.
Assume d1, d2 ∈ Dom(M) with 〈d1, d2〉 ∈ BOM.
Then by BO-D there exists a d3 ∈ Dom(M) such that

BCont(µ(d3), µ(d1)) ∧BCont(µ(d3), µ(d2))

Then by Theorem 9.2(5) we have Σd3 ⊆ ∆d1, Σd3 ⊆ ∆d2, and Σd3 6= ∅. We conclude
∅ 6= Σd3 ⊆ ∆d1 ∩∆d2.

Direction (b): BO(µ(d1), µ(d2))⇐ ∆d1 ∩∆d2 6= ∅.
Assume d1, d2 ∈ Dom(M) with ∆d1 ∩∆d2 6= ∅.
We distinguish three cases.

Case (b.i): Assume dim(Σd1 ∩∆d2) < dim(d1).
Then by Definition 5.11(3) some collection M′ ⊆ M exists such that

(⋃
d∈M′ Σd

)
=

Σd1∩∆d2. Some d3 ∈ Dom(M′) additionally satisfies Σd3∩∆d1 6= ∅ and since Σd3 is the
sum of the areas of atomic manifolds, there exists an atomic manifold d4 ∈ d3 such that
Σd4 ∩∆d1 6= ∅. This atomic manifold cannot share a manifold of equal dimension with
∆d1. Hence we have dim(Σd4 ∩ ∆d1) < dim(d4) and we can apply Definition 5.11(3)
again: some collection M′′ ⊆ M exists such that

(⋃
d∈M′′ Σd

)
= Σd4 ∩ ∆d1. Any

d5 ∈ Dom(M′′) satisfies

Σd5 ⊆ ∆d1 and Σd6 ⊆ Σd5 ⊆ Σd4 ⊆ ∆d2

Hence we obtain BCont(µ(d5), µ(d1)) ∧ BCont(µ(d5), µ(d2)) by Theorem 9.2(5) and
thus BO(µ(d1), µ(d2)).

Case (b.ii): Assume dim(Σd2 ∩∆d1) < dim(d2).
Analogously to Case (b.ii).

Case (b.iii): Assume dim(Σd1 ∩∆d2) ≮ dim(d1) and dim(Σd2 ∩∆d1) ≮ dim(d2). We also
have dim(d2)  dim(∆d2).
Then

dim(∆d2) ≥ dim(d1)  dim(∆d1) ≥ dim(d2)  dim(∆d2),

which is self-contradictory. Hence this case is ruled out.

These three cases are trivially exhaustive, hence we obtain BO(µ(d1), µ(d2)) in any case.
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5. 〈d1, d2〉 ∈ BECM ⇐⇒ there exists a d3∈Dom(M) such that
[
d3 6= d1∧∆d1∩d−2 ∩Σd3 6= ∅

]
.

Direction (a): 〈d1, d2〉 ∈ BECM ⇒ there exists a d3∈Dom(M) such that
[
d3 6= d1 ∧∆d1 ∩

d−2 ∩ Σd3 6= ∅
]
.

Assume d1, d2 ∈ Dom(M) with 〈d1, d2〉 ∈ BECM.
Then there exists a z = µ(d3) with d3 ∈ Dom(M) such that

BCont(µ(d3), µ(d1)) ∧ ¬Cont(µ(d3), µ(d2))

By Theorem 9.2(4),(5) we obtain Σd3 ⊆ ∆d1 and Σd3 * Σd2. Thus Σd3 ∩ d−2 6= ∅ and thus
∆d1 ∩ d−2 ∩Σd3 6= ∅. From Σd3 ⊆ ∆d1 we also obtain dim(d3) � dim(d1) and hence d3 6= d1.

Direction (b): 〈d1, d2〉 ∈ BECM ⇐ there exists a d3∈Dom(M) such that
[
d3 6= d1 ∧∆d1 ∩

d−2 ∩ Σd3 6= ∅
]
.

Assume d1, d2, d3 ∈ Dom(M) with d1 6= d3 and ∆d1 ∩ d−2 ∩ Σd3 6= ∅.
Then some atomic manifold d4 ∈ d3 exist such that Σd4 ∩ ∆d1 ∩ d−2 6= ∅. Consider the
nonempty intersection Σd4 ∩∆d1. We distinguish two cases.

Case (b.i): Assume dim(Σd4 ∩∆d1) = dim(d4).
Then Σd4 ⊆ ∆d1 because d4 does not contain any other atomic manifold than itself. Then
we have BCont(µ(d4), µ(d1)) by Theorem 9.2(5). From Σd4 ∩∆d1 ∩ d−2 6= ∅ we further
obtain Σd4 ∩ d−2 6= ∅ and thus Σd4 * Σd2 by Definition 5.14. Thus ¬Cont(µ(d4), µ(d2))
and thus with BCont(µ(d4), µ(d1)) we conclude 〈d1, d2〉 ∈ BECM by BEC-D.

Case (b.i): Assume dim(Σd4 ∩∆d1) < dim(d4).
Then there exists some collection M′ ⊆M such that

(⋃
d∈M′ Σd

)
= Σd4∩∆d1. In partic-

ular, some d5 ∈M′ satisfies Σd5∩d−2 6= ∅ and thus Σd5 * Σd2 by Definition 5.14, so that
¬Cont(µ(d5), µ(d2)). Moreover, because Σd5 ⊆ ∆d1 we obtain BCont(µ(d5), µ(d1)), so
that we conclude 〈d1, d2〉 ∈ BECM by BEC-D.

Clearly, the two cases (b.i) and (b.ii) are exhaustive because the intersection Σd4 ∩∆d1 can
never be of greater dimension than d4 itself. Hence in any case 〈d1, d2〉 ∈ BECM.

6. 〈d1, d2〉 ∈ EOM ⇐⇒ d−1 ∩ d
−
2 6= ∅.

Direction (a): 〈d1, d2〉 ∈ EOM ⇒ d−1 ∩ d
−
2 6= ∅.

Assume d1, d2 ∈ Dom(M) with 〈d1, d2〉 ∈ EOM.
Then there exists a d3 ∈ Dom(M) such that ((µ(d3) − µ(d1)) − µ(d2)) /∈ZEXM by EO-D.
Because ¬PO(((µ(d3)−µ(d1))−µ(d2), µ(d1)) and ¬PO((µ(d3)−µ(d1))−µ(d2), µ(d2)) (both
by Dif-T3), there must exist a d4 such that

µ(d4)∈MinM ∧P(µ(d4), µ(d3)) ∧ ¬Cont(µ(d4), µ(d1)) ∧ ¬Cont(µ(d4), µ(d2)).

By Theorem 9.2(1),(4) d4 must be an atomic manifold such that Σd4 * Σd1 and Σd4 * Σd2.
Because d4 cannot intersect d1 or d2 in a manifold of the dimension of d4, d4 can only share
lower-dimensional manifolds with d1 and d2. No finite set of such lower-dimensional manifolds
is able to cover all interior points of d4, so that some interior point p ∈ Σd4 exists such that
p /∈ Σd1 and p /∈ Σd2. Then d−1 ∩ d

−
2 6= ∅.
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Direction (b): 〈d1, d2〉 ∈ EOM ⇐ d−1 ∩ d
−
2 6= ∅.

Assume d1, d2 ∈ Dom(M) with d−1 ∩ d
−
2 6= ∅.

Then there exists a point p ∈
⋃
d∈M Σd such that p /∈ Σd1 and p /∈ Σd2. Then some atomic

manifold d3 ∈M exists such that Σd3 * Σd1 and Σd3 * Σd2. Then

µ(d3)∈MinM ∧ ¬Cont(µ(d3), µ(d1)) ∧ ¬Cont(µ(d3), µ(d2))

by Theorem 9.2(1),(4). From µ(d3)∈MinM we obtain µ(d3) · µ(d1) <dim µ(d3) and µ(d3) ·
µ(d2) <dim µ(d3). Hence Cont(µ(d3), µ(d3) − µ(d1)) by Dif-A3a and µ(d3) − µ(d1) =dim

µ(d2)>dim(µ(d3)− µ(d1)) · µ(d2) by Dif-A1. Hence Cont(µ(d3), (µ(d3)− µ(d1))− µ(d2)) by
Dif-A3a and thus ((µ(d3)− µ(d1))− µ(d2)) /∈ZEXM by C-A4.

This completes the proof of all six mappings.

Except for the mapping (5) of BEC , all mappings confirm our intuitions. We have thereby proved that
the topological characterization of the relationship between two entities can be achieved in the general
multidimensional setting in CODIB↓ without restricting the dimension or codimension of the two entities.
That means we can describe how two complex manifolds are spatially located to one another using
conjunctions of those nine logical relations and their negations. This allows us to give explicit definitions
for all 16 relations arising from the 4-intersection relations and define all of the 512 relations arising
from the 9-intersection relations that are physically possible in a general multidimensional setting3.
Thereby, CODIB↓ also generalizes the mereotopological relations between areas, lines, and points in
two-dimensional space from [CDFO93; Ege91; EH91; McK+05]. Our approach has two advantages
over the earlier work: (1) it works independent of the dimension of the space and independent of the
dimensions of the two spatial entities whose relation we want to describe. We no longer have to treat the
relations between lines and areas different that the relations between areas and areas; all those relations
can be described in our logical theory. Recall that we can describe the dimension of the contact—the
shared region—as well, so that the dimension-refinement proposed in [McK+05] can be easily defined in
CODIB↓.

One question remains: why does the mapping (5), of BEC , differ from the other mappings? This
is due to the fact that some points p ∈ ∆d1 may not be contained in any manifold d3 such that
〈d3, d1〉 ∈ BContM. That is, the direction

〈d1, d2〉 ∈ BECM ⇐ ∆d1 ∩ d−2 6= ∅

may fail if no d3 ∈ Dom(M) exists with ∆d1 ∩ d−2 ∩ Σd3 6= ∅, while the direction

〈d1, d2〉 ∈ BECM ⇒ ∆d1 ∩ d−2 6= ∅

still holds. This is a limitation of our axiomatization of boundaries, in which boundaries may not be
completely captured unless it is unambiguous from the spatial configuration in that two entities meet in
the boundary of one. Any boundary point of a manifold that is not shared with another nonoverlapping

3It is left to investigate how many of the theoretically possible 512 relations are physically possible. These are at least
all the relations between two two-dimensional areas (8 relations), two one-dimensional lines (57 relations), and between a
two-dimensional area and a one-dimensional line (20 relations) in R2, for which [EH91] provide examples. Note though that
a relation between two lines may also apply to two areas or to a line and an area. Therefore, without closer investigation
only 57, and not 85, different relations must definitely exist.
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manifold is not treated as such, i.e., such boundary point may end up in the interior in the corresponding
logical model.

9.6 Summary

In this chapter, we extended our multidimensional mereotopologies from the previous chapters by a
primitive notion of boundary-containment in order to formalize the distinction between the interior and
the boundary of a composite m-manifold. A key finding of this chapter is that the bodiless notion
of boundary (captured by the boundary function) as well as the bulky notion of boundary (captured
by either of the functions thickboundary or strongthickboundary) are definable as mutually consistent
extensions of the same theory, CODIB. We can thus say that both conceptions of boundaries coexist in
the same theory, they are in no way incompatible. Moreover, once we ground physical space, i.e., the
space that talks about arrangements of physical objects, we are free to choose a material or an abstract
notion of boundary; the former would correspond to bulky boundaries, whereas the latter corresponds
to bodiless boundaries. We will discuss the grounding of physical surfaces and boundaries in more detail
in Section 11.3, after we formally relate physical objects to the regions of abstract space they occupy.

The extension of the language of CODI by the primitive relation BCont led to the new theory
CODIB. We further extended CODIB to CODIB↓ analogue to the extension of CODI to CODI ↓. If
we want entire boundaries to exist, we can further extend CODIB↓ by one or more of BC-E1 –BC-E3.
The hierarchy of CODIB theories developed in this chapter and its relationships to the theories of the
CODI hierarchy are illustrated in Figure 9.13.

As a central theoretical result, we showed in Theorem 9.2 that our proposed extension of CODI ↓
to CODIB↓ preserves satisfiability with respect to the class Mdense, a subset of the class M of intended
structures presented in Chapter 5. Compared to CODI ↓, CODIB↓ ensures that more of the properties
of the intended structures —in particular condition (3) of the definition of complex manifolds (Defini-
tion 5.11)—are satisfied in the logical theories. Still, axiomatizability as guarantee that every model of
the theory CODIB↓ corresponds to some structure in the class Mdense suffers from the same problems
that already prevented us from proving axiomatizability for the theory CODI ↓ in Section 7.2.5: we
would need to show that all domain elements in a model of CODIB↓ are representable as manifolds with
boundaries.

We have also proved that the extensions of the defined relations ICont (interior containment) and
TCont (tangential containment) partition the extension of containment (Theorem 9.1) in any model
of CODIB. Likewise, the extensions of IP (interior parthood) and TP (tangential parthood) partition
the extension of parthood (Theorem 9.3). boundary-containment and boundary parthood specialize
tangential containment and parthood, respectively. This results in a generalized, dimension-independent
version of the distinctions between tangential and non-tangential parthood known from the RCC and
from other equidimensional mereotopologies. Specifically, we can classify containment (and its inverse)
as illustrated in Figure 9.14, with Figure 9.15 restricting the lattice of relations to the equidimensional
case, resulting in a refinement of the partial overlap relation.

We have provided an even finer classifications of mereotopological relations in multidimensional space
by distinguishing whether an entity’s interior, boundary, or exterior meets another entity’s interior,
boundary, or exterior. We defined three symmetric (IO, BO, EO) and three non-symmetric relations
(IBC , IEC , BEC ) that generalize the nine topological intersection relations from [Ege91; EH91], which
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CODIB hierarchy

+ BC-A6, ME-E1

+ Sum'-A0 - Sum'-A6,
   U-A1

CODI hierarchy

+ Int-A1 - Int-A4,
   Dif-A1 - Dif-A4

+ Sum'-A0
    - Sum'-A5+ Sum-A1

    - Sum-A4,
   U-A1

Figure 9.13: The theories of the CODIB hierarchy and their relationships to the theories of the CODI
hierarchy.

have been widely studied and used in Geographic Information Science, to the most general multidimen-
sional setting. Theorem 9.5 proves that our so-defined relations correctly capture the nine topological
intersections as expressed for manifolds. Our relations do not rely on references to absolute dimensions
or codimensions of the two involved entities or of their shared entities. This generalizes the earlier work
of [CDF98; CDFO93; Ege91; EH91; EM95; ME94; McK+05], which defined subsets of the same rela-
tions in more restricted settings by explicitly distinguishing relations between two spatial entities for any
combination of the absolute dimensions 0, 1, and 2. Since we can already express the relative dimension
of the intersection of two entities in contact—using PO, Inc, and SC from Section 6.3 together with
Int-T7 – Int-T9 from Section 7.1—we can define the even finer “dimension-refined” distinctions studied
by McKenney et al. [McK+05] without reference to absolute dimensions or codimensions as well. This
makes our logical theory applicable to any finite-dimensional setting, the three-dimensional setting be-
ing probably most relevant. The different spatial configurations in Figures 9.16 and 9.17, which have
been used as examples for the 9-intersection relations, are also distinguishable in CODIB↓. A three-
dimensional example that cannot be modelled in any of the previously studied theories is presented in
Figure 9.18. In this example, we demonstrate some spatial aspects of a three-dimensional building may
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Figure 9.14: The dimension-independent lattice of jointly exhaustive, pairwise disjoint binary relations
that refine contact in terms of different kinds of containment and its inverse in CODIB. It generalizes the
five refinements of overlap in the spatial calculus RCC-8, namely PO, TPP , NTPP , TPP−1, NTPP−1,
to the multidimensional case, where they correspond (in the same order) to C ∧¬Cont ∧¬Cont−1, and
to TCont ∧ ¬BCont, ICont, TCont−1 ∧ ¬BCont−1, and ICont−1 in their proper versions (that is, in
conjunction with 6=). New in the multidimensional theory are BCont and BCont−1, which are not
realizable in the equidimensional RCC. This refinement of the containment relations can be used in
conjunction with distinctions based on the relative dimension as demonstrated in Figure 9.15.

Figure 9.15: A refinement of the partial overlap relation PO from the lattice of basic relations in
Figure 6.7 by the parthood equivalents of the relations in Figure 9.14.

be captured in CODIB↓.
In terms of theory relationships, the various implicitly or explicitly defined theories that build on the

9-intersection relations are (definably) interpreted in extensions of the more expressive theory CODIB↓.
More precisely, for each theory T defined in [CDF98; CDFO93; Ege91; EH91; EM95; ME94; McK+05],
there exists a theory T ′ in CODIB that is an extension of CODIB↓ such that the translation of every
sentence provable from T to the language of CODIB is also provable from T ′. Which concrete extension
of CODIB↓ interprets a specific 9-intersection theory depends on the additional ontological assumptions
of the specific 9-intersection theory. The 9-intersection theories vary in their ontological assumptions;
for example, some posit that lines are simple, that regions have no holes, or that the codimension of any
spatial entity is not greater than one. Because the theories are not explicitly defined as logical theories,
those assumptions must be extracted from the context of each work. Therefore, a full integration of those
external theories with the CODIB hierarchy that identifies the external theories’ ontological assumptions
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(a) (b) (c) (d) (e)

s1 s2
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s2 s2

s1s1
s1
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Figure 9.16: Five different ways how two named roads or highways may intersect: (a) one road ends
where another starts (continuation as renamed road), (b) T-intersection, (c) X-intersection (crossing),
(d) two road cross but share a section, and (e) two road start at the same point but split later. These
five configurations are distinguishable from another in CODIB↓.
In (a) we have 〈s1, s2〉 /∈ IOM, 〈s1, s2〉 ∈ BOM, and 〈s1, s2〉, 〈s2, s1〉 /∈ IBCM.
In (b) we have 〈s1, s2〉 /∈ IOM, 〈s1, s2〉 /∈ BOM, and 〈s1, s2〉 ∈ IBCM but 〈s2, s1〉 /∈ IBCM.
In (c) we have 〈s1, s2〉 ∈ IOM, 〈s1, s2〉 /∈ BOM, and 〈s1, s2〉, 〈s2, s1〉 /∈ IBCM.
In all of (a)–(c) we also have 〈s1, s2〉 ∈ SCM, while in (d) and (e) we have 〈s1, s2〉 ∈ POM. The
extensions of IO, BO, IBC in (d) are the same as those in (c), and those in (e) are the same as those in
(b).
This is not an exhaustive classification of how two roads (or two linear features in general) may intersect
in a two-dimensional space. For an exhaustive classification, see [CDFO93; EM95; ME94].

(a) (b) (c) (d) (e)
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a a aaa

s

s

s

s

Figure 9.17: Five different ways how a road and a region (e.g., a park) may spatially relate to another.
(a) The road is in the park.
(b) The road enters the park.
(c) The road crosses the park.
(d) The road leads to the park without entering it.
(e) The road passes directly by the park.
These five configurations are distinguishable from another in CODIB↓. In (a)–(d) we have 〈s, a〉 ∈ IncM,
while in (e) 〈s, a〉 ∈ SCM. Moreover, in (a)–(c) 〈s, a〉 ∈ IOM, which is false in (d) and (e).
In both (a) and (e), the ‘road ends (or begins) at the park boundary’, that is 〈s, a〉 ∈ BOM, which is
false in (b)–(d). In (a) and (b), the ‘road ends in the park interior’, that is 〈a, s〉 ∈ IBCM. The ‘road
crosses or straddles the park boundary’ in (b)–(d), therefore we have 〈s, a〉 ∈ IBCM.
In (a), we additionally have 〈s, a〉 ∈ TContM but 〈s, a〉 /∈ BContM, which also implies 〈s, a〉 /∈ IECM
and 〈s, a〉 /∈ BECM. In all other configurations we have 〈s, a〉 ∈ IECM and 〈a, s〉 ∈ BECM. Moreover,
in all configurations 〈a, s〉 ∈ IECM and 〈a, s〉 ∈ BECM.
This is not an exhaustive classification of how a road may spatially relate to a park. For an exhaustive
classification, see [CDF98].

is still outstanding.
Those distinctions based on the interior, boundary, and exterior or an entity may still be insufficiently

fine-grained for some desired mereotopological distinctions. Another criteria that leads to an even finer
classification distinguishes whether the interior or boundary of an entity is in full or only in partial contact
to a second entity. This effectively amends the binary classification of whether the interior or boundary
of one entity is in contact to the interior or boundary of another entity by a three-valued measure: no
contact, partial contact, and full contact. However, it is not simply a refinement of the relations IO,
IBC , BO, IEC , BEC , and EO since the new relations are not specific to what something is connected
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Figure 9.18: The abstract representation of the building from Figure 5.8 that can be captured as a model
of CODIBl. We treat the building as three-dimensional, floors as two-dimensional, walls, staircases,
escalators, and elevators as one-dimensional, and doors as zero-dimensional. We can then express that,
for example, the staircase st is connected to the boundary of the floors (and the building), whereas the
elevator (el) and the escalators (es1 – es4, ex1, and ex2) meet each floor in the interior (and thereby
in the interior of the building). Moreover, we can distinguish the lowest and the top floors as being
contained in the boundary of the building, whereas the other floors are not contained in the boundary.
Both distinctions are relevant when, e.g., evacuating the building: the top and bottom floor may provide
easier access in an emergency (as main entrance or rooftop). Notice that the escalators or elevators may
intersect floors in the floors’ interiors because the floors are treated as two-dimensional entities being
located in the three-dimensional building (and thereby having a codimension of one). Such cases were
not treated in earlier classifications of topological relations.

to. Nevertheless these additional distinctions should be definable in CODIB↓ in a straightforward way
using the primitive relations of <dim, Cont, and BCont. A full investigation of this classification would
be a worthwhile topic for future work (Challenge 3).



Chapter 10

Extension with betweenness:
geometries1

The aim of this chapter is to partially bridge the gap between our multidimensional mereotopologies and
classical geometries using the relationships we discussed in Chapter 2 between classes of structures and
between theories. To start, we will explain in Section 10.1 what we mean by classical geometries, which
include both Euclidean and non-Euclidean geometries, and give a short overview of theories of classical
geometry and their relationships. In the remainder of the chapter we investigate how to extend theories
from the CODI hierarchy to classical geometries. In Section 10.2 we definably extend CODI by concepts
of ‘points’ and ‘lines’ and show that (1) all models of CODI have a substructure that is an incidence
structure and is closed under incidence for points and lines and that (2) all incidence structures define
models of CODI in a straightforward way. In a subsequent step, we introduce axioms that allow us to
restrict models of CODI in a way that its incidence substructures correspond to incidence geometries
such as linear or affine incidence geometries. We show this first for two-dimensional incidence geometries
and then for three-dimensional incidence geometries with points incident with lines and/or planes.

To reconstruct more expressive kinds of classical geometries, we need a notion of “order”, which is
definable in models of neither CODI nor CODIB as Figure 10.1 demonstrates. The order is equally not
definable in any structure in the class Mdense, thus the class Mdense will be of no help any longer. But
instead of extending the class of intended models, we simply describe the intended order relation and
capture it by introducing a new primitive relation of order in Section 10.3. While classical geometries
use a ternary relation of ‘betweenness’ to capture the order of points on straight lines, we relativize
this notion of order in Section 10.3.1 to quaternary betweenness within an embedding spatial entity.
This allows, in principle, to apply betweenness not only to points, but also to higher-dimensional spatial
entities, such as curves, lines, areas, planes, or bodies. Such a general notion of ‘betweenness’ works
independently of the dimension of space. The betweenness axioms closely resemble axiomatizations of
ternary relations of betweenness known from, e.g., Hilbert’s geometry [Hil71]. We will show that the
traditional ternary betweenness relation in an incidence geometry is definable using our more general
relation. To that extent, we combine in Section 10.3.2 our theory of quaternary betweenness with theories
from the CODI hierarchy to define a theory of ordered multidimensional mereotopology, OMT↓. We will
then show that all ordered incidence geometries that have an incidence structure consisting of points

1Parts of this chapter, in particular in the Sections 10.2.2 and 10.3, have been previously published as [HG11b].
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Figure 10.1: Two maps that have equivalent models of CODI ↓ or CODIB↓ but distinct models of OMT↓.
(a) shows an excerpt of a map of the city of Toronto, while (b) is a fake map in which the order of the
north-side streets Spadina Ave., University Ave., Bay St., and Yonge St. has been changed. If we capture
either map as a model of CODI ↓ or CODIB↓ with only linear and point features (each street and each
intersection being a domain entity), then the models are logically equivalent. This is because we have
no relation that captures the ordering of points on a linear feature, or the ordering if linear features in
an area.

being incident with lines and/or planes can be interpreted in an extension of OMT↓in the OMT hierarchy.
While the language of OMT is thereby capable of reconstructing ordered incidence geometries, OMT↓ is
axiomatically less restricted than even the weakest three-dimensional ordered incidence geometry used
traditionally in geometry. Despite our focus on the three-dimensional case, nothing prevents the results
from transferring to higher-dimensional geometries as well.

As part of our work in this chapter, we will identify a specific three-dimensional theory, namely
OMT3d−g, that is the natural qualitative equivalent of three-dimensional classical incidence geometries,
it leaves out two key assumptions of classical theories (PL-A2, PLP-A2):

(a) two distinct points are incident with at most one line (PL-A2, part of the line axiom), and

(b) three noncollinear points are incident with at most one plane (PLP-A2, part of the plane axiom).

Leaving those two assumptions out essentially allows curved entities: two curved lines, line segments,
planes, or plane segments (areas) may meet in multiple points without being identical. In the definition
of an ordered multidimensional mereotopology we also weaken the classical notion of linear order, in which
three collinear points are always orderable, to a setting where three distinct points (or three lines or line
segments) may not be totally orderable, but only orderable with respect to a specific local context, the
‘embedding’ entity. Obviously, this lack of total orderability is a direct consequence of admitting that
multiple distinct lines or planes are incident with a given set of two or three distinct points. Nevertheless,
this weak theory of ordered multidimensional mereotopology is still expressive enough in its language to
differentiate between the two maps in Figure 10.1.

Finally, before we go into the technical details, note that all theories in this chapter admit both
discrete and continuous interpretations. Unlike much work in classical geometry, we do not assume that
lines and higher-dimensional entities are dense sets of points, where lines, curves, planes, etc. have no
endpoints. In other words, our theories admit models that are called finite geometries, see e.g., [Bat97].
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10.1 Classical ordered incidence geometries

By classical geometries we mean Euclidean and non-Euclidean geometries, as generalized in what is
called neutral geometry [Gre94; PJ65] or absolute geometry [BS60]. Each of those geometries relies on a
fairly standard set of axioms of incidence and order, which we will review in this section. Two notable
extensions of neutral geometry are Euclidean geometry and Lobačevskijan geometry. Note that we are
not concerned with projective geometries at all.

Best-known among the earliest modern treatises of classical geometry is Hilbert’s work [Hil71] that
consists of three sets of axioms: set (I) for incidence, set (II) for order, and set (III) for congruence. We
will focus on generalizing the sets (I) and (II). Once we have an axiomatic theory that generalizes those
two sets in that it has an extension which is definably equivalent to the theory defined by Hilbert’s two
sets of axioms, we can readily reuse Hilbert’s axiomatization of congruence—or, for that matter, any other
equivalent axiomatization of congruence—to define full Euclidean geometry. Tarski equally axiomatized
Euclidean geometry, but in a very different fashion. While Hilbert uses points, straight lines, and planes
as primitive objects, Tarski’s axiomatization [compare Tar59; TG99] is solely based upon points and sets
of points. For our work here, we will stick with Hilbert’s approach—despite it reliance on a larger set
of primitive notions. Hilbert’s first four groups of axioms, which concern incidence, order, parallelism,
and congruence, can be axiomatized without the use of set theory. Moreover, Hilbert’s axioms are easier
expressed in extensions of our theories, which explicitly allow entities of different dimensions as first-class
objects.

10.1.1 Incidence structures

First, we define a general incidence structure, generally following [Bue95, Chapter 3], though we deviate
by defining incidence as an irreflexive and asymmetric relation. The irreflexive and asymmetric incidence
relation naturally defines a reflexive and symmetric one, but simplifies the mapping to theories in the
language of CODI .

Definition 10.1. An incidence structure I = 〈X, I, ∗, t〉 is a set X equipped with a surjective function
t : X→ I into a set of types I and a binary, asymmetric, irreflexive relation ∗.

We call ∗ the incidence relation. Unlike other definitions, the incidence relations considered here
are not necessarily transitive. For our work here, we are mainly interested incidence structures that
partition the domain into sets of equal type so that domain entities of equal type are never incident.

Definition 10.2. A k-partite incidence structure is an incidence structure I = 〈X, I, ∗, t〉 with k = |I|
such that for all x, y ∈ X

if I � x ∗ y then I � t(x) 6= t(y).

k = |I| denotes the number of distinct types in the incidence structure; in geometric incidence
structures k − 1 denotes the dimension of the space. Another way to formalize k-partite incidence
structures is as structures 〈P,B, ∗〉 where the elements of B, called blocks, are subsets of P. In such a
formalization, ∈ is often used to denote the asymmetric incidence relation between points and lines so
that p ∈ B makes clear that p is a point and B is a block.

In the sequel, we are only interested in incidence structures that contain a distinguished type—the
elements of which we call points—and in which only points are incident with non-points, a property
formalized as axiom I.0a.
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(I.0a) For any pair of entities x, y with x ∗ y, x is a point and y is not a point.

We call such a structure a point incidence structure.

Definition 10.3. A k-partite point incidence structure is a k-partite incidence structure I = 〈X, I, ∗, t〉
with a distinguished nonempty set Pt ⊆ X such that for all x, y ∈ X

if I � x ∗ y then x ∈ Pt and y /∈ Pt.

Bipartite and tripartite point incidence structure are the most commonly used incidence structures
in geometry. Bipartite point incidence structures are often identified as structures 〈Pt,L, ∗〉 with two
disjoint sets Pt, called points, and L, called lines. This is equivalent to a point incidence structure

〈Pt ∪ L, {Pt, L}, ∗, t〉 as defined earlier, where t(x) =

Pt if x ∈ Pt

L if x ∈ L
.

Analogously, we can define a tripartite point incidence structure as 〈Pt,L,Pl, ∗〉. Notice that every
k-partite point incidence structure with k ≥ 2 has a bipartite or tripartite incidence substructure if k ≥ 2
or k ≥ 3, respectively.

10.1.2 Incidence geometries

We start by defining two-dimensional incidence geometries and afterwards generalize those to n-dimen-
sional incidence geometries.

Two-dimensional incidence geometries

Any two-dimensional incidence geometry has an underlying bipartite point incidence structure. The
basic incidence geometry with a bipartite point incidence structure is a line space [compare Bue95].

Definition 10.4. A line space is a structure I = 〈Pt,L, ∗〉 comprised of a nonempty set of points Pt,
a set L of lines disjoint from Pt, and a asymmetric, irreflexive incidence relation ∗ between points and
lines that satisfies I.1.

(I.1) For every line l ∈ L there exist two distinct points p, q ∈ Pt such that p ∗ l and q ∗ l.

In other words, for every line l ∈ L there exist points p, q ∈ Pt with p 6= q such that p ∗ l and q ∗ l.
In a k-dimensional incidence geometry with k ≥ 2 we call points p, q, r collinear if and only if a line
l ∈ L exists such that p ∗ l, b ∗ l, and c ∗ l. Notice that a line space has an implicitly defined domain in
X ⊇ pt ∪ L. The line spaces are axiomatized by the theory

IG2D = {I.0a, I.1}.

If a line space satisfies certain additional conditions, we call it a semi-linear, linear, or affine space.
The subsequent definitions are again not our own, they can be found in various forms in standard
references; our definitions are based on those by Batten [Bat97]. We introduce our own naming scheme
for the axioms to group them not only by the primitive notions they axiomatize (those starting with
‘I’ are incidence axioms), but also to separate purely existential axioms (containing only existential
quantifiers), which start with ‘I.E’, from the more substantial axioms.
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Definition 10.5. A semi-linear space is a line space that satisfies I.2a.

(I.2a) For distinct p, q ∈ Pt there exists at most one line l ∈ L such that p ∗ l and q ∗ l.

What we call a semi-linear space is often also referred to as a partial plane. Other names include
near-linear [Bat97] or partial linear space [Bue95].

In a linear space, two distinct points uniquely define a line, which is postulated by the combination
of I.2a and I.2b. Often, this combination is referred to as the line axiom.

Definition 10.6. A linear space is a line space that satisfies I.2a and I.2b.

(I.2b) For distinct p, q ∈ Pt there exists a line l ∈ L such that p ∗ l and q ∗ l.

Clearly, every linear space is a semi-linear space, but not the converse. An affine space is a linear
space that satisfies Euclid’s parallel postulate (also know as the Playfair form): every point p not on a
line l is incident with exactly one line m parallel to l, i.e., no point is incident with both l and m I.P.
I.E1 is only postulated to exclude some trivial spaces with no or only one line.

Definition 10.7. An affine space is a line space that satisfies I.2a, I.2b, I.P, I.E1.

(I.P) (Parallel Postulate) A point p ∈ Pt not incident with a line l ∈ L is incident with exactly one
line m ∈ L so that l and m are not incident with a common point.

(I.E1) There exist three noncollinear points p, q, r ∈ Pt.

Affine spaces are also called affine planes [Bat97; Ewa71; Gre94]. The Euclidean plane R2 is probably
the most well-known affine space.

The bipartite semi-linear, linear, and affine spaces we just introduced are often also called line
geometries, point-line geometries, planar geometries, or two-dimensional geometries to distinguish them
from their more prevalent three-dimensional versions.

Analogously to how semi-linear spaces generalize linear spaces, affine spaces can be generalized to
semi-affine linear spaces [Dem62; VM09]. To do so, we weaken I.P so that at most one line through p
exists that is parallel to l (I.Pa). The second part of I.P is then I.Pb. Observe that in the definition of
an affine space, we could replace I.P by I.Pb: by I.1 and I.2a the parallel line m must be unique.

(I.Pa) A point p ∈ Pt not incident with a line l ∈ L is incident with at most one line m ∈ L so that l
and m are not incident with a common point.

(I.Pb) A point p ∈ Pt not incident with a line l ∈ L is incident with a line m ∈ L so that l and m are
not incident with a common point.

Definition 10.8. A semi-affine space is a line space that satisfies I.2a, I.2b, I.Pa, I.E1.

For the sake of completeness in generalizing affine spaces, we can also define a semi-affine semi-linear
space by further omitting I.2b.

Definition 10.9. A semi-affine semi-linear space is a line space that satisfies I.2a, I.Pa, I.E1.

Semi-affine semi-linear spaces are interesting insofar as they do not force additional lines to exist,
while still guaranteeing that no more than a single line exists through two distinct points and no more
than one parallel line through a point not incident with a given line may exist.
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Three-dimensional incidence geometries

The axioms I.1, I.2a, I.2b, I.Pa, I.Pb, and I.E1 are usually called plane axioms [BS60; Hil71] because they
deal with points and lines on a single plane. If more than a single plane exist, the underlying k-partite
point incidence structure must have k ≥ 3. We can define when tripartite point incidence structures are
incidence geometries analogue to bipartite point incidence structures being line spaces. The additional
axioms I.3, I.4a, I.4b, I.5, I.6, and I.E2 are called the space axioms.

Definition 10.10. A three-dimensional incidence geometry is a tripartite point incidence structure
〈Pt,L,Pl, ∗〉 that satisfies I.0 – I.6 and I.E2.

(I.3) A plane is incident with three noncollinear points.

(I.4a) Three noncollinear points are incident with a common plane.

(I.4b) Three noncollinear points are incident with at most one common plane.

(I.5) If two distinct points of a line are incident with a plane, then all points incident with the line are
incident with the plane.

(I.6) If two planes are incident with a common point, they are incident with a second distinct common
point.

(I.E2) There exist four non-coplanar points.

In the definition of a three-dimensional incidence geometry we intentionally left out the parallel
axiom I.P; a three-dimensional incidence geometry that satisfies I.P is called an affine three-dimensional
incidence geometry. In a k-dimensional incidence geometry with k ≥ 3, we call points p, q, r, s ∈ Pt
coplanar if and only if there exists a x ∈ Pl such that p ∗ x, q ∗ x, r ∗ x, and s ∗ x. I.E1 is provable
for any three-dimensional incidence geometry, compare [BS60], and every three-dimensional incidence
geometry has a linear line geometry. Our notion of a three-dimensional incidence geometry matches
what Prenowitz and Jordan [PJ65, p. 138f.] call an incidence geometry.

We have the following correspondences to Hilbert’s axiomatization [Hil71] of incidence that comprises
the axioms (IH.1) – (IH.8). The parallel postulate I.P is not among Hilbert’s axioms of incidence. Each
of the axioms I.1 – I.6 and I.E2 is also equivalent to one of the nine incidence axioms used by Borsuk
and Szmielew [BS60].

(IH.1) corresponds to I.2b,

(IH.2) corresponds to I.2a,

(IH.3) corresponds to I.1 and I.E1,

(IH.4) corresponds to I.3 and I.4a,

(IH.5) corresponds to I.4b,

(IH.6) corresponds to I.5,

(IH.7) corresponds to I.6,

(IH.8) corresponds to I.E2.
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General incidence geometries

We can generalize this notion of a three-dimensional incidence geometry to incidence geometries that
allow higher-dimensional geometries as well as lower-dimensional, in particular planar, geometries. More
precisely, we can leave out I.6 which restricts the incidence geometry to a maximum of three dimensions.
Equally, we can leave out I.E1 and I.E2, which require a minimum of two or three dimensions, respec-
tively. This generalizes the definition of a two- or three-dimensional incidence geometry from Prenowitz
and Jordan [PJ65, p. 138f.]. We obtain the following definition.

Definition 10.11. An incidence geometry is a k-partite point incidence structure I = 〈X, I, ∗, t〉 with
three distinguished disjoint sets Pt,L,Pl ⊆ X, whose elements are called points, lines, and planes,
respectively, such that for all x, y ∈ X,

• x ∈ Pt and I � t(x) = t(y), then y ∈ Pt,

• x ∈ L and I � t(x) = t(y), then y ∈ L,

• x ∈ Pl and I � t(x) = t(y), then y ∈ Pl;

and all elements in Pt ∪ L ∪Pl satisfy I.0 – I.5.

Incidence geometries are axiomatized by the theory

IG = {I.0 – I.5},

which includes I.0b to ensure that the sets Pt,L,Pl are indeed disjoint.

(I.0a) x ∗ y → Pt(x) ∧ ¬Pt(x) (only points are incident with non-points)
(I.0b) [¬Pt(x) ∨ ¬L(x)] ∧ [¬Pt(x) ∨ ¬Pl(x)] ∧ [¬L(x) ∨ ¬Pl(x)] (Pt, L, and Pl are disjoint)
(I.1) L(l)→ ∃p, q[p 6= q ∧ p ∗ l ∧ q ∗ l] (for every line two distinct points incident with the line exist)
(I.2a) Pt(p) ∧ Pt(q) ∧ p 6= q ∧ L(l) ∧ L(m) ∧ p ∗ l ∧ q ∗ l ∧ p ∗m ∧ q ∗m→ l = m

(two points are incident with at most one line)
(I.2b) Pt(p) ∧ Pt(q) ∧ p 6= q → ∃l[L(l) ∧ p ∗ l ∧ q ∗ l]

(two distinct points are incident with some common line)
(I.3) Pl(x)→ ∃p, q, r

[
p 6= q 6= r 6= p ∧ p ∗ x ∧ q ∗ x ∧ r ∗ x ∧ ∀l[L(l)→ ¬[p ∗ l ∧ q ∗ l ∧ r ∗ l]]

]
(a plane is incident with three distinct, noncollinear points)

(I.4a) Pt(p) ∧ Pt(q) ∧ Pt(r) ∧ ∀l
[
L(l)→ ¬[p ∗ l ∧ q ∗ l ∧ r ∗ l]

]
→ ∃x[Pl(x) ∧ p ∗ x ∧ q ∗ x ∧ r ∗ x]

(three noncollinear points are incident with a common plane)
(I.4b) Pt(p)∧Pt(q)∧Pt(r)∧∀l

[
L(l)→ ¬[p∗l∧q∗l∧r∗l]

]
∧Pl(x)∧Pl(y)∧p∗x∧q∗x∧r∗x∧p∗y∧q∗y∧r∗y

→ x = y (three noncollinear points are incident with at most one common plane)
(I.5) L(l) ∧ Pl(x) ∧ p ∗ l ∧ q ∗ l ∧ p 6= q ∧ p ∗ x ∧ q ∗ x→ ∀r[r ∗ l→ r ∗ x] (if two distinct points of a

line are incident with a plane, then all points incident with the line are incident with the plane)

Axiom Set 10.1: Axioms I.0 – I.5 of IG.
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10.1.3 Ordered incidence geometries

Ordered incidence geometry first emerged in Pasch’s Vorlesungen über Neuere Geometrie [Pas88] as a
rigorous, i.e., axiomatic generalization of Euclidean geometry that leaves out congruence as a primitive
notion. For that reason, Coxeter called ordered incidence geometry quite fittingly “geometry without
measurements” [Pam11]. The idea of using betweenness as an additional primitive relation for geometry
was quickly taken up by Peano and Hilbert [Hil71], so that betweenness became a generally accepted
primitive concept besides those of points, lines, incidence, and congruence. Since then, various kinds of
ordered incidence geometries (sometimes also called ordered incidence structures) have been proposed
and studied. Pambuccian [Pam11] offers a very comprehensive account of the various axiomatizations
of ordered geometry, translating them into a unified first-order logical framework.

We choose the notion of an ordered incidence geometry as defined by Prenowitz and Jordan [PJ65,
p. 217], which builds upon our earlier definition of a three-dimensional incidence geometry (Defini-
tion 10.10), which we also adapted from [PJ65]. The original definition is restricted to two- and three-
dimensional ordered incidence geometry, but easily extends to higher-dimensional incidence geometries.
The resulting theory allows entities of higher dimensions to exist, but does not axiomatize order be-
tween higher-dimensional entities; while the Pasch axiom establishes an order between line segment, no
equivalent axioms for, e.g., two-dimensional areas in a three-dimensional space are included. This is
a general limitation of classical ordered incidence geometries: they are usually restricted to maximal
three dimensions. Other approaches to geometry that fix this problem have been proposed by Nuut
and Hashimoto [Has58]; they define what is called an n-dimensional betweenness geometry. A recent
overview including notes on the historical development of n-dimensional betweenness geometry is given
by Lumiste [Lum07]. Though we do not study the relationship to betweenness geometry in detail, it
appears to be an extension of weak ordered incidence geometry as defined in a moment.

Definition 10.12. An ordered incidence geometry 〈X, I, ∗, t,B〉 is an incidence geometry 〈X, I, ∗, t〉
with distinguished disjoint sets Pt,L,Pl ⊆ X equipped with a ternary relation B : Pt×Pt×Pt, called
betweenness, that satisfies O.1 –O.6.

(O.1) (Symmetry Property) B(a, b, c) implies B(c, b, a).

(O.2) (Anticyclic Property) B(a, b, c) implies the falsity of B(b, c, a).

(O.3) (Linear Coherence) a, b, and c are distinct and collinear points iff B(a, b, c), B(b, c, a), or
B(c, a, b).

(O.4) (Separation Property) Let p colline with, and be distinct from a, b, c. Then B(a, p, b) implies
B(b, p, c) or B(a, p, c) but not both.

(O.5) (Existence) If a and b are distinct points, then there exist x, y, z such that B(x, a, b), B(a, y, b),
B(a, b, z).

(O.6) (Pasch Axiom) Let L coplane with and not contain points a, b, c. Then if L intersects
←→
ab , it

intersects
←→
bc or ←→ac but not both.

We altered O.3 to reflect the intended interpretation of B(a, b, c) as ‘point b is in between points a
and c’, which is implied by the chosen notation in [PJ65]. Equally, we restricted the antecedent of O.5
to points a and b.
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The notation
←→
ab in O.6 denotes bounded line segments, which we have not yet defined; they are

however definable in various ways, compare any of [BS60; Gre94; Hil71; PJ65] and our discussion in
Section 10.3.5. Line segments will not play a central role in our exposition, thus we completely leave out
O.6 from our studies. Once we formally define line segments in CODI , we can express O.6 as well.

We are interested in both discrete and continuous ordered incidence geometries, hence we omit
O.5, which rules out any finite or discrete geometries. This results in a weaker kind of ordered incidence
geometry defined as follows, which will form the basis for reconstructing classical geometries as extensions
of CODI .

(O.1) B(p, q, r)→ B(r, q, p) (B symmetric)
(O.2) B(p, q, r)→ ¬B(q, r, p) (B anticyclic)
(O.3) p 6= q ∧ p 6= r ∧ q 6= r ∧ ∃l[L(l) ∧ p ∗ l ∧ q ∗ l ∧ r ∗ l]↔ B(p, q, r) ∨B(q, r, p) ∨B(r, p, q)

(linear coherence)
(O.4) L(l) ∧ p ∗ l ∧ q ∗ l ∧ r ∗ l ∧ s ∗ l ∧ s 6= p ∧ s 6= q ∧ s 6= r ∧ B(p, s, q) → [B(q, s, r) ∧ ¬B(p, s, r)] ∨

[¬B(q, s, r) ∧B(p, s, r)] (total separability)

Axiom Set 10.2: Axioms O.1 –O.4 of WOIG.

Definition 10.13. A weak ordered incidence geometry 〈X, I, ∗, t,B〉 is an incidence geometry 〈X, I, ∗, t〉
with distinguished disjoint sets Pt,L,Pl ⊆ X equipped with a ternary relation B : Pt×Pt×Pt, called
betweenness, that satisfies O.1 –O.4.

Clearly, every ordered incidence geometry is also a weak ordered incidence geometry. Depending on
the involved incidence geometry, we call the resulting weak ordered incidence geometry a two-, three-,
or k-dimensional weak ordered incidence geometry.

We axiomatize weak ordered incidence geometries by the theory

WOIG = {I.0 – I.5, O.1 –O.4}.

An equivalent two-dimensional version can be axiomatized by omitting I.3 – I.5. A nontrivial finite
model of WOIG is given in Figure 10.2.

Hilbert’s four axioms of order [Hil71]—we refer to them as OH.1 –OH.4—are terser and differ sig-
nificantly from O.1 –O.6. Hilbert relies heavily on the Pasch axiom to prove some of the properties
axiomatized by O.1 –O.6, in particular separability O.4. Hilbert includes the Pasch axiom O.6 as OH.4,
and O.1 and O.3 are together equivalent to his axiom OH.1. OH.2 is a weaker form of O.5, while OH.3
is a weaker form of O.2. However, we cannot directly generalize his axiomatization to a weak ordered
incidence geometry, because once we omit the Pasch axiom, many properties we want to include are no
longer provable.

Notice that our chosen axiomatization WOIG interlinks incidence and order notions, that is, the
axioms O.1 –O.4 do not form an interesting self-contained theory of betweenness. For example, they are
not sufficient to prove the two transitivity properties of betweenness (O.7, O.8).

(O.7) (Inner Transitivity) If B(x, a, b) and B(a, b, y) then B(x, a, y).

(O.8) (Outer Transitivity) If B(x, a, b) and B(a, y, b) then B(x, a, y).
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Figure 10.2: A spatial configuration that matches a finite model of WOIG consisting of four points
p1, p2, p3, p4, four lines l1, l2, l3, l4, and a plane a. All points are incidence with the plane. In this model,
p2 is in between p1 and p3 i.e., B(p1, p2, p3). This model has been found by the model generator Paradox3
from the theory WOIG.

However, O.7 and O.8 are theorems of weak ordered incidence geometry.

Lemma 10.1. WOIG � {O.7, O.8}

Proof. Assume B(x, a, b) ∧B(a, b, y).
Then there exists a line l incident with x, a, and b by O.3. Equally, there exists a line m incident with
a, b, and y. By I.2b, l = m. Thus O.7 follows from the weaker version O.7′. Analogously, to prove O.8
it suffices to prove O.8′.

(O.7′) B(x, a, b) ∧B(a, b, y) ∧ L(l) ∧ a ∗ l ∗ b ∗ l ∧ x ∗ l ∧ y ∗ y → B(x, a, y)

(O.8′) B(x, a, b) ∧B(a, y, b) ∧ L(l) ∧ a ∗ l ∗ b ∗ l ∧ x ∗ l ∧ y ∗ y → B(x, a, y)

O.7′ and O.8′ can be proved automatically.

For this reason, stand-alone axiomatization of betweenness such as the one by Huntington and
Kline [HK17] usually include O.7 and O.8, while axiomatizations of (weak) ordered incidence geometries
do not need those properties as axioms. For example, in the set {A, B, C, D, 1, 2} of independent axioms
for betweenness from [HK17] the postulates 1 and 2 correspond to O.7 and O.8. A and C correspond
to O.1 and O.2, and B and D are the two directions of O.3. O.4 is provable from C and 7, where 7 is
provable from A, B, C, and 2. See [HK17] for the postulates and the proofs.

10.2 CODI ’s relationship to incidence geometries

As first step in our pursuit to show that particular extensions of CODI faithfully interpret classical
geometries, we show in this section that CODI faithfully interprets two- and three-dimensional incidence
geometries. This, in turn, requires us to establish that all models of CODI define incidence structures
through the incidence relation.

10.2.1 CODI faithfully interprets point incidence structures

We now show that CODI , the theory of containment and linear dimension, is a direct abstraction of
(geometric) incidence structures, though the theory CODI has much richer models, containing many
relations and functions not relevant for incidence structures. We first show that any model of CODI
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contains a substructure that is a k-partite incidence structure in the following way: The incidence relation
∗ is defined by the extension of the relation Inc while the number of equivalence classes of entities
of identical dimension determine k in the resulting incidence structure, that is, entities of identical
dimension have identical type Ii ∈ I. This confirms that CODI ’s incidence relation Inc as defined in
Chapter 6 is indeed an incidence relation in the mathematical sense, that is, Inc defines a relation that
satisfies the properties of an incidence relation within an incidence structure as defined in Definition 10.1.

Theorem 10.1. Any modelM of CODI with domain M defines an incidence structure I = 〈M, I, ∗,dim〉
such that for all x, y ∈M,

〈x, y〉 ∈ ∗I ⇐⇒ 〈x, y〉 ∈ IncM and 〈x, y〉 ∈ (<dim)M.

Proof. LetM be an arbitrary model of CODI .
The definition of the relation ∗ forces it to be asymmetric (by Inc-T1, D-A1) and irreflexive (by D-A2).

Because ≤dim is a transitive relation, we can find an order over the finite set of domain entities in M
such that M = {x1, x2, x3, . . . } and for all xi, xj ∈ M with i ≤ j we have xi ≤dim xj . We then define
dim(xn) for all xn ∈M recursively as a step function:

dim(xi) =


0 if i = 1

dim(xi−1) if xi =dim xi−1

dim(xi−1) + 1 if xi >dim xi−1

The set I = {0, . . . , k} defines a set of types. Notice that k is usually much smaller than n because many
types are reused. It is easy to see that dim is then a function from M into I, which is surjective because
every i ∈ I is mapped to from some xj .

The so-defined structure 〈M, I, ∗,dim〉 is thereby an incidence structure.

Importantly, the function dim preserves the intended meaning of relative dimension, that is, the num-
ber of distinct types in I corresponds to the dimensionality of the space: MinDimM contains the entities
(called flats in incidence structures) of dimension 0, {x ∈M | there exists a y∈MinDimM with 〈y, x〉 ∈
(≺dim)M} the flats of dimension 1, etc. Using numbers 0 to k for the types turns out to be a convenient
choice, dim(x) corresponds then to the usual numeric dimension of x as long as the intended structure
that corresponds to a model M is in the class Mdense (compare Section 9.1). If this is not the case,
Theorem 10.1 still works fine, just the actual intended dimension of entities may be larger than the type
assigned to it in the proof of Theorem 10.1.

Our focus will be on point incidence structures, which can also be constructed from models of CODI .

Corollary 10.1. Any model M of CODI with domain M defines a k-partite point incidence structure
I = 〈M, I, ∗,dim〉 with Pt = MinDimM as distinguished set such that for all x, y ∈M,

〈x, y〉 ∈ ∗I ⇐⇒ 〈x, y〉 ∈ IncM and x ∈MinDimM.

As the converse of Corollary 10.1, any point incidence structure corresponds to some model of CODI
in a natural way. A similar construction is very difficult to find for general incidence structures because
the intended interpretation of Cont is far from obvious within an arbitrary incidence structure.
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Theorem 10.2. Any k-partite point incidence structure I = 〈X, I, ∗,dim〉 with a distinguished set Pt
defines a modelM of CODI such that

1. Dom(M) = X,

2. ZEXM = ∅,

3. for all x ∈ Pt, 〈x, y〉 ∈ (<dim)M iff y /∈ Pt,

4. 〈x, y〉 ∈ ContM ⇐⇒ x = y or 〈x, y〉 ∈ ∗I.

Proof. Let 〈X, I, ∗,dim〉 be an arbitrary k-partite point incidence structure. We can represent it as
〈Pt,B2,B3, . . . ,Bk, ∗〉 such that X = Pt ∪

⋃
2≤i≤k Bi and for all i and all x, y ∈ Bi we have dim(x) =

dim(y).
In addition to the conditions (1)–(4) we choose for all x, y ∈ Dom(M),

5. for all x /∈ Pt, 〈x, y〉 ∈ (<dim)M iff x ∈ Bi and y ∈ Bj with i < j,

to completely define (<dim)M together with condition (3).
To verify thatM is a model of CODI we must verify the axioms D-A1 –D-A6, C-A1 –C-A4, and CD-A1.

D-A1 –D-A3 are satisfied by conditions (3) and (5). D-A4 and D-A5 are trivially satisfied by con-
dition (2) and (4) because Cont(x, x) for all x ∈ X. D-A6 is satisfied because MinDimM = PtM is
nonempty by Definition 10.3. C-A1 and C-A4 are trivially satisfied by condition (2), C-A2 and C-A3
are satisfied by the explicit inclusion of x = y in condition (4). CD-A1 is trivially satisfied by the
construction in conditions (3), (4), and (5).

Thus any finite k-partite point incidence structure defines a model of CODI .

It is easy to verify that CODI extends the theory of point incidence structures with the mapping
of the incidence relation ∗ from Theorem 10.1. Note that any model M of CODI that is constructed
in Theorem 10.2 is implicitly an expansion of the point incidence structure; we preserve the incidence
relation as

〈x, y〉 ∈
(
IncM ∩ (<dim)M

)
⇐⇒ 〈x, y〉 ∈ ∗I

and also the set I and the type function dim within the extension (<dim)M. Thus CODI faithfully
interprets the theory of point incidence structures by Theorem 2.6.

But not all models of CODI can be obtained through the expansion in Theorem 10.2. Clearly,
CODI has a more expressive language than the theory of point incidence structures and thus CODI is
not interpretable in the theory of point incidence structures.

10.2.2 CODI pl faithfully interprets two-dimensional incidence geometries

Now we show how the line axiom together with the other plane axioms can be used to reconstruct the
(finite) two-dimensional incidence geometries known as line spaces. For this purpose, we first define
two classes of maximal entities, which we call points, Pt, and lines, L (Pt-D, L-D), lines being of one
dimension greater than points (L-D). We also restrict points to indivisible entities using CD-E1; it
ensures that points are actually points and not point sets. Then points are both minimal and maximal
in their dimension.

Note that points and lines are only maximal in the intended geometrical interpretation. Not in every
model of CODI we would think of points as maximal in their dimension; usually only the set of all
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points would be maximal in its dimension. Likewise, lines as defined in L-D are not necessarily thought
of as maximal in their dimension in any model of CODI : the sum of two lines would contain both lines
or a branching curve would be greater than any non-branching curve therein. What we really want to
express is that points and lines are maximal self-connected entities in their dimension, as we will do
in Section 10.3 where we require maximal entities to be self-connected (OMT-A3). But the results in
this and the subsequent section can be obtained without the use of the mereological closure operations
that let us define self-connectedness. In that sense, all results in the present section do not rely on
points and lines (and later also planes) being maximal. We only require the following consequence from
PL-E1: any point incident with a line is contained in the line (follows already from CD-E1) and any
point or line incident with a plane is contained in the plane. This consequence of PL-E1 allows us to use
Cont(x, y) ∧ x <dim y as the asymmetric incidence relation instead of having to extract the incidence
relation from Inc, which would also be possible, though more cumbersome.

To avoid nontrivial incidence structures, it is commonly assumed that every line contains at least
two distinct points (PL-A1) as postulated by I.1. The two definitions together with PL-A1, PL-E1, and
CD-E1 define an extension of CODI , namely

CODI pl = CODI ∪ {PL-A1, Pt-D, L-D, PL-E1, CD-E1}.

This is the basic theory we will work with throughout this chapter.

(Pt-D) Pt(x)↔ Max(x) ∧MinDim(x)
(points are maximal in their dimension and of lowest nonzero dimension)

(L-D) L(x)↔ Max(x) ∧ ∀y[Pt(y)→ y ≺dim x]
(lines are maximal in their dimension and of one dimension higher than points)

(PL-A1) L(x)→ ∃y, z[Pt(y) ∧ Pt(z) ∧ Cont(y, x) ∧ Cont(z, x) ∧ y 6= z]
(Line Existence Axiom: a line contains at least two distinct points; I.1)

Axiom Set 10.3: Definitions Pt-D and L-D and axiom PL-A1 of CODI pl.

(PL-E1) Max(x) ∧Max(y) ∧ Inc(x, y) ∧ x <dim y → Cont(x, y) (incidence between maximal entities
requires the lower-dimensional entity to be contained in the higher-dimensional entity)

Axiom Set 10.4: Extension axiom PL-E1 of CODI pl.

It is easy to verify that all points are of identical dimension (PL-T1), that all lines are of identical
dimension (PL-T2), and that points and lines are disjoint classes (PL-T3).

(PL-T1) Pt(x) ∧ Pt(y)→ x =dim y (points are of uniform dimension)

(PL-T2) L(x) ∧ L(y)→ x =dim y (lines are of uniform dimension)

(PL-T3) ¬Pt(x) ∨ ¬L(x) (points and lines are disjoint classes)

Lemma 10.2. CODI pl � {PL-T1 –PL-T3}
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Points and lines can be interpreted in the usual geometric sense in a spatial configuration but other in-
terpretations are also feasible, e.g., as two-dimensional regions and four-dimensional space-time objects—
but only if the intended interpretation is taken from the class M and not from the more restricted class
Mdense introduced in the previous chapter.

Apart from points and lines, other entities of same or differing dimension can still exist, but are
irrelevant for the construction of line spaces, which we will construct from arbitrary models of CODI
in our next theorem. Containment of points in lines can be expressed in CODI using the containment
relation Cont or the incidence relation Inc, in particular in the presence of PL-E1.

Theorem 10.3. Any model M of CODI pl with domain M defines a substructure I = 〈PtM,LM, ∗〉
that is a line space such that for all x, y ∈M,

〈x, y〉 ∈ ∗I ⇐⇒ 〈x, y〉 ∈ ContM and x ∈ PtM and y ∈ LM.

Proof. LetM be an arbitrary model of CODI pl.
By the definition of points (Pt-D), the definition of MinDim (D-D6), and by the existence of an

entity of minimal dimension (D-A6), there exists some entity x ∈ PtM, hence PtM is nonempty.
Moreover, ∗ is asymmetric and irreflexive because PtM ∩ LM = ∅ (PL-T3).
By PL-A1 for every l ∈ LM there must exist at least two distinct points p, q ∈ PtM such that

〈p, l〉, 〈q, l〉 ∈ ContM. Hence 〈p, l〉, 〈q, l〉 ∈ ∗I and every line is thus incident with at least two distinct
points. Thus I.1 is satisfied.

Hence the structure 〈PtM,LM, ∗〉 is a line space.
〈PtM,LM, ∗〉 with domain Pt ∪ L is a substructure of M if the model is represented as M =

〈X,PtM,LM,ContM, (<dim)M. Then ∗I ∪ {〈x, x〉 : x ∈ Pt ∪ L} is the restriction of ContM to the
domain Pt ∪ L and {〈x, y〉 : x ∈ Pt and y ∈ L} is the trivial restriction of (<dim)M to the domain
Pt ∪ L.

Because the modelM must satisfy PL-E1, the definition of the incidence relation ∗ is equivalent to

〈x, y〉 ∈ ∗I ⇐⇒ 〈x, y〉 ∈ IncM and x ∈ PtM and y ∈ LM,

which more clearly reflects that we can use the symmetric incidence relation Inc defined in CODI pl to
define the asymmetric incidence relation ∗ of the corresponding line space. Thereby, PL-E1 restricts
incidence among maximal entities to containment.

We can also prove the converse of Theorem 10.3, namely that every line space can definably expanded
to a model of CODI pl in a straightforward way.

Theorem 10.4. A line space 〈Pt,L, ∗〉 can be definably expanded to a modelM of CODI pl with M =
Pt ∪ L, PtM = Pt, and LM = L such that for all x, y ∈M,

〈x, y〉 ∈ ContM ⇐⇒ x = y or 〈x, y〉 ∈ ∗I.

Proof. Let 〈Pt,L, ∗〉 be an arbitrary line space. Notice that it implicitly has a domain X = Pt∪L. We
define the structureM as follows:

1. M = X = Pt ∪ L,
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2. ZEXM = ∅,

3. PtM = Pt,

4. LM = L,

5. 〈x, y〉 ∈ (<dim)M ⇐⇒ x ∈ Pt ∧ y ∈ L,

6. 〈x, y〉 ∈ ContM ⇐⇒ x = y or 〈x, y〉 ∈ ∗I.

To verify thatM is a model of CODI pl we must verify the axioms D-A1 –D-A6, C-A1 –C-A4, CD-A1,
and PL-A1.

Similarly to the proof of Theorem 10.2, the axioms D-A1 –D-A6, C-A1 –C-A4, CD-A1 are satisfied.
D-A1 –D-A3 are satisfied by (5). D-A4, D-A5, C-A1, and C-A4 are trivially satisfied by (2), D-A6 is
satisfied because MinDimM = PtM = Pt 6= ∅ by Definition 10.4.

C-A2 is satisfied by (3), (4), and (6). The antecedent of C-A3 (transitivity of Cont) can never be
satisfied and thus C-A3 is trivially satisfied. CD-A1 is satisfied by the construction in (3) – (6).

It remains to prove PL-A1. Let l be an arbitrary entity in LM = L. Because 〈Pt,L, ∗〉 is a line
space, i.e., satisfies I.1, l must be incident with at least two distinct points p, q ∈ Pt = PtM, i.e.,
〈p, l〉, 〈q, l〉 ∈ ∗I. Hence by (6) we have 〈p, l〉, 〈q, l〉 ∈ ContM as well as p 6= q. This satisfies the
consequent of PL-A1.

It is easy to show that the theory of line spaces, IG2D, is interpreted in the theory CODI pl. All
we need to do is to prove that I.0a and I.1 are satisfied in any model of CODI pl, which is easy to see
because we explicitly included PL-A1 to mirror I.1, while I.0a is implicitly satisfied for the definition
of ∗I. Then CODI pl faithfully interprets IG2D by Theorem 2.6 because every line space is definably
equivalent to a structure 〈Pt,L,ContM〉, which then is expandable to a model of CODI pl—all according
to Theorem 10.4. Clearly, CODI pl has a more expressive language than the theory of line spaces and
thus no interpretation in the other direction is possible.

We restrict CODI pl further to obtain

CODI pl−slin = CODI pl ∪ PL-A2,

CODI pl−lin = CODI pl−slin ∪ PL-A3,

CODI pl−aff = CODI pl−lin ∪ {PL-A4, PL-A5}.

These theories axiomatize semi-linear, linear, and affine spaces, respectively. CODI pl−lin and CODI pl−aff

assume the line axiom, i.e., that two distinct points uniquely define a line (by PL-A2 and PL-A3). We
again include references to the axioms of incidence geometry from Section 10.1 in parentheses.

Note that we can generate models of CODI pl−aff in which two lines are called parallel in the sense
of PL-A5 and I.P in that they do not intersect, but are not parallel in the stronger Euclidean sense. See
Figure 10.3 for such a model.

A remark on the different kinds of axioms is in order. PL-A1 and PL-A3 are existential axioms:
they force two distinct points to exist for every line and a line to exist for every two distinct points.
Equally, PL-A4 and PL-A5 are of existential nature, requiring more lines to arise from existing points
and requiring that at least three distinct points exist. In this sense, all of PL-A1, PL-A3, PL-A4,
and PL-A5 require additional spatial entities to exist. PL-A2 is of a very different kind: it prohibits
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(PL-A2) L(l)∧L(m)∧Pt(p)∧Pt(q)∧p 6= q∧Cont(p, l)∧Cont(p,m)∧Cont(q, l)∧Cont(q,m)→ l = m

(Line Axiom, Part I: two distinct points are contained in at most one line; I.2a)
(PL-A3) Pt(p) ∧ Pt(q) ∧ p 6= q → ∃l[L(l) ∧ Cont(p, l) ∧ Cont(q, l)]

(Line Axiom, Part II: two distinct points are contained in some common line; I.2b)
(PL-A4) ∃p, q, r

[
Pt(p) ∧ Pt(q) ∧ Pt(r) ∧ p 6= q 6= r 6= p ∧ ∀l[L(l) → (¬Cont(p, l) ∨ ¬Cont(q, l) ∨

¬Cont(r, l))]
]

(Line Dimension Axiom: three distinct noncollinear points,
i.e., which are not contained in any single line, exist; I.E1)

(PL-A5) L(l) ∧ Pt(p) ∧ ¬Cont(p, l)→ ∃m[L(m) ∧ Cont(p,m) ∧ ¬C(l,m)] (Parallel Axiom:
a point not contained in a line l is contained in a line m disconnected from (‘parallel to’) l, I.P)

Axiom Set 10.5: Axioms PL-A2 –PL-A5 of CODI pl−aff .
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Figure 10.3: The incidence structure of the smallest model of CODI pl−aff and a corresponding spatial
configuration. Notice that l2 and l5 do not intersect in the center, thus they are “parallel” lines. This
model is planar, i.e., realizable in a 2D space if l5 is routed outside the rectangle formed by l1, l3, l4,
and l6.

extra lines in that two distinct points may only be contained in a single line. Or, put differently, in a
semi-linear space, two distinct lines can only intersect in one point, though they may not intersect at
all. Thereby, PL-A2 effectively eliminates models with curved lines: every model of CODI pl−slin can be
realized as a spatial configuration in which all lines, i.e., all entities in the extension LM, are straight
lines. Therefore, all models of extensions of CODI pl−slin, including CODI pl−lin or CODI pl−aff , can be
spatially interpreted as containing only straight lines.

Next, we will show that the models of CODI pl−slin, CODI pl−lin, and CODI pl−aff have natural
substructures—the same substructures that we already proved to be line spaces—that are semi-linear,
linear, and affine spaces, respectively.

Theorem 10.5. LetM be a model of CODI pl−slin (CODI pl−lin, CODI pl−aff) with domain M.
Then the substructure I = 〈PtM,LM, ∗〉 with

〈x, y〉 ∈ ∗I ⇐⇒ 〈x, y〉 ∈ ContM and x ∈ PtM and y ∈ LM

for all x, y ∈ PtM ∪ LM is a semi-linear (linear, affine) space.

Proof. We first prove that the structure 〈PtM,LM, ∗〉 of an arbitrary model M of CODI pl−slin is a
semi-linear space and then show that the structure 〈PtM,LM, ∗〉 is a linear or affine space if M is a
model of CODI pl−lin or CODI pl−aff .

CODI pl−slin: 〈PtM,LM, ∗〉 is a semi-linear space.
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LetM be an arbitrary model of CODI pl−slin and let I = 〈PtM,LM, ∗〉 be the substructure that
is a line space and that must exist according to Theorem 10.3.

Let l be an arbitrary line in the line space.
Then l ∈ LM. By PL-A1 there exists distinct p, q ∈ PtM such that 〈p, l〉, 〈q, l〉 ∈ ContM. Thus
〈p, l〉, 〈q, l〉 ∈ ∗I by the definition of the incidence relation. Hence I.1 is satisfied: there exists two
distinct points p and q such that p ∗ l and q ∗ l.

Now let p, q ∈ PtM be distinct points in the line space. Suppose—contrary to I.2a—that there
exist two distinct lines l and m such that 〈p, l〉, 〈q, l〉, 〈p,m〉, 〈q,m〉 ∈ ∗I. Then l,m ∈ LM and
thus 〈p, l〉, 〈q, l〉, 〈p,m〉, 〈q,m〉 ∈ ContM, thereby contradicting PL-A2, an axiom of CODI pl−slin.
Hence our supposition that such two distinct lines can exist was false, and there exist at most one
line incident with p and q, satisfying I.2a.

Hence, the substructure 〈PtM,LM, ∗〉 obtained from an arbitrary model of CODI pl−slin is a semi-
linear space.

CODI pl−lin: 〈PtM,LM, ∗〉 is a linear space.
Now let M also satisfy PL-A3, i.e., M is an arbitrary model of CODI pl−lin. We already proved
that 〈PtM,LM, ∗〉 satisfies I.1 and I.2a. It remains to show that I.2b is satisfied: for points p and
q a line with p ∗ l and q ∗ l exists, which follows immediately from PL-A3.

Hence, the substructure 〈PtM,LM, ∗〉 obtained from an arbitrary model of CODI pl−lin is a linear
space.

CODI pl−aff: 〈PtM,LM, ∗〉 is an affine space.
Now letM also satisfy PL-A4 and PL-A5, i.e.,M is an arbitrary model of CODI pl−aff . By PL-A4,
three distinct points exist that are not incident with a single line, thus proving I.E1. Now we show
that I.P is satisfied. Recall that it suffices to prove I.Pb. We assume the antecedent of I.Pb is
satisfied: Let p be a point and l be a line of the line space so that 〈p, l〉 /∈ (∗dim)M is false. Then
p ∈ PtM, ∈ LM, and 〈p, l〉 /∈ ContM—satisfying the antecedent of PL-A5. By PL-A5, there must
exist a line m ∈ LM such that 〈p,m〉 ∈ ContM and thus 〈p,m〉 ∈ ∗I. Moreover, l and m cannot
share a point by ¬C(l,m)→ ∀p[¬Cont(p, l) ∨ ¬Cont(p,m)]. Hence, the consequent of I.Pb is also
satisfied and hence I.P is satisfied.

Consequently, the substructure I = 〈PtM,LM, ∗〉 obtained from an arbitrary model of CODI pl−aff

is an affine space.

For the converse, we can prove that every semi-linear, linear, or affine space can be definably expanded
to a model of CODI pl−slin, CODI pl−lin, or CODI pl−aff , respectively.

Theorem 10.6. Any semi-linear (linear, affine) space I = 〈Pt,L, ∗〉 can be definably expanded to a
model M of CODI pl−slin (CODI pl−lin, CODI pl−aff) with M = Pt ∪ L, PtM = Pt, and LM = L such
that for all x, y ∈M,

〈x, y〉 ∈ ContM ⇐⇒ x = y or 〈x, y〉 ∈ ∗I.

Proof. Recall that any semi-linear, linear, or affine space is a line space. Hence by Theorem 10.4, there
exists a corresponding modelM of CODIpl such that for all x, y ∈M,

〈x, y〉 ∈ ContM ⇐⇒ x = y or 〈x, y〉 ∈ ∗I.
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It remains to show that if the line space is semi-linear (linear, affine), the resulting model M of
CODIpl also satisfies PL-A2 ({PL-A2, PL-A3}, {PL-A2 –PL-A5}). PL-A2, PL-A3, PL-A4, and PL-A5
follow immediately from I.2a, I.2b, I.E1, and I.P analogue to the proofs in Theorem 10.5.

Theorems 10.5 and 10.6 imply that semi-linear, linear, and affine spaces are equivalent to classes
of substructures of the theories CODI pl−slin, CODI pl−lin, and CODI pl−aff , respectively. Again, we can
directly relate the theories: CODI pl−slin, CODI pl−lin, and CODI pl−aff faithfully interpret the theories
of semi-linear, linear, and affine line space, respectively.

The Euclidean plane Rn as an affine space is thus also a substructure of a model of CODI pl−aff .
In other words, the Euclidean plane is faithfully interpretable in CODI pl−aff . In fact, we could extend
CODI pl−aff to a complete theory that has R2 as its only model (up to elementary equivalence) by forcing
an empty extension for all relations of CODI that are irrelevant to the Euclidean plane. Likewise, higher-
dimensional Euclidean spaces are faithfully interpretable in suitable extensions of CODI pl−aff as we will
sketch out next.

10.2.3 CODI plp−lin faithfully interprets incidence geometries

We can extend CODI pl to higher-dimensional equivalents of semi-linear, linear, or affine spaces if we
define higher-dimensional maximal entities analogue to L-D. For example, three-dimensional planes can
be defined as in Pl-D. We define the extension of CODI by definitions of points, lines, and planes as

CODI plp = CODI pl ∪ Pl-D.

Then we can express the space axioms of three-dimensional incidence geometry as PLP-A1 –PLP-A4
and as the extension axioms PLP-E2 and PLP-E3, which we will discuss subsequently. Again, we include
the corresponding incidence axioms in parentheses.

(Pl-D) Pl(x)↔ Max(x) ∧ ∃y, z[y ≺dim x ∧ z ≺dim y ∧ Pt(z)]
(planes are maximal in their dimension and of two dimensions higher than points)

(PLP-A1) Pt(p) ∧ Pt(q) ∧ Pt(r) ∧ p 6= q ∧ p 6= r ∧ q 6= r ∧ ∀l[L(l) → ¬Cont(p, l) ∨ ¬Cont(q, l) ∨
¬Cont(r, l)]→ ∃x[Pl(x) ∧ Cont(p, x) ∧ Cont(q, x) ∧ Cont(r, x)] (Plane Axiom, Part I:

three points that are not contained in a common line are contained in a common plane, I.4a)
(PLP-A2) Pt(p)∧Pt(q)∧Pt(r)∧p 6= q∧p 6= r∧q 6= r∧∀l[L(l)→ ¬Cont(p, l)∨¬Cont(q, l)∨¬Cont(r, l)]∧

Pl(x)∧Pl(y)∧Cont(p, x)∧Cont(q, x)∧Cont(r, x)∧Cont(p, y)∧Cont(q, y)∧Cont(r, y)→ x = y

(Plane Axiom, Part II: three distinct points that are not contained in a common line
are contained in at most one common plane, I.4b)

(PLP-A3) Pl(x) → ∃p, q, r
[
Pt(p) ∧ Pt(q) ∧ Pt(r) ∧ p 6= q ∧ p 6= r ∧ q 6= r ∧ Cont(p, x) ∧ Cont(q, x) ∧

Cont(r, x) ∧ ∀l[L(l)→ ¬Cont(p, l) ∨ ¬Cont(q, l) ∨ ¬Cont(r, l)]
]

(Plane Existence Axiom:
a plane contains three points that are not contained in a single line; I.3)

(PLP-A4) Pl(x) ∧ L(l) ∧ Pt(p) ∧ Pt(q) ∧ p 6= q ∧ Cont(p, l) ∧ Cont(q, l) ∧ Cont(p, x) ∧ Cont(q, x) →
Cont(l, x) (Line-Plane Intersection Axiom:

if a plane contains two distinct points of a line, it contains the line; I.5)

Axiom Set 10.6: Definition Pl-D and axioms PLP-A1 –PLP-A4 of CODI plp−aff .
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It is easy to verify that in CODI plp all planes are of identical dimension (PLP-T1), and that points
and lines are disjoint from planes (PLP-T2).

(PLP-T1) Pl(x) ∧ Pl(y)→ x =dim y (planes are of uniform dimension)

(PLP-T2) [¬Pt(x) ∨ ¬Pl(x)] ∧ [¬L(x) ∨ ¬Pl(x)] (planes are disjoint from points and lines)

Lemma 10.3. CODI plp � {PLP-T1, PLP-T2}

We define extension of CODI to theories of semi-linear, linear, and affine incidence geometry, respec-
tively, as

CODI plp−slin = CODI pl−slin ∪ CODI plp ∪ {PLP-A1 –PLP-A4},

CODI plp−lin = CODI pl−lin ∪ CODI plp−slin,

CODI plp−aff = CODI pl−aff ∪ CODI plp−slin.

The next theorem will show that any model of CODI plp−lin is indeed a linear incidence geometry.

Theorem 10.7. Any modelM of CODI plp−lin with domain M defines an incidence geometry 〈M, I, ∗,
dim〉 with distinguished sets Pt = PtM, L = LM, and Pl = PlM such that for all x, y ∈M,

dim(x) = dim(y) ⇐⇒ 〈x, y〉 ∈ (=dim)M, and

〈x, y〉 ∈ ∗I ⇐⇒ 〈x, y〉 ∈ ContM and x ∈ PtM and y ∈ LM ∪PlM.

Proof. Any model of CODI plp−lin is a model of CODI and thus defines a k-partite point incidence
structure (see Corollary 10.1) as constructed in Theorem 10.1.
Recall that the relation =dim partitions the domain M naturally into classes of entities of equal dimension,
hence by choosing a minimal set of types I, dim defines a surjective function; it is already a function
by the first condition in the theorem statement. Moreover, ∗ can only hold between points and non-
points—as required by I.0a. Thereby, ∗ is also asymmetric and irreflexive.

It remains to prove that the elements in the sets Pt, L, and Pl satisfy I.0 – I.5. This is straightforward,
analogue to the proofs of Theorems 10.3 and 10.5. In particular, I.3 – I.5 follow from PLP-A1 –PLP-A4,
while I.1 – I.2 follow again from PL-A1 –PL-A3. I.0b follows from PtM, LM, and PlM being disjoint for
any model M of CODI plp−lin. Then I.0a immediately follows by the definition of ∗I in our statement
of the theorem.

Notice that the entities not in the set Pt ∪ L ∪ Pl are in no incidence relation in the constructed
incidence geometry, hence the incidence geometry is not a substructure of the model M. If we are
only interested in the points, lines, and planes, then we can obtain a corresponding three-dimensional
incidence geometry 〈X, I, ∗,dim〉 such that X = Pt ∪ L ∪Pl, with the type function and the incidence
relation defined as before but restricted to elements in X. This would be a substructure ofM.

As the converse of Theorem 10.7, CODI plp−lin axiomatizes incidence geometries as defined in Defi-
nition 10.11, that is, any incidence geometry is definably expandable to a model of CODI plp−lin.

Theorem 10.8. Any incidence geometry I = 〈X, I, ∗,dim〉 with distinguished sets Pt,L,Pl ⊆ X can be
definably expanded to a modelM of CODI plp−slin (CODI pl−lin, CODI pl−aff) with M = X, PtM = Pt,
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LM = L, and PlM = Pl such that for all x, y ∈M,

〈x, y〉 ∈ ContM ⇐⇒ x = y or 〈x, y〉 ∈ ∗I or
(
x ∈ L, y ∈ Pl and there exist distinct p, q ∈ Pt

with 〈p, x〉, 〈q, x〉, 〈p, y〉, 〈q, y〉 ∈ ∗I
)
.

Proof. We define a structureM as follows

1. M = X,

2. ZEXM = ∅,

3. PtM = Pt,

4. LM = L,

5. PlM = Pl,

and for all x, y ∈ X,

6. 〈x, y〉 ∈ (<dim)M ⇐⇒
(
x ∈ Pt andy /∈ Pt

)
or
(
x ∈ L and y /∈ (Pt ∪ L)

)
or(

x ∈ Pl and y /∈ (Pt ∪ L ∪Pl)
)
,

7. 〈x, y〉 ∈ ContM ⇐⇒ x = y or 〈x, y〉 ∈ ∗I or
(
x ∈ L, y ∈ Pl and there exist distinct p, q ∈ Pt

with 〈p, x〉, 〈q, x〉, 〈p, y〉, 〈q, y〉 ∈ ∗I
)
.

We maintain the relative dimension ordering for all entities not in Pt ∪ L ∪ Pl from Theorem 10.1(5)
defined as

8. for all x /∈ Pt ∪ L ∪Pl, 〈x, y〉 ∈ (<dim)M ⇐⇒ x ∈ Bi and y ∈ Bj with i < j,

where the incidence structure I is represented as 〈Pt,L,Pl,B4, . . . ,Bk, ∗〉 with the domain X = Pt ∪
L ∪Pl ∪

⋃
4≤i≤k Bi.

Showing that the so-defined structureM satisfies all axioms of CODI plp−lin is analogue to the proofs
of Theorems 10.4 and 10.6. In particular, the axioms C-A2, C-A3, and CD-A1 are affected and must be
re-verified. C-A2 and CD-A1 are still satisfied because the new case added in (7) is asymmetric: for any
x ∈ L and any y ∈ Pl we have 〈x, y〉 ∈ (<dim)M by (6) and thus 〈x, y〉 /∈ ContM.

The antecedent of C-A3 with distinct x, y, z only applies when x ∈ PtM, y ∈ LM, and z ∈ PlM—
otherwise we cannot have 〈x, y〉, 〈y, z〉 ∈ ContM. Suppose 〈y, z〉 ∈ ContM, y ∈ LM, and z ∈ PlM.
Because 〈y, z〉 ∈ ∗I requires y ∈ Pt (by Definition 10.3), this is only possible if the last condition of (7)
is satisfied: there exist two points p, q ∈ Pt such that 〈p, y〉, 〈q, y〉, 〈p, z〉, 〈q, z〉 ∈ ∗I. But then by I.5 all
points, including x, that are incident with y are also incident with z and thus 〈x, z〉 ∈ ContM.

The axioms PL-A1 –PL-A3 are direct translation of I.1, I.2a, and I.2b as already shown in Theo-
rem 10.4 and 10.6. The axioms PLP-A1 –PLP-A3 are provably direct translations of I.3, I.4a, I.4b, while
PLP-A4 follows similar to the proof of C-A3 from the last condition of (7) together with I.5.

From Theorem 10.7 it immediately follows that CODI plp−lin interprets the theory of incidence struc-
tures, IG, because the translations of all axioms of IG are provable from CODI plp−lin. CODI plp−lin

faithfully interprets IG because every model of IG can be expanded to a model of CODI plp−lin as we
just proved.
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We can further extend CODI plp−lin or any other extension of CODI plp−slin by any of PLP-E1,
PLP-E2, or PLP-E3 to restrict the model’s dimensionality. For example, Hilbert’s theory of inci-
dence [Hil71] is the extension of our notion of incidence geometry; it is equivalent to CODI plp−lin ∪
{PL-A4, PLP-E1 –PLP-E3}, that is, its models have exactly three dimensions.

(PLP-E1) Pt(x) ∨ L(x) ∨ Pl(x) (every entity is either a point, line, or plane)
(PLP-E2) Pl(x) ∧ Pl(y) ∧ x 6= y ∧ Pt(p) ∧ Cont(p, x) ∧ Cont(p, y) → ∃q[Pt(q) ∧ p 6= q ∧ Cont(q, x) ∧

Cont(q, y)] (two planes that share a point share a second distinct point; I.6)
(PLP-E3) ∃p, q, r, s

[
Pt(p) ∧ Pt(q) ∧ Pt(r) ∧ Pt(s) ∧ p 6= q ∧ p 6= r ∧ p 6= s ∧ q 6= r ∧ q 6= s ∧ r 6= s ∧

∀x[Pl(x)→ ¬Cont(p, x) ∨ ¬Cont(q, x) ∨ ¬Cont(r, x) ∨ ¬Cont(s, x)]
]
(Plane Dimension Axiom:

there exist four distinct points that are not contained in a single plane; I.E2)

Axiom Set 10.7: Extension axioms PLP-E1 –PLP-E3 of CODI plp.

Analogously to how we extended CODI to theories that faithfully interpret particular classes of
incidence geometries with incidence only between points and lines or planes, it is fairly straightforward
to construct an extension of CODI that faithfully interprets n-dimensional incidence geometries with
finite n > 3 in which the higher-dimensional entities are equally well-behaved as lines and planes. We will
only sketch the required axioms here because we will not work with those higher-dimensional incidence
geometries subsequently. The sketched axioms could be more formally stated as axiom schemata with
a parameter i for the dimensionality. To interpret semi-linear, linear, or affine n-dimensional point
incidence structures we would extend the theories CODI pl−slin, CODI pl−lin, or CODI pl−aff , respectively,
by the following axioms for every i < n:

1. Define i-dimensional entities of maximal dimension (analogue to Pl-D);

2. Postulate that any i+ 1 distinct points not contained in a common (i− 1)-dimensional entity are
contained in a unique i-dimensional entity (analogue to PLP-A1, PLP-A2);

3. Postulate that any i-dimensional entity contains at least i + 1 distinct points not contained in a
common (i− 1)-dimensional entity (analogue to PLP-A3);

4. Postulate that any i-dimensional entity that contains i distinct points not contained in a common
entity of i − 2 dimensions, must contain the (i − 1)-dimensional entity spanned by the points
(analogue to PLP-A4).

As necessary, we can add analogue versions of PLP-E1, PLP-E2 and PLP-E3 restricting the dimension-
ality. While PLP-E1 and PLP-E3 easily generalize—PLP-E3 to ‘there exist i + 1 distinct points not
contained in a common i-dimensional entity’—it is not clear what a generalization of PLP-E2 looks like.

Such higher-dimensional incidence geometries can be axiomatized more elegantly using the notion of
a ‘block’ with points being zero-dimensional blocks, lines one-dimensional blocks, etc. For more detail
on the use of blocks in incidence geometry see, e.g., [Bue95]. We will not pursue such an axiomatization
in this thesis. Even showing that CODI plp−lin axiomatizes any k-dimensional incidence geometry as
defined in Definition 10.11 is a quite tedious extension of the proof in Theorem 10.8. For our work here,
it suffices to observe that two- and three-dimensional incidence geometries are extensions of the theories
CODI pl−slin or CODI plp−lin, respectively.
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10.2.4 A mereotopological generalization of incidence geometries

Up to now, we have shown in this section how to extend CODI to classical two- and three-dimensional
incidence geometries as well as to equivalents that allow entities of higher dimensions. Because the
weakest of the resulting theories already assume PL-A2, i.e., that two points can be contained in at
most one line, all lines are implicitly treated as straight lines. If we leave PL-A2 out, we can generalize
classical geometries with semi-linear spaces as weakest theory, to mereotopologies, the weakest being
CODI ’s definitional extension to CODI ∪ {Pt-D, L-D, Pl-D}. For example, CODI pl is the mereo-
topological equivalent of semi-linear spaces: once we add PL-A2, we obtain the geometric theory of
semi-linear spaces. We can define the mereotopological equivalent of two-dimensional incidence geome-
tries as CODI pl ∪ PL-A3 and of two-dimensional affine incidence geometries as CODI pl ∪ {PL-A3,
PL-A4, PL-A5′}, where PL-A5′ captures one part, namely I.Pb, of the parallel axiom.

(PL-A5′) L(l) ∧ Pt(p) ∧ ¬Cont(p, l)→ ∃m
[
L(m) ∧ Cont(p,m) ∧ ¬C(l,m)

]
(point p not contained in line l is contained in some line m disconnected from l)

Axiom Set 10.8: Extension axiom PL-A5′ of CODI pl.

CODI hierarchy

+ Int-A1 - Int-A4,
   Dif-A1 - Dif-A4

+ PL-A1

+ PL-A2

+ PL-A3

+ PL-A4, PL-A5

+ PLP-E1
    - PLP-E3

+ PLP-A1
    - PLP-A4

+ PL-E1

definitional
extension line space

semi-linear space

linear space

affine space

(point)
incidence
structure

incidence
geometry

+ PL-A3,
   PLP-A1,
   PLP-A3

. . . . . . .  faithfully interpreted in 

Figure 10.4: The theories introduced in Section 10.2 and their relationship to incidence structures and
two-dimensional incidence geometries (planar or line spaces/geometries).
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Most importantly, these constructions verify that the theory CODI pl is a mereotopological general-
ization of semi-linear spaces. Equivalently,

CODI plp−g = CODI plp ∪ {PL-A3, PLP-A1, PLP-A3},

which is weaker than CODI plp−lin but incomparable to CODI plp−slin as illustrated in Figure 10.4,
can be considered the mereotopological generalization of three-dimensional incidence geometry. In every
model of it, every line contains at least two distinct points and every plane contains at least three distinct
noncollinear points, but more than one line may exist through two distinct points and more than one
plane may exist through three distinct noncollinear points.

As a final remark, observe that all theories presented in this section allow both discrete, and thus
finite, as well as continuous incidence geometries. The relationship among the various theories from this
section and their correspondences to incidence structures and two-dimensional incidence geometries is
illustrated in Figure 10.4.

10.3 Betweenness in multidimensional space

We have demonstrated that the theory of linear dimension and containment, CODI , is a dimension-
independent first-order axiomatization of mereotopology and a generalization of incidence geometry. We
now propose an extension by ‘betweenness’—a qualitative spatial relation of relative positions that (1)
avoids using implied references as necessary for cardinal directions [Fra96] or orientations [Fre92] and (2)
avoids using specific numeric dimensions and thus fits into our general dimension-independent approach.
e.g., a point can be in between two other points on a line; equally, a line can be in between two other
lines within a region (or on a plane).

Betweenness is commonly used in everyday descriptions of space, in particular when describing
street networks in a city. When sketching directions in a city, order among streets or buildings is
among the information that is most reliably preserved as small empirical studies indicate [WL12; WS09].
Without betweenness, e.g., a model of a grid network of streets is invariant under permutations of parallel
streets, see Figure 10.1 for an example. Other commonly used non-mereotopological spatial relations, in
particular convexity but also the concepts of line segments, rays, or half-planes can be defined in terms
of betweenness if both the betweenness relation and the incidence structure are sufficiently restricted,
see our discussion in Section 10.3.5.

10.3.1 Relativized betweenness

Ternary betweenness relations have been studied as part of many geometries [Hil71; TG99; Veb04]
and also as independent systems [HK17]. Pambuccian [Pam11] gives an excellent and extremely broad
overview of the various axiomatizations of order that have been used in combination with incidence
geometry, tracing the work on betweenness back to Moritz Pasch [Pas88]. Here we are not concerned
with the differences between the various axiomatizations of betweenness. Instead, we are concerned
solely with developing an axiomatization of betweenness that works in our multidimensional setting,
i.e., that not only works for points and lines, but also for higher-dimensional entities and that can be
axiomatized independent of the concrete numeric dimensions in question. To achieve this, we generalize
Huntington and Kline’s set of independent postulates A, B, C, D, 1, and 2 for strict betweenness on
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Figure 10.5: Spatial configurations with points on a simple or complex line in which Btw(l, p, q, r) holds.
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Figure 10.6: Spatial configurations with points on simple or complex line in which Btw(l, p, q, r) is
violated.

an undirected line [HK17] to a quaternary between relation Btw(r, a, b, c) meaning ‘among the entities
contained in r, b is strictly in between a and c’. The intended topological interpretation of Btw(r, a, b, c)
is borrowed from the Jordan-Curve-Theorem: Any continuous set (i.e., consisting of a single connected
piece) contained in r and containing both a and c must include some point of b. In other words, b divides
r into two subsets—one containing a and the other containing c. Some examples and counterexamples of
a point being in between two other points on a line are given in Figures 10.5 and 10.6. See Figure 10.7(a)
for an example why betweenness must be relativized to an embedding entity, resulting in the quaternary
relation. We include the names of the axioms from [HK17] in parentheses as reference, those were
mapped at the end of Section 10.1.3 to our set of order axioms O.1 –O.4 used for the theory of weak
ordered incidence geometries.

In higher-dimensional cases betweenness is not always a total order, e.g., intersecting lines in a plane
cannot be ordered, compare Figure 10.7(b). A real map in which three streets may be ordered differently
within different regions is given in Figure 10.9. Therefore the theory

BTW = {B-A1 –B-A6}

omits the postulate B of total orderability (compare O.3 or OMT-E1 further down) as well as the
postulates 4 – 8 from [HK17]. In the presence of the orderability, the ternary version of separability
[compare PJ65] is provable. But because postulate B does not always hold in multidimensional space,
we must include B-A6 as axiom, stating that x separates a and b in r if x is in between a and b in r,
with the consequence that any fourth entity y in r cannot be between a and x and between x and b at
the same time. Note that B-A6 was missing from our earlier axiomatization in [HG11b].

We can easily show that B-A6 is independent of the remaining axioms.

Lemma 10.4. {B-A1 –B-A5} 2 B-A6
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Figure 10.7: Two examples of non-orderability in multidimensional space.
In (a) three points located on two distinct lines are ordered differently on each line. This spatial
configuration is captured by a modelM of CODI ↓ with domain M = {ze, p, q, r, l,m} an the extensions
ContM = {〈p, l〉, 〈p,m〉, 〈q, l〉, 〈q,m〉, 〈r, l〉, 〈r,m〉}, (<dim)M = {〈p, l〉, 〈r, l〉, 〈q, l〉, 〈q,m〉, 〈r, l〉, 〈r,m〉},
and ZEXM = {ze}. In M we have Btw(l, p, q, r) and Btw(m, q, p, r); hence p, q, and r are not in any
specific order—only in a specific order with respect to one entity, l or m, they are contained in. This
may happen for, e.g., three cities located along one river (l being a river with q being downriver of p
and r being further downriver) but that are connected by a road m in a different order.
In (b), three lines contained in a region cannot be ordered at all. This happens, e.g., for streets, compare
Figure 10.1 in the introduction of this chapter. This is also possible in geometries, but their betweenness
relation applies only to points anyway.

(B-A1) Btw(r, a, b, c)→ a 6= b 6= c 6= a (strong ∼= irreflexive; D)
(B-A2) Btw(r, a, b, c)→ Btw(r, c, b, a) (outer symmetry; A)
(B-A3) Btw(r, a, b, c)→ ¬Btw(r, a, c, b) (strict betweenness ∼= acyclic; C)
(B-A4) Btw(r, x, a, b) ∧ Btw(r, a, b, y)→ Btw(r, x, a, y) (outer transitivity; 1)
(B-A5) Btw(r, x, a, b) ∧ Btw(r, a, y, b)→ Btw(r, x, a, y) (inner transitivity; 2)
(B-A6) Btw(r, a, x, b)→ ¬Btw(r, a, x, c) ∨ ¬Btw(r, b, x, c) (separability)

Axiom Set 10.9: Axioms B-A1 –B-A6 of BTW .

Proof. Consider a modelM with domain M = {r, a, b, c, d} and with the extension

BtwM = {〈r, a, b, c〉, 〈r, a, b, d〉, 〈r, c, b, a〉, 〈r, c, b, d〉, 〈r, d, b, a〉, 〈r, d, b, c〉}.

It is easy to see thatM satisfies B-A1, B-A2, B-A3. Moreover, it can be checked that the antecedent of
neither B-A4 nor B-A5 is ever satisfied, so both axioms are vacuously true.

However, Btw(r, a, b, c) is in BtwM, but both Btw(r, c, b, d) and Btw(r, a, b, d) are also in BtwM,
thereby violating B-A6.

From B-A2 and B-A3 it follows that for arbitrary a, b, c no more than one can be in between the
other two (B-T1). Moreover, B-T2, which is the quaternary equivalent of Huntington’s postulate 3, is
provable. It is simply an alternative way to state inner transitivity (B-A5) and follows from the two
kinds of transitivity (B-A4, B-A5) together with symmetry (B-A2). No other of Huntington’s postulates
4 – 8 are provable.

(B-T1) Btw(r, a, b, c)→ ¬Btw(r, b, a, c) (only one of a, b, c can be in between the other two)

(B-T2) Btw(r, x, a, b) ∧ Btw(r, a, y, b)→ Btw(r, x, y, b) (inner transitivity; 3)

Lemma 10.5. BTW � {B-T1, B-T2}
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Figure 10.8: An excerpt of a map of the city of Toronto with many examples of quaternary betweenness
relations. Within the region denoted as ‘Westend’ (the yellow region bounded by Bathurst Street in
the east and Royal York Rd. in the west), Dufferin Street is in between Parkside Drive and Bathurst
Street. Also, the road formed by Keele Street together with Parkside Drive is in between Dufferin Street
and Jane Street in the Westend, though Keele Street alone is not in between Dufferin Street and Jane
Street. However, in the upper-half map bounded by Bloor Street to the south, Keele Street is in between
Jane Street and Dufferin Street. Likewise, the point feature Bloor Station is in between Jane Street and
Dufferin Street in the upper-half map bounded by Bloor Street. Moreover, Dundas Street is in between
Bloor Station and Parkside Drive, but not in between Bloor Street and Parkside Drive in the map.
Other examples of betweenness are: The Humber River between Royal York Street and Dufferin Street
in the Westend, or High Park in between Parkside Drive and the Humber River within the lower-half
map bounded by Bloor Street to the north. High Park is not between Parkside Drive and the Humber
River, or for that matter, between Dufferin Street and the Humber River within the Westend.

The axiom B-A3 strictly rules out cyclic orders, that is x, y, and z cannot be located in a cycle within
r, just as O.2 rules out cyclic orders in ordered incidence geometry. For example in the rightmost config-
uration in Figure 10.6 none of p, q, or r is in between the others—as already remarked by Pasch [Pas88].
Equally, in the leftmost configuration in Figure 10.6, none of p, q, r, or s is in between any other two.
This matches the intended topological interpretation of Btw that an entity b is in between a and c in r
only if every continuous subset of r connecting a and c must be in contact with b. This is clearly not in
the case in the rightmost and leftmost configurations in Figure 10.6: for any pair of points we can always
find an arc that does not pass through a given third point. One can define separation relations that deal
with undirected cyclic orders to express, e.g., that q lies in between p and r by saying that the pair of
points p, r is separated by the pair of points q, s [compare Hun35; HR32; Pas88]. Once we relativize
such a quaternary separation relation to the general multidimensional setting, we obtain a five-place
relation, whose thorough investigation goes beyond the scope of this thesis. Here it suffices to simply
be aware that our generalized betweenness relation only works for non-cyclic spatial configurations; its
intended interpretation is unsuitable for cyclic orders. As long as r does not have any loops or holes,
this is never a problem. Even if r has a holes, y may be in between x and z within r, see Figure 10.10(a)
for an example.

10.3.2 Ordered multidimensional mereotopology

If we want to extend our multidimensional mereotopology CODI with the betweenness theory BTW ,
we have to be careful about their interaction. As we already discussed, betweenness only holds for
entities contained in a common entity, which must be self-connected (OMT-A1). Moreover, every self-
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Figure 10.9: An example of a map of the city of Toronto, in which Dundas Street and Bloor Street
are not orderable in the region h + i, no matter what the third entity would be. However, we do have
Btw(h,Dundas St., Bloor St., Queen St.) as well as Btw(i,Bloor St., Dundas St., Queen St.)
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Figure 10.10: Betweenness in holed regions. In (a) the lines l, m, and n are ordered within a, while in
(b) they are not ordered within a. That is, in (a) Btw(a, l,m, n) is intended to hold while in (b) it is
not intended to hold.

connected entity contained in r that connects x and z must intersect y, i.e., be in contact to y (OMT-A2).
This is equivalent to the ideas of the Jordan curve theorem and the Pasch axiom as found in ordered
incidence geometry. Because Con can only be defined in CODI ↓ but not in CODI , we require CODI ↓
as weakest underlying theory of containment and dimension. Deviating from our original proposal of a
mereotopology with betweenness called BMT in [HG11b], we allow betweenness for entities of arbitrary
dimensions here—as long as the three entities in betweenness relation are contained in the embedding
entity, that is, their dimension is not greater than the dimension of the embedding entity (by CD-A1).
This gives an even more general notion of betweenness; allowing not only three points ordered on a
line or three (nonintersecting) lines ordered within a region, but also uses such as a line being between
two points in a region, or a line segment being in between a point and another line segment on a line,
compare Figure 10.12.

Finally, because we now operate in CODI ↓, we can require maximal entities to be self-connected
(OMT-A3). In particular, points, lines, and planes will then be self-connected if defined as in the
previous section. OMT-A2 and OMT-A3 were missing from our original axiomatization in [HG11b].

We define the theory of containment, dimension, and betweenness—also called ordered multidimen-
sional mereotopology due to its similarity to ordered incidence geometry which we will formalize in a
moment—as

OMT↓ = CODI ↓ ∪ BTW ∪ {OMT-A1 –OMT-A3}.
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(OMT-A1) Btw(r, x, y, z)→ Con(r) ∧ Cont(x, r) ∧ Cont(y, r) ∧ Cont(z, r)
(‘betweenness’ only among entities contained in a common self-connected entity)

(OMT-A2) Btw(r, x, y, z) ∧ Cont(v, r) ∧ Con(v) ∧ C(v, x) ∧ C(v, z)→ C(v, y)
(if y is in between x and z within r, then every self-connected entity v

contained in r and connected to x and z is also connected to y)
(OMT-A3) Max(x)→ Con(x) (maximal entities are self-connected)

Axiom Set 10.10: Axioms OMT-A1 –OMT-A3 of OMT↓.

a
l

m p

a1

2

Figure 10.11: Example of betweenness in which the entity in between two others is two dimensions
smaller than the embedding entity. Assume that a = a1 + a2, Btw(a, l, p,m), and p⊀⊀⊀dima. This is only
possible if any two complementary parts a1 and a2 of a only meet in p. Otherwise, there would always
exist another continuous subset of a that connects l and m. This motivates OMT-A4.

In OMT↓ we can prove that all of r, x, y, and z in betweenness relation are nonzero regions (OMT-T1).

(OMT-T1) Btw(r, x, y, z)→ ¬ZEX(r) ∧ ¬ZEX(x) ∧ ¬ZEX(y) ∧ ¬ZEX(z)

(only nonzero regions can be in betweenness relation)

Lemma 10.6. OMT↓ � OMT-T1

As a special case of quaternary betweenness, if the middle entity y has a dimension that is more than
one lower than the embedding’s entity dimension, the embedding entity r is not internally self-connected
(as defined in Section 9.2)—the entity y must be the only entity shared by two complementary parts
of r, compare Figure 10.11. OMT-A4 states the contrapositive of this idea. However, since the correct
interpretation of ICon cannot be ensured in CODI ↓ but only in CODIB↓, it is sensible to use OMT-A4
only in combination with CODIB↓ and extensions thereof. We can define the theory

OMTB↓ = OMT↓ ∪ CODIB↓ ∪ {OMT-A4}.

(OMT-A4) Btw(r, x, y, z) ∧ ICon(r)→ y ≺dim r ∨ y =dim r (an entity is between two other
in an internally self-connected entity r is of the same or the next lower dimension as r)

Axiom Set 10.11: Axiom OMT-A4 of OMTB↓.
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10.3.3 OMT ↓’s relation to ordered incidence geometry

We have introduced a new theory OMT↓ by extending our multidimensional mereotopology by a notion
of order relativized to an embedding entity. Now we show that the name ordered multidimensional me-
reotopology for the theory OMT↓ is justified, because OMT↓ is axiomatically less restricted than weak
ordered incidence geometry (as introduced in Definition 10.13) but is still expressive enough to be re-
stricted to weak ordered incidence geometry without introducing new primitive concepts. In other words,
the theory axiomatizating n-dimensional weak ordered incidence geometries is definably equivalent to a
theory in the OMT hierarchy. We will prove this only for weak ordered incidence geometries restricted
to points being incident with lines or planes, axiomatized as WOIG. As we have seen in Section 10.1.3,
all ordered incidence geometries extend weak ordered incidence geometry. Since it is well-understood
how other classical three-dimensional geometries, such as affine ordered geometry, neutral geometry,
Euclidean, or Lobačevskijan geometry, can be constructed as extensions of ordered incidence geometry
(see e.g., Pambuccian’s overview [Pam11]), interpreting WOIG achieves our goal of relating ordered
multidimensional mereotopology to classical geometries.

For the reconstruction of weak ordered incidence geometry in the OMT hierarchy we use the theory

OMT↓−plp−lin = OMT↓ ∪ CODI plp−lin.

OMT↓−plp−lin is the ordered multidimensional mereotopology extended by axioms that constrain CODI
in such a way that every model has a substructure that is an incidence geometry (defined as in Def-
inition 10.11) as we showed in Theorem 10.7. To reconstruct ordered incidence geometries, we must
restrict our general betweenness relation Btw to a linear interpretation that satisfies total orderability
as required in ordered incidence geometries by O.3. For this purpose we introduce OMT-E1.

(OMT-E1) L(r)∧Pt(x)∧Pt(y)∧Pt(z)∧Cont(x, r)∧Cont(y, r)∧Cont(z, r)∧¬C(x, y)∧¬C(x, z)∧
¬C(y, z)→ [Btw(r, x, y, z) ∨ Btw(r, x, z, y) ∨ Btw(r, y, x, z)]

(three disconnected points contained in a line are orderable)

Axiom Set 10.12: Axiom OMT-E1 of OMT3D−lin.

We define the theory in the OMT hierarchy that commonly interprets all ordered incidence geometries
as

OMT3D−lin = OMT↓−plp−lin ∪OMT-E1.

Now we prove that any model of OMT3D−lin defines a structure that is a weak ordered three-
dimensional incidence geometry.

Theorem 10.9. Any modelM of OMT3D−lin defines a weak ordered incidence geometry I = 〈X, I, ∗,
dim,B〉 with distinguished sets Pt = PtM, L = LM, and Pl = PlM, and with X = M ⊇ Pt ∪ L ∪ Pl,
a type function dim : X→ I, and an incidence relation ∗ such that for all x, y ∈ X,

dim(x) = dim(y) ⇐⇒ 〈x, y〉 ∈ (=dim)M, and

〈x, y〉 ∈ ∗I ⇐⇒ 〈x, y〉 ∈ ContM and x ∈ PtM and y ∈ LM ∪PlM,



Chapter 10. Extension with betweenness: geometries 270

and a ternary betweenness relation B such that for all a, b, c ∈ X,

〈x, y, z〉 ∈ BI ⇐⇒ x, y, z ∈ PtM and there exists a r ∈ LM such that 〈r, x, y, z〉 ∈ BtwM.

Proof. In Theorem 10.7 we already proved that any model of CODI plp−lin defines an incidence geometry
〈X, I, ∗,dim〉 that satisfies all the conditions that pertain to the incidence geometry substructure of
〈X, I, ∗,dim,B〉. Because OMT3D−lin extends CODI plp−lin, any model M of OMT3D−lin also defines
such an incidence geometry.

It remains to prove that the axioms O.1 –O.4 are satisfied for the above definition of the ternary
betweenness relation B.

(O.1): B(a, b, c)→ B(c, b, a).
Assume the antecedent B(a, b, c) holds for arbitrary a, b, c ∈ X.
Then Btw(l, a, b, c) for some l ∈ LM and a =dim b =dim c ≺dim l by Pt-D, L-D. Then we deduce
Btw(l, c,b,a) by B-A2 and thus B(c, b, a), the desired consequent.

(O.2): B(a, b, c)→ ¬B(b, c, a).
Assume the antecedent B(a, b, c) holds for arbitrary a, b, c ∈ X.
Then Btw(l, a, b, c) for some l with l ∈ LM and a =dim b =dim c ≺dim l. For any such l,
¬Btw(l, a, c, b) follows from B-A3 and ¬Btw(l, b, c, a) by B-A2. Hence, for no l ∈ LM and a =dim

b =dim c ≺dim r we have Btw(r, b, c, a) and thus ¬B(b, c, a), the desired consequent.

(O.3): a 6= b ∧ a 6= c ∧ b 6= c ∧ ∃l[L(l) ∧ a ∗ l ∧ b ∗ l ∧ c ∗ l]↔ B(a, b, c) ∨B(b, c, a) ∨B(c, a, b).
We prove each direction of the implication separately.

Direction (a): a 6= b∧a 6= c∧b 6= c∧∃l[L(l)∧a∗ l∧b∗ l∧c∗ l]→ B(a, b, c)∨B(b, c, a)∨B(c, a, b).
Assume the antecedent a 6= b ∧ a 6= c ∧ b 6= c ∧ ∃l[L(l) ∧ a ∗ l ∧ b ∗ l ∧ c ∗ l] holds for arbitrary
a, b, c ∈ X and some l ∈ X.
By the mapping of the incidence relation, we have a, b, c ∈ Pt and Cont(a, l), Cont(b, l),
Cont(c, l). Moreover, ¬C(a,b), ¬C(a, c), and ¬C(b, c) by C-D and the fact that a, b, c are
indivisible points (by CD-E1). Finally, l ∈ L.
Altogether, these properties satisfy the antecedent of OMT-E1, so that we can conclude
Btw(l, a, b, c)∨Btw(l, a, c, b)∨Btw(l, b, a, c). By our definition of BI we immediately conclude
that one of B(a, b, c), B(a, c, b), or B(b, a, c) must hold—our desired consequence.

Direction (b): B(a, b, c)∨B(b, c, a)∨B(c, a, b)→ a 6= b∧a 6= c∧b 6= c∧∃l[L(l)∧a∗ l∧b∗ l∧c∗ l].
Assume B(a, b, c)∨B(b, c, a)∨B(c, a, b) holds for arbitrary a, b, c ∈ X. Then by the mapping
of BI, we have a =dim b =dim c ≺dim l and Btw(l, a, b, c) ∨ Btw(l, a, c, b) ∨ Btw(l, b, a, c)
for some l ∈ LM. Then by B-A1, a 6= b ∧ a 6= c ∧ b 6= c. Moreover, by OMT-A3 l ∈ ConM
and thus by OMT-A1 we obtain Cont(a, l), Cont(b, l), and Cont(c, l). And finally, by
CD-E1, L-D only points are of a lower dimension than lines, thus a, b, c ∈ PtM. Then, by
the mapping of the incidence relation ∗, we get 〈a, l〉, 〈b, l〉, 〈c, l〉 ∈ ∗I, thereby satisfying the
desired consequence:a 6= b ∧ a 6= c ∧ b 6= c ∧ l ∈ L ∧ a ∗ l ∧ b ∗ l ∧ c ∗ l.

(O.4): L(l) ∧ a ∗ l ∧ b ∗ l ∧ c ∗ l ∧ p ∗ l ∧ p 6= a ∧ p 6= b ∧ p 6= c ∧ B(a, p, b) → [B(b, p, c) ∧ ¬B(a, p, c)] ∨
[¬B(b, p, c) ∧B(a, p, c)].
Assume l ∈ L, 〈a, l〉, 〈b, l〉, 〈c, l〉, 〈p, l〉 ∈ ∗I, p 6= a, p 6= b, p 6= c, and B(a, p, b).
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Then by the mapping of the incidence relation ∗ from the statement of the theorem, we must have
a, b, c, p ∈ PtM as well as 〈a, l〉, 〈b, l〉, 〈c, l〉, 〈p, l〉 ∈ ContM. Moreover, as in the proof of direction
→ of O.3, we must have ¬C(p, a), ¬C(p, b), and ¬C(p, c). Hence by OMT-E1, the points p, b, and
c must be orderable within l, i.e., one of Btw(l, p, b, c), Btw(l, b, c, p), or Btw(l, c, p, b) holds. We
consider these three cases separately.

Case (a): Assume Btw(l, p, b, c).
By our other assumption B(a, p, b), some linem such that Btw(m, a, p, b) exists. By OMT-A1
and B-A1, we get Cont(p,m), Cont(b,m), and p 6= b and from Btw(m, a, p, b) we get
Cont(p, l), Cont(b, l), and p 6= b. Applying PL-A2 (only one line can contain two distinct
points) lets us immediately conclude l = m. We thus have Btw(l, p, b, c) and Btw(l, a, p, b),
which imply Btw(l, a, p, c) by B-A4. Then B(a, p, c) follows from the mapping of BI.
From Btw(l, p, b, c) we also get B(p, b, c) and thus ¬B(b, p, c) by O.2, which we proved earlier.
Hence ¬B(b, p, c) ∧B(a, p, c) is satisfies and thus O.4 is satisfied in this case.

Case (b): Assume Btw(l, b, c, p).
Analogue to Case (a) we obtain Btw(l, b, c, p) and Btw(l, a, p, b). Together they imply
Btw(l, a, p, c) by B-A5. The remainder of the proof is analogue to Case (a), so that O.4
is satisfied in this case.

Case (c): Assume Btw(l, c, p, b).
Then Btw(l, b, p, c) by B-A2 and thus B(b, p, c) by the mapping of BI.
Suppose we had B(a, p, c).
Recall that we initially also assumed B(a, p, b). Then a linem exists such that Btw(m, a, p, b).
Together with Btw(l, b, p, c), l = follows by PL-A2. By B-A2, the symmetric equivalents
Btw(l, c, p, b) and Btw(l, a, p, b) hold as well.
Now by our supposition B(a, p, c) and PL-A2, we would conclude Btw(l, a, p, c). This would
imply ¬Btw(l, a, p, b) or Btw(l, c, p, b), in contradiction to our earlier findings Btw(l, c, p, b)
and Btw(l, a, p, b). Thus our supposition B(a, p, c) was wrong and we must have ¬B(a, p, c).
Together with B(b, p, c) O.4 holds then in this case as well.

The cases are trivially exhaustive by OMT-E1, hence in any case O.4 is satisfied.

We have proven that O.1 –O.4 are satisfied for B as ternary betweenness relation and that 〈X, I, ∗,dim〉
is an incidence geometry. Hence, 〈X, I, ∗,dim,B〉 is a weak ordered incidence geometry.

For the converse direction, we prove that any weak ordered incidence geometry defines a model of
OMT3D−lin in the expected way.

Theorem 10.10. Any weak ordered incidence geometry 〈X, I, ∗,dim,B〉 defines a modelM of OMT3D−lin

with M = Pt ∪ L ∪Pl ∪ {ze}, PtM = Pt ⊆ X, LM = L ⊆ X, PlM = Pl ⊆ X, and ze /∈ X such that
for all x, y, z, v ∈M,

〈x, y〉 ∈ ContM ⇐⇒ x = y or 〈x, y〉 ∈ ∗I or
(
x ∈ L, y ∈ Pl and there exist distinct p, q ∈ Pt

with 〈p, x〉, 〈q, x〉, 〈p, y〉, 〈q, y〉 ∈ ∗I
)
, and

〈r, x, y, z〉 ∈ BtwM ⇐⇒ x, y, z ∈ Pt, r ∈ L, and 〈x, r〉, 〈y, r〉, 〈z, r〉 ∈ ∗I and 〈x, y, z〉 ∈ BI.
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Proof. Because 〈X, I, ∗,dim〉 is an incidence geometry, it defines a model M of CODI plp−lin by Theo-
rem 10.8 with the desired extension of Cont. We extendM to a structureM′ =M ∪BtwM wherein
BtwM is defined as above and wherein ZEXM = {ze} with ze /∈ X. We must show thatM′ is a model
of OMT3D−lin. Because we left the extension of all relations apart from ZEX and Btw unchanged, all
axioms of CODI plp−lin are still satisfied—it requires to only check that ze behaves correctly, which is
straightforward since it is in no relation to any other entity in the domain.

Hence it suffices to prove all axioms of OMT3D−lin that are not axioms of CODI plp−lin; these are:
Int-A1 – Int-A4, Dif-A1 –Dif-A4, Z-A1, B-A1 –B-A6, OMT-A1 –OMT-A3, and OMT-E1. For the ax-
ioms B-A1 –B-A6 and OMT-E1 we only refer to the corresponding axioms in weak ordered incidence
geometries; the details are essentially the reverse of the proofs for O.1 –O.4 in Theorem 10.9.

(Z-A1): ∃x[ZEX(x)].
By ze ∈ ZEXM.

(OMT-A3): Max(x)→ Con(x).
By the definition of the domain X, all entities except for ze are maximal in their dimension, i.e.,
no entity can be a proper part of some entity. Hence no entity can have a proper part, that is all
entities are minimal as well. Thus Con(x) (by Con-D) is trivially satisfied for all x ∈ X.

(OMT-A1): Btw(r, x, y, z)→ Con(r) ∧ Cont(x, r) ∧ Cont(y, r) ∧ Cont(z, r).
By the mapping of BtwM, Btw(r, x, y, z) requires r ∈ L, x, y, z ∈ Pt, and 〈x, r〉, 〈y, r〉, 〈z, r〉 ∈ ∗I.
Together those are mapped to Cont(x, r), Cont(y, r), and Cont(z, r), while r ∈ ConM follows
by OMT-A3.

(OMT-A2): Btw(r, x, y, z) ∧ Cont(v, r) ∧ Con(v) ∧ C(v, x) ∧ C(v, z)→ C(v, y).
Recall that the domain X contains only points, lines, planes, and the zero region, and by the
definition of BtwM, only points can be between one another within lines. Then Cont(v, r) can
only hold when v is a point or v = r, since only one line can exist through a point by I.2a. If v = r,
C(r, y) follows trivially y ∗ r, which we obtain from the definition of Btw(r, x, y, z).

Suppose v is a point. Then v must be connected to x, i.e., it must share an entity with x that
is contained in v. That can only be v itself, because no nonmaximal entities of the dimension of
points exists in the domain X. Hence, v cannot be a point.

(Int-A1) – (Int-A4): Follow directly from the fact that all nonzero entities are minimal (compare proof
of OMT-A3). Hence the intersection between two distinct points is the zero entity; the intersection
of a point with a line or plane is the point itself; the intersection of two distinct lines is the zero
region or a point; the intersection of a line with a plane is either zero, a point, or the line itself;
and the intersection of two distinct planes is either empty, a point, or a line (recall that we did not
include PLP-A2 as an axiom; allowing for higher-dimensional embedding spaces).

Then all of (Int-A1) – (Int-A4) are immediately provable.

(Dif-A1) – (Dif-A4): Also follow also from the fact that all nonzero entities are minimal (compare
proof of OMT-A3). The difference x − y where x is of a greater dimension than y is x itself (as
by definition), and the difference x − y between two distinct equidimensional entities is x. The
difference x−y where x is a point and y a line or point is zero of the point is incident with the line
or plane, and the point x otherwise. If x is a line and y a plane, the difference is zero if two distinct
points incident with the line are incident with the plane (by PLP-A4), and the line x otherwise.
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Then all of (Dif-A1) – (Dif-A4) are immediately provable.

(B-A1): Btw(r, a, b, c)→ a 6= b 6= c 6= a.
Follows from the direction ← of the implication in O.3.

(B-A2): Btw(r, a, b, c)→ Btw(r, c, b, a).
Follows from O.1.

(B-A3): Btw(r, a, b, c)→ ¬Btw(r, a, c, b).
Follows from O.2.

(B-A4): Btw(r, x, a, b) ∧ Btw(r, a, b, y)→ Btw(r, x, a, y).
Follows from O.7 which we proved for weak ordered incidence geometries in Lemma 10.1.

(B-A5): Btw(r, x, a, b) ∧ Btw(r, a, y, b)→ Btw(r, x, a, y).
Follows from O.8 which we proved for weak ordered incidence geometries in Lemma 10.1.

(B-A6): Btw(r, a, x, b)→ ¬Btw(r, a, x, c) ∨ ¬Btw(r, b, x, c).
Follows from O.4.

(OMT-E1): L(r)∧Pt(x)∧Pt(y)∧Pt(z)∧Cont(x, r)∧Cont(y, r)∧Cont(z, r)∧¬C(x, y)∧¬C(x, z)∧
¬C(y, z)→ [Btw(r, x, y, z) ∨ Btw(r, x, z, y) ∨ Btw(r, y, x, z)].
Follows from the direction → of the implication in O.3.

Consequently, the extended modelM∪BtwM′ with M′ = M∪{ze} satisfies all axioms of OMT3D−lin.

Thus, every weak ordered incidence geometry with its domain extended by a zero entity is definably
equivalent to a model of OMT3D−lin. As an example of such a model, we have used the model finder
Paradox3 to verify that the model of WOIG given in Figure 10.2 with an extra zero entity is indeed
a model of OMT3D−lin. The input is specified in omt/consistency/omt_3d_lin_nontrivial.clif. As future
work, we could automate or at least partially automate the proofs of the axioms of OMT3D−lin from the
axiomatization of weak ordered incidence geometry, WOIG (Question 4).

All more restricted incidence geometries also define models of OMT3D−lin. For example, once we
define line segments we could express the Pasch axiom (compare I.6 in Section 10.1.3) in an extension
of OMT3D−lin. Together with an axiom enforcing that all lines are dense orders of points with no first
or last point, we can then reconstruct ordered incidence geometries—defined in Definition 10.12—as a
theory in the hierarchy OMT . The latter axiom is the one that enforces the models to be continuous
geometries, while OMT3D−lin admits both discrete geometries, and thus also finite geometries, and
continuous geometries as models.

Again, we can express the relationship between weak ordered incidence geometries and OMT3D−lin

also purely in terms of theory interpretations: the theory OMT3D−lin interprets the theory WOIG
because the translations of all axioms of WOIG into the language of OMT are provable from OMT3D−lin

as Theorem 10.9 essentially shows.
OMT3D−lin does not faithfully interpret WOIG because

OMT3D−lin |= ∃x∀y[¬Inc(x, y)]
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because a zero region exists, whereas

WOIG 2 ∃x∀y[¬Inc(x, y)].

WOIG extended by the sentence I.Z will, however, be faithfully interpreted by OMT3d−lin because then
every model of WOIG ∪ I.Z can be definably expanded to a model of OMT3d−lin. This is a simple
adaption of Theorem 10.10.

(I.Z) ∀y
[
¬(ze ∗ y) ∧ [dim(y) = dim(ze)→ y = ze]

]
(an entity ze not incident with any other entity and of its own type exists)

Axiom Set 10.13: Extension axioms I.Z of WOIG.

Even though Theorems 10.9 and 10.10 apply to k-partite ordered incidence geometries with any
finite k, incidence and betweenness are restricted to the first three partitions Pt, L, and Pl. We have
not verified the adequacy of the multidimensional betweenness relation for capturing higher-dimensional
spaces. How to adequately verify whether OMT↓ is a suitable model for higher-dimensional ordered
incidence geometry is left as a challenge for the future (Challenge 6). One approach to tackle this
problem requires altering the definition of a weak ordered incidence geometry to include axioms governing
the order among higher-dimensional entities in a way analogue to how general n-dimensional betweenness
geometry has been defined in [Has58]. Then we could try to construct an appropriate extension of OMT↓
that interprets such an n-dimensional betweenness geometry.

10.3.4 Definability of other notions of spatial order

While our quaternary betweenness relation is extremely general, often the only necessary kind of be-
tweenness is the one among points, as in all the (weak) ordered incidence geometries we considered or
as in the interpretation of betweenness used for points on oriented curves by Kulik and Eschenbach
in [KE99]. In fact, we should be able to reconstruct the theory from [KE99] as an extension of OMT↓,
since the primitives in [KE99] are incidence, points, oriented curves, and a ternary relation of precedence
of two points on a oriented curve.

However, to capture an order among nonintersecting lines or curves, such as the order over a set of
parallel streets, the broad interpretation of our multidimensional betweenness relation comes handy. For
example, we can express that

Btw(Toronto,SpadinaAve.,UniversityAve.,YongeSt.)

holds in the map in Figure 10.1(a) without having to explicitly reference the order over street inter-
sections along a common intersecting street, such as King Street. Especially in finite models, such
kind of betweenness may not be definable: suppose not all street intersections in the map in Fig-
ure 10.1(a) are modelled as points due to incomplete information or information abstraction, then
Btw(Toronto,SpadinaAve.,UniversityAve.,YongeSt.) may not be definable in terms of the order over
points along a line.

In continuous ordered incidence geometries, betweenness among points is sufficient to define other
higher-dimensional notions of order, such as the betweenness for line segments that is captured by the
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a

c

l

r

b

Figure 10.12: In OMT↓ we can capture the relation of a line l being between the two points a and c
directly as Btw(r, a, l · r, c) or as Btw(r, a, l, c) if r is a plane containing l. In classical ordered incidence
geometry we have to state this in a round-about way: ‘there exists a point b collinear with a and bc
and incident with l such that B(a, b, c), compare [BS60]. Notice that this classical definition depends on
the line axiom, I.2, whereas our definition does not depend upon the corresponding axioms PL-A2 and
PL-A3. The trade-off is that Btw is needed as a primitive, quaternary relation.

Pasch axiom. This definability relies on the fact that all lines are straight, i.e., that any two points
uniquely define a line. Borsuk and Szmielew [BS60], for example, define a line l to be in between two
points a and c if and only if the unique line defined by a and c intersects l in a point b such that B(a, b, c),
see Figure 10.12 for an example. In our multidimensional version, we can express this more directly as
Btw(r, a, l, c), meaning that in the plane r, l lies between a and c, i.e., l separates a from c.

Our chosen intended interpretation of Btw(r, a, b, c) as ‘any self-connected entity wholly within r that
intersects a and c also intersects b’ is topologically rather strict. In human descriptions of space, we use
the preposition ‘between’ often in less strict senses. For example, in the map in Figure 10.8 we would
want to say that Keele Street is in between Dufferin Street and Jane Street in the area called ‘Westend’—
despite its inconsistency with the strict interpretation. Many such weaker notions of betweenness are
definable relations in OMT↓. For example, we could define weak betweenness for three streets a, b, and
c within a common region r as: street b is in between street a and c if and only if

• within no part of r, a · v is in between b · v and c · v or c · v is in between a · v and b · v and

• there exists some part v of r such that b · v is in between a · v and c · v within v.

Axiomatically, we could express this relation through the formula

∀v[P (v, r)→ ¬Btw(v, b · v, a · v, c · v) ∧ ¬Btw(r, a · v, c · v, b · v)] ∧ ∃v[P (v, r) ∧ Btw(v, a · v, b · v, c · v)].

Other specialized kinds of betweenness that are definable include notions such as enclosure (e.g., any
entity x nontangentially contained in y is enclosed by the boundary of y if such a boundary exists),
betweenness as the order of the intersections with a common entity (e.g., Parkside Drive is in between
Jane Street and Dufferin Street along Bloor Street in Figure 10.8.), or betweenness as an order over parts
(e.g., lines not fully contained in a region r can still be ordered based on the parts, i.e., line segments,
that are contained in r). A more comprehensive treatise of these different notions of betweenness is left
as future work (Challenge 7).
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10.3.5 Definability of notions of convexity

Traditionally, convexity, convex or continuous line segments, and higher-dimensional equivalents such
as convex polygons or polytopes, are geometric notions that are tightly coupled to betweenness. In
linear spaces, it is well known that standard geometric convexity is definable, see for example [Cop98].
Likewise, a sufficiently restricted notion of betweenness lets us define the geometric notion of a line
segments.

In CODI l or any other theory in the CODI hierarchy, we cannot define whether the composite
manifold represented by some domain entity is convex or not in a particular intended structure. Though
we can give a definition of a relation of convex in the language of CODI , any structure in the class of
intended models in which some composite manifold is not convex is represented by a model of CODI l
which can also be interpreted as a structure in which the composite manifold is convex. In other
words, the language of the CODI hierarchy is simply not expressive enough to define the intended
relation of convexity, just as equidimensional meoreotopologies are not expressive enough to define
convexity [Coh+97a; Pra99]. For this reason, the basic RCC theory, for example, has been supplemented
by a primitive unary function conv that assign each entity to its convex hull [Coh+97a; RCC92]. We
will use a similar notion of convex hull, denoted as ch in Chapter 11.

Now that we have extended CODI by an additional primitive notion of betweenness resulting in
the hierarchy OMT , can we define convexity of manifolds in the language of OMT? The answer is
not straightforward, it is an exercise in reverse mathematics: what axioms are necessary to define the
intended notion of convexity of manifolds? Since we weakened the axioms of ordered incidence geometry,
we can no longer take for granted that convex line segments and convex regions in general are definable
as in, e.g., linear ordered incidence geometries [BTBI87]. It turns out that definability of convexity in
the language of OMT depends on the specific theory, not just the primitive language of its hierarchy. In
linear ordered incidence geometries, the geometric notion of convexity for entities is easily definable as

convex(r)↔ ∀x, y, z[x ∗ r ∧ z ∗ r ∧B(x, y, z)→ y ∗ r].

Commonly, this is expressed using the defined concept of a line segment as “a figure [i.e., a spatial
entity that is not a point] is convex if and only if for any points x and y contained in the figure, then
the line segment ←→xy is also contained in the figure” [BS60]. Line segments are defined as sets of points,
denoted by ←→xz , such that a point y is in the segment ←→xz if and only if y is in between x and z. But such
a definition depends on axioms of ordered incidence geometry that are not all assumed or provable in
OMT↓. Even though we can give definitions of convexity and line segments, there are models of OMT↓ in
which entities are deemed convex by that definition even though they may represent intended structures
in which the corresponding entities are not convex. To restrict the definition of convex to the intended
interpretation, we require the following three assumptions made by ordered incidence geometry. Firstly,
it assumes that two points uniquely define a straight line segment, which is not true unless we include
the line axiom (PL-A2, PL-A3). Secondly, it assumes points to form total dense orders: any pair of
distinct points forces other points before, in between, and after the pair to exist on the same line, and all
points orderable on a single line must be orderable in the entire space O.3. Only once we restrict OMT↓
to OMT3D−lin we enforce total orderability of points by including OMT-E1. Thirdly, ordered incidence
geometry usually assumes a three-dimensional space, i.e., the extension axioms PLP-E1 –PLP-E3 must
be satisfied. As a result the following two different notions of convexity for manifolds in Rn coincide.
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Let Mn be a complex manifold and let MF1
m ∈Mn be an atomic or composite manifold with m ≤ n.

Convexity of an entity in its own dimension: We say that MF1 is convex in its own dimension if
and only if for any manifold MF2

m ∈ Mn with ΣMF1 ⊆ ΣMF2, any two points x, y ∈ MF1
m,

and any line segment ←→xy ∈ MF2, we have ←→xy ∈ MF1. The idea is the following: an entity is
convex in its own dimension if it can be flattened out by topologically-invariant transformations
into a convex set of points. For example, a two-dimensional area with a hole that is contained in
some larger, two-dimensional area without that hole would not be convex in its own dimension,
no matter whether it is curved or not, because it will always maintain a genus of 1 within that
larger area. But a piece of paper that is folded in three-dimensional space is convex as long as it
is rectangular and thus convex when flattened out.

Convexity in space: We say that MF1 is complex in the space if and only if for any manifold MF2
i ∈

Mn with i ≤ n and ΣMF1 ⊆ ΣMF2, any two points x, y ∈ MF1
m, and any line segment←→xy ∈ MF2,

we have ←→xy ∈ MF1. The idea here is that entities of codimension > 0 that are curved in a higher
dimension are no longer convex, because there exist line segments in the higher-dimensional space
that connect two points in the curved entity but that are not wholly contained in the curved entity.
For example, a curve located in a two-dimensional space is not convex, its convex hull would be a
two-dimensional area.

The first interpretation may be closer to the spirit of our general axiomatization. For example, any
single point but also any set of points is always convex, a one-dimensional curve is only nonconvex if it
disconnected, while the convex hull of a two-dimensional area is the convex hull in its embedding plane,
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Figure 10.13: Examples of the different notions of convexity.
Let the spatial configuration in (a) be represented as a model of OMT↓ with domain M =
{a, b, c, d, l,m, r, v, v − r, ze}. Then the two-dimensional region r is nonconvex in its dimension, be-
cause the line segment

←→
ab defined by points a and b that are contained in r, contains a third point d in

a region x that is of the same dimension as r, but d is not contained in r. However, the linear feature
l is convex in its dimension, because any line segment with a and b as endpoints that is in some linear
feature containing l, is completely contained in l. But l is not convex in the space because there exists
a straight line segment m, that is contained in v but that is not entirely contained in l.
Let the spatial configuration in (b) be represented as a model M of OMT↓ with domain M =
{a, b, c, d, l, r, ze}. Then l is convex in its dimension and convex in space. It is convex in space be-
cause the only entity (apart from l itself) that contains l is r, whose only extra point d is not on a line
with a and b. Effectively, the modelM equally captures the configurations (b) and (c)—it can simply
not distinguish them.
If in a model of OMT↓ the line axiom is satisfied, that is, every pair of points uniquely define a line, the
model is realizable using only straight lines as in configuration in (d). If more than one line for a pair of
given points may exist as in (e), we have no way to tell which of the two line segments

←→
ab is straight or

curved—only one can be straight.
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not in three- or higher-dimensional space. The second interpretation closely resembles how convex hulls
are often used in two- or three-dimensional geometry: the convex hull of a on-dimensional curved line
segment in a two-dimensional space (like on a piece of paper) would be two-dimensional, that is, of a
higher dimension than the entity itself. Equally, in this interpretation three points in a three-dimensional
space have a convex hull that is of zero dimensions if they coincide, one dimension if they are collinear,
and two-dimensions otherwise. Four points may have a three-dimensional convex hull.

To formalize these two notions within the general theory OMT↓ requires a much deeper analysis
beyond what can be achieved in a short thesis section. In particular, these notions of convexity must be
relativized to the embedding entity just as we relativized betweenness to an embedding entity. Moreover,
we need to give an adequate definition of line segments (see LS-D) in OMT↓ that accounts for the
possibility that two points are contained in more than a single distinct line. Here we can just give an
outline how such a definition could work. The use of OMTB↓ would precisify the axiomatization by
allowing us to state that an endpoint is boundary-contained in a line part and not just contained as
expressed in EP-D. The axioms LP-A1, LP-A2 and definitions LP-D, EPt-D. LS-D are very preliminary,
they have not yet received the scrutiny as our previous axioms and are only included as a starting point
for future work (Question 6). They are closely related to how [KE99] define curve segments. Notice
that many other concepts, such as boundaries are definable if a relation of convexity is available as a
primitive or defined relation. For more details on the expressiveness of convexity, see [Coh95; Dav06;
Pra99].

(LP-D) LP(l)→ ∃x[MinDim(x) ∧ x ≺dim l] (linear part: essentially a one-dimensional feature)
(EPt-D) EPt(l, p)→ LP(l) ∧ Pt(p) ∧ Cont(p, l) (p is an endpoint of the linear part l)
(LP-A1) L(l)→ ¬∃p[EPt(l, p)] (lines have no endpoints)
(LP-A2) EPt(l, p) ∧ EPt(l, q) ∧ p 6= q → ∀x[EPt(l, x)→ p = x ∨ q = x]

(linear parts have at most two endpoints; allows for line segments, rays, and lines)
(LS-D) LS(l) ↔ LP(l) ∧ ∃p, q

[
EPt(l, p) ∧ EPt(l, q) ∧ p 6= q ∧ ∀x[Btw(l, a, x, b) ∧ Pt(x) ↔ Pt(x) ∧

Cont(x, l) ∧ x 6= p ∧ x 6= q]
]

(a line segment is a linear part with two distinct endpoints p and q
such that all other points x in between p and q are contained in the line segment l and any point
x contained in l is in between p and q within l)

Axiom Set 10.14: Definitions LP-D, EPt-D, LS-D and axioms LP-A1, LP-A2 as extension of OMT↓.

Note that in any extension of OMT↓ that allows discrete models, we additionally have to deal with the
problem that the typical continuous understanding of convexity is not definably because line segments
between two points may contain no other points and thus could be straight or curved. However, this is
a minor problem, because such a model is homeomorphic to a space in which all minimal line segments
(those that do not contain any points except the endpoints) are straight. Then an entity is convex if it
is convex in its homeomorphic entity in which all minimal line segments are straight. We can apply this
discrete understanding of convexity to both of the above two notions of convexity by only considered
the points in the domain.
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10.4 Summary

In this chapter we investigated how the multidimensional mereotopology that we introduced in earlier
chapters is related to classical geometries. As our first result, Theorem 10.1 shows that a model M of
CODI always has a substructure over the model’s domain M that is a k-partite incidence structure—
and also a k-partite point incidence structure by Corollary 10.1, where the extension IncM ∩ (<dim)M
defines the incidence structure’s asymmetric, irreflexive incidence relation ∗. In the converse direction,
Theorem 10.2 establishes thatk-partite point incidence structures can be expanded to models of CODI
in a natural way. Consequently, CODI faithfully interprets the theory of k-partite point incidence
structures.

In a next step, we provided definitions of points and lines in CODI and extended CODI such that
every line contains at least two points. Each model of the resulting theory CODI pl has a substruc-
ture that is a line space (Theorem 10.3)—a two-dimensional incidence geometry—and every line space
can be expanded to a model of CODI pl (Theorem 10.4). The result extends to special classes of line
spaces, namely semi-linear, linear, and affine spaces, which correspond to substructures of CODI pl−slin,
CODI pl−lin, CODI pl−aff , respectively (Theorem 10.5 and 10.6). In terms of theories, the theories of
line spaces and of semi-linear, linear, affine line spaces are faithfully interpreted in the theories CODI pl

(CODI pl−slin, CODI pl−lin, CODI pl−aff), respectively. We further extended CODI pl to CODI plp, which
also defines planes. Based on CODI plp, we lifted the two-dimensional results to three-dimensional inci-
dence geometries. In particular, all linear incidence geometries (which contain a three-dimensional inci-
dence structure) can be expanded to models of CODI plp−lin (Theorem 10.8) and models of CODI plp−lin

have substructures that are incidence geometries (Theorem 10.7). Again, we can state that the theory
CODI plp−lin faithfully interprets the theory IG of incidence geometries. In the final part of Section 10.2,
we identified the theory CODI plp−g as a natural qualitative abstraction of three-dimensional incidence
geometry in the primitive language of CODI .

Classical geometries are usually constructed from three primitive relations: incidence, betweenness,
and congruence. While congruence introduces a metric—a reason why extensions of equidimensional
mereotopologies with notions of congruence are capable of expressing full Euclidean geometry as shown
in [BGM96; BM10]—betweenness does not. In only imposes an order over points or other, higher-
dimensional entities and is thereby still of qualitative nature. Order plays a crucial role when representing
spatial configurations, such as street maps, qualitatively without loosing critical knowledge. Therefore, it
is an important and worthwhile undertaking to study notions of order in multidimensional mereotopology.
It required us to first find a suitable multidimensional notion of order that works regardless whether
the involved entities are curved or not. As such a relation, we proposed in Section 10.3 a quaternary
primitive relation Btw, which relativizes the traditional ternary betweenness relation found in geometries
to a reference entity, the local context. We adopted many of the axioms of geometric betweenness to the
more general multidimensional setting, but had to leave out or weaken other axioms to suit the more
general setting. As result, we obtained the theory BTW , which resides in a hierarchy of its own.

Subsequently, we axiomatized the interaction between BTW and the CODI theories to come up
with OMT↓ as the basic theory of ordered multidimensional mereotopology in Section 10.3.2. See
Figure 10.14 for a complete depiction of OMT hierarchy. In Section 10.3.3, we then established the
relationship between OMT3D−lin, a combination of OMT↓ with CODI plp−lin, and weak ordered three-
dimensional incidence geometries: every weak ordered incidence geometry can be expanded to a model of
OMT3D−lin if the domain is supplemented by a zero entity (Theorem 10.10) and any model of OMT3D−lin
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has a substructure that is a weak ordered incidence geometry (Theorem 10.9). This extends the earlier
correspondence between CODI plp−lin and three-dimensional incidence geometries by proving that the
order required for weak ordered incidence geometries is definable using the multidimensional order defined
in OMT3D−lin. Moreover, we established the following theory relationship: the theory of weak ordered
incidence geometries, WOIG, is interpretable in OMT3D−lin. Faithful interpretability is only prevented
by the missing zero region, which can be fixed by supplementing WOIG by the axiom I.Z. Generally
speaking, the ordered multidimensional mereotopology OMT3D−lin indeed reconstructs ordered incidence
geometry in a more expressive language, which is equally capable of defining a qualitative analogue of
ordered incidence geometry. The essential differences between ordered incidence geometry and ordered
mereotopology OMT↓ is captured by the axioms necessary to extend OMT↓ to OMT3D−lin: OMT-E1
(three points are always orderable), the line axioms PL-A1 –PL-A3, the space axioms PLP-A1 –PLP-
A4, and CD-E1 (indivisibility of points). An overview of the various theories that we introduced in
this chapter to extend CODI towards geometries is given in Figure 10.14, while their relationships to
incidence structures, incidence geometries, and ordered incidence geometries are summarized graphically
in Figure 10.15.

As far we as we know, our previous work from [HG11b] and the work presented in this chapter,
which builds on our previous work but significantly extends it, have been the first enquiries into ordered
multidimensional mereotopology as a qualitative analogue to ordered incidence geometries. As often,
this poses more questions than it answers. Important unanswered questions concern the completeness
of the chosen axiomatization: are there other axioms of general betweenness that are not yet provable in
OMT↓? Missing axioms may particularly arise from order between higher-dimensional entities, which we
studied only on a preliminary level. Other important open questions concern the definability of closely
related notions, in particular of the many relations humans use in everyday descriptions that involve
some kind of spatial order, and of the closely associated geometrical notions of line segments, higher-
dimensional equivalents, and convex regions. With regards to those questions, we offered some discussion
in Sections 10.3.4 and 10.3.5, respectively, which can serve as starting points for future investigations
(Question 7).

A separate issue concerns the integration of incidence geometries and ordered incidence geometries
with the CODI and OMT theories. At the moment, we have faithful interpretations in one direction,
meaning the CODI or OMT theories are logical extension (with the appropriate definitions) of (ordered)
incidence geometries. However, eventually we would like to establish definable equivalences: which CODI
and OMT theories are definably equivalent to the (ordered) incidence geometries? This would provide
a much stronger integration of geometries with our qualitative spatial theories. We leave this task as
future work (Question 5).
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CODI hierarchy

+ Int-A1 - Int-A4,
   Dif-A1 - Dif-A4

+ PL-A1

+ PL-A2

+ PL-A3

+ PL-A4, PL-A5

+ PLP-A1
    - PLP-A4

BTW hierarchy

CODIB hierarchy

definitional
extension

OMT hierarchy

+ OMT-A1
   - OMT-A3

+ OMT-E1

+ BC-A6,
   ME-E1

OMTB hierarchy

Figure 10.14: The relationship among the various theories that extend CODI by axioms constraining
how three kinds of maximal entities—points, lines, and planes—interact. Once we add a theory of
quaternary betweenness, which forms a hierarchy BTW by itself, we obtain the new hierarchy OMT ,
and—with an extension by the primitive relation of boundary-containment—the new hierarchy OMTB,
which is not further explored in this thesis.
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Figure 10.15: The relationships between the theories developed in Chapter 10 and (ordered) incidence
structures and geometries. While extensions in CODI correspond to incidence structures and two-
and three-dimensional incidence geometries, the theories in OMT generalize three-dimensional ordered
incidence geometries.



Chapter 11

Modelling physical space: physical
boundaries and physical voids1

Thus far in the thesis, we were concerned only with spatial regions from a purely mereotopological or
mereogeometrical perspective. This characterizes abstract space, which we consider as a mathematical-
logical construct. In that context, we introduced mereological closure operations, which help to formalize
and talk about certain concepts such as intersections of space regions or differences between space regions,
which are not always true to the physical reality of space. The closure operations introduce a lot of
“artificial” entities which arguably do not correspond to any real physical entities, or the corresponding
physical entities are not considered as physical entities per se, but are merely collections or parts of
physical entities.

In this chapter, we present a way to utilize our axiomatization of abstract space to model physical
space. We are especially interested in modelling two kinds of physical features. First, we discuss how
we can model boundaries and in particular surfaces of physical objects and, secondly, we model physical
voids that occur in rock formations and the water bodies that can be located in such physical voids.
While the discussion of boundaries gives only a general idea of how thin and thick boundaries in abstract
space can be used to model physical boundaries, the section on physical voids is much more detailed
and fully axiomatized.

A key prerequisite for either task is to ground physical space in abstract space. We take the following
approach. First, we add a new layer of enduring physical entities, which are completely disjoint from
the abstract spatial regions we talked about so far. This layer intuitively contains physical entities such
as rock formations, sediments, or various kinds of water bodies. Instead of devising a completely new
ontology for physical space, we adopt a portion of the DOLCE ontology [Mas+03]. In particular we
maintain the DOLCE categorization of so-called physical endurants, which encompasses all the physical
entities we are interested in, into physical objects, matter, and features. Each physical endurant must
be located in space, that is, it must occupy some nonzero region of the underlying abstract space. In
the second step, we map entities located in physical space to their associated abstract spatial regions.

Subsequently, we can define physical boundaries as physical endurants whose regions are based on
1The work in this chapter, except for Section 11.3, is joint work with Boyan Brodaric. It has been previously published

as [HB12] in the Proceedings of the 7th International Conference on Formal Ontologies in Information Systems, pp. 45-58,
IOS Press. Copyright 2012, reprinted with permission from IOS Press.
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the abstract boundaries that we axiomatized in Chapter 9. We will only sketch in Section 11.3 how
this would work in principle when using DOLCE’s categorization of physical endurants and point to the
differences in comparison to other treatments of physical boundaries.

In Section 11.4 we will axiomatize the spatial character of physical voids. One piece still missing
from our axiomatization of abstract space is the mereogeometric relation of convex hull. Even though
we discussed how it becomes definable in a highly restricted version of ordered mereotopology OMT
as defined in Chapter 10, we opt here to use convex hull as a primitive function, adopting the axioms
from [Coh+97a; Don05] in Section 11.4.1. This mirrors the extension of equidimensional mereotopo-
logies to equidimensional mereogeometries, compare [BM10], just in the multidimensional case. Finally,
we show how we can use this new mereogeometrical axiomatization of abstract space to restrict the in-
terpretation of the primitive relation of ‘hosting a void’ between physical endurants and physical voids.
This generalizes holes as studied by Casati and Varzi [CV94] to voids. We also provide a classification
of physical voids along three criteria: the internal connectedness of a void’s host (Section 11.5.1), the
connectivity of a void to other voids and to the exterior of its host (Section 11.5.2) and the scale of a void
(Section 11.5.3). It should be noted that we are still not in a position to completely define voids; the
identification of physical voids—like the identification of physical entities of interest to a certain domain
or to humans–remains an important open issue.

The work in this chapter differs in its logical approach from the work in previous chapters. In the
previous chapters, we were concerned with the expressiveness of theories as determined by their primitive
languages as well as the restrictiveness of the axioms for theories in the same language. Both concerns
were foundational in our analysis of the various spatial theories. Such a rigorous mathematical approach
to ontology was only possible because we worked with a very small set of primitive notions, allowing
us to closely examine those few relations and functions. Consequently, we have better understood the
differences in expressiveness between the various theories. The development in this chapter links this
mathematical-logical analysis to a more philosophical approach to ontology, which tries to capture a set of
foundational categories much like the work of Chisholm [Chi96]. We reuse a portion of DOLCE [Mas+03]
as upper-level ontology, which comprises a rich set of primitive notions, though only few of them are
densely axiomatized or even defined in terms of others. Without a precise distinction between undefined
and defined concepts in the DOLCE theory, the majority of concepts are treated as primitives, compare
Figure 11.9 at the end of the chapter2. The expressiveness of the DOLCE ontology and its models are
not well-understood—they are simply too diverse to admit a rigorous characterization. But by using the
multidimensional theory of abstract space developed in the earlier chapters, we are able provide a more
rigorous axiomatization for some of the spatial concepts in DOLCE.

This chapter serves multiple purposes. We offer a rigorous spatial characterization of the DOLCE
categories of physical entities, we give a concrete example how our theories of abstract space can be used
to model physical reality, and we show how the mathematical model-theoretical approach to ontology
design complements the philosophical top-down approach. Moreover, we specifically contribute to the
understanding and formalization of physical voids. Finally, we demonstrate in Section 11.6 that the
distinction between different kinds of voids are indeed relevant in the domains of hydrogeology and
hydro-ontology: we can give more precise characterizations of the difference between a surface water
body and a ground water body, we can formalize necessary properties of so-called hydro-rock bodies,

2For this reason, all axioms pertaining to physical endurants are labelled as PED-Ax. Only in Sections 11.4 and 11.5
we use definitions to introduce new categories of voids.
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rock bodies that store water, and we can define concepts such as a reservoir. Thereby, this chapter
also gives a glimpse of the applicability of our abstract theories of space to real-world domains. The
chapter, except for the discussion in Section 11.3, is joint work with Boyan Brodaric, previously published
in [HB12]. This chapter here makes minor corrections and the distinction between internal and external
voids is clarified. We also offer more a more in-depth discussion of some of the modelling choices, in
particular concerning a suitable multidimensional axiomatization of convex hulls, and of the limitations
of our approach.

11.1 Physical endurants

In addition to abstract spatial regions, we now also consider physical entities located in what we call
physical space. Instead of developing our own ontology of physical entities, we reuse a portion of the
upper-ontology DOLCE [Mas+03]. In particular, we reuse the DOLCE taxonomy of so-called physical
endurants shown in Figure 11.1 and we reuse relevant relations as much as possible, though those are
sparsely, if at all, axiomatized in DOLCE. Throughout, we are only concerned with endurants3 that
have some physical location. Examples of physical endurants from hydrogeology are rock formations,
sediments, and various kinds of water bodies such as rivers, lakes, groundwater, aquifers, and wells.
Other DOLCE categories, in particular perdurants such as processes, plus nonphysical entities, are out
of scope because they are not only of spatial nature but intrinsically of spatio-temporal nature.

We maintain the symbol PED from DOLCE to denote physical endurants. DOLCE distinguishes
three disjoint categories of physical endurants (PED-A1, PED-A2): physical objects POB (e.g., a body
of water), amounts of matter M (e.g., the water that constitutes a body of water), and features F (e.g.,
the water surface), compare the top-level specialization in Figure 11.1. Moreover, the physical objects
considered here, especially the hydrogeological entities, fall all into the DOLCE category of nonagentive
physical objects NAPO, i.e., physical objects that do not act by themselves or pursue goals (PED-A3),
that refines the category POB.

11.1.1 Physical features: dependent places and relevant parts

Physical features, such as material surfaces, must not be confused with abstract spatial features, such as
abstract boundaries, which we treat as nonphysical entities in our theory. For brevity we use the term
feature to denote a physical feature. Physical features, F , depend on physical endurants as their host, a
term used by [CV94] and in the OWL version of DOLCE, but not axiomatized in the first-order version
of DOLCE. Because features are inextricably linked to their host, they are best captured by a binary
hosts relation. Only features are hosted (PED-A4) and all features are hosted (PED-A5). Moreover, the
hosts relation is asymmetric (PED-A6). In DOLCE, physical features are specialized as relevant parts
RPF such as bumps, edges, surfaces, boundaries, or dependent places DPF such as shadows and holes
(PED-A7, PED-A8).

3An essential criteria for something to be an endurant is that its parts are wholly present at any point in time. This
requires any proposition about an endurant to be relative to a timepoint or an interval of time. However, for simplicity we
omit the time reference here completely; our axiomatization can be thought of as capturing a static view of the domain at
a fixed timepoint.
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Figure 11.1: UML diagram of the DOLCE category physical endurant, its specializations and relations.

11.1.2 Matter

DOLCE further distinguishes a physical object from its constituent matter, for example, a body of rock
or a “piece of rock” from its constituent rock matter, or a water body from its constituent water. The
specific amount of matter that constitutes a physical object can change over time, for example, the water
in a surface water body changes due to evaporation, precipitation, and water flow, but the object itself
endures wholly at every timepoint of its existence: the water body that forms Lake Ontario persists even
when its water matter is completely exchanged. To capture the constituency of a physical object by
matter over time, DOLCE uses a general constitution relation K(x, y, t) meaning ‘the amount of matter
x constitutes y at time t’. This constitution relation can be used for multiple levels of granularity such as
a rock body being constituted by some amount of matter, the mineral grains, but also being constituted
by the molecules and atoms of that amount of matter. Here, we will only deal with a single level
of constituency and therefore use DOLCE’s more specialized relation DK (x, y, t) denoting ‘x directly
constitutes y at time t’. Because we only deal with a static view here, we can drop the time reference,
obtaining a binary constituency relation. We further limit the binary version of direct constituency to
the first step in physical scale, i.e., the direct constituency of a physical object to its matter, such as a
rock to granite, as opposed to, e.g., the atomic or molecular constituency of an amount of matter, such
as some granite to its chemical composition. We call this relation primary constituency DK1(x, y) with
the intended interpretation of ‘x identifies the entire matter that the physical object or relevant part
feature y is constituted of’ (PED-A9). Thus the matter of any physical object or relevant part must
be unique (PED-A10). Moreover, every physical object or relevant part feature is constituted by some
matter (PED-A11), whereas dependent places can be immaterial (holes) or material (my back yard).
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(PED-A1) PED(x)↔ POB(x) ∨M(x) ∨ F (x) (physical objects, amount-of-matters, and features
are exhaustive categories of physical endurants)

(PED-A2) ¬[POB(x) ∧M(x)] ∧ ¬[POB(x) ∧ F (x)] ∧ ¬[M(x) ∧ F (x)]
(physical objects, amount-of-matters, and features are disjoint categories)

(PED-A3) NAPO(x)→ POB(x) (nonagentive physical objects specialize physical objects)
(PED-A4) hosts(x, y)→ PED(x) ∧ F (y) (only features are hosted; the host being a PED)
(PED-A5) F (x)↔ ∃y[hosts(y, x)] (features must be hosted)
(PED-A6) hosts(x, y)→ ¬hosts(y, x) (hosts relation is asymmetric)
(PED-A7) F (x)↔ RPF(x) ∨DPF(x) (features are either relevant parts or dependent places)
(PED-A8) ¬RPF(x) ∨ ¬DPF(x) (relevant parts and dependent places are disjoint categories)
(PED-A9) DK1(x, y)↔M(x) ∧ [POB(y) ∨ F (y)]

(primary constitution: direct constitution of an object or relevant-part feature by matter)
(PED-A10) DK1(x, y) ∧DK1(z, y)→ x = z (an object’s primary constituent matter is unique)
(PED-A11) POB(y) ∨ RPF(y)→ ∃x[DK1(x, y)]

(all physical objects and relevant parts are constituted by some matter, i.e., are material)

Axiom Set 11.1: Axioms PED-A1 –PED-A11 of the DOLCE theory of physical endurants PED.

We define the theory of physical endurants as

PED = {PED-A1 –PED-A11}.

In PED, the primary constitution relation DK1 is irreflexive and asymmetric (PED-T1, PED-T2).

(PED-T1) ¬DK1(x, x) (DK1 irreflexive)

(PED-T2) DK1(x, y)→ ¬DK1(y, x) (DK1 asymmetric)

Lemma 11.1. PED � {PED-T1, PED-T2}

Now, we have reviewed all the necessary categories of physical entities and the relationships among
them. Most importantly, we have distinguished physical objects and their relevant parts, which are
constituted of matter, from the matter they are constituted of and from dependent places that are not
constituted of matter.

11.2 Physical endurants’ location in space

If we extend one of our theories of abstract space from the CODI or CODIB hierarchies with the theory of
physical endurants PED, we can assign all physical entities a location in space. For this purpose we reuse
the region function r(x) from layered mereotopology [Don03; Don05; DS03]4. The range of the region
function defines the category of spatial region S (S-A2, S-A3), maintaining the DOLCE terminology. We
refer to entities in the category S henceforth simply as regions. Note that the inverse of r may not be

4In the context of DOLCE, the function r(x) can be see as a function returning a spatial quale that is related to the
entity x at the predetermined static time point by the spatial location quality.
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a total function: not every region is occupied by an identifiable physical endurant. Consequently, there
may be many more regions than physical endurants. But regions and physical endurants are strictly
disjoint (S-A1).

In addition, we assert that all relations defined in previous chapters, in particular the primitive
relations Cont, <dim, ZEX , and BCont from the hierarchies CODI and CODIB, refer only to spatial
regions (S-A4 –A-A7). This could equally be expressed for our quaternary betweenness relation Btw
introduced in Chapter 10, but is unnecessary for this chapter.

(S-A1) ¬PED(x) ∨ ¬S(x) (physical endurants and regions are disjoint)
(S-A2) S(r(x)) (the range of the region function are spatial regions)
(S-A3) S(x)↔ x = r(x) (spatial regions are their own region)
(S-A4) Cont(x, y)→ S(x) ∧ S(y) (Cont is a relation between spatial regions)
(S-A5) x <dim y → S(x) ∧ S(y) (<dim is a relation between spatial regions)
(S-A6) ZEX(x)→ S(x) (the zero region is a spatial region)
(S-A7) BCont(x, y)→ S(x) ∧ S(y) (BCont is a relation between spatial regions)

Axiom Set 11.2: Axioms S-A1 – S-A7 of the theory SPACE of abstract and physical space.

While we introduced S-A4 – S-A7 as a way to clarify that the primitive relations only apply to regions,
more is needed to combine the theory PED with, for example, a theory from the hierarchies CODI
or CODIB. Assume we want to reuse the axiomatization of CODIBl from codib/codib_updown.clif
as theory of abstract space. Then, we must restrict the scope of all quantifiers in the axioms and
definitions of CODIBl to the type S to express that the sentences only apply to regions but not to
physical endurants. Common Logic [Int07], the logical language in which we implemented all presented
theories, provides a mechanism to import a set of axioms as a module whose quantifiers are restricted
to the entities of some named category5. For example, we can define CODIBl as a module S and then
import that module into a theory consisting of the axioms S-A1 – S-A7 using the cl-imports statement.
The semantic would then restrict all quantifiers in the axioms from CODIBl to entities in S, that is, any
universally quantified formulas ∀v[α(v)] would be relativized to ∀v[S(v) → α(v)] and all existentially
quantified formulas ∃v[α(v)] would be relativized to ∃v[S(v) ∧ α(v)], compare [NH12].

Because no available tool supports the relativization of Common Logic modules, we manually rel-
ativized all axioms from CODIBl to the category S for the purposes of this chapter. The relativized
axioms are included as theory files in the folder named space and form the basis for the theory SPACE
that we will define in a moment. We still include S-A4 – S-A7 to assert that the relations Cont, <dim,
BCont, and ZEX only apply to regions. All relations and functions defined in CODIBl through explicit
definitions (in the sense of Definition 2.4) are then automatically restricted to regions. Other relations
and functions, especially the closure functions ·, −, and +, still apply to non-regions as well, but the
values for non-regions are of no interest.

For convenience, we often want to apply the abstract spatial relations directly to physical endurants
to talk about the relationships of their occupied spatial regions. For example, we want to be able to
express that the region of a physical endurant x is contained in the region of another physical endurant
y. While can express this as Cont(r(x), r(y)), our original presentation in [HB12] introduced a general

5We rely on the corrected semantic for the cl-module statement from [NH12].
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containment relation that equally applies to regions and physical endurants, denoted as x ⊆ y meaning
that ‘the region of x is contained in the region of y’ (S-D1). Equally, we can define x ⊂ y (S-D2),
x ⊆P y (parthood for non-regions, S-D3), x ⊂P y (proper parthood for non-regions, S-D4), x <S−dim y

(S-D5), x ≤S−dim y (S-D6), x >S−dim y (S-D7), x ≥S−dim y (S-D8), x =S−dim y (S-D9), and x ≺S−dim y

(S-D10). In a similar way, we could give physical equivalents of all the relations we used in the previous
chapters. However, for clarity of presentation, we will not use any of those definitions subsequently and
instead use the region function explicitly if we want to apply spatial relations to physical endurants.

(S-D1) x ⊆ y ↔ Cont(r(x), r(y)) (spatial inclusion for regions and non-regions)
(S-D2) x ⊂ y ↔ x ⊆ y ∧ y * x (proper spatial inclusion)
(S-D3) x ⊆P y ↔ P (r(x), r(y)) (spatial parthood)
(S-D4) x ⊂P y ↔ x ⊆P y ∧ y *P x (proper spatial parthood)
(S-D5) x <S−dim y ↔ r(x) <dim r(y) (x is of lower spatial dimension than y)
(S-D6) x ≤S−dim y ↔ r(x) ≤dim r(y) (x is of lower or equal spatial dimension than y)
(S-D7) x >S−dim y ↔ r(x) >dim r(y) (x is of greater spatial dimension than y)
(S-D8) x ≥S−dim y ↔ r(x) ≥dim r(y) (x is of greater or equal spatial dimension than y)
(S-D9) x =S−dim y ↔ r(x) =dim r(y) (x and y are of equal spatial dimension)
(S-D10) x ≺S−dim y ↔ r(x) ≺dim r(y) (x is of the next-lower spatial dimension than y)

Axiom Set 11.3: Definitions S-D1 – S-D10 of SPACE .

DOLCE assumes physical endurants to be “real” in the sense that they are bodily, which means
that physical endurants occupy a spatial region of maximal dimension (S-A8) and are constituted by
matter (as already expressed in PED-A11), with the constituting matter occupying a subregion of the
endurant’s region (S-A9). For example, in 3D space, every physical entity must be 3D. While we can
talk about lower-dimensional abstractions, such as lines, in abstract geometrical space (the category
S), those abstractions have no physical equivalent in PED. With the help of the region function, we
can now precisify the difference between relevant part features and dependent place features. The main
difference is that RPFs are constituted by their host’s matter and are therefore a spatial part thereof
(S-A10), while DPFs cannot overlap their host or their host’s matter (S-A12). The matter of relevant
parts must further occupy a subregion of the region occupied by the relevant part’s host (S-A11).

We define the theory of abstract and physical space as

SPACE = CODIBl ∪ PED ∪ {S-A1 – S-A12}.

By replacing CODIBl with a weaker or stronger axiomatization of abstract space in the definition of
SPACE , we can adjust the necessary and allowable restrictiveness and expressiveness of the included
theory of abstract space.

In SPACE we can prove that the region function r is idempotent (S-T1) and that every physi-
cal endurant must occupy an nonzero region (S-T2). That is consistent with how PED is used in
DOLCE [Mas+03].

(S-T1) r(r(x)) = r(x) (region function idempotent)
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(S-A8) PED(x)→ MaxDim(r(x)) (physical endurants occupy regions of codimension 0)
(S-A9) DK1(x, y)→ P (r(x), r(y))

(a physical endurant’s constituting matter occupies a subregion of the physical endurant’s region)
(S-A10) hosts(x, y)→ [RPF (y)↔ P (r(y), r(x))]

(the region occupied by a relevant part feature is part of its host’s region)
(S-A11) hosts(x, y) ∧ RPF(y) ∧DK1(m,x) ∧DK1(n, y)→ P (r(n), r(m))

(the region of a relevant part’s matter is part of the region of its host’s matter)
(S-A12) hosts(x, y)→ [DPF (y)↔ ¬PO(r(y), r(x))]

(the region of a dependant place feature does not partially overlap its host’s region)

Axiom Set 11.4: Axioms S-A8 – S-A12 of SPACE .

(S-T2) PED(x)→ ¬ZEX(r(x)) (no zero physical endurant exists)

Lemma 11.2. SPACE � {S-T1, S-T2}

Proof. (S-T1) r(r(x)) = r(x).
S(r(x)) by S-A1 and thus r(r(x)) = r(x) by S-A2.

(S-T2) PED(x)→ ¬ZEX(r(x)).
We have ∃x[MinDim(x)] by D-A6 and thus ∃x[¬ZEX(x)] by D-D6. Let a ∈M be such an entity
with a /∈MM. Then a>dimze for any ze ∈ ZEXM.
Now let b ∈ M be an entity such that b ∈ PEDM, then r(b) ∈ MaxDimM by S-A8. Thus
r(b)≥dima>dimze for any ze ∈ ZEXM. Thus r(b) /∈ ZEXM by D-A4.

Note that all features captured by the category F must, by PED-A1 together with S-A8, be of
maximal dimension and thereby of the same dimension as their hosts. This implies that boundaries,
understood as features that are either part of their host or at least dependent on their host, must
be material, that is, boundaries must be of the same dimension as their hosts, and thereby bulky.
Nevertheless, we can capture both bulky and bodiless boundaries in the theory SPACE as we discuss in
the next section. Bodiless boundaries are just not features in the DOLCE sense.

11.3 Boundaries of physical endurants

As we discussed in Section 3.4, surfaces, as the most interesting boundaries, can be understood as the
top-most or outer-most but still bulky, material layer of a physical endurant (Stroll’s P-surfaces), or
they can be considered as bodiless, immaterial surfaces (Stroll’s A-surfaces) that demarcate an object
from its surrounding6. Either kind of surfaces can be described as being dependent on a single host or
being only present where two physical endurants meet (such as a physical object and the surrounding
air). In Chapter 9 we defined a bodiless and a bulky abstract notion of boundaries in CODIB as two
coexistent, nonexclusive conceptions. But how can we use them to model physical boundaries, and
especially physical surfaces, of physical endurants?

6We use the term physical in this section referring to some entity present in physical space, whereas the term material
refers to entities that are constituted by matter. Thus, entities can be physical and immaterial at once.
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Abstract lower-dimensional regions readily describe bodiless, immaterial physical boundaries: the
function boundary(r(x)) describes the space occupied by x’s bodiless, immaterial boundary. Equally,
the thick boundary thickboundary(r(x)) of the region of a physical endurant x can be used to capture
the bulky region of space occupied by x’s material surface. The relation of relative dimension allows
us to axiomatically distinguish those two types of boundaries as physical entities that are of the same
or a lower dimension than the bounded physical entity. Naturally, we want to treat either kind of
boundaries as features, though the DOLCE category of features, F , only allows material features of
maximal dimension, and thus no lower-dimensional, bodiless physical boundaries. We could remedy
this by either retracting S-A8 to allow a special category of lower-dimensional features—maybe called
physical non-extended features— which are different from the other physical features in RPF and DPF .
This conception of bodiless physical boundaries is used, for example, in the Basic Formal Ontology
(BFO [Smi+12]). If we insist that all features are extended, that is, maximal-dimensional, we can talk
about abstract boundaries only on the level of abstract space—another viable option. Note that a non-
extended feature of a physical endurant can host other features of its own dimension, such as a hole in
an abstract surface, which is a tunnel-cavity as described in [CV94]. But it can also host features of
again lower dimension, such as an edge or a singularity on a surface.

If we deny the existence of lower-dimensional, immaterial physical boundaries altogether, we only
need to model material physical boundaries. If we follow DOLCE’s ontological assumptions, the material
physical boundary of a single object falls into the category of relevant part features (RPFs) with the
following properties:

• They are bulky, i.e., of the same dimension as the object they bound;

• They are constituted by some matter (just like all relevant part features);

• They cannot be shared by two nonoverlapping physical endurants.

The third point immediately follows from the first two because if such a boundary were shared by two
physical endurants, those two endurants would share a physical part and thereby overlap.

Another important kind of boundaries are what we will call internal physical boundaries. They are
probably best described by bodiless spatial regions in the underlying abstract space [Fle96; HG09].
Internal boundaries may be potential or actual7 (bona-fide) boundaries within the matter of a physical
endurant. Actual internal boundaries exhibit an physical discontinuity: they either separate two material
parts that constitute the physical endurant or they describe a physical discontinuity like an internal
crack or a fissure, see [HG09] for examples. While internal boundaries that arise from parts of a physical
endurant can be described the same way as boundaries of physical objects in general, internal boundaries
that arise from internal, material defects such as cracks, are more difficult to deal with. They are different
from physical holes (or physical voids) in that they cannot be of the same dimension as their host, rather,
they exhibit the same characteristics as two touching objects (like a stack of paper): the material is the
same to either side, but it is disconnected; the disconnect is not a space free of matter (at least not at
the macroscopic level) but is caused only by a spatial disconnect on the atomic level, resulting in a lack
of binding forces. For example, the matter of two stacked pieces of paper is only coincidentally adjacent.
This is a problem, for which Fleck [Fle96] suggested using a Rn model of space from which all boundary
points (no matter whether internal or outer boundary points) are deleted. In our theory we can easily

7The distinction between potential and actual boundaries is taken from Kachi’s classification in [Kac09].
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describe such discontinuities on the level of abstract space, but need the before-mentioned category of
physical non-extended feature to capture their physical reality. Another option is to actually described
the difference in on the microscopic scale, using a model similar to what we propose in Section 11.5.3
for distinguishing voids in objects from voids in its matter.

Two material objects may only share bodiless immaterial boundaries but not bulky material bound-
aries. In that way puzzles such as cutting a piece of paper, which pose the question of which of the
newly created two pieces of paper owns the newly created boundary, are only superficially paradox—they
always shared an internal, potential, bodiless boundary; by cutting along that boundary the potential
boundary becomes actual but stays bodiless and therefore shareable by both newly created pieces of
paper. At the same time, the cutting process creates two new bulky, material boundaries, one for each
new piece of paper. Those two material boundaries are the edges of the resulting two pieces of paper,
they are not identical. In other words, physical contact is nothing else but sharing a lower-dimensional
boundary. Two material bodies with bulky material boundaries can share a bodiless boundary, in which
case they are said to be in contact, even though their bulky, material boundaries are always distinct.

The bodiless notion of a boundary in abstract space also plays an important role in modelling fiat
boundaries. Fiat boundaries are by definition artificial and thus best described in abstract space only,
because they are not dependent on any physical discontinuity anyway. Because fiat boundaries may
have absolutely no physical justification, it makes no sense to model them in physical space, instead,
they should completely reside in abstract space. Consequently, we see no use in introducing a physical
equivalent of a fiat boundary.

In this section, we have sketched how our work on boundaries in abstract space relates to the various
notions of physical boundaries that have been discussed in previous work. The sole purpose of this
section was to outline how physical, and in particular material, boundaries can be modelled consistently
in our approach to space that clearly delineates the mathematical construct of abstract space from the
space of physical objects humans experience. Of course, our discussion will seem unsatisfactory to any
reader that disagrees with separating two levels of space. However, we think this separation allows us
to be more precise about the different conceptions of boundaries—which all have some use in human
language—and allows us to capture them in a single consistent theory. The remainder of this chapter is
dedicated to physical voids—another kind of physical features—and their spatial structure.

11.4 Physical voids

A physical void is, intuitively, a physical feature whose region is not occupied by the region of its physical
host. Examples are holes of maximal dimension such as caves or canyons, which stand in contrast to
cracks that we choose to model as lower-dimensional non-extended features [HG09]. According to Casati
& Varzi [CV94] a hole can only exist if a physical endurant’s region is strictly smaller than its convex
hull. The same applies to a void. We will capture this necessary condition by first axiomatizing the
convex hull as a unary function that assign any spatial region a region that represents its convex hull.
For a non-region, i.e., a physical endurant, it assigns the convex hull of its occupied region. Subsequently,
we can define an abstract spatial notion of a void region—a spatial region not occupied by a specific
physical entity (its host region) but inside the host’s convex hull. All physical voids hosted by a particular
physical endurant must then occupy a subregion of the sum of all its void regions, that is, a void must
be located within its host’s convex hull bot not overlap its host’s region.
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To define the convex hull function, we could build on a sufficiently restricted theory from the hi-
erarchy OMT , which would be able to define convexity and, if it is a theory of dense space, also the
convex hull function. But because we have not fully investigated which theory in the OMT hierarchy
would be suitable to define the intended interpretation of the convex hull function (see the discussion
in Section 10.3.5), we use a primitive function here, similar to how it has been used in extensions to
equidimensional mereotopologies [Coh+97a; Don05]. This also allows us to consider convex hulls only for
regions that arise from physical endurants, avoiding the tricky issues of convexity of regions of nonmax-
imal dimension. We still need the expressivity of CODIB to restrict the convex hull primitive as much
as possible. In particular, we rely on the definitions of tangential containment and internal self-connect-
edness. How the language extension defined in this section fits into OMT remains to be investigated in
the future (Challenge 2).

11.4.1 Convex hull

A convex hull function has been used successfully to discriminate several types of spatial “containment”
or “inside” relations, such as “geometrical inside” from “topological inside” [Coh+97a; Don05]. While
this earlier work on axiomatizations of convex hulls has been based on equidimensional mereotopology,
we have to account for the multidimensionality of our underlying spatial theory. But we only axiomatize
it to the extent necessary for capturing void spaces and, ultimately, voids in physical endurants. Because
all physical endurants are of maximal dimension, we need to only concern ourselves with convex hulls of
regions of maximal dimension. Since a region is always contained in its convex hull, the convex hull has
no smaller dimension than the region itself. Therefore, we do not have to worry about the dimension
of convex hulls for regions of nonmaximal dimension and thus do not have to treat the two differing
notions of convex hulls discussed in Section 10.3.5 separately. The axioms we present here apply to both
notions, except for CH-A9 and CH-A11, which explicitly make assertions only about regions of maximal
dimensions.

The convex hull operation is a purely abstract spatial concept, applicable to space regions and
resulting in another space region. For that reason, we introduce the axioms CH-A1 and CH-A2 asserting
that the range of the convex hull function is always a region (CH-A1) and that the convex hull is always
defined in terms of occupied regions (CH-A2). We further include CH-A3 that requires any convex hull
to be internally self-connectedness. The axioms CH-A4 to CH-A13 are adopted from [Coh+97a], the
original axiom numbering is included in parentheses as reference. Donnelly [Don05] also included CH-A4
to CH-A7, but did not mention CH-A8 –CH-A13. The convex hull function is idempotent (CH-A4), a
property that is not provable from CH-A9, contrary to what is claimed in [Coh+97a]. Any nonzero
region is contained in its convex hull (CH-A5) and any non-closed regions is tangentially contained in its
convex hull (CH-A6). If a region x is contained in region y, the convex hull of x must also be contained
in the convex hull of y (CH-A7). Regions that have the same bounded convex hull must be connected
(CH-A8); the key to this axiom is that the convex hulls must be identical, not just one contained in the
other. Note that CH-A8 differs from Cohn’s version [Coh+97a] in that it requires the convex hulls to
be bounded manifolds, expressed by the condition ¬Closed(x)8. We call a region convex if and only if
it is its own convex hull.

A well-known geometric property requires convex regions to be closed under intersections, but it does
only work as long as the convex hull of a region and the region itself are of the same dimension—as in our

8Thanks to Ernie Davis for pointing out that the conditions of the original axiom (32) from [Coh+97a] were insufficient.
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first understanding of convex hulls discussed in Section 10.3.5. See Figure 11.2 for counterexamples when
this is not the case. However, the intersection of two convex regions is convex if both convex regions are
of maximal dimension (CH-A9). Moreover, the convex hull of a region y removed of a nontangentially
contained region x must be nonconvex (CH-A10), when both x and y are of maximal dimension, the
removed region must also be in the convex hull (CH-A11). The convex hull operation is also monotone
under sums (CH-A12). Finally, CH-A13 states that if a region y is superficially connected to regions x
and z without x being connected to z, and the sums x+ y and y + z are both convex, then y is convex
as well; this axiom is discussed in more detail in [Coh+97a].

(CH-A1) S(ch(x)) (convex hull ch is a spatial region)
(CH-A2) ch(x) = ch(r(x)) (ch defined with respect to occupied regions)
(CH-A3) ¬ZEX(x)∧ → ICon(ch(x)) (convex hull is internally self-connected)
(CH-A4) MaxDim(r(x))→ ch(ch(x)) = ch(x)

(28: convex hull is idempotent for entities of maximal dimension)
(CH-A5) ¬ZEX(r(x))→ Cont(r(x), ch(x)) (29: any region is contained in its convex hull)
(CH-A6) ¬ZEX(r(x)) ∧ ¬Closed(r(x))→ TCont(r(x), ch(x))

(29: any non-closed nonzero region is tangentially contained in its convex hull)
(CH-A7) Cont(r(x), r(y))→ Cont(ch(x), ch(y)) (30: containment monotone under convex hull)
(CH-A8) ¬ZEX(r(x)) ∧ ch(x) = ch(y) ∧ ¬Closed(x)→ C(r(x), r(y))

(32: regions with identical convex hull are connected)
(CH-A9) MaxDim(r(x))∧MaxDim(r(y))∧r(x) = ch(x)∧r(y) = ch(y)→ ch(x)·ch(y) = ch(ch(x)·ch(y))

(33: the intersection of convex regions of maximal dimension is convex)
(CH-A10) ICont(r(x), r(y)) ∧ ¬Closed(r(y)− r(x))→ r(y)− r(x) 6= ch(r(y)− r(x)))

(35: the difference y − x between y and interior-contained region x is nonconvex)
(CH-A11) ICont(r(x), r(y)) ∧MaxDim(r(x) ∧MaxDim(r(y))→ Cont(r(x), ch(r(y)− r(x)))

(special case of 35: for regions of maximal dimension, the convex hull of the
difference y − x between y and interior-contained region x must contain x)

(CH-A12) [¬ZEX(r(x)) ∨ ¬ZEX(r(y))]→ Cont(ch(x) + ch(y), ch(r(x) + r(y))
(31: the sum of the convex hulls of x and y is contained in the convex hull of their sum)

(CH-A13) r(x) =dim r(y) =dim r(z) ∧ SC (r(x), r(y)) ∧ SC (r(y), r(z)) ∧ ¬C(r(x), r(z)) ∧ r(x) + r(y) =
ch(r(x) + r(y)) ∧ r(y) + r(z) = ch(r(y) + r(z))→ r(y) = ch(y)

(36: if x, y, and z are of equal dimension, x and y, and y and z are superficially connected,
but x and z are disconnected, and x+ y and y + z are convex, the shared region y is convex)

Axiom Set 11.5: Axioms CH-A1 –CH-A13 of the theory SPCH .

We define the extension of SPACE by the axioms CH-A1 –CH-A13 as the theory

SPCH = SPACE ∪ {CH-A1 –CH-A13}.

In the theory SPCH , we can prove that an entity that is not internally self-connected and not of minimal
dimension cannot be convex (CH-T1), and the universal region must be convex, i.e., it is its own convex
hull (CH-T2). Finally, it trivially follows that the convex hull of entities of maximal dimension is also
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(a.i) (a.ii) (a.iii) (a.iv)

(b.i) (b.ii) (b.iii) (b.iv)

Figure 11.2: Configuration in which the convex hull of the intersection of two regions of nonmaximal
dimension is not equivalent to the intersection of their convex hulls. In other words, the entities do not
satisfy the consequent ch(x) · ch(y) = ch(ch(x) · ch(y)) of CH-A9.
In (a), ch(x) · ch(y) = ch(ch(x) · ch(y)) is only not satisfied for the interpretation of convex hull in space,
i.e., for our second interpretation from Section 10.3.5. Consider the two entities in (a.i): an elliptic area
(2D) and a set of points (0D). Their intersection is a single point whose convex hull is again the single
point (a.ii), while the convex hull of the point set is a 2D entity (a.iii), whose intersection with the
elliptic area is a convex 2D area (a.iv), not the point we obtained in (a).
In the example (b), ch(x) · ch(y) = ch(ch(x) · ch(y)) fails for either interpretation of convex hulls. The
horseshoe-shaped linear feature in (b.i) is convex in its own dimension. But the intersection with the
ellipse resulting in two scattered linear features (not shown), which is not convex. The linear feature is
not convex in space. The convex hull of its intersection with the ellipse, which is convex, results in the
area shown in (b.ii). It is smaller than the area resulting from the intersection of the convex hull of the
linear feature (see (b.iii)) with the ellipse, which results in the area shown in (b.iv).

of maximal dimension (CH-T3), which further implies that the convex hull of all physical endurants is
of maximal dimension.

(CH-T1) ¬ICon(r(x))→ r(x) 6= ch(x) (34: a not internally connected region is nonconvex)

(CH-T2) ch(u) = u (the universal region is its own convex hull)

(CH-T3) MaxDim(r(x))→ r(x) =dim ch(x)

(the convex hull of regions of maximal dimensions is also of maximal dimension)

Lemma 11.3. SPCH � {CH-T1 –CH-T3}

Proof. (CH-T1) ¬ICon(r(x))→ r(x) 6= ch(x).
The following logical derivation immediately proves CH-T1:

¬ICon(r(x))→ ¬Con(r(x)) ∨ ∃y[PP(y, x)] (ICon-D)

→ ¬ZEX(r(x)) (Con-T2)

→ ICon(ch(x)) (CH-A3)

→ r(x) 6= ch(x)
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(CH-T2) ch(u) = u.
By CH-A4, we have Cont(u, ch(u)) from which by the definition of u (U-A1) and by C-A2 we
immediately obtain u = ch(u).

(CH-T3) MaxDim(r(x))→ r(x) =dim ch(x).
Consider the following logical derivation:

MaxDim(r(x))→ MaxDim(r(x)) ∧ ∃y[MinDim(r(y))] (D-A6)

→ MaxDim(r(x)) ∧ ∃y[¬ZEX(r(y)) ∧ r(x) ≥dim r(y)] (D-D6)

→ MaxDim(r(x)) ∧ ¬ZEX(x) (D-A5)

→ MaxDim(r(x)) ∧ Cont(r(x), ch(x)) (CH-A4)

→ MaxDim(r(x)) ∧ r(x) ≤dim ch(x) (CD-A1)

→ r(x) =dim ch(x) (D-D5)

11.4.2 The nature of voids

In order to define physical voids, we first define the abstract spatial notion of a void region, a spatial region
not occupied by a specific physical entity (the host) but inside the host’s convex hull (VS-D). A void
region relies on a specific physical endurant x, its host, and must be disjoint from the host’s occupied
region r(x). Intuitively, the void regions of a given host are the regions in which voids can possibly
be spatially located. Because void regions are abstract regions, we can talk about their intersections,
differences, and sums in the same way as for all other regions. But in order for the resulting region to
be a void region again, we must restrict the mereological operations to void regions of the same host
region.

Physical voids (voids in short) are real physical entities that are located in a void region of some
entity (V-A1). We use the relation of hosting a void (hosts-v) as a primitive relation between a void
and its host, in the spirit of Casati and Varzi [CV94], who have used the primitive relation of hosting
a hole. Thereby we generalize holes to voids, but do not address the open question concerning which
void regions have physical void counterparts. We thereby do not define or identify which void regions
are actually occupied by voids, we only give some necessary conditions for voids. A more thorough
discussion of the challenges involved in identifying physical holes and voids is offered in [CV94]. The
relation hosts-v specializes the hosts relation between physical endurants and hosted features (V-A1).
But it is reasonable to assume that only void regions that are s-connected to their host qualify as the
regions for voids (V-A1). We further distinguish simple from complex voids (V-D) depending on whether
the void is internally connected (VS-D, VC-D). We require a complex void to be composed of simple
voids, which represent the internally connected parts of the complex void (V-A2).

As an additional restriction, a void cannot be hosted by other voids (V-A3), though all other kinds of
physical endurants may host voids. In particular, non-void dependent places, such as shadows, can host
voids, e.g., there can be a hole in a shadow. V-A4 asserts that every void is hosted by some non-feature,
that is, if a void is hosted by some feature, the host of that feature must also host the void. For example,
a void hosted by a surface is also hosted by the object or matter of which it is a surface. Conversely, a
void in an object or in some amount of matter must also be a void in a surface thereof (the “void lining”,
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compare [CV94]), which is a relevant part feature of the object or matter (V-A5).
V-A6 might be more controversial: while we allow voids’ regions to be contained in one another, we

do not allow them to overlap without containment, in order to keep things neat. For example, a canyon
as a void in the ground surface may fully include a smaller void at its bottom in which a river flows, see
Figure 11.3(d). Allowing voids to be nested in this way gives us the freedom to decompose voids into
meaningful parts that are voids themselves. More generally, voids do not necessarily occupy maximal
internally connected void regions. Consider Figure 11.3(c): the region r(u) + r(v′) may not be a void at
all, though it is a maximal void region hosted by r(x) + r(y).

The regions of voids are not necessarily preserved by parthood: the void region v in Figure 11.3(a)
is not the region of a void hosted by the physical endurant occupying r(x) + r(y) because x and y are
reciprocal fillers, though v’s region is still a void in the endurant’s part x. V-A7 and V-A8 capture weaker
conditions under which voids must exist in parts and wholes, strengthening the axiom A2.4 of [CV94].
These conditions are illustrated in Figure 11.3(a)–(c).

We define the basic theory of physical voids as

VOIDS = SPCH ∪ {V-A1 –V-A8, VS-D, VC-D, V-D}.

(VS-D) VS(x, y)↔ PED(x) ∧ S(y) ∧ Cont(y, ch(x)) ∧ ¬PO(y, r(x))
(y is a void region in the physical endurant x, i.e., a spatial subregion of
a physical endurant’s convex hull not overlapping the endurant’s region)

(V-A1) hosts-v(x, y)→ hosts(x, y) ∧VS(x, r(y)) ∧ CS(r(x), r(y)) (hosting a void)
(VS-D) VS(y)↔ ICon(r(y)) ∧ ∃x[hosts-v(x, y)] (simple void has an internally connected region)
(VC-D) VC(y)↔ ¬ICon(r(y)) ∧ ∃x[hosts-v(x, y)] (a complex void’s region is not internally connected)
(V-D) V (x)↔ VS(x) ∨ VC(x) (a void is a simple or complex void)
(V-A2) hosts-v(x, y) ∧ VC(y) ∧ PO(r(z), r(y))→ ∃v[hosts-v(x, v) ∧ VS(v) ∧ PO(r(z), r(v))]

(any region overlapping a complex void’s region overlaps a simple void’s region of the same host)
(V-A3) hosts(x, y) ∧ V (y)→ ¬V (x) (voids cannot host voids)
(V-A4) hosts-v(x, y) ∧ RPF(x)→ ∃z[hosts(z, x) ∧ ¬F (z) ∧ hosts-v(z, y)]

(every void hosted by a relevant part feature is also hosted by that feature’s host)
(V-A5) hosts-v(x, y) ∧ ¬F (x)→ ∃z[hosts(x, z) ∧ RPF(z) ∧ hosts-v(z, y)]

(every void is hosted by some relevant part: the surface of its host)
(V-A6) hosts-v(x, y) ∧ hosts-v(x, z) ∧ PO(r(y), r(z))→ Cont(r(y), r(z)) ∨ Cont(r(z), r(y))

(one of the regions of two overlapping voids of the same host must be contained in the other)
(V-A7) hosts-v(x, v) ∧ P (r(x), r(y)) ∧ PED(y) ∧ ¬DPF(y) ∧ ¬Cont(r(v), r(y)) → ∃u[Cont(r(v) −

r(y), r(u)) ∧ hosts-v(y, u)] (if a non-dependent physical endurant y with part x, which hosts void
v, does not completely fill the region of v, then r(v)− r(y) must be in some void u of y)

(V-A8) hosts-v(x, v) ∧ P (r(y), r(x)) ∧ PED(y) ∧ ¬DPF(y) ∧ PO(r(v), ch(y))→ ∃u[r(u) = r(v) · ch(y) ∧
hosts-v(y, u)] (if void v in x has a region that overlaps the convex hull of part y of x,

then y hosts a void u that occupies the region r(v) · ch(y))

Axiom Set 11.6: Axioms V-A1 –V-A8 and definitions VS-D, VS-D, VC-D, V-D of the theory VOIDS .
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Figure 11.3: Examples of voids being contained in other voids.
(a) The void v in x is not a void occupying r(x) + r(y): it is completely filled by y.
(b) The void with region r(v) + r(u) in the physical endurant occupying r(x) + r(y) has a part u with
r(u) = (r(v) + r(u)) · ch(y) that is a void in y and a void in the entity occupying r(x) + r(y).
(c) The void with the region r(v)+r(v′) in x is not completely filled by the endurant occupying r(x)+r(y):
r(x)+r(y) only fills v but not v′. Thus r(v′), a subregion of r(v)+r(v′), is part of the void region r(v′)+r(u)
in the entity occupying r(x) + r(y).
(d) The riverbed void is contained in the canyon void.

The theory VOIDS entails that voids are dependent places because of the earlier restriction of the hosts
relation (S-A12).

(V-T1) V (y)→ DPF(y) (voids are dependent place features)

Lemma 11.4. VOIDS � V-T1

Proof. Assume x ∈ VM. Then for some y ∈ M, hosts-v(x, y) by V-D, VS-D, and VC-D and hence
hosts(x, y) and VS(x, r(y)) by V-A1. Then by VS-D, we must have ¬PO(r(y), r(x)), which together
with hosts(x, y) requires x ∈ DPFM by S-A12.

11.5 Classifying physical voids

In the previous section we already distinguished simple from complex voids based on whether a void
is internally self-connected or not. In this section, we will discuss three more criteria that can be used
to classify voids. First, we look at the internal connectedness of a void’s host to distinguish holes from
gaps. Then, we study how different kinds of voids are connected to the exterior, which includes the
space occupied neither by the host nor the void itself. This categorizes voids into cavities, tunnels, and
hollows. The third criteria distinguishes whether a void is connected to its host’s exterior, which includes
the host and all voids of the host, discriminating internal from external voids. All three criteria are
largely independent from one another, except for cavities.

A fourth and very different classification of voids arises from the interplay between objects, matter,
and voids. We propose a way to separate voids in an object—macroscopic voids—from voids in the
object’s matter—microscopic voids. The idea behind this distinction is that microscopic voids are not
recognizable on the coarser object level. Separating microscopic from macroscopic voids is of great
practical concern in domains such as hydrogeology, where large amounts of water may be stored within
rock bodies that appear solid, but are constituted of porous material. The distinction only becomes
definable once we separate the spatial region occupied by an object from the spatial subregion occupied
by its matter as we did in S-A9.
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11.5.1 Internal connectedness of the host: holes vs. gaps

We already distinguish between a simple and a complex void based on the internal connectedness of
the void, but we can also distinguish voids by their host’s internal self-connectedness. If the host of a
void is internally connected, we call the void a hole (V-A9, Hole-D) following [CV94] but strengthening
connectedness to internal connectedness. If the host of a void is not internally connected, i.e., consists
of several scattered regions or regions with only degenerate connections, we call the void a gap (V-A10,
Gap-D). Intuitively, a gap is the space between the parts of a scattered host, such as the gap(s) between
individual pebbles in a gravel pit. In hydrogeology, gaps are most prominent in rock matter, because
though a rock body may appear solid, its matter consisting of individual grains or crystals is often not
s-connected, i.e., not fused together in the sense that some individual grains or crystals may only be
connected at edges, leaving gaps (pores) that can be filled with water.

It is easily verified that for any specific host hosts-h and hosts-g are disjoint and exhaustive subrela-
tions of hosts-v. Then holes and gaps are exhaustive categories of voids (V-T2), but some voids might
be gaps and holes with respect to different hosts.

(V-T2) V (x)↔ GAP(x) ∨HOLE(x) (gap and hole exhaustive classes of voids)

Lemma 11.5. VOIDS ∪ {V-A9, V-A10, Hole-D, Gap-D} � V-T2

Proof. Assume x ∈ VM. Then for some y ∈M, hosts-v(x, y) by V-D, VS-D, and VC-D. Furthermore,
we must have either y ∈ IConM or y /∈ IConM. Hence, either hosts-h(x, y) or hosts-g(x, y) and thus
either x ∈ HoleM or x ∈ GapM.

11.5.2 Contact to the exterior and other voids: cavities, tunnels, and hollows

We can also categorize voids by their opening(s), i.e., their connectivity to regions not occupied by the
host, such as other endurants’ regions and other void regions of the same host. The central concept
of the opening of a void, a unary function op (V-A11), is defined as the lower-dimensional intersection
between the void‘s region and the complement of the sum of the void’s and host’s regions. This opening
is a purely abstract spatial region of nonmaximal dimension.

A cavity (V-A12, CAV-D) has usually no opening (an internal cavity; V-A13) or has a degenerate
opening that, in the three-dimensional example, is not a surface but is a point or line (a tangential cavity;
V-A14). Hollows are depressions9 in an interior or exterior surface and have exactly one internally
connected surface opening (V-A15, HOL-D). Tunnels or, more generally, tunnel systems have openings
that consist of multiple not s-connected pieces (V-A16, TUN-D).

9We are not able to make the distinction between hollows that have a sharp edge and depressions that have a smooth
edge which has been used by Casati & Varzi. This distinction is not definable in our theory.

(V-A9) hosts-h(x, y)↔ hosts-v(x, y) ∧ ICon(r(x)) (non-scattered host of a void)
(Hole-D) HOLE(y)↔ ∃x[hosts-h(x, y)] (a hole has a non-scattered host)
(V-A10) hosts-g(x, y)↔ hosts-v(x, y) ∧ ¬ICon(r(x)) (scattered host of a void)
(Gap-D) GAP(y)↔ ∃x[hosts-g(x, y)] (a gap has a scattered host)

Axiom Set 11.7: Axioms V-A9, V-A10 and definitions Hole-D and Gap-D of the theory VOIDSextended.
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no opening: 
Internal Cavity

point-opening: 
Tangential Cavity

single ICon opening 
to the outside: 

External Hollow

single ICon opening 
to another void: 

Cavern

multiple openings: 
Tunnel (System)

Figure 11.4: Examples of holes (top row) and gaps (bottom row), which are shown as grey areas within
the convex hull (dashed lines) of their hosts (white). Thick solid lines show the surface of a host that
also hosts the void. From left to right we have an internal cavity, a tangential cavity, an external hollow,
an external hollow that consists of an internal hollow and an external tunnel, and an external tunnel.

We can further distinguish internal from external voids based on whether a void is connected to
the outside of its host (an externally hosted void, V-A17) or merely to other voids within the host
(an internally hosted void, V-A18). This distinction is not so interesting for cavities: all proper, i.e.,
internal cavities are connected neither to the outside nor to other voids within the same host; though
tangential cavities, of rather theoretical nature, may be connected to the outside or other voids. But
the distinction is useful for hollows and tunnels: external hollows are hollows whose (single) opening is
connected to the outside, whereas internal hollows are only connected to other voids within the same
host. In hydrogeology those may be called caverns as in our original axiomatization [HB12]. We can
apply the same distinction to tunnels: external tunnels are connected to the outside, whereas internal
tunnels are only connected to other voids within the same host. We leave it that basic distinction,
though many more sophisticated notions such as an indirectly external hollow (or tunnel) as part of a
system of connected hollows (or tunnels) are subsequently definable.

Hollows and tunnels are not required to be maximal internally connected voids: we want to maintain
the flexibility to allow, for example, a hollow to consist of a tunnel leading to an internal hollow, as in
the example in the second column from the right in Figure 11.4. Consider Figure 11.3(c) as another
example: there are good reasons to call v′ a void of the entity occupying r(x) + r(y)—even though v′

is not maximal (the void region r(v′) + r(u) is maximal), r(v′) is the greatest void region reasonably
occupied by a water body such as a lake or river. In contrast, r(u) is a void region but u is likely not
considered a void. To correctly capture v′ as an external hollow, V-A17 treats void regions not occupied
by the object’s voids as parts of the exterior. Note that cavities are implicitly required to be maximal
voids.

Any specific void in a host must be either a cavity, tunnel, or hollow and only one of those (V-T3,
V-T4). Trivially, any void is either internally or externally hosted, but V-T5 also confirms that internal
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(V-A11) hosts-v(x, v)→ op(x, v) = r(v) · (r(x) + r(v))′

(the opening of a void region v as the boundary region that is not shared with its host’s region r(x))
(V-A12) hosts-cavity(x, y)↔ hosts-v(x, y) ∧ op(x, y) ⊀dim r(x)

(cavity-hosting: hosting a void with no proper opening)
(CAV-D) CAVITY (y)↔ ∃x[hosts-cavity(x, y)] (cavity)
(V-A13) hosts-cavityi(x, y)↔ hosts-cavity(x, y) ∧ ZEX(op(x, y)) (an internal cavity has no opening)
(V-A14) hosts-cavityt(x, y)↔ hosts-cavity(x, y) ∧ ¬ZEX(op(x, y))

(a tangential cavity has a degenerate opening)
(V-A15) hosts-hollow(x, y)↔ hosts-v(x, y) ∧ op(x, y) ≺dim r(x) ∧ ICon(op(x, y))

(hollow-hosting: hosting a void with a single internally connected, proper opening)
(HOL-D) HOLLOW (y)↔ ∃x[hosts-hollow(x, y)] (hollow)
(V-A16) hosts-tunnel(x, y)↔ hosts-v(x, y) ∧ op(x, y) ≺dim x ∧ ¬ICon(op(x, y))

(tunnel-hosting: hosting a void that has multiple, not internally connected regions as its opening)
(TUN-D) TUNNEL(y)↔ ∃x[hosts-tunnel(x, y)] (tunnel system)
(V-A17) hosts-ve(x, y) ↔ hosts-v(x, y) ∧ ∃z

[
P (z, op(x, y)) ∧ ∀u[hosts-v(x, u) ∧ z · r(u) =dim z →

PO(r(y), r(u)) ∧ Cont(z · r(u), op(x, u))]
]

(an externally hosted void y in x
is a void with a part z of its opening such that any other void u of the same host x that
includes a part of that opening partially overlaps y and has z · r(u) also in its opening)

(V-A18) hosts-vi(x, y)↔ hosts-v(x, y) ∧ ¬hosts-ve(x, y) (an internally hosted void)

Axiom Set 11.8: Axioms V-A11 –V-A18 and definitions of the theory VOIDSextended.

cavities are indeed internally hosted.

(V-T3) ¬[hosts-cavity(x, y) ∧ hosts-hollow(x, y)] ∧ ¬[hosts-cavity(x, y) ∧ hosts-tunnel(x, y)] ∧
¬[hosts-hollow(x, y) ∧ hosts-tunnel(x, y)] (no void y is hosted in two different ways by one host x)

(V-T4) hosts-v(x, y)↔ hosts-cavity(x, y) ∨ hosts-tunnel(x, y) ∨ hosts-hollow(x, y)

(cavity-, tunnel-, and hollow-hosting are exhaustive subrelations of hosting a void)

(V-T5) hosts-cavityi(x, y)→ hosts-vi(x, y) (internal cavities are always internally hosted voids)

Lemma 11.6. VOIDS ∪ {V-A11 –V-A18} � {V-T3 –V-T5}

Proof. V-T3 and V-T4 follow immediately from the definitions of the relations hosts-cavity, hosts-hollow,
and hosts-tunnel in V-A12, V-A15, and V-A16 for any two x, y ∈M: either op(x, y) ≺dim r(x) or not
and either ICon(op(x, y)) or not; and one of each of those conditions must hold.

To prove V-T5, assume hosts-cavityi(x, y) for arbitrary x, y ∈ M. Then op(x, y) ∈ ZEXM by
V-A13. Then by EP-D and C-A4 no z ∈M can exists such that P(z,op(x, y)), hence ¬hosts-ve(x, y)
by V-A17 and thereby hosts-vi(x, y) by V-A18.

Note that the distinction between holes and gaps is independent of the distinction between cavities,
tunnels, and hollows as Figure 11.4 demonstrates: a gap can form a cavity (bottom row, first and second
from the left), a tunnel (bottom row, first and second from the right), or a hollow (bottom row, second
and third from the right), while a hole can also be any of those (in the same order, top row).
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Figure 11.5: The category of physical voids within the taxonomy of physical entities. The bottom of
the diagram shows four of the categorizations of voids discussed in this chapter: into simple and complex
voids; into cavities, tunnels, and hollows; into holes and gaps; and into internal and external voids. All
those categories refer to a specific void-host pair. Some voids may be categorized differently with respect
to different hosts.

11.5.3 Voids in objects vs. voids in matter

In many real-world domains such as hydrogeology, it is not only important to distinguish holes from
gaps and between voids with different kinds of openings, but also to distinguish macroscopic voids in
an object from microscopic voids in its constituting matter. This clearly separates two notions of voids
that are often confused in natural language: “a hole in the limestone”, for a example, typically refers
to a hole, such as a cave, that is in a rock body constituted by some limestone; it usually does not
refer to the microscopic spaces between the individual grains of the limestone. Such a distinction shares
many properties with the hybrid representation of matter discussed by Davis [Dav10] from a chemical
perspective.

Thus far, voids in an object can also be voids in its matter or co-located with voids in its matter,
for example, a cave in a rock body can also be (or be co-located with) a cave in its limestone. But
the converse is impossible: microscopic voids in the matter of an object are never voids in the object
itself because they are within the object’s region (compare S-A9). To formally capture the idea of the
microscopic voids in an object’s matter, we define pore space of an object as the sum of all regions
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occupied by voids in its matter that do not overlap voids in the object itself (V-A19). The pore space
then only contains the microscopic voids in an object’s matter. For example, a cave in a rock body
is not considered to be part of the rock body’s pore space. The void space of an object is its pore
space together with the regions occupied by the object’s voids (V-A20). Because hosts-v is a primitive
relation, the definitions of pore and void space presuppose an identification of all voids, because the sum
of the regions occupied by an object’s voids (determined by hosts-v) may be smaller than the sum of
the objects void regions (defined by VS-D). To properly appreciate V-A19 and V-A20, recall that strong
supplementation (EP-E2) ensures that the extension of PO uniquely identifies a region; thereby V-A19
and V-A20 effectively capture sums. While the pore and void space of a physical endurant are spatial
regions, in fact void regions, as opposed to voids, they manifest themselves in (simple or complex) voids
hosted by the endurant’s matter (V-A21, V-A22). The portion of a physical object’s void or pore space
that has direct or indirect external openings is called its connected void or pore space (V-A23, V-A24).

(V-A19) PO(r(v),porespace(o)) ↔ ∃m
[
DK1(m, o) ∧ ∀u[hosts-v(o, u) → ¬PO(r(v), r(u))] ∧

∃u[hosts-v(m,u) ∧ PO(r(v), r(u))]
]

(pore space of an object overlaps any region that overlaps
some void’s region in the matter and does not overlap a region occupied by a void in the object)

(V-A20) PO(r(v), voidspace(o))↔ PO(r(v),porespace(o)) ∨ ∃u[hosts-v(o, u) ∧ PO(r(v), r(u))]]
(void space of an object comprises its pore space and all its voids’ regions)

(V-A21) ¬ZEX(porespace(o))→ ∃v,m[r(v) = porespace(o) ∧ hosts-v(m, v) ∧DK1(m, o)]
(nonempty pore space is the region of a void in the object’s matter)

(V-A22) ¬ZEX(voidspace(o))→ ∃m, v[r(v) = voidspace(o) ∧ hosts-v(m, v) ∧DK1(m, o)]
(nonempty void space is the region of a void in the object’s matter)

(V-A23) PO(r(v), con-voidspace(o))↔ ∃u[PO(r(v), u)∧ICon(u)∧Cont(u, voidspace(o))∧CS(u, (r(o)+
voidspace(o))′)] (connected void space is the sum of the pieces of maximal

internally connected void space with some external opening)
(V-A24) PO(v, con-porespace(o))↔ ∃u[PO(r(v), u) ∧ ICon(u) ∧Cont(u,porespace(o)) ∧CS(u, (r(o) +

porespace(o))′)] (connected pore space is the sum of the pieces of maximal
internally connected pore space with some external opening)

Axiom Set 11.9: Axioms V-A19 –V-A24 of the theory VOIDSextended.

It is entailed that matter never has pore space (V-T6), which is a property of an object. But all
physical endurants that are matter or constituted by matter can have void space. However, if we identify
the entire matter of an object as a separate object, this new object may have void space whose extent is
equivalent to the former object’s pore space, in that it covers exactly the voids in the matter.

(V-T6) M(x)→ ZEX(porespace(x)) (matter and dependent places have no pore space)

Lemma 11.7. VOIDS ∪ {V-A19 –V-A24} � V-T6

Proof. First, assume x ∈ MM. Suppose for some v ∈ M, PO(v,porespace(x)). Then for some
m ∈M, DK1(m,x). However, by PED-A9 we must have x ∈ POBM ∪RPFM and as such x /∈MM

by PED-A2, which contradicts our initial assumption x ∈MM. Hence the supposition was false and no
v can exist such that PO(v,porespace(x)). In particular, not PO(porespace(x),porespace(x)) and
thereby porespace(x) ∈ ZEXM by PO-T1.
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Figure 11.6: Examples of voids in an rock body, its matter (dark grey), and individual grains of matter
(top). Light grey areas are gaps in the rock body’s matter, and dashed lines are some void openings.
The pore space of the object contains the void space in the rock matter that does not overlap voids in
the object. For example, the hollow in a grain of matter that overlaps the hollow in the rock body (both
shown in white with dashed lines marking their respective openings) may be a void in the matter, but
cannot be part of the rock body’s pore space. The other gaps and holes in the rock matter are part
of the rock body’s pore space, shown in light gray. The void space of the rock body is the sum of the
voids in the rock body (here the large hollow) and its pore space. The connected pore space and void
space exclude the cavity in the pore space, since it has no direct or indirect opening to the outside. The
bottom row illustrates the void space, pore space, and connected void space for the example in the top.

We define the refined theory of physical voids as

VOIDSextended = VOIDS ∪ {V-A9 –V-A24, Hole-D, Gap-D, CAV-D, TUN-D, HOL-D},

which contains all categorizations of voids that we discussed in this section.

11.6 Physical voids in hydrogeology

In this section we will give an excerpt of the domain theory of hydrogeology and outline which concep-
tual distinctions that are relevant to hydrogeology can be expressed in the theory VOIDSextended. In
particular, we want to distinguish ground water bodies, such as wells and aquifers, from surface water
bodies, such as rivers and lakes. Those water bodies are illustrated in Figure 11.7).

In the domain theory, we talk about different kinds of matter: rock matter, water, soil, and organic
matter. Rock matter can vary in its degree of consolidation from unconsolidated material, such as sand
or gravel, to consolidated material composed of grains or crystals, such as sandstone or granite. Soil is
a mixture of rock, water, organic matter, and gases, and water is primarily H2O with other suspended
or dissolved materials, most notably rock or soil matter. Soils are minimally composed of rock matter
or organic matter, but might have other stuff as well [Soi12].

RockMatter(x)→M(x)
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Figure 11.7: Different kinds of ground and surface water bodies relevant to hydrogeology (top) and the
categories of physical voids that serve as containers for those water bodies. The dashed lines denote the
water table and the ground surface (only in the bottom figure), respectively.

OrganicMatter(x)→M(x)

Water(x)→M(x)

Soil(x)→M(x) ∧ ∃y[P (r(y), r(x)) ∧ (RockMatter(y) ∨OrganicMatter(y)]

We can now define two principal categories of hydrogeological physical objects, namely rock bodies and
water bodies, by their constituting matter. Rock bodies are constituted by some amount of rock matter
and only by rock matter, whereas water bodies are only constituted by water, if they are constituted
by some matter at all. This allows for extreme cases of water bodies such as a lake that has dried out
(permanently or temporarily). Either category is a subcategory of the category of nonagentive physical
objects NAPO.

WB(x)→NAPO(x) ∧ ∀y[DK1(y, x)→Water(y)]

RB(x)↔NAPO(x) ∧ ∃y[DK1(y, x)] ∧ ∀y[DK1(y, x)→ RockMatter(y)]

To define more interesting categories of hydrogeological physical objects, we need the notion of a ground
surface. The ground surface is not definable, we treat it as a primitive, unary relation that must be
specified explicitly for any particular hydrogeological scenario. We only know that it is a feature, more
precisely a relevant part feature of some nonagentive object, which may, for example be a rock body.

GS(gs)→RPF(gs) ∧ ∃o[NAPO(o) ∧ hosts(o, gs)]
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Then we can distinguish between surface and ground, also called subsurface, water bodies. This essen-
tial distinction in hydrogeology has not been offered by other hydro-ontologies such as the INSPIRE
schema [INS11] or the Groundwater Markup Language (GWML) [BB12].

SurfaceWB(wb)→WB(wb) ∧ ∃gs[hosts-hollowe(wb, gs) ∧GS(gs)]

GroundWB(wb)→WB(wb) ∧ ∃rb, gs
[
RB(rb) ∧ hosts(rb, gs) ∧GS(gs) ∧ P (r(wb), voidspace(rb)) ∧

∀v[hosts-hollowe(rb, v)→ ¬PO(r(wb), r(v))]
]

The most interesting kind of physical objects are neither water bodies nor rock bodies but a mixture
of both, we call them hydro-rock bodies. They are partially constituted by rock matter and partially
constituted by water, the latter being the matter of some ground water body. The three main categories
of hydro-rock bodies in hydrogeology are aquifers, aquitards, and aquicludes. They differ in their perme-
ability of water: aquifers are generally permeable, aquitards have a low permeability, and aquicludes are
impermeable. We cannot define those differences in permeability in VOIDSextended. The differences in
permeability depend on factors such as the size of the void spaces and the size of the connection between
void spaces, not just on the general presence or connectivity of void space within a rock body.

HydroRockBody(aq)→NAPO(aq) ∧ ∃rb, wb
[
r(aq) = RB(rb) ∧GroundWB(wb) ∧

r(rb) + r(wb) ∧ P (r(wb), con-voidspace(rb))
]

Aquifer(aq)→HydroRockBody(aq)

Aquitard(aq)→HydroRockBody(aq)

Aquiclude(aq)→HydroRockBody(aq)

The difference between a lake and a river is not yet definable in VOIDSextended—both have a container
that is an external hollow hosted by the ground surface. Rivers usually have a different width-length
ratio than lakes, but even that is no crisp distinction [BMT08]. The only clear distinction may be
the connectivity to other water bodies: two lakes are never directly connected, only certain kinds of
non-lake water bodies (any kind of natural or artificial linking water body such as a river, a canal, or a
strait) can connect two lakes. For example, even though we talk about Lake Michigan and Lake Huron,
hydrologically they are a single lake called Lake Michigan-Huron or Huron-Michigan. If we consider
them as separate lakes, we must consider their connecting water body, the Straits of Mackinac, as a
separate water body as well. Maybe the only reliable distinction between a lake and a river concerns
their water flow: lakes are relatively still, whereas rivers have a stronger and directed flow of water.
Neither of those properties can be captured in our framework.

But we are able to tell a water well from a river or a lake. While a water well is below the ground
surface, i.e., is a ground water body, a lake or river is a surface water body. But the distinction is only
possible if a suitable definition of ground surface is assumed. More precisely, the ground surface would
need to include the bed of the lake or river and the opening of a well, but exclude the well liner [compare
CV99a]. Altogether, we have to admit that—except for the fairly crisp definition of a hydro-rock body—
we are still far from providing formal definitions for many foundational hydrological entities. However,
we have made significant advances compared to earlier work [BB12; INS11] in the following ways: (1)
we offer a unified way in which we can talk about the commonalities and the differences between surface
and subsurface water bodies; (2) we define hydro-rock bodies as physical objects constituted partly by
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Figure 11.8: The extension of the DOLCE categories of physical endurants from Figure 11.5 by the
categories defined as part of the hydrogeology domain theory.

the rock matter of a rock body and by water; and (3) we formalize some necessary characteristics of
key hydrological entities. Now we are also able to prove more precise definitions of concepts such as a
reservoir, a concept that has not been clearly defined in GWML or INSPIRE, as a void in a rock body.

Reservoir(wr)↔ V (wr) ∧ ∃rb[RB(rb) ∧ r(wr) = voidspace(rb)]

We could further refine the concept of a reservoir into ground water reservoirs such as aquifers and
surface water reservoirs such as a lake or an impounded (damned) lake. We could also formally dis-
tinguish a well that possibly yields water from a dry well. We leave those definitions as future work.
Figure 11.8 summarizes how the discussed hydrological/hydrogeological concepts relate to the general
DOLCE concepts and our proposed category of voids.

11.7 Summary

In this chapter, we explored how two kinds of physical features—boundaries and voids—can be modelled
using our axiomatization of abstract space from the previous chapters as underlying spatial theory and
an axiomatization of physical entities. The theory of physical entities is based on DOLCE’s taxonomy of
physical endurants and the relations between them; we adopted DOLCE’s axiomatization to our needs
in Section 11.1, resulting in the theory PED. We have then used the layering technique from [Don03;
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Don05; DS03] to relate physical endurants to their location in space, captured by abstract spatial regions
(Section 11.2). Thereby we obtained the theory SPACE as the combination of PED with the theory
CODIBl from Chapter 9.

In Section 11.3 we discussed how we can use the bodiless and bulky boundaries axiomatized in
abstract space to model different physical boundaries. The key conclusion of this section is that bodiless,
immaterial boundaries as well as bulky, material boundaries are definable in principle, though our
interpretation of DOLCE’s category of features does not allow lower-dimensional, non-extended physical
features. However, we could fix this by introducing an appropriate category of non-extended features.

As main focus of the chapter, we formalized the spatial nature of different kinds of physical voids in
Section 11.4. For this purpose, we first adopted an axiomatization of a primitive convex hull function
from [Coh+97a; Don05] to the multidimensional case. Because a full investigation of the definability
of convex hulls, which we started in Section 10.3.5, is still outstanding, we relied on the convex hull
as a primitive function instead of defining it in a theory obtained as the extension of CODIBl with a
theory from the OMT hierarchy. Extending SPACE with the axiomatization of the convex hull function
resulted in the theory SPCH .

The theory SPCH subsequently allowed us to define so-called void spaces—space regions in which
voids can be located. While the identification of voids has not been tackled and therefore remains as
an open issue, we proposed axioms restricting which void regions qualify as the regions of some physical
voids. We also distinguished simple from complex voids based on the internal connectedness of a void
in the resulting theory VOIDS that extends SPCH .

In Section 11.5, we studied the classification of voids using three additional criteria: (1) the internal
connectedness of a void’s host (holes from gaps), (2) the connection of the void to the exterior of the host
and to other voids in the same host (cavities, hollows, and tunnels as well as internal vs. external voids),
and (3) the level of granularity on which a void is present (microscopic voids that are only present on the
level of matter vs. macroscopic voids that are present at the object level). Based on the formalization of
voids, we have proposed to extend the taxonomy of physical endurants by a category of physical voids
as subcategory of dependent place features. The four classifications of voids allow, in principle, a further
refinement of the category of voids, though in orthogonal ways. It remains to investigate whether there is
some natural precedence over those four classification criteria that leads to a hierarchy of subcategories
of voids (Question 8). The theory VOIDS extended by all four classification of voids defines the theory
VOIDSextended. The relationships between the theories in this chapter is illustrated in Figure 11.9.

In the final section of the chapter, Section 11.6, we showed how the theory of physical voids can be
applied to the domain of hydrogeology to formalize key hydrological concepts, in particular the difference
between surface and ground water bodies and the notion of a hydro-rock body as a rock body that can
store water and is of particular importance to modelling ground water. In the future, we intend to
extend this application to distinguish different kinds of containment relations, thereby generalizing the
analysis from [Don05] to all kinds of containment relations that may involve physical voids.
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Figure 11.9: The theories and hierarchies constructed in Chapter 11. Each of PED, SPACE , and SPCH
reside in their own hierarchy. SPACE is combination of CODIBl and PED, while SPCH introduces the
convex hull function ch as new primitive. The VOIDS hierarchy introduces hosts-v as new primitive
relation, which is not present in the other hierarchies. SPCH is also an extension of a theory in the
OMT hierarchy, though it remains to be investigated of which theory in the OMT hierarchy.



Chapter 12

Summary and conclusions

In this thesis we explored a range of spatial ontologies that involve some kind of mereotopological
relations and we designed a family of ontologies to partially fill the expressivity gap between existing
qualitative theories and geometric theories of space.

We started by studying equidimensional mereotopologies (Chapter 4). We introduced the notion
of spatial representability to analyze which equidimensional mereotopologies are capable of represent-
ing space in a mereotopological way, in which all models are closed under mereological or topological
definitions of the closure operations intersection, sum, and complementation. We thereby established
necessary conditions for spatially representable equidimensional mereotopologies: their algebraic coun-
terparts are either generalized Boolean contact algebras (GBCAs) or Stonian p-ortholattices equipped
with a contact relation defined as xCy ↔ x 6≤ y⊥. Both classes of contact algebras define intersections
and sums mereotopologically, but complementation is defined only mereologically in the former and only
topologically in the latter. The algebraic counterparts of equidimensional mereotopologies allowed us to
partially order equidimensional mereotopologies with respect to the restrictiveness of their lattice (the
parthood relation) and of their contact relation within a single hierarchy. But to find more expressive
ontologies with mereotopological relations, we have to move beyond the hierarchy of equidimensional
mereotopologies.

Therefore, we subsequently focused on multidimensional mereotopological theories of space (from
Chapter 5 on). We developed a family of multidimensional spatial theories that are grouped into hi-
erarchies of theories of equal expressivity. The hierarchies are related to one another by their sets of
primitives, resulting in the hierarchy of hierarchies depicted in Figure 12.1, which is partially ordered
by the expressivity of the hierarchies’ nonlogical languages. Within each hierarchy, theories only vary in
how restrictive their axioms are; we partially ordered them by nonconservative extensions. We also con-
sidered definitional extensions within each hierarchy, which extend the language with defined nonlogical
symbols, but which maintain the primitive language of undefined nonlogical symbols.

At the core of our work, we devised the new general multidimensional mereotopological theory CODI
(Chapter 6), which we successively extended throughout the thesis. Firstly, we definably extended the
theory—staying within the same hierarchy—by mereological closure functions that work for all pairs
of entities, independent of their dimension (Theorems 7.1, 7.2, 7.5, and 7.7 in Chapter 7). Secondly,
we extended the primitive language: we introduced BCont(x, y) as new primitive relation capturing
the notion of ‘x is contained in the boundary of y’ of the intended structures (Chapter 9) and we

310
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Figure 12.1: An overview of the hierarchies constructed in this thesis. For each hierarchy, we indicate
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a language extension, but one which requires a more thorough investigation. The rounded boxes are
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shows a interpretation relation: the target theory interprets the source theory. The numbered boxes
indicate in which chapter the work was completed.



Chapter 12. Summary and conclusions 312

introduced Btw(r, x, y, z) as new primitive relation capturing the notion of ‘x separates y from z within
r’ (Chapter 10).

Up to Chapter 10, we concentrated on abstract theories of multidimensional space to avoid having
to deal with physical restrictions. In a final step we demonstrated how to model physical space by
supplementing the theories of abstract space from the previous chapters with a categorization of physical
entities based on the DOLCE upper ontology (Chapter 11). We further demonstrated how to capture
different kinds of physical voids, which in turn allowed us to model physically meaningful differences
between different kinds of water bodies in hydrogeology.

The next two sections summarize the specific results that we obtained towards the thesis’ two overar-
ching contributions discussed in the introduction (Chapter 1). We first show how we partially filled the
expressivity gap between equidimensional mereotopological theories and geometric theories of space and
then give an overview of the results that help semantically integrate a range of qualitative and geometric
ontologies of space that involve some kinds of mereotopological relations.

12.1 Qualitative theories of space with expressivity in between
mereotopology and geometry

We extended the expressivity of equidimensional mereotopologies in three ways: (1) we broadened the
domain of the intended structures from sets of manifolds of equal dimension to sets of manifolds of
varying dimensions, (2) we distinguished whether an entity is in contact with another entity’s interior
or boundary regardless of either entities’ dimension, and (3) we captured a notion of order between
entities of arbitrary dimension within a common entity. While we expressed the first two conditions in
the definition of the class of intended structures M and its subclass Mdense (Chapter 5 and Section 9.1),
we did not directly express the third condition in the intended structures, but treated it as a relation
defined on top of every intended structure. To logically capture the three extensions we developed three
hierarchies of ontologies of qualitative space: CODI , CODIB, and OMT . We will now summarize the
results pertaining to those three hierarchies.

In the CODI hierarchy, CODI ↓ is the key theory, for which we showed satisfiability with respect
to the class M of intended structures (Theorem 7.4). CODI ↓ is an extension of the theory CODI , our
most general multidimensional mereotopology (presented in Chapter 6) that is already more expressive
than equidimensional mereotopologies: it can express relations such as incidence and superficial contact
between entities of different dimensions. Lower-dimensional entities are first-class objects in CODI : they
can be in relation to one another just like entities of maximal dimension. In CODI the relations PO,
Inc, SC , and ¬C form a small intuitive set of JEPD mereotopological relations for multidimensional
space (Theorem 6.2). Closing CODI under intersection and differences defines the theory CODI ↓. We
showed satisfiability of CODI ↓ with respect to M, but we also demonstrated that any particular model
of CODI ↓ can represent multiple distinct models ofM. In that sense the primitive language of the CODI
hierarchy is not expressive enough to distinguish between some structures in M: it cannot distinguish
between structures in which entities may be in contact to the interior instead of the boundary of another
entity (or vice versa). Further closing the models of CODI ↓ under sums defines the theory CODI l,
which is no longer satisfiable with respect to M because it introduces additional entities which may
violate some conditions of a complex manifold. All three mereological operations are definable in CODI
(Theorems 7.1, 7.2, 7.5, and 7.7 in Chapter 7). While their axiomatizations are fairly complicated, we
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were able to verify key properties of the operations.
To verify CODI l, we also provided a model-theoretic characterization of CODI l: all models are

sets of Boolean algebras related by parthood, each set capturing the entities of a single dimension
(Theorem 7.6). Thus, the extension of containment Cont in any model of CODI is partitioned into
the extensions of parthood P and of lower-dimensionality <dim (Theorem 6.1). As a consequence, the
set of entities of each dimension of a model of CODI form a structure that is a model of the RCC,
because RCC models also form Boolean algebras. We showed this specifically for the entities of maximal
dimension (Theorem 8.2 in Section 8.1). We also cross-verified CODI l against the INCH Calculus—
another multidimensional mereotopology that had not been thoroughly studied beforehand. We showed
that, apart from minor differences in their ontological assumptions, CODI l and the INCH Calculus are
definably equivalent (Theorem 8.3). Through our verification, we now better understand the models of
the theories in the CODI hierarchy. Thereby, we provided the theoretical foundation for the reuse of
those multidimensional mereotopologies of space.

To capture the distinction between the interior or the boundary of an entity being in contact to
another entity, we supplemented the primitive language of CODI by a relation of boundary-containment,
BCont, resulting in the hierarchy CODIB. The relation of boundary-containment is not definable in the
language of CODI . Theories in the CODIB hierarchy (Chapter 9) can again be closed mereologically—
similarly to the theories in the CODI hierarchy. Of particular interest is the theory CODIB↓, whose
models are completely closed under intersections and differences. CODIB↓ is satisfiable with respect to
the intended structures that have densely ordered dimensions (Theorem 9.2), i.e., with respect to the
class Mdense ⊂M. We further closed CODIB↓ under sums of entities that do not meet in their interior,
resulting in the theory CODIBl. Then satisfiability extends to CODIBl: all models of CODIBl still
represent structures in Mdense, which was not the case for the models of the theory CODI l.

We further examined the expressive power of the new hierarchy CODIB. It lets us define both a
bodiless and a bulky notion of interior containment (ICont and IP) and tangential containment (TCont
and TP) as well as bodiless and bulky boundaries (Sections 9.3 and 9.4). In any model of CODIB↓ the
extensions of ICont and TCont and of IP and TP partition the extensions of Cont and P , respectively
(Theorems 9.1 and 9.3). Furthermore, we refined contact exhaustively into four subrelations in CODIB↓:
interior overlap IO, boundary overlap BO, and interior-boundary contact IBC and its inverse, IBC−1

(Theorem 9.4). This classification is largely independent from the classification of contact into PO, Inc,
and SC though some dependencies exist, such as PO(x, y)→ IO(x, y), which need to be fully analyzed in
the future. Other definable relations in CODIB concern the intersection of one entity’s interior, boundary
or exterior with the exterior of a second entity (Section 9.5). Together with the earlier relations, we
effectively generalized Egenhofer’s 9-intersection relations [EF91; EH91] to the general finite-dimensional
case, in which all relations equally apply to manifolds with different absolute dimensions.

To deal with the third expressivity extension, we proposed a multidimensional relation of betweenness,
Btw, in Chapter 10. In combination with CODI , it can be used to preserve order properties within
structures in the class M. The resulting hierarchy of ordered multidimensional mereotopologies, OMT ,
allows us to capture simple orderings over spatial entities that are preserved neither in models of CODI
nor in models of CODIB. This is especially useful to model maps that involve many nonintersecting
entities, such as a grid network of roads or the floors in a three-dimensional representation of a building.
Ternary geometric betweenness is definable in terms of this multidimensional betweenness relation.
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12.2 Semantic integration results

This thesis also contributes to the integration of spatial ontologies. We used three methods to integrate
ontologies: (1) model expansions including definable expansions to show that the models of one ontology
can always be expanded to models of another ontology, (2) interpretations including faithful interpre-
tations to show that one theory entails the translation of another theory, and (3) definable relations to
show that one theory can define all the relations of another theory. Thereby we either directly inte-
grated external spatial theories with theories within our hierarchies or we indirectly related their classes
of models, which in turn implies a relationship between the theories themselves. Note that most of our
integration results, with the exception of the integration of the INCH Calculus, are not between theories
of equally expressive languages; therefore, we cannot find definably equivalent theories.

We first related the algebraic counterparts of different equidimensional mereotopologies to one an-
other (Chapter 4), including those of the RCC [Coh+97b; RCC92] (as Boolean contact algebras), of
the GRCC [LY04] (as generalized Boolean contact algebras), and of Asher and Vieu’s mereotopology
RT [AV95] (as contact algebras with Stonian p-ortholattices). However, Chapter 4’s contribution is not
the integration of those theories, but a thorough exploration of the ensuing hierarchy of equidimensional
mereotopologies for theories that are suitable to represent space topologically.

We further integrated the multidimensional theories from the CODI hierarchy with the equidimen-
sional RCC (Section 8.1): the entities of maximal dimension of any model of CODI ↓ define an RCC
model (Theorem 8.2). In the converse direction, an RCC model cannot always be uniquely expanded
to a model of CODI because the language of CODI is strictly more expressive than the language of
the RCC. Moreover, we related the CODI hierarchy to the INCH Calculus (Section 8.2): every model
of CODI l that satisfies C-E4 is definably equivalent to a model of INCH calculus (Theorem 8.3). In the
converse direction, every model of INCH calculus that satisfies I-E1 (a lowest dimension apart from that
of the zero region exists), I-E2 (any two connected entities have a maximal shared constituent), and
I-E3 (a universal entity exists of which every other entity is a constituent) is a model of CODI l (also
Theorem 8.3).

We integrated the CODIB theories with the spatial theories constructed using Egenhofer’s 9-inter-
section method [EF91; EH91] (Chapter 9). We did so by showing the intended interpretations of all nine
intersection relations are definable in any finite-dimensional complex manifold (Theorem 9.5). Conse-
quently, each spatial ontology constructed on the basis of those nine intersection relations, including the
theories presented in [CDF98; CDFO93; Ege91; EH91; EM95; ME94; McK+05], can be interpreted in
some theory that extends CODIB↓ without having to extend CODIB↓’s primitive language.

Afterwards, we related the CODI and the OMT hierarchies to incidence structures, incidence ge-
ometries, and ordered incidence geometries (Chapter 10). First, we related finite-dimensional incidence
structures to models of CODI : every modelM of CODI defines an incidence structure (Theorem 10.1),
and as special case thereof, every model of CODI defines a point incidence structure (Corollary 10.1).
In the converse direction, every point incidence can be (definably) expanded to a model of CODI (Theo-
rem 10.2). Any model of the theory CODI pl, which introduces definitions of points and lines and postu-
lates that every line contains at least two distinct points, defines a line space (Theorem 10.3), the most
basic kind of two-dimensional incidence geometry. For the converse, any line space can be (definably)
expanded to a model of CODI pl (Theorem 10.4), though not all models of CODI pl can be constructed
in that way. Analogue relationships are obtained between the models of CODI pl−slin, CODI pl−lin, and
CODI pl−aff—all extensions of CODI pl—and semi-linear, linear, and affine two-dimensional incidence
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geometries (Theorems 10.5 and 10.6).
We further extended the results about planar geometries to relationships between CODI plp−lin, an

extension of CODI pl−lin by a definition of planes, and incidence geometries, which are more precisely
linear incidence geometries with three-dimensional point incidence structures and are axiomatized by
the theory IG. Every model of CODI plp−lin defines a linear incidence geometry (Theorem 10.7) and
every model of IG can be (definably) expanded to a model of CODI plp−lin (Theorem 10.8). As final
step in Chapter 10, we related the theory OMT3d−lin, an ordered multidimensional mereotopology from
the OMT hierarchy, to weak ordered incidence geometries, axiomatized by the theory WOIG. Then
any model of OMT3d−lin defines a weak ordered incidence geometry (Theorem 10.9) and any weak
ordered incidence geometry defines a model of OMT3d−lin in a natural way (Theorem 10.10). All the
relationships between the theories developed in this thesis and external spatial ontologies are illustrated
in Figure 12.1.

As a by-product, Chapter 10 identified qualitative analogues of incidence geometries and ordered
incidence geometries that omit two central geometric requirements: (1) that lines are straight and
planes flat and (2) that lines have no endpoints and planes have no borders.

Summarily, ontology integration is an arduous task, though we showed how it can be expedited
through automated theorem proving and model finding. We demonstrated that—even for large and
complex ontologies—proving consistency, theorems, and interpretations between theories can be au-
tomated to a large extent. An often repeated criticism of using expressive logical languages, such as
first-order logic, to specify ontologies has been that due to the intractability of first-order logic, reasoning
with first-order theories is often impractical or requires lots of tuning of the theorem prover as in [HV06].
We demonstrated that despite its theoretical intractability, many reasoning tasks verifying first-order
ontologies can still be successfully accomplished in reasonable time in practice. Importantly, this is not
restricted to ontologies with only a few nonlogical symbols and a few axioms. For example, we can
automatically construct interesting models and prove theorems of the theory VOIDS that consists of
117 axioms (translated to over 250 clauses) in a nonlogical language that includes 57 nonlogical symbols
(clausification adds another 40 skolem functions). Intractability did not stop us from effectively utilizing
first-order theorem proving for many of our ontology verification tasks as Appendix D shows without
partitioning the ontology (as in [AM05]) or manually tuning the theorem provers or model finders. More
generally, meaningful semantic integration that goes beyond mapping of concepts seems only possible
with expressive logical languages in which subtle semantic differences can actually be captured. Note,
however, that we only reasoned about ontologies that contained few or no named individuals. If we
borrow the terminology of description logics, we focused on reasoning with first-order ontologies with
large TBoxes (terminological knowledge) but empty ABoxes (instance knowledge). This can also be
thought of as reasoning with large and complex database schemata of an essentially empty database.
While reasoning about large sets of individual domain entities (with large ABoxes) using a first-order
ontologies is generally thought of as impractical, this is not necessarily true for reasoning about first-
order ontologies with large sets of axioms themselves. Note that the term “large” used with respect to
the set of domain entities implies a size several order of magnitudes greater than with respect to axioms.
Consequently, it is realistic to automate verification of first-order ontologies with small or empty ABoxes
to a large extent using off-the-shelf theorem provers in the future.
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12.3 Open questions

Some questions posed in this thesis remain open, we collect them in the following list.

Question 1. Provide topological embedding theorems for WBCAs and SPOCAs with C5′ (Chapter 4).

Question 2. Prove or disprove axiomatizability of the finite models of CODI l with respect to M.

Question 3. Find an intuitive way (if there is one) to extend RCC models to models of CODI l that
does not suffer from the problems discussed in Section 8.1.4.

Question 4. Verify the relationships between the classes of models of (ordered) incidence geometries
and CODI theories in Chapter 10 through automated theory interpretation proofs.

Question 5. Identify the theories in the CODI and OMT hierarchies that are definably equivalent to
incidence geometries and ordered incidence geometries.

Question 6. Verify the definitions of (line) segments in OMT from Section 10.3.5 and determine the
least restrictive theory in OMT in which segments corresponds to their intended geometric
interpretation.

Question 7. Fully axiomatize both notions of convexity discussed in Section 10.3.5 and determine the
least restrictive theory in OMT that properly captures the intended geometric interpreta-
tions of convexity.

Question 8. Construct the lattice of all possible voids that can arise from the four different categoriza-
tions we presented in Chapter 11.

Question 9. Determine whether every CW-complex is inMdense and determine whether every structure
in the class Mdense is a CW-complex. Ideally, we could characterize the intended models
in terms of special classes of CW-complexes or as generalization of CW-complexes.

Question 10. Determine whether the classMdense is a subset or superset of the class of structures P
n

r with
finite n (the closed polytopes Pnn of dimension n recursively closed under the polytopes Pni
with 0 ≤ i ≤ n− 1 that represent their boundaries) defined by Galton [Gal04]. Intuitively,
we would think that every series Pnr with finite n is in Mdense. If it turns out that Mdense

is neither a subset nor a superset of the class of structures Pnr with finite n, a precise
characterization of the set of series Pnr that are not in Mdense would provide valuable
insight.

Next, we list some opportunities for future work that directly arise from this thesis. This includes
axiomatizations of spatial concepts that we have not fully investigated, additional verification tasks,
and the establishment of new or the strengthening of existing relationships between theories of our
hierarchies.

Challenge 1. Axiomatize the interaction between BCont and Btw in a theory that extends both CODIB
and OMT . This would formally relate the two hierarchies.

Challenge 2. Investigate the relationship between the SPCH hierarchy that includes a convex hull prim-
itive and the OMT hierarchy in which notions of convexity can be defined.
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Challenge 3. Axiomatize the distinction between partial and full contact in addition to the other clas-
sifications of contact presented in Chapter 6 and 9.

Challenge 4. Explore and formalize the interdependencies among the various JEPD classifications of
contact and containment.

Challenge 5. Extend the specification of the class of intended structures M or Mdense by including a
notion of betweenness to provide a formal class of structures on which we can base a
satisfiability theorem for the OMT theories.

Challenge 6. Explore the suitability of OMT↓ for modelling order between higher-dimensional entities.
In particular, are axioms missing from OMT↓ that only apply to orders between higher-
dimensional entities?

Challenge 7. Formalize the various weak notions of order discussed in Section 10.3.4.

Challenge 8. Devise an efficient implementation of the closure operations intersection, difference, and
sum for geometric models. We expect an implementation—similar to the procedure for
checking whether a set of manifolds forms a complex manifold—that leverages existing
geometric calculations for vector-based representations to be feasible.

We will finish with a set of challenges regarding the integration of other spatial ontologies. Various
other spatial ontologies are still waiting to be integrated into the hierarchies discussed here. Of particular
interest are other spatial theories that involve mereotopological relations in a multidimensional setting.
The following integration tasks are of primary interest.

Challenge 9. Fully integrate the theories from [CDF98; CDFO93; Ege91; EH91; EM95; ME94; McK+05]
that are based on Egenhofer’s 9-intersection method into the CODIB hierarchy by finding
the extension of CODIB that faithfully interpret or are definably equivalent to a particular
theory that is based on the 9-intersection method.

Challenge 10. Integrate the General Formal Ontology’s (GFO) spatial ontology [BH11], which distin-
guishes spatial relations between entities of different dimensions and offers basic mereoto-
pological relations.

Challenge 11. Integrate Galton’s multidimensional mereotopology [Gal96] that is based on boundaries
with theories within our hierarchies.

Challenge 12. Study whether Smith’s mereotopology [Smi96] can be integrated into our hierarchies. If a
formal integration is possible at all, it will pose a difficult task due to the rather unusual
treatment of boundaries as special kinds of regions in [Smi96].

Challenge 13. Investigate whether we can use our hierarchies to precisify the formal semantics for many
of the relations within the recently proposed GeoSPARQL [Ope12] and supplement the
GeoSPARQL schema with knowledge about how its spatial relations are related to one
another, using in particular the RDF notion of a subProperty. It would help to integrate
spatial knowledge using different relations. For example, we could express that the RCC
and Egenhofer relations of disconnection, rcc8dc and ehDisjoint, are identical. By address-
ing this challenge, the user community of GeoSPARQL would immediately benefit from
this thesis’ integration efforts.
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List of logical functions and relations

x <dim y x has a lower dimension than y (primitive relation) . . . . . . 98

x ≺dim y x has a lower than y but no other entity has a dimension lower
than y and greater than x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

x ≤dim y x has a lower or the same dimension as y . . . . . . . . . . . . . . . . . . . . . . . 98

x =dim y x and y have the same dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

x ≥dim y x has a greater or the same dimension as y . . . . . . . . . . . . . . . . . . . . . . 98

x >dim y x has a greater dimension than y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

x · y intersection of x and y of highest dimension (function) . . . . . . . . . 115

x− y difference between x and y of the dimension of x unless empty
(function) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

x+ y sum of x and y of highest dimension ( function) . . . . . . . . . . . . . . . 136

x ∗ y point x is incident with line or plane y ( primitive relation of
incidence structures) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

B(x, y, z) y is in between x and z (primitive relation of ordered inci-
dence geometry) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

BCont(x, y) x is included in the thin boundary of y (primitive relation) 210

boundary(x) thin (lower-dimensional) boundary ( function) . . . . . . . . . . . . . . . . . 220

BP(x, y) x is a boundary part of y (tangentially contained in y, a part of y,
and contains no interior part of y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Btw(v, x, y, z) y is in between x and z within v (primitive relation) . . . . . 265

C(x, y) x and y are connected (equidimensional mereotopology) . . . . . . . . . 36

318
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C(x, y) x and y are connected, i.e., they share a common entity . . . . . . . . . 101

C(x, y) x and y are connected (primitive relation of the Region
Connection Calculus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

CAVITY (x) physical cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

CG(x, y) x and y are congruent (equidimensional mereogeometry) . . . . . . . . 41

ch(x) convex hull of a region or of a physical endurant (primitive
function) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

CH (x, y) x is a chunk, i.e., an equidimensional constituent CS of y (relation
of the INCH Calculus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Closed(x) closed entity (in the sense of closed manifold) . . . . . . . . . . . . . . . . . . . 212

CO(x, y) x and y are in contact, i.e., share a constituent CS (relation of the
INCH Calculus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

compl(x) the complement of x (function of the Region Connection Calcu-
lus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Con(x) (simple) self-connected, i.e., one-piece entity (equidimensional me-
reotopology) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Con(x) (simple) self-connected, i.e., one-piece entity . . . . . . . . . . . . . . . . . . . . 127

Cont(x, y) x is (spatially) contained in y (primitive relation) . . . . . . . . 101

CS(x, y) x is a constituent of y, i.e., x is contained in y (relation of the INCH
Calculus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

diff(x, y) the difference between x and y, equivalent to prod(x, compl(y))
(function of the Region Connection Calculus) . . . . . . . . . . . . . . . . . . 163

DK ′(x, y) the physical object, amount-of-matter, or relevant part y is di-
rectly constituted of the amount-of-matter x, i.e., there is not other
amount-of-matter that constitutes y and is constituted by x (adap-
tation of the DOLCE relation DK ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

DK1(x, y) the physical object or relevant part y is directly constituted of the
amount-of-matter y (adaptation of the DOLCE relation DK . . . . 287

DPF(x) (physical) dependent place feature (such as holes, voids, shadows)
(DOLCE relation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

EC (x, y) x and y are externally connected, i.e., they are connected but do
not share a part (equidimensional mereotopology) . . . . . . . . . . . . . . . 37
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EC (x, y) x and y are externally connected, i.e., they are connected but do
not share a part (relation of the Region Connection Calculus) . . . 164

ED(x, y) x and y are of the same dimension (relation of the INCH Calculus) 171

EL(x, y) x is an element, i.e., a lower-dimensional constituent CS of y (re-
lation of the INCH Calculus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

EPt(x, y) y is an endpoint of the linear part y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

F (x) physical feature (DOLCE relation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

GAP(x) physical gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

GED(x, y) x is of the same or a greater dimension than y (relation of the
INCH Calculus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

GD(x, y) x is of a greater dimension than y (relation of the INCH Calculus) 171

HOLE(x) physical hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

HOLLOW (x) physical hollow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

hosts(x, y) physical endurant x hosts features y (DOLCE relation) . . . . . . . . . 287

hosts-g(x, y) physical endurant x hosts physical gap y . . . . . . . . . . . . . . . . . . . . . . . . 299

hosts-cavity(x, y) physical endurant x hosts physical cavity y . . . . . . . . . . . . . . . . . . . . . . 301

hosts-h(x, y) physical endurant x hosts physical hole y . . . . . . . . . . . . . . . . . . . . . . . 297

hosts-hollow(x, y) physical endurant x hosts physical hollow y . . . . . . . . . . . . . . . . . . . . . 301

hosts-tunnel(x, y) physical endurant x hosts physical tunnel y . . . . . . . . . . . . . . . . . . . . . 301

hosts-v(x, y) physical endurant x hosts physical void y . . . . . . . . . . . . . . . . . . . . . . . 297

hosts-ve(x, y) physical endurant x externally hosts physical void y . . . . . . . . . . . . . 301

hosts-vi(x, y) physical endurant x internally hosts physical void y . . . . . . . . . . . . . 301

ICon(x) strong (internally) self-connected entity (equidimensional mereoto-
pology) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ICon(x) internally self-connected entity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

ICont(x, y) x is contained in the interior of y (not touching the boundary of
y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
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Inc(x, y) x and y are spatially incident, i.e., there exists an entity contained
in x and y that is of the dimension of either x or y . . . . . . . . . . . . . . 106

INCH (x, y) x contains an equidimensional part (a chunk CH ) of y
(primitive relation of the INCH Calculus) . . . . . . . . . . . . . . . . 171

IntCont(z, x, y) z is contained in both x and y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

K ′(x, y) the physical object, amount-of-matter, or relevant part y is
constituted of the amount-of-matter y (primitive relation
adapted from DOLCE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

IP(x, y) x is an interior part of y (contained in the interior of y and a part
of y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

L(x) x is a line, i.e., a maximal entity in its dimension of which all
lower-dimensional contained entities are of minimal dimension . . . 253

LP(x) x is a linear part, i.e., a linear feature that may or may not have
endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

LS(x) x is a line segment, i.e., a linear part with exactly two endpoints 278

M(x) amount of physical matter (DOLCE relation) . . . . . . . . . . . . . . . . . . . 287

Max(x) entity that is maximal in its dimension, i.e., that is not a proper
part of any entity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

MaxDim(x) maximal-dimensional entity, i.e., no entity has a higher dimension
than x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Min(x) entity that is minimal in its dimension, i.e., that has no proper
part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

MinDim(x) x has a lower or the same dimension as any other entity, but is not
the zero region, i.e., x is an atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

NAPO(x) nonagentive physical object (DOLCE relation) . . . . . . . . . . . . . . . . . . 287

NTPP(x, y) x is a nontangential part of y (equidimensional mereotopology) . . 37

NTPP(x, y) x is a nontangential proper part of y (equidimensional mereotopo-
logy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

NTPP(x, y) x is a nontangential proper part of y (relation of the Region Con-
nection Calculus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

O(x, y) x and y overlap, i.e., they share a part (equidimensional mereoto-
pology) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
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O(x, y) x and y overlap, i.e., they share a part (relation of the Region
Connection Calculus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

OV (x, y) x and y overlap, i.e., share a chunk CH (relation of the INCH
Calculus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

P (x, y) x is a part of y (equidimensional mereotopology) . . . . . . . . . . . . . . . . 36

P (x, y) x is a spatial part of y, i.e., x is contained in y and of the same
dimension as y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

P (x, y) x is a part of y (relation of the Region Connection Calculus) . . . . 164

PED(x) physical endurant (DOLCE relation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

Pl(x) x is a plane, i.e., a maximal entity in its dimension and of two
dimensions greater than the minimal dimension . . . . . . . . . . . . . . . . . 258

PO(x, y) x and y partially overlap, i.e., they share a part (an entity of the
same dimension as x and y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

POB(x) physical object (DOLCE relation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

PP(x, y) x is a part of y (equidimensional mereotopology) . . . . . . . . . . . . . . . . 36

PP(x, y) x is a spatial proper part of y, i.e., x is properly contained in y and
of the same dimension as y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

PP(x, y) x is a proper part of y (relation of the Region Connection Calculus) 164

prod(x, y) the product (intersection) of x and y ( function of the Region
Connection Calculus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Pt(x) x is a point, i.e., a maximal entity in its dimension and of minimal
dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

r(x) spatial region of an physical endurant or a region (primi-
tive function) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

RPF(x) (physical) relevant part feature (such as physical surfaces) (DOLCE
relation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

S(x) abstract spatial region (DOLCE relation) . . . . . . . . . . . . . . . . . . . . . . . 288

SBP(x, y) x is a strong boundary part of y (tangentially contained in y, a
part of y, contains a part of the boundary of y, and contains no
interior part of y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

SC (x, y) x and y are in superficial contact, i.e., they are in contact but only
share entities that are of a lower-dimension than both x and y . . 107
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SPH (x) x is a simple sphere (equidimensional mereogeometry) . . . . . . . . . . . 41

SR(x) x is a simple, i.e., strongly self-connected region (equidimensional
mereogeometry) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

STP(x, y) x is a strong tangential part of y (x is tangentially contained in y,
a part of y, and contains a part of the boundary of y) . . . . . . . . . . . 225

sum(x, y) the sum of x and y (function of the Region Connection Calculus) 164

strongthickboundary(x) strong thick (equidimensional) boundary (function) . . . . . . . . . . . . 227

Sum(x, y, z) x + y = z as ternary relation that does not force the existence of
sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

TCont(x, y) x is tangentially contained in y (x touches the boundary of y) . . . 214

thickboundary(x) thick (equidimensional) boundary (function) . . . . . . . . . . . . . . . . . . . 227

TP(x, y) x is a tangential part of y (equidimensional mereotopology) . . . . . 37

TP(x, y) x is a tangential part of y (x is tangentially contained in y and a
part of y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

TPP(x, y) x is a tangential proper part of y (equidimensional mereotopology) 37

TPP(x, y) x is a tangential proper part of y (relation of the Region Connection
Calculus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

TUNNEL(x) physical tunnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

U(x, y) x and y underlap, i.e., they are part of a common entity (equidi-
mensional mereotopology) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

UCon(x) uniform self-connected entity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

u the entity denoting the entire space or universe of highest dimen-
sion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

ZEX(x) zero region of no location that neither contains nor is contained in
any other entity (initially a primitive relation in the theory of
dimension, but not primitive in the theory of containment
and any extensions thereof) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

ZEX I(x) zero region that does not INCH any other region (relation of the
INCH Calculus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
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AL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Atom . . . . . . . . . . . . . . . . . . . . . . . . . . 72
B-A1 –B-A6 . . . . . . . . . . . . . . . . . . . 265
B-T1 –B-T2 . . . . . . . . . . . . . . . . . . . 265
BC-A1 –BC-A5 . . . . . . . . . . . . . . . . 210
BC-A6 . . . . . . . . . . . . . . . . . . . . . . . . . 215
BC-E1 . . . . . . . . . . . . . . . . . . . . . . . . . 220
BC-E2 –BC-E3 . . . . . . . . . . . . . . . . 227
BC-T1 –BC-T3 . . . . . . . . . . . . . . . . 211
BC-T4 . . . . . . . . . . . . . . . . . . . . . . . . . 212
BC-T5 . . . . . . . . . . . . . . . . . . . . . . . . . 212
BC-T6 –BC-T7 . . . . . . . . . . . . . . . . 214
BC-T8 –BC-T9 . . . . . . . . . . . . . . . . 220
BEC-D . . . . . . . . . . . . . . . . . . . . . . . . 228
BO-D . . . . . . . . . . . . . . . . . . . . . . . . . . 228
BP-D . . . . . . . . . . . . . . . . . . . . . . . . . . 226
BP-T1 –BP-T6 . . . . . . . . . . . . . . . . 226
C-Ext . . . . . . . . . . . . . . . . . . . . . . . . . . 68
C0 –C3 . . . . . . . . . . . . . . . . . . . . . . . . 52
C4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
¬C4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
C5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
C5′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
C.1 –C.3 . . . . . . . . . . . . . . . . . . . . . . . 36
C.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
C-A1 –C-A4 . . . . . . . . . . . . . . . . . . . 101

C-T1 . . . . . . . . . . . . . . . . . . . . . . . . . . 101
C-D . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
C-E1 –C-E2 . . . . . . . . . . . . . . . . . . . . 102
C-E3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
C-E4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
CS-D . . . . . . . . . . . . . . . . . . . . . . . . . . 208
C-T2 –C-T5 . . . . . . . . . . . . . . . . . . . 101
CAV-D . . . . . . . . . . . . . . . . . . . . . . . . 301
CD-A1 . . . . . . . . . . . . . . . . . . . . . . . . . 103
CD-E1 . . . . . . . . . . . . . . . . . . . . . . . . . 103
CD-T1 –CD-T10 . . . . . . . . . . . . . . . 108
C.Ext . . . . . . . . . . . . . . . . . . . . . . . . . . 37
CH-A1 –CH-A12 . . . . . . . . . . . . . . . 101
CL-D . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Con . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
¬Con . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Con-D . . . . . . . . . . . . . . . . . . . . . . . . . 127
Con.S . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Con.W . . . . . . . . . . . . . . . . . . . . . . . . . 38
Con-T1 –Con-T2 . . . . . . . . . . . . . . . 127
Con-T3 –Con-T5 . . . . . . . . . . . . . . . 127
D-A1 –D-A5 . . . . . . . . . . . . . . . . . . . 98
D-A6 –D-A9 . . . . . . . . . . . . . . . . . . . 99
D-D1 –D-D7 . . . . . . . . . . . . . . . . . . . 98
D-T1 –D-T5 . . . . . . . . . . . . . . . . . . . 98
Dif-A1 –Dif-A4 . . . . . . . . . . . . . . . . 118
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Dif-T1 –Dif-T3 . . . . . . . . . . . . . . . . . 119
Dif-T4 . . . . . . . . . . . . . . . . . . . . . . . . . 120
Dif-T5 . . . . . . . . . . . . . . . . . . . . . . . . . 120
Dif-T6 . . . . . . . . . . . . . . . . . . . . . . . . . 124
Dif-T7 . . . . . . . . . . . . . . . . . . . . . . . . . 124
Dif-T8 . . . . . . . . . . . . . . . . . . . . . . . . . 125
Dif-T9 . . . . . . . . . . . . . . . . . . . . . . . . . 125
Dif-T10 . . . . . . . . . . . . . . . . . . . . . . . . 126
Dif-T10′ . . . . . . . . . . . . . . . . . . . . . . . 126
Dif-T11 . . . . . . . . . . . . . . . . . . . . . . . . 129
Dif-T11′ . . . . . . . . . . . . . . . . . . . . . . . 129
Dis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
EC.D . . . . . . . . . . . . . . . . . . . . . . . . . . 37
EO-D . . . . . . . . . . . . . . . . . . . . . . . . . . 228
EP-D . . . . . . . . . . . . . . . . . . . . . . . . . . 103
EP-E1 –EP-E3 . . . . . . . . . . . . . . . . . 109
EP-E2′ . . . . . . . . . . . . . . . . . . . . . . . . 122
EP-E3 (alternative) . . . . . . . . . . . . 121
EP-T1 –EP-T9 . . . . . . . . . . . . . . . . 103
EPP-D . . . . . . . . . . . . . . . . . . . . . . . . 103
EPt-D . . . . . . . . . . . . . . . . . . . . . . . . . 278
Gap-D . . . . . . . . . . . . . . . . . . . . . . . . . 299
HOL-D . . . . . . . . . . . . . . . . . . . . . . . . 301
Hole-D . . . . . . . . . . . . . . . . . . . . . . . . . 299
IBC-D . . . . . . . . . . . . . . . . . . . . . . . . . 228
I.0 – I.5 . . . . . . . . . . . . . . . . . . . . . . . . . 247
I.0a (text) . . . . . . . . . . . . . . . . . . . . . 243
I.1 (text) . . . . . . . . . . . . . . . . . . . . . . . 244
I.2a (text) . . . . . . . . . . . . . . . . . . . . . 245
I.2b (text) . . . . . . . . . . . . . . . . . . . . . 245
I.3 – I.6 (text) . . . . . . . . . . . . . . . . . . 246
I.E1 (text) . . . . . . . . . . . . . . . . . . . . . 245
I.E2 (text) . . . . . . . . . . . . . . . . . . . . . 246
I.P (text) . . . . . . . . . . . . . . . . . . . . . . 245
I.Pa – I.Pb (text) . . . . . . . . . . . . . . . 245
I.Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
I-A1 – I-A10 . . . . . . . . . . . . . . . . . . . . 171
I-A7′ . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
I-D1 – I-D9 . . . . . . . . . . . . . . . . . . . . . 171
I-E1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
I-E2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
I-M1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

I-M1′ – I-M3′ . . . . . . . . . . . . . . . . . . . 173
I-M2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
I-M3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
I-M4 – I-M6 . . . . . . . . . . . . . . . . . . . . 178
I-M4′ – I-M6′ . . . . . . . . . . . . . . . . . . . 185
I-M7 – I-M8 . . . . . . . . . . . . . . . . . . . . 179
I-M9 – I-M10 . . . . . . . . . . . . . . . . . . . 180
I-T1 – I-T13 . . . . . . . . . . . . . . . . . . . . 171
I-T14 . . . . . . . . . . . . . . . . . . . . . . . . . . 175
IC-D . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
IC-T1 – IC-T6 . . . . . . . . . . . . . . . . . . 213
ICon.D . . . . . . . . . . . . . . . . . . . . . . . . 38
ICon-D . . . . . . . . . . . . . . . . . . . . . . . . 207
ICon-E1 . . . . . . . . . . . . . . . . . . . . . . . 207
ICon-T1 . . . . . . . . . . . . . . . . . . . . . . . 207
ICon-T2 . . . . . . . . . . . . . . . . . . . . . . . 207
IEC-D . . . . . . . . . . . . . . . . . . . . . . . . . 228
Inc-D . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Inc-T1 – Inc-T6 . . . . . . . . . . . . . . . . 106
Int . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Int-A1 – Int-A4 . . . . . . . . . . . . . . . . . 115
Int-D . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Int-E1 . . . . . . . . . . . . . . . . . . . . . . . . . 114
Int-E2 . . . . . . . . . . . . . . . . . . . . . . . . . 117
Int-T1 – Int-T4 . . . . . . . . . . . . . . . . . 114
Int-T5 – Int-T9 . . . . . . . . . . . . . . . . . 115
Int-T10 – Int-T12 . . . . . . . . . . . . . . . 116
Int-T11′ . . . . . . . . . . . . . . . . . . . . . . . 117
IO-D . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
IP-D . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
L2∧ –L4∧ . . . . . . . . . . . . . . . . . . . . . . 366
L2∨ –L6∨ . . . . . . . . . . . . . . . . . . . . . . 366
L-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
LP-D . . . . . . . . . . . . . . . . . . . . . . . . . . 278
LP-A1 –LP-A2 . . . . . . . . . . . . . . . . . 278
LS-D . . . . . . . . . . . . . . . . . . . . . . . . . . 278
NZ-A1 . . . . . . . . . . . . . . . . . . . . . . . . . 99
ME-D1 –ME-D2 . . . . . . . . . . . . . . . 104
ME-E1 . . . . . . . . . . . . . . . . . . . . . . . . . 105
M-C . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
M-I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
M-S . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
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M-CUCMT . . . . . . . . . . . . . . . . . . . . . 65
M-IUCMT . . . . . . . . . . . . . . . . . . . . . . 65
M-SUCMT . . . . . . . . . . . . . . . . . . . . . . 65
O1′ –O3′ . . . . . . . . . . . . . . . . . . . . . . . 366
O.D . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
O-Ext . . . . . . . . . . . . . . . . . . . . . . . . . 66
O.1 –O.4 . . . . . . . . . . . . . . . . . . . . . . . 249
O.1 –O.6 (text) . . . . . . . . . . . . . . . . 248
O.7 –O.8 . . . . . . . . . . . . . . . . . . . . . . . 249
O.7′ –O.8′ . . . . . . . . . . . . . . . . . . . . . 250
OMT-A1 –OMT-A3 . . . . . . . . . . . . 268
OMT-A4 . . . . . . . . . . . . . . . . . . . . . . . 268
OMT-E1 –OMT-E3 . . . . . . . . . . . . 269
OMT-T1 . . . . . . . . . . . . . . . . . . . . . . . 268
NTP.D . . . . . . . . . . . . . . . . . . . . . . . . . 37
NTPP.D . . . . . . . . . . . . . . . . . . . . . . . 37
P.1 –P.3 . . . . . . . . . . . . . . . . . . . . . . . 36
PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
PC1′ –PC2′ . . . . . . . . . . . . . . . . . . . . 366
PED-A1 –PED-A3 . . . . . . . . . . . . . 287
PED-A4 –PED-A8 . . . . . . . . . . . . . 287
PED-A9 –PED-A12 . . . . . . . . . . . . 287
PL-A1 . . . . . . . . . . . . . . . . . . . . . . . . . 253
PL-A2 –PL-A5 . . . . . . . . . . . . . . . . . 256
PL-A5′ . . . . . . . . . . . . . . . . . . . . . . . . 262
Pl-D . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
PL-E1 . . . . . . . . . . . . . . . . . . . . . . . . . 253
PL-T1 –PL-T3 . . . . . . . . . . . . . . . . . 253
PLP-A1 –PLP-A4 . . . . . . . . . . . . . 258
PLP-T1 –PLP-T2 . . . . . . . . . . . . . . 259
PLP-E1 –PLP-E3 . . . . . . . . . . . . . . 261
PO-D . . . . . . . . . . . . . . . . . . . . . . . . . . 105
PO-E1 . . . . . . . . . . . . . . . . . . . . . . . . . 123
PO-T1 –PO-T3 . . . . . . . . . . . . . . . . 105
PP.D . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Pt-D . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
RCC1 –RCC7 . . . . . . . . . . . . . . . . . . 164
RCC4′ . . . . . . . . . . . . . . . . . . . . . . . . . 165
RCC8 . . . . . . . . . . . . . . . . . . . . . . . . . . 165
RCC-Ec . . . . . . . . . . . . . . . . . . . . . . . 164
RCC-Ext . . . . . . . . . . . . . . . . . . . . . . 164
RCC-NTPP . . . . . . . . . . . . . . . . . . . . 164

RCC-O . . . . . . . . . . . . . . . . . . . . . . . . 164
RCC-P . . . . . . . . . . . . . . . . . . . . . . . . 164
RCC-PP . . . . . . . . . . . . . . . . . . . . . . . 164
S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
S-A1 – S-A7 . . . . . . . . . . . . . . . . . . . . 288
S-A8 – S-A12 . . . . . . . . . . . . . . . . . . . 290
S-D1 – S-D10 . . . . . . . . . . . . . . . . . . . 289
S-T1 – S-T2 . . . . . . . . . . . . . . . . . . . . 289
SBP-D . . . . . . . . . . . . . . . . . . . . . . . . . 226
SC-D . . . . . . . . . . . . . . . . . . . . . . . . . . 107
SC-T1 – SC-T4 . . . . . . . . . . . . . . . . . 107
SPH.D . . . . . . . . . . . . . . . . . . . . . . . . . 41
STP-D . . . . . . . . . . . . . . . . . . . . . . . . . 225
Sum-A1 – Sum-A4 . . . . . . . . . . . . . . 136
Sum-T1 . . . . . . . . . . . . . . . . . . . . . . . . 136
Sum-T2 . . . . . . . . . . . . . . . . . . . . . . . . 137
Sum-T3 . . . . . . . . . . . . . . . . . . . . . . . . 137
Sum-T4 . . . . . . . . . . . . . . . . . . . . . . . . 137
Sum-T5 . . . . . . . . . . . . . . . . . . . . . . . . 137
Sum-T6 . . . . . . . . . . . . . . . . . . . . . . . . 138
Sum-T7 . . . . . . . . . . . . . . . . . . . . . . . . 138
Sum-T8 . . . . . . . . . . . . . . . . . . . . . . . . 140
Sum-T8′ . . . . . . . . . . . . . . . . . . . . . . . 141
Sum-T9 . . . . . . . . . . . . . . . . . . . . . . . . 141
Sum-T10 . . . . . . . . . . . . . . . . . . . . . . . 143
Sum-T11 . . . . . . . . . . . . . . . . . . . . . . . 143
Sum-T12 . . . . . . . . . . . . . . . . . . . . . . . 146
Sum-T13 . . . . . . . . . . . . . . . . . . . . . . . 146
Sum-T14 . . . . . . . . . . . . . . . . . . . . . . . 146
Sum-T15 . . . . . . . . . . . . . . . . . . . . . . . 147
Sum-T16 . . . . . . . . . . . . . . . . . . . . . . . 148
Sum-T17 – Sum-T18 . . . . . . . . . . . . 149
Sum-T19 . . . . . . . . . . . . . . . . . . . . . . . 149
Sum-T20 . . . . . . . . . . . . . . . . . . . . . . . 151
Sum-T21 . . . . . . . . . . . . . . . . . . . . . . . 152
Sum-T22 . . . . . . . . . . . . . . . . . . . . . . . 153
Sum′-A0 – Sum′-A5 . . . . . . . . . . . . 161
Sum′-A6 . . . . . . . . . . . . . . . . . . . . . . . 221
Sum′-T1 . . . . . . . . . . . . . . . . . . . . . . . 221
T-C ∼= C5 . . . . . . . . . . . . . . . . . . . . . 67
T-CUCMT . . . . . . . . . . . . . . . . . . . . . . 66
T-C′ ∼= C5′ . . . . . . . . . . . . . . . . . . . . 69
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T-C′UCMT . . . . . . . . . . . . . . . . . . . . . . 66
T-I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
T-IUCMT . . . . . . . . . . . . . . . . . . . . . . . 66
T-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
T-S← . . . . . . . . . . . . . . . . . . . . . . . . . . 367
T-SUCMT . . . . . . . . . . . . . . . . . . . . . . 66
T-S←UCMT . . . . . . . . . . . . . . . . . . . . . . 67
TC-D . . . . . . . . . . . . . . . . . . . . . . . . . . 214
TC-T1 –TC-T5 . . . . . . . . . . . . . . . . 213
TP-D . . . . . . . . . . . . . . . . . . . . . . . . . . 223
TP.D . . . . . . . . . . . . . . . . . . . . . . . . . . 37
TP-T1 –TP-T3 . . . . . . . . . . . . . . . . 223
TP-T4 –TP-T5 . . . . . . . . . . . . . . . . 223
TPP.D . . . . . . . . . . . . . . . . . . . . . . . . . 37
¬Triv . . . . . . . . . . . . . . . . . . . . . . . . . . 72
TUN-D . . . . . . . . . . . . . . . . . . . . . . . . 301
U.D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
U-A1 . . . . . . . . . . . . . . . . . . . . . . . . . . 157
U-E1 –U-E2 . . . . . . . . . . . . . . . . . . . 158
U-E3 . . . . . . . . . . . . . . . . . . . . . . . . . . 222
U-T1 –U-T2 . . . . . . . . . . . . . . . . . . . 157
U-T3 –U-T5 . . . . . . . . . . . . . . . . . . . 157
U-T6 –U-T7 . . . . . . . . . . . . . . . . . . . 158

UCon-D . . . . . . . . . . . . . . . . . . . . . . . 207
UCon-T1 . . . . . . . . . . . . . . . . . . . . . . 207
UCMT.1 –UCMT.2 . . . . . . . . . . . . 50
UCMT.3 . . . . . . . . . . . . . . . . . . . . . . . 51
UCMT.4 . . . . . . . . . . . . . . . . . . . . . . . 50
UCMT.5 –UCMT.7 . . . . . . . . . . . . 51
UGMT.1 –UGMT.2 . . . . . . . . . . . . 51
Uni . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
V-A1 –V-A8 . . . . . . . . . . . . . . . . . . . 297
V-A9 –V-A10 . . . . . . . . . . . . . . . . . . 299
V-A11 –V-A18 . . . . . . . . . . . . . . . . . 301
V-A19 –V-A24 . . . . . . . . . . . . . . . . . 304
V-D . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
VC-D . . . . . . . . . . . . . . . . . . . . . . . . . . 297
VS-D . . . . . . . . . . . . . . . . . . . . . . . . . . 297
V-T1 . . . . . . . . . . . . . . . . . . . . . . . . . . 298
V-T2 . . . . . . . . . . . . . . . . . . . . . . . . . . 299
V-T3 –V-T5 . . . . . . . . . . . . . . . . . . . 301
V-T6 . . . . . . . . . . . . . . . . . . . . . . . . . . 303
VS-D . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Z-A1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
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List of logical theories

Unless explicitly ruled out, all theories listed here come in the variants T 0 and T¬0 with the additional
axiom Z-A1 or NZ-A1, respectively, to force or prevent a zero region.

Dimension
DI linear−unbounded = {D-A1 –D-A5, D-D1 –D-D7}

(linear unbounded dimension, i.e., without a guarantee that an entity of lowest
dimension exists)
dim/dim_prime_linear_unbounded.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

DI linear = {D-A1 –D-A6, D-D1 –D-D7}
(linear dimension with a lowest nonzero dimension guaranteed to exist)
dim/dim_prime_linear.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

DI linear−bounded = {D-A1 –D-A7, D-D1 –D-D7}
(bounded linear dimension)
dim/dim_prime_linear_bounded.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

DI linear−bounded−discrete = {D-A1 –D-A9, D-D1 –D-D7}
(discrete bounded linear dimension)
dim/dim_prime_linear_bounded_discrete.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Containment
CObasic = {C-A1 –C-A4, D-A4}

(basic containment)
cont/cont_basic.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

COC = {C-A1 –C-A4, D-A4, C-E1, C-D}
(basic containment with monotone contact implying containment)
cont/cont_c.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

328
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Containment and dimension
CODI linear = {D-A1 –D-A6, D-D1 –D-D7, C-A1 –C-A4, CD-A1, C-D}

(basic theory of containment and linear dimension)
codi/codi_linear.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

CODI = {D-A1 –D-A6, D-D1 –D-D7, C-A1 –C-A4, CD-A1, C-D,
C-T1, EP-D, EPP-D, PO-D, Inc-D, SC-D, ME-D1, ME-D2}

(basic theory of containment and linear dimension with all definitions; defini-
tional extension of CODI linear)
codi/codi.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

CODI unbounded = {D-A1 –D-A5, D-D1 –D-D7, C-A1 –C-A4, CD-A1, C-D,
C-T1, EP-D, EPP-D, PO-D, Inc-D, SC-D, ME-D1, ME-D2}

(basic theory of containment and unbounded linear dimension with all defini-
tions)
codi/codi_unbounded.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

CODI pl = {D-A1 –D-A6, D-D1 –D-D7, C-A1 –C-A4, CD-A1, C-D,
C-T1, EP-D, EPP-D, PO-D, Inc-D, SC-D, ME-D1, ME-D2,
Pt-D, L-D, PL-A1, PL-E1, CD-E1}

(CODI extended by definitions of points and lines—lines containing at least
two distinct points)
codi/codi_pl.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

CODI pl−slin = {D-A1 –D-A6, D-D1 –D-D7, C-A1 –C-A4, CD-A1, C-D,
C-T1, EP-D, EPP-D, PO-D, Inc-D, SC-D, ME-D1, ME-D2,
Pt-D, L-D, PL-A1, PL-A2, PL-E1, CD-E1}

(CODI extended by definitions of points and lines forming a semi-linear space)
codi/codi_pl_slin.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

CODI pl−lin = {D-A1 –D-A6, D-D1 –D-D7, C-A1 –C-A4, CD-A1, C-D,
C-T1, EP-D, EPP-D, PO-D, Inc-D, SC-D, ME-D1, ME-D2,
Pt-D, L-D, PL-A1 –PL-A3, PL-E1, CD-E1}

(CODI extended by definitions of points and lines forming a linear space)
codi/codi_pl_lin.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

CODI pl−aff = {D-A1 –D-A6, D-D1 –D-D7, C-A1 –C-A4, CD-A1, C-D,
C-T1, EP-D, EPP-D, PO-D, Inc-D, SC-D, ME-D1, ME-D2,
Pt-D, L-D, PL-A1 –PL-A5, PL-E1, CD-E1}

(CODI extended by definitions of points and lines forming an affine space)
codi/codi_pl_aff.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
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CODI plp = {D-A1 –D-A6, D-D1 –D-D7, C-A1 –C-A4, CD-A1, C-D,
C-T1, EP-D, EPP-D, PO-D, Inc-D, SC-D, ME-D1, ME-D2,
Pt-D, L-D, Pl-D, PL-A1, PL-E1, CD-E1}

(CODI extended by definitions of points and lines—lines containing at least
two distinct points)
codi/codi_plp.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

CODI plp−g = {D-A1 –D-A6, D-D1 –D-D7, C-A1 –C-A4, CD-A1, C-D,
C-T1, EP-D, EPP-D, PO-D, Inc-D, SC-D, ME-D1, ME-D2,
Pt-D, L-D, PL-A1, PL-A3, PL-E1, CD-E1, Pl-D, PLP-A1,
PLP-A3}

(the mereotopological generalization of three-dimensional point incidence ge-
ometry)
codi/codi_plp_g.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

CODI plp−slin = {D-A1 –D-A6, D-D1 –D-D7, C-A1 –C-A4, CD-A1, C-D,
C-T1, EP-D, EPP-D, PO-D, Inc-D, SC-D, ME-D1, ME-D2,
Pt-D, L-D, PL-A1, PL-A2, PL-E1, CD-E1, Pl-D, PLP-A1 –
PLP-A4}

(CODI extended by definitions of points and lines forming a semi-linear three-
dimensional incidence geometry)
codi/codi_plp_slin.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

CODI plp−lin = {D-A1 –D-A6, D-D1 –D-D7, C-A1 –C-A4, CD-A1, C-D,
C-T1, EP-D, EPP-D, PO-D, Inc-D, SC-D, ME-D1, ME-D2,
Pt-D, L-D, PL-A1 –PL-A3, PL-E1, CD-E1, Pl-D, PLP-A1 –
PLP-A4}

(CODI extended by definitions of points and lines forming a linear three-di-
mensional incidence geometry)
codi/codi_plp_lin.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

CODI plp−aff = {D-A1 –D-A6, D-D1 –D-D7, C-A1 –C-A4, CD-A1, C-D,
C-T1, EP-D, EPP-D, PO-D, Inc-D, SC-D, ME-D1, ME-D2,
Pt-D, L-D, PL-A1 –PL-A5, PL-E1, CD-E1, Pl-D, PLP-A1 –
PLP-A4}

(CODI extended by definitions of points and lines forming an affine three-
dimensional incidence geometry)
codi/codi_plp_aff.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
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Containment and dimension with mereological closure operations

CODI ↓ = {D-A1 –D-A6, D-D1 –D-D7, C-A1 –C-A4, CD-A1, C-D,
C-T1, EP-D, EPP-D, PO-D, Inc-D, SC-D, ME-D1, ME-D2,
Int-A1 – Int-A4, Dif-A1 –Dif-A4, Con-D, Z-A1}

(containment and linear dimension with closures under intersections and dif-
ferences (downwards closure))
codi/codi_down.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

CODI ′↓ = {D-A1 –D-A6, D-D1 –D-D7, C-A1 –C-A4, CD-A1, C-D,
C-T1, EP-D, EPP-D, PO-D, Inc-D, SC-D, ME-D1, ME-D2,
Int-A1 – Int-A4, Dif-A1 –Dif-A4, Con-D, Z-A1, Sum′-A0 –
Sum′-A5}

(containment and linear dimension with closures under intersections and dif-
ferences (downwards closure) and a ternary relation for possible sums)
codi/codi_down_sum_prime.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

CODI l = {D-A1 –D-A6, D-D1 –D-D7, C-A1 –C-A4, CD-A1, C-D,
C-T1, EP-D, EPP-D, PO-D, Inc-D, SC-D, ME-D1, ME-D2,
Int-A1 – Int-A4, Dif-A1 –Dif-A4, Con-D, Sum-A1 – Sum-A4,
U-A1, Z-A1}

(containment and linear dimension with closures under intersections, differ-
ences, sums, and universal (downwards and upwards closure))
codi/codi_updown.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Containment, dimension, boundary-containment

CODIB = {D-A1 –D-A6, D-D1 –D-D7, C-A1 –C-A4, CD-A1, BC-A1 –
BC-A5, C-D, C-T1, EP-D, EPP-D, PO-D, Inc-D, SC-D,
ME-D1, ME-D2, Con-D, ICon-D, UCon-D, CL-D}

(basic theory of containment, linear dimension, and boundary-containment
with definitions of connectedness)
codib/codib.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

CODIB↓ = {D-A1 –D-A6, D-D1 –D-D7, C-A1 –C-A4, CD-A1, BC-A1 –
BC-A6, C-D, C-T1, EP-D, EPP-D, PO-D, Inc-D, SC-D,
ME-D1, ME-D2, Int-A1 – Int-A4, Dif-A1 –Dif-A4, Con-D,
ICon-D, UCon-D, CL-D, Z-A1, ME-E1}

(theory of containment, linear dimension, and boundary-containment closed
under intersections and differences, and restricted to atomic models)
codib/codib_down.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
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CODIBl = {D-A1 –D-A6, D-D1 –D-D7, C-A1 –C-A4, CD-A1, BC-A1 –
BC-A6, C-D, C-T1, EP-D, EPP-D, PO-D, Inc-D, SC-D,
ME-D1, ME-D2, Int-A1 – Int-A4, Dif-A1 –Dif-A4, Con-D,
ICon-D, UCon-D, CL-D, Z-A1, ME-E1, Sum′-A0 – Sum′-A6,
U-A1}

(theory of containment, linear dimension, and boundary-containment closed
under intersections and differences, closed under sums of equidimensional en-
tities when they do not intersect in the interior of their minimal parts, and
restricted to atomic models)
codib/codib_updown.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Betweenness
BTW = {B-A1 –B-A6}

(relativized strict strong betweenness)
btw/btw.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Containment, dimension, betweenness (ordered mereotopology)

OMT↓ = {D-A1 –D-A6, D-D1 –D-D7, C-A1 –C-A4, CD-A1, C-D,
C-T1, EP-D, EPP-D, PO-D, Inc-D, SC-D, ME-D1, ME-D2,
Int-A1 – Int-A4, Dif-A1 –Dif-A4, Con-D, Z-A1, B-A1 –B-A6,
OMT-A1 –OMT-A3}

(CODI ↓ extended by relativized strict strong betweenness)
omt/omt_down.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

OMT↓−plp−lin = {D-A1 –D-A6, D-D1 –D-D7, C-A1 –C-A4, CD-A1, C-D,
C-T1, EP-D, EPP-D, PO-D, Inc-D, SC-D, ME-D1, ME-D2,
Int-A1 – Int-A4, Dif-A1 –Dif-A4, Con-D, Z-A1, Pt-D, L-D,
PL-A1 –PL-A3, PL-E1, CD-E1, Pl-D, PLP-A1 –PLP-A4,
B-A1 –B-A6, OMT-A1 –OMT-A3}

(OMT↓ extended to contain an linear incidence geometry)
omt/omt_down_plp_lin.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

OMT3D−lin = {D-A1 –D-A6, D-D1 –D-D7, C-A1 –C-A4, CD-A1, C-D,
C-T1, EP-D, EPP-D, PO-D, Inc-D, SC-D, ME-D1, ME-D2,
Int-A1 – Int-A4, Dif-A1 –Dif-A4, Con-D, Z-A1, Pt-D, L-D,
PL-A1 –PL-A3, PL-E1, CD-E1, Pl-D, PLP-A1 –PLP-A4,
B-A1 –B-A6, OMT-A1 –OMT-A3, OMT-E1}

(OMT↓ extended to contain a three-dimensional linear incidence geometry)
omt/omt_3d_lin.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
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Containment, dimension, boundary, betweenness

OMTB = {D-A1 –D-A6, D-D1 –D-D7, C-A1 –C-A4, CD-A1, BC-A1 –
BC-A6, C-D, C-T1, EP-D, EPP-D, PO-D, Inc-D, SC-D,
ME-D1, ME-D2, Int-A1 – Int-A4, Dif-A1, Dif-A2, Dif-A3a,
Dif-A3b, Dif-A3c, Dif-A4, Con-D, ICon-D, UCon-D, CL-D,
Z-A1, ME-E1, B-A1 –B-A6, OMT-A1 –OMT-A4}

(CODIB extended by relativized strict strong betweenness)
omtb/omtb_down.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

Abstract and physical space

PED = {PED-A1 –PED-A11}
(Categorization of physical entities and their relations)
space/ped.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

SPACE = {D-A1 –D-A6, D-D1 –D-D7, C-A1 –C-A4, CD-A1, BC-A1 –
BC-A6, C-D, C-T1, EP-D, EPP-D, PO-D, Inc-D, SC-D,
ME-D1, ME-D2, Int-A1 – Int-A4, Dif-A1 –Dif-A4, Con-D,
ICon-D, UCon-D, CL-D, Z-A1, ME-E1, Sum′-A0 – Sum′-A6,
U-A1, PED-A1 –PED-A11, S-A1 – S-A12, S-D1 – S-D10}

(basic theory of abstract and physical space, combining CODIB↓ with PED
and axiomatizing the relationship between regions and physical endurants)
space/space.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

SPCH = {D-A1 –D-A6, D-D1 –D-D7, C-A1 –C-A4, CD-A1, BC-A1 –
BC-A6, C-D, C-T1, EP-D, EPP-D, PO-D, Inc-D, SC-D,
ME-D1, ME-D2, Int-A1 – Int-A4, Dif-A1 –Dif-A4, Con-D,
ICon-D, UCon-D, CL-D, Z-A1, ME-E1, Sum′-A0 – Sum′-A6,
U-A1, PED-A1 –PED-A11, S-A1 – S-A12, S-D1 – S-D10,
CH-A1 –CH-A13}

(SPACE extended by an axiomatization of convex hulls)
space/spch.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

VOIDS = {D-A1 –D-A6, D-D1 –D-D7, C-A1 –C-A4, CD-A1, BC-A1 –
BC-A6, C-D, C-T1, EP-D, EPP-D, PO-D, Inc-D, SC-D,
ME-D1, ME-D2, Int-A1 – Int-A4, Dif-A1 –Dif-A4, Con-D,
ICon-D, UCon-D, CL-D, Z-A1, ME-E1, Sum′-A0 – Sum′-A6,
U-A1, PED-A1 –PED-A11, S-A1 – S-A12, S-D1 – S-D10,
CH-A1 –CH-A13, V-A1 –V-A8, VS-D, VC-D, V-D}

(SPCH extended by the axioms characterizing voids)
space/voids.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
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VOIDSextended = {D-A1 –D-A6, D-D1 –D-D7, C-A1 –C-A4, CD-A1, BC-A1 –
BC-A6, C-D, C-T1, EP-D, EPP-D, PO-D, Inc-D, SC-D,
ME-D1, ME-D2, Int-A1 – Int-A4, Dif-A1 –Dif-A4, Con-D,
ICon-D, UCon-D, CL-D, Z-A1, ME-E1, Sum′-A0 – Sum′-A6,
U-A1, PED-A1 –PED-A11, S-A1 – S-A12, S-D1 – S-D10,
CH-A1 –CH-A13, V-A1 –V-A24, VS-D, VC-D, V-D, Hole-D,
Gap-D, CAV-D, TUN-D, HOL-D}

(VOIDS extended by the axioms classifying physical voids according to three
criteria)
space/voids-refined.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

External spatial theories

INCH original = {I-A1 – I-A10, I-D1 – I-D9}
(INCH Calculus)
inch/inch_original.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

INCH calculus = {I-A1 – I-A10, I-D1 – I-D9, I-A7’}
(extended INCH Calculus)
inch/inch_calculus.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

INCH weak = {I-A1 – I-A5, I-D1 – I-D6}
(weak version of the INCH Calculus)
inch/inch_weak.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

INCH weak−closed = {I-A1 – I-A5, I-A9, I-A10, I-D1 – I-D6}
(weak version of the INCH Calculus with closure under equidimensional sums
and complements)
inch/inch_weak_closed.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

RCC = {RCC1 –RCC7, RCC-Ext, RCC-P, RCC-PP, RCC-O,
RCC-EC, RCC-NTPP}

(strict Region Connection Calculus that allows atomic models)
mt/rcc_basic_strict.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

IG2D = {I.0, I.1}
(line space as a two-dimensional incidence geometry)
ig/ig_2d.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

IG = {I.0 – I.5}
(incidence geometry over three disjoint sets of points, lines, and planes)
ig/ig.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

WOIG = {I.0 – I.5, O.1 –O.4}
(weak ordered incidence geometry with a three-dimensional point incidence
structure)
oig/woig.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
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Contact algebras

OCA = {(L2∨) – (L6∨), (L2∧) – (L4∧), (O1′) – (O3′), (C0) – (C3)}
(orthocomplemented contact algebra)
ca/oca.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

SPOCA = {(L2∨) – (L6∨), (L2∧) – (L4∧), (O1′) – (O3′), (PC1′), (PC2′),
(PC′′), (S), (C0) – (C3)}

(Stonian pseudocomplemented and orthocomplemented contact algebra)
ca/spoca.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

WBCA = {(L2∨) – (L6∨), (L2∧) – (L4∧), (O1′) – (O3′), (PC1′), (PC2′),
(PC′′), (S), (C0) – (C3), (Uni)}

(weak Boolean contact algebra)
ca/wbc.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

EWBCA = {(L2∨) – (L6∨), (L2∧) – (L4∧), (O1′) – (O3′), (PC1′), (PC2′),
(PC′′), (S), (C0) – (C3), (Uni), (C-Ext)}

(extensional weak Boolean contact algebra)
ca/ewbca.clif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
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Appendix E

Summary of results from automated
theorem provers and model finders

−−−−
l a t
−−−−

l a t \ output \ bounded_ la t t i c e_meet_ jo in t e s t e d wi th : Mace4 , Prove r9
FAILED : l a t \ output \ bounded_ la t t i c e_meet_ jo in . p9 . out IN 1 .93 ON 2012−10−30 1 9 : 0 8 : 2 0

SUCCESS : l a t \ output \ bounded_ la t t i c e_meet_ jo in .m4 . out IN 0 .01 ON 2012−10−30 1 9 : 0 8 : 1 8 , MODEL SIZE=2
l a t \ output \ l a t t i c e _ m e e t _ j o i n t e s t e d wi th : Mace4 , Prove r9

FAILED : l a t \ output \ l a t t i c e _ m e e t _ j o i n . p9 . out IN 1 .90 ON 2012−10−30 1 9 : 0 8 : 1 2
SUCCESS : l a t \ output \ l a t t i c e _ m e e t _ j o i n .m4 . out IN 0 .01 ON 2012−10−30 1 9 : 0 8 : 1 0 , MODEL SIZE=2

l a t \ output \ or tho_comp lemented_ la t t i c e_meet_ jo in t e s t e d wi th : Mace4 , Prove r9
FAILED : l a t \ output \ or tho_comp lemented_ la t t i c e_meet_ jo in . p9 . out IN 1 .94 ON 2012−10−30 1 9 : 0 8 : 2 8

SUCCESS : l a t \ output \ or tho_comp lemented_ la t t i c e_meet_ jo in .m4 . out IN 0 .01 ON 2012−10−30 1 9 : 0 8 : 2 6 , MODEL SIZE=2

−−−−
ca
−−−−
ca \ c o n s i s t e n c y \ output \ o c a _ n o n t r i v i a l t e s t e d wi th : Mace4 , Prove r9

FAILED : ca \ c o n s i s t e n c y \ output \ o c a _ n o n t r i v i a l . p9 . out IN 1 .94 ON 2012−11−5 1 6 : 4 2 : 3 7
SUCCESS : ca \ c o n s i s t e n c y \ output \ o c a _ n o n t r i v i a l .m4 . out IN 0 .01 ON 2012−11−5 1 6 : 4 2 : 3 5 , MODEL SIZE=4

ca \ c o n s i s t e n c y \ output \ s p o c a _ c 5 p r i m e _ n o n t r i v i a l t e s t e d wi th : Mace4 , Prove r9
FAILED : ca \ c o n s i s t e n c y \ output \ s p o c a _ c 5 p r i m e _ n o n t r i v i a l . p9 . out IN 1 .91 ON 2012−11−5 1 6 : 4 0 : 1 6

SUCCESS : ca \ c o n s i s t e n c y \ output \ s p o c a _ c 5 p r i m e _ n o n t r i v i a l .m4 . out IN 0 .01 ON 2012−11−5 1 6 : 4 0 : 1 4 , MODEL SIZE=4
ca \ c o n s i s t e n c y \ output \ s p o c a _ c 5 _ n o n t r i v i a l t e s t e d wi th : Mace4 , Prove r9

FAILED : ca \ c o n s i s t e n c y \ output \ s p o c a _ c 5 _ n o n t r i v i a l . p9 . out IN 1 .91 ON 2012−11−5 1 6 : 4 0 : 4 7
SUCCESS : ca \ c o n s i s t e n c y \ output \ s p o c a _ c 5 _ n o n t r i v i a l .m4 . out IN 0 .01 ON 2012−11−5 1 6 : 4 0 : 4 5 , MODEL SIZE=6

ca \ c o n s i s t e n c y \ output \ s p o c a _ n o n t r i v i a l t e s t e d wi th : Mace4 , Prove r9
FAILED : ca \ c o n s i s t e n c y \ output \ s p o c a _ n o n t r i v i a l . p9 . out IN 1 .91 ON 2012−11−5 1 6 : 4 2 : 2 4

SUCCESS : ca \ c o n s i s t e n c y \ output \ s p o c a _ n o n t r i v i a l .m4 . out IN 0 .01 ON 2012−11−5 1 6 : 4 2 : 2 2 , MODEL SIZE=6
ca \ c o n s i s t e n c y \ output \ wbca_c5pr ime_c4_nont r i v i a l t e s t e d wi th : Mace4 , Prove r9

FAILED : ca \ c o n s i s t e n c y \ output \ wbca_c5pr ime_c4_nont r i v i a l . p9 . out IN 1 .94 ON 2012−11−5 1 6 : 4 3 : 5 2
SUCCESS : ca \ c o n s i s t e n c y \ output \ wbca_c5pr ime_c4_nont r i v i a l .m4 . out IN 0 .01 ON 2012−11−5 1 6 : 4 3 : 5 0 , MODEL SIZE=4

ca \ c o n s i s t e n c y \ output \ w b c a _ c 5 p r i m e _ d i s _ n o n t r i v i a l t e s t e d wi th : Mace4 , Prove r9
UNKNOWN: ca \ c o n s i s t e n c y \ output \ w b c a _ c 5 p r i m e _ d i s _ n o n t r i v i a l

FAILED : ca \ c o n s i s t e n c y \ output \ w b c a _ c 5 p r i m e _ d i s _ n o n t r i v i a l . p9 . out
FAILED : ca \ c o n s i s t e n c y \ output \ w b c a _ c 5 p r i m e _ d i s _ n o n t r i v i a l .m4 . out IN 0 .88 ON 2012−11−5 1 2 : 3 3 : 5 5

ca \ c o n s i s t e n c y \ output \ wbc a_c 5p r im e_ non t r i v i a l t e s t e d wi th : Mace4 , Prove r9
FAILED : ca \ c o n s i s t e n c y \ output \ wb ca_ c5 p r i me_ no nt r i v i a l . p9 . out IN 1 .96 ON 2012−11−5 1 6 : 4 3 : 1 0

SUCCESS : ca \ c o n s i s t e n c y \ output \ wbc a_ c5p r i me_ non t r i v i a l .m4 . out IN 0 .01 ON 2012−11−5 1 6 : 4 3 : 0 8 , MODEL SIZE=4
ca \ c o n s i s t e n c y \ output \ wbca_notc4_atom_con_nontr iv ia l t e s t e d wi th : Mace4 , Prove r9

FAILED : ca \ c o n s i s t e n c y \ output \ wbca_notc4_atom_con_nontr iv ia l . p9 . out IN 1 .90 ON 2012−11−5 1 6 : 0 3 : 0 7
SUCCESS : ca \ c o n s i s t e n c y \ output \ wbca_notc4_atom_con_nontr iv ia l .m4 . out IN 0 .01 ON 2012−11−5 1 6 : 0 3 : 0 5 , MODEL SIZE=4

ca \ theorems \ output \ spoca_c−e x t _ d i s t e s t e d wi th : Mace4 , Prove r9
FAILED : ca \ theorems \ output \ spoca_c−e x t _ d i s . p9 . out IN 1 .92 ON 2012−11−5 1 7 : 4 5 : 1 7

SUCCESS : ca \ theorems \ output \ spoca_c−e x t _ d i s .m4 . out IN 0 .01 ON 2012−11−5 1 7 : 4 5 : 1 5 , MODEL SIZE=2
ca \ theorems \ output \ spoca_c−ext_d i s_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : ca \ theorems \ output \ spoca_c−ext_d i s_1 . p9 . out IN 0 .05 ON 2012−11−5 1 7 : 4 5 : 2 2 , PROOF LENGTH=41
FAILED : ca \ theorems \ output \ spoca_c−ext_d i s_1 .m4 . out IN 1 .98 ON 2012−11−5 1 7 : 4 5 : 2 4

ca \ theorems \ output \ spoca_c4_c5prime_c−e x t t e s t e d wi th : Mace4 , Prove r9
FAILED : ca \ theorems \ output \ spoca_c4_c5prime_c−e x t . p9 . out IN 1 .93 ON 2012−11−5 1 7 : 4 8 : 0 3

SUCCESS : ca \ theorems \ output \ spoca_c4_c5prime_c−e x t .m4 . out IN 0 .01 ON 2012−11−5 1 7 : 4 8 : 0 1 , MODEL SIZE=2
ca \ theorems \ output \ spoca_c4_c5prime_c−ext_1 t e s t e d wi th : Mace4 , Prove r9

FAILED : ca \ theorems \ output \ spoca_c4_c5prime_c−ext_1 . p9 . out IN 1 .93 ON 2012−11−5 1 7 : 4 8 : 1 0
SUCCESS : ca \ theorems \ output \ spoca_c4_c5prime_c−ext_1 .m4 . out IN 0 .01 ON 2012−11−5 1 7 : 4 8 : 0 8 , MODEL SIZE=4

ca \ theorems \ output \ spoca_c4_c5prime_c−ext_2 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : ca \ theorems \ output \ spoca_c4_c5prime_c−ext_2 . p9 . out IN 0 .01 ON 2012−11−5 1 7 : 4 8 : 1 4 , PROOF LENGTH=6

342
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FAILED : ca \ theorems \ output \ spoca_c4_c5prime_c−ext_2 .m4 . out IN 1 .02 ON 2012−11−5 1 7 : 4 8 : 1 5
ca \ theorems \ output \ spoca_c4_c5pr ime_int t e s t e d wi th : Mace4 , Prove r9

FAILED : ca \ theorems \ output \ spoca_c4_c5pr ime_int . p9 . out IN 1 .94 ON 2012−11−5 1 7 : 4 7 : 5 0
SUCCESS : ca \ theorems \ output \ spoca_c4_c5pr ime_int .m4 . out IN 0 .01 ON 2012−11−5 1 7 : 4 7 : 4 8 , MODEL SIZE=2

ca \ theorems \ output \ spoca_c4_c5pr ime_int_1 t e s t e d wi th : Mace4 , Prove r9
FAILED : ca \ theorems \ output \ spoca_c4_c5pr ime_int_1 . p9 . out IN 1 .98 ON 2012−11−5 1 7 : 4 7 : 5 7

SUCCESS : ca \ theorems \ output \ spoca_c4_c5pr ime_int_1 .m4 . out IN 0 .02 ON 2012−11−5 1 7 : 4 7 : 5 6 , MODEL SIZE=6
ca \ theorems \ output \ spoca_c4_c5pr ime_uni t e s t e d wi th : Mace4 , Prove r9

FAILED : ca \ theorems \ output \ spoca_c4_c5pr ime_uni . p9 . out IN 1 .94 ON 2012−11−5 1 7 : 4 7 : 2 5
SUCCESS : ca \ theorems \ output \ spoca_c4_c5pr ime_uni .m4 . out IN 0 .01 ON 2012−11−5 1 7 : 4 7 : 2 3 , MODEL SIZE=2

ca \ theorems \ output \ spoca_c4_c5prime_uni_1 t e s t e d wi th : Mace4 , Prove r9
FAILED : ca \ theorems \ output \ spoca_c4_c5prime_uni_1 . p9 . out IN 1 .94 ON 2012−11−5 1 7 : 4 7 : 3 2

SUCCESS : ca \ theorems \ output \ spoca_c4_c5prime_uni_1 .m4 . out IN 0 .02 ON 2012−11−5 1 7 : 4 7 : 3 0 , MODEL SIZE=6
ca \ theorems \ output \ spoca_c5pr ime_c4 t e s t e d wi th : Mace4 , Prove r9

FAILED : ca \ theorems \ output \ spoca_c5pr ime_c4 . p9 . out IN 1 .88 ON 2012−11−5 1 7 : 4 5 : 5 3
SUCCESS : ca \ theorems \ output \ spoca_c5pr ime_c4 .m4 . out IN 0 .01 ON 2012−11−5 1 7 : 4 5 : 5 1 , MODEL SIZE=2

ca \ theorems \ output \ spoca_c5prime_c4_1 t e s t e d wi th : Mace4 , Prove r9
FAILED : ca \ theorems \ output \ spoca_c5prime_c4_1 . p9 . out IN 1 .96 ON 2012−11−5 1 7 : 4 6 : 0 0

SUCCESS : ca \ theorems \ output \ spoca_c5prime_c4_1 .m4 . out IN 0 .03 ON 2012−11−5 1 7 : 4 5 : 5 8 , MODEL SIZE=8
ca \ theorems \ output \ spoca_c5pr ime_con t e s t e d wi th : Mace4 , Prove r9

FAILED : ca \ theorems \ output \ spoca_c5pr ime_con . p9 . out IN 1 .93 ON 2012−11−5 1 7 : 4 5 : 3 4
SUCCESS : ca \ theorems \ output \ spoca_c5pr ime_con .m4 . out IN 0 .01 ON 2012−11−5 1 7 : 4 5 : 3 2 , MODEL SIZE=2

ca \ theorems \ output \ spoca_c5prime_con_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : ca \ theorems \ output \ spoca_c5prime_con_1 . p9 . out IN 0 .02 ON 2012−11−5 1 7 : 4 5 : 3 9 , PROOF LENGTH=12

FAILED : ca \ theorems \ output \ spoca_c5prime_con_1 .m4 . out IN 0 .45 ON 2012−11−5 1 7 : 4 5 : 3 9
ca \ theorems \ output \ spoca_c5_c−e x t t e s t e d wi th : Mace4 , Prove r9

FAILED : ca \ theorems \ output \ spoca_c5_c−e x t . p9 . out IN 1 .93 ON 2012−11−5 1 7 : 4 6 : 5 2
SUCCESS : ca \ theorems \ output \ spoca_c5_c−e x t .m4 . out IN 0 .01 ON 2012−11−5 1 7 : 4 6 : 5 0 , MODEL SIZE=2

ca \ theorems \ output \ spoca_c5_c−ext_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : ca \ theorems \ output \ spoca_c5_c−ext_1 . p9 . out IN 1 .06 ON 2012−11−5 1 7 : 4 6 : 5 8 , PROOF LENGTH=25

FAILED : ca \ theorems \ output \ spoca_c5_c−ext_1 .m4 . out IN 0 .32 ON 2012−11−5 1 7 : 4 6 : 5 7
ca \ theorems \ output \ spoca_c5_c−ext_2 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : ca \ theorems \ output \ spoca_c5_c−ext_2 . p9 . out IN 0 .00 ON 2012−11−5 1 7 : 4 7 : 0 1 , PROOF LENGTH=6
FAILED : ca \ theorems \ output \ spoca_c5_c−ext_2 .m4 . out IN 1 .95 ON 2012−11−5 1 7 : 4 7 : 0 3

ca \ theorems \ output \ spoca_c5_c4 t e s t e d wi th : Mace4 , Prove r9
FAILED : ca \ theorems \ output \ spoca_c5_c4 . p9 . out IN 1 .94 ON 2012−11−5 1 7 : 4 7 : 0 0

SUCCESS : ca \ theorems \ output \ spoca_c5_c4 .m4 . out IN 0 .01 ON 2012−11−5 1 7 : 4 6 : 5 8 , MODEL SIZE=2
ca \ theorems \ output \ spoca_c5_c4_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : ca \ theorems \ output \ spoca_c5_c4_1 . p9 . out IN 0 .02 ON 2012−11−5 1 7 : 4 7 : 0 5 , PROOF LENGTH=25
FAILED : ca \ theorems \ output \ spoca_c5_c4_1 .m4 . out IN 1 .97 ON 2012−11−5 1 7 : 4 7 : 0 7

ca \ theorems \ output \ spoca_c5_int t e s t e d wi th : Mace4 , Prove r9
FAILED : ca \ theorems \ output \ spoca_c5_int . p9 . out IN 1 .91 ON 2012−11−5 1 7 : 4 6 : 3 8

SUCCESS : ca \ theorems \ output \ spoca_c5_int .m4 . out IN 0 .01 ON 2012−11−5 1 7 : 4 6 : 3 6 , MODEL SIZE=2
ca \ theorems \ output \ spoca_c5_int_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : ca \ theorems \ output \ spoca_c5_int_1 . p9 . out IN 0 .02 ON 2012−11−5 1 7 : 4 6 : 4 3 , PROOF LENGTH=19
FAILED : ca \ theorems \ output \ spoca_c5_int_1 .m4 . out IN 0 .32 ON 2012−11−5 1 7 : 4 6 : 4 3

ca \ theorems \ output \ spoca_c5_notcon t e s t e d wi th : Mace4 , Prove r9
FAILED : ca \ theorems \ output \ spoca_c5_notcon . p9 . out IN 1 .89 ON 2012−11−5 1 7 : 4 6 : 2 3

SUCCESS : ca \ theorems \ output \ spoca_c5_notcon .m4 . out IN 0 .01 ON 2012−11−5 1 7 : 4 6 : 2 1 , MODEL SIZE=2
ca \ theorems \ output \ spoca_c5_notcon_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : ca \ theorems \ output \ spoca_c5_notcon_1 . p9 . out IN 0 .02 ON 2012−11−5 1 7 : 4 6 : 2 8 , PROOF LENGTH=13
FAILED : ca \ theorems \ output \ spoca_c5_notcon_1 .m4 . out IN 0 .32 ON 2012−11−5 1 7 : 4 6 : 2 8

ca \ theorems \ output \ spoca_c5_uni t e s t e d wi th : Mace4 , Prove r9
FAILED : ca \ theorems \ output \ spoca_c5_uni . p9 . out IN 1 .95 ON 2012−11−5 1 7 : 4 6 : 1 2

SUCCESS : ca \ theorems \ output \ spoca_c5_uni .m4 . out IN 0 .01 ON 2012−11−5 1 7 : 4 6 : 1 0 , MODEL SIZE=2
ca \ theorems \ output \ spoca_c5_uni_1 t e s t e d wi th : Mace4 , Prove r9

FAILED : ca \ theorems \ output \ spoca_c5_uni_1 . p9 . out IN 1 .92 ON 2012−11−5 1 7 : 4 6 : 1 8
SUCCESS : ca \ theorems \ output \ spoca_c5_uni_1 .m4 . out IN 0 .01 ON 2012−11−5 1 7 : 4 6 : 1 6 , MODEL SIZE=6

ca \ theorems \ output \ spoca_dis_atom_nott r iv_con t e s t e d wi th : Mace4 , Prove r9
FAILED : ca \ theorems \ output \ spoca_dis_atom_nott r iv_con . p9 . out IN 1 .91 ON 2012−11−5 1 8 : 2 7 : 5 3

SUCCESS : ca \ theorems \ output \ spoca_dis_atom_nott r iv_con .m4 . out IN 0 .01 ON 2012−11−5 1 8 : 2 7 : 5 1 , MODEL SIZE=2
ca \ theorems \ output \ spoca_dis_atom_nottr iv_con_1 t e s t e d wi th : Mace4 , Prove r9

UNKNOWN: ca \ theorems \ output \ spoca_dis_atom_nottr iv_con_1
FAILED : ca \ theorems \ output \ spoca_dis_atom_nottr iv_con_1 . p9 . out IN 600 .00 ON 2012−11−5 1 8 : 3 8 : 1 7
FAILED : ca \ theorems \ output \ spoca_dis_atom_nottr iv_con_1 .m4 . out IN 41 .16 ON 2012−11−5 1 8 : 2 8 : 3 9

ca \ theorems \ output \spoca_m−c_o−e x t t e s t e d wi th : Mace4 , Prove r9
FAILED : ca \ theorems \ output \spoca_m−c_o−e x t . p9 . out IN 1 .97 ON 2012−11−5 1 7 : 4 4 : 5 0

SUCCESS : ca \ theorems \ output \spoca_m−c_o−e x t .m4 . out IN 0 .01 ON 2012−11−5 1 7 : 4 4 : 4 8 , MODEL SIZE=2
ca \ theorems \ output \spoca_m−c_o−ext_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : ca \ theorems \ output \spoca_m−c_o−ext_1 . p9 . out IN 0 .03 ON 2012−11−5 1 7 : 4 4 : 5 5 , PROOF LENGTH=34
FAILED : ca \ theorems \ output \spoca_m−c_o−ext_1 .m4 . out IN 0 .33 ON 2012−11−5 1 7 : 4 4 : 5 5

ca \ theorems \ output \spoca_m−c_o−ext_2 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : ca \ theorems \ output \spoca_m−c_o−ext_2 . p9 . out IN 0 .01 ON 2012−11−5 1 7 : 4 4 : 5 9 , PROOF LENGTH=11

FAILED : ca \ theorems \ output \spoca_m−c_o−ext_2 .m4 . out IN 0 .36 ON 2012−11−5 1 7 : 4 4 : 5 9
ca \ theorems \ output \spoca_m−c_uni t e s t e d wi th : Mace4 , Prove r9

FAILED : ca \ theorems \ output \spoca_m−c_uni . p9 . out IN 1 .95 ON 2012−11−5 1 7 : 4 4 : 3 9
SUCCESS : ca \ theorems \ output \spoca_m−c_uni .m4 . out IN 0 .01 ON 2012−11−5 1 7 : 4 4 : 3 7 , MODEL SIZE=2

ca \ theorems \ output \spoca_m−c_uni_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : ca \ theorems \ output \spoca_m−c_uni_1 . p9 . out IN 0 .04 ON 2012−11−5 1 7 : 4 4 : 4 4 , PROOF LENGTH=52

FAILED : ca \ theorems \ output \spoca_m−c_uni_1 .m4 . out IN 0 .34 ON 2012−11−5 1 7 : 4 4 : 4 5
ca \ theorems \ output \spoca_m−i t e s t e d wi th : Mace4 , Prove r9

FAILED : ca \ theorems \ output \spoca_m−i . p9 . out IN 1 .92 ON 2012−11−5 1 7 : 4 4 : 2 3
SUCCESS : ca \ theorems \ output \spoca_m−i .m4 . out IN 0 .01 ON 2012−11−5 1 7 : 4 4 : 2 1 , MODEL SIZE=2

ca \ theorems \ output \spoca_m−i_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : ca \ theorems \ output \spoca_m−i_1 . p9 . out IN 0 .04 ON 2012−11−5 1 7 : 4 4 : 2 8 , PROOF LENGTH=37

FAILED : ca \ theorems \ output \spoca_m−i_1 .m4 . out IN 1 .98 ON 2012−11−5 1 7 : 4 4 : 3 0
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ca \ theorems \ output \spoca_m−s t e s t e d wi th : Mace4 , Prove r9
FAILED : ca \ theorems \ output \spoca_m−s . p9 . out IN 1 .93 ON 2012−11−5 1 7 : 3 8 : 0 0

SUCCESS : ca \ theorems \ output \spoca_m−s .m4 . out IN 0 .01 ON 2012−11−5 1 7 : 3 7 : 5 8 , MODEL SIZE=2
ca \ theorems \ output \spoca_m−s_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : ca \ theorems \ output \spoca_m−s_1 . p9 . out IN 227 .89 ON 2012−11−5 1 7 : 4 1 : 5 9 , PROOF LENGTH=95
FAILED : ca \ theorems \ output \spoca_m−s_1 .m4 . out IN 113 .19 ON 2012−11−5 1 7 : 3 9 : 5 8

ca \ theorems \ output \ spoca_t−i t e s t e d wi th : Mace4 , Prove r9
FAILED : ca \ theorems \ output \ spoca_t−i . p9 . out IN 1 .93 ON 2012−11−5 1 7 : 3 7 : 3 3

SUCCESS : ca \ theorems \ output \ spoca_t−i .m4 . out IN 0 .01 ON 2012−11−5 1 7 : 3 7 : 3 1 , MODEL SIZE=2
ca \ theorems \ output \ spoca_t−i_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : ca \ theorems \ output \ spoca_t−i_1 . p9 . out IN 0 .03 ON 2012−11−5 1 7 : 3 7 : 3 8 , PROOF LENGTH=26
FAILED : ca \ theorems \ output \ spoca_t−i_1 .m4 . out IN 1 .98 ON 2012−11−5 1 7 : 3 7 : 4 0

ca \ theorems \ output \ spoca_uni_c5 t e s t e d wi th : Mace4 , Prove r9
FAILED : ca \ theorems \ output \ spoca_uni_c5 . p9 . out IN 1 .95 ON 2012−11−5 1 7 : 3 1 : 5 1

SUCCESS : ca \ theorems \ output \ spoca_uni_c5 .m4 . out IN 0 .01 ON 2012−11−5 1 7 : 3 1 : 4 9 , MODEL SIZE=2
ca \ theorems \ output \ spoca_uni_c5_1 t e s t e d wi th : Mace4 , Prove r9

FAILED : ca \ theorems \ output \ spoca_uni_c5_1 . p9 . out IN 1 .97 ON 2012−11−5 1 7 : 3 1 : 5 8
SUCCESS : ca \ theorems \ output \ spoca_uni_c5_1 .m4 . out IN 0 .01 ON 2012−11−5 1 7 : 3 1 : 5 6 , MODEL SIZE=4

ca \ theorems \ output \ spoca_uni_c5_2 t e s t e d wi th : Mace4 , Prove r9
UNKNOWN: ca \ theorems \ output \ spoca_uni_c5_2

FAILED : ca \ theorems \ output \ spoca_uni_c5_2 . p9 . out IN 600 .00 ON 2012−11−5 1 7 : 4 2 : 0 3
FAILED : ca \ theorems \ output \ spoca_uni_c5_2 .m4 . out IN 0 .67 ON 2012−11−5 1 7 : 3 2 : 0 3

ca \ theorems \ output \ spoca_un i_d i s_notc4_not t r i v_notcon t e s t e d wi th : Mace4 , Prove r9
FAILED : ca \ theorems \ output \ spoca_un i_d i s_notc4_not t r i v_notcon . p9 . out IN 1 .91 ON 2012−11−5 1 2 : 1 1 : 1 0

SUCCESS : ca \ theorems \ output \ spoca_un i_d i s_notc4_not t r i v_notcon .m4 . out IN 0 .32 ON 2012−11−5 1 2 : 1 1 : 0 8 , MODEL SIZE=16
ca \ theorems \ output \ spoca_un i_d i s_notc4_nott r i v_notcon_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : ca \ theorems \ output \ spoca_un i_d i s_notc4_nott r i v_notcon_1 . p9 . out IN 369 .45 ON 2012−11−5 1 2 : 1 7 : 2 5 , PROOF LENGTH=115
FAILED : ca \ theorems \ output \ spoca_un i_d i s_notc4_nott r i v_notcon_1 .m4 . out IN 368 .74 ON 2012−11−5 1 2 : 1 7 : 2 7

ca \ theorems \ output \spoca_uni_m−c t e s t e d wi th : Mace4 , Prove r9
FAILED : ca \ theorems \ output \spoca_uni_m−c . p9 . out IN 1 .96 ON 2012−11−5 1 7 : 3 0 : 2 2

SUCCESS : ca \ theorems \ output \spoca_uni_m−c .m4 . out IN 0 .01 ON 2012−11−5 1 7 : 3 0 : 2 0 , MODEL SIZE=2
ca \ theorems \ output \spoca_uni_m−c_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : ca \ theorems \ output \spoca_uni_m−c_1 . p9 . out IN 0 .34 ON 2012−11−5 1 7 : 3 0 : 2 8 , PROOF LENGTH=65
FAILED : ca \ theorems \ output \spoca_uni_m−c_1 .m4 . out IN 0 .59 ON 2012−11−5 1 7 : 3 0 : 2 8

ca \ theorems \ output \spoca_uni_m−c_2 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : ca \ theorems \ output \spoca_uni_m−c_2 . p9 . out IN 0 .02 ON 2012−11−5 1 7 : 3 0 : 3 2 , PROOF LENGTH=31

FAILED : ca \ theorems \ output \spoca_uni_m−c_2 .m4 . out IN 0 .58 ON 2012−11−5 1 7 : 3 0 : 3 2

−−−−
dim
−−−−
dim\ c o n s i s t e n c y \ output \ d i m _ p r i m e _ l i n e a r _ b o u n d e d _ d i s c r e t e _ n o z e x _ n o n t r i v i a l t e s t e d wi th : Mace4 , Prove r9

FAILED : dim\ c o n s i s t e n c y \ output \ d i m _ p r i m e _ l i n e a r _ b o u n d e d _ d i s c r e t e _ n o z e x _ n o n t r i v i a l . p9 . out IN 1 .98 ON 2011−4−29 1 7 : 4 3 : 0 0
SUCCESS : dim\ c o n s i s t e n c y \ output \ d i m _ p r i m e _ l i n e a r _ b o u n d e d _ d i s c r e t e _ n o z e x _ n o n t r i v i a l .m4 . out IN 0 .00 ON 2011−4−29 1 7 : 4 2 : 5 8 , MODEL SIZE=3

dim\ output \ d im_bas ic t e s t e d wi th : Mace4 , Prove r9
FAILED : dim\ output \ d im_bas ic . p9 . out IN 0 .00 ON 2012−11−28 1 3 : 4 6 : 0 8

SUCCESS : dim\ output \ d im_bas ic .m4 . out IN 0 .00 ON 2012−11−28 1 3 : 4 6 : 0 8 , MODEL SIZE=2
dim\ output \ d im_pr ime_ l inea r t e s t e d wi th : Mace4 , Prove r9

FAILED : dim\ output \ d im_pr ime_ l inea r . p9 . out IN 0 .00 ON 2011−5−2 1 1 : 2 5 : 4 7
SUCCESS : dim\ output \ d im_pr ime_ l inea r .m4 . out IN 0 .01 ON 2011−5−2 1 1 : 2 5 : 4 7 , MODEL SIZE=3

dim\ output \ d im_pr ime_ l inea r_bounded_d i s c r e t e t e s t e d wi th : Mace4 , Prove r9
FAILED : dim\ output \ d im_pr ime_ l inea r_bounded_d i s c r e t e . p9 . out IN 0 .02 ON 2011−4−29 1 2 : 2 4 : 3 8

SUCCESS : dim\ output \ d im_pr ime_ l inea r_bounded_d i s c r e t e .m4 . out IN 0 .01 ON 2011−4−29 1 2 : 2 4 : 3 8 , MODEL SIZE=3
dim\ theorems \ output \ d im_eqdimposs ib le_theorems_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : dim\ theorems \ output \ d im_eqdimposs ib le_theorems_1 . r e l e v a n c e 1 . p9 . out IN 0 .01 ON 2011−10−21 1 6 : 3 4 : 5 3 , PROOF LENGTH=8
FAILED : dim\ theorems \ output \ d im_eqdimposs ib le_theorems_1 . r e l e v a n c e 1 .m4 . out IN 0 .25 ON 2011−10−21 1 6 : 3 4 : 5 3

dim\ theorems \ output \ d im_eqdimposs ib le_theorems_2 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : dim\ theorems \ output \ d im_eqdimposs ib le_theorems_2 . r e l e v a n c e 1 . p9 . out IN 0 .01 ON 2011−10−21 1 6 : 3 4 : 5 7 , PROOF LENGTH=10

FAILED : dim\ theorems \ output \ d im_eqdimposs ib le_theorems_2 . r e l e v a n c e 1 .m4 . out IN 0 .27 ON 2011−10−21 1 6 : 3 4 : 5 8
dim\ theorems \ output \ d im_eqdimposs ib le_theorems_3 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : dim\ theorems \ output \ d im_eqdimposs ib le_theorems_3 . r e l e v a n c e 1 . p9 . out IN 0 .01 ON 2011−10−21 1 6 : 3 5 : 0 2 , PROOF LENGTH=17
FAILED : dim\ theorems \ output \ d im_eqdimposs ib le_theorems_3 . r e l e v a n c e 1 .m4 . out IN 0 .26 ON 2011−10−21 1 6 : 3 5 : 0 2

dim\ theorems \ output \ d im_eqdimposs ib le_theorems_4 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : dim\ theorems \ output \ d im_eqdimposs ib le_theorems_4 . r e l e v a n c e 1 . p9 . out IN 0 .02 ON 2011−10−21 1 6 : 3 5 : 0 6 , PROOF LENGTH=14

FAILED : dim\ theorems \ output \ d im_eqdimposs ib le_theorems_4 . r e l e v a n c e 1 .m4 . out IN 0 .27 ON 2011−10−21 1 6 : 3 5 : 0 6
dim\ theorems \ output \ d im_eqdimposs ib le_theorems_5 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : dim\ theorems \ output \ d im_eqdimposs ib le_theorems_5 . r e l e v a n c e 1 . p9 . out IN 0 .02 ON 2011−10−21 1 6 : 3 5 : 1 0 , PROOF LENGTH=10
FAILED : dim\ theorems \ output \ d im_eqdimposs ib le_theorems_5 . r e l e v a n c e 1 .m4 . out IN 0 .28 ON 2011−10−21 1 6 : 3 5 : 1 0

dim\ theorems \ output \ dim_pr ime_l inear_unbounded_theorems t e s t e d wi th : Mace4 , Prove r9
FAILED : dim\ theorems \ output \ dim_pr ime_l inear_unbounded_theorems . p9 . out IN 1 .96 ON 2012−12−6 1 7 : 1 8 : 4 4

SUCCESS : dim\ theorems \ output \ dim_pr ime_l inear_unbounded_theorems .m4 . out IN 0 .00 ON 2012−12−6 1 7 : 1 8 : 4 2 , MODEL SIZE=2
dim\ theorems \ output \ dim_prime_l inear_unbounded_theorems_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : dim\ theorems \ output \ dim_prime_l inear_unbounded_theorems_1 . p9 . out IN 0 .01 ON 2012−12−6 1 7 : 1 8 : 4 9 , PROOF LENGTH=8
FAILED : dim\ theorems \ output \ dim_prime_l inear_unbounded_theorems_1 .m4 . out IN 0 .14 ON 2012−12−6 1 7 : 1 8 : 4 9

dim\ theorems \ output \ dim_prime_l inear_unbounded_theorems_2 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : dim\ theorems \ output \ dim_prime_l inear_unbounded_theorems_2 . p9 . out IN 0 .01 ON 2012−12−6 1 7 : 1 8 : 5 3 , PROOF LENGTH=10

FAILED : dim\ theorems \ output \ dim_prime_l inear_unbounded_theorems_2 .m4 . out IN 0 .13 ON 2012−12−6 1 7 : 1 8 : 5 3
dim\ theorems \ output \ dim_prime_l inear_unbounded_theorems_3 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : dim\ theorems \ output \ dim_prime_l inear_unbounded_theorems_3 . p9 . out IN 0 .01 ON 2012−12−6 1 7 : 1 8 : 5 7 , PROOF LENGTH=22
FAILED : dim\ theorems \ output \ dim_prime_l inear_unbounded_theorems_3 .m4 . out IN 0 .13 ON 2012−12−6 1 7 : 1 8 : 5 7

dim\ theorems \ output \ dim_prime_l inear_unbounded_theorems_4 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : dim\ theorems \ output \ dim_prime_l inear_unbounded_theorems_4 . p9 . out IN 0 .01 ON 2012−12−6 1 7 : 1 9 : 0 1 , PROOF LENGTH=10

FAILED : dim\ theorems \ output \ dim_prime_l inear_unbounded_theorems_4 .m4 . out IN 0 .14 ON 2012−12−6 1 7 : 1 9 : 0 1
dim\ theorems \ output \ dim_prime_l inear_unbounded_theorems_5 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : dim\ theorems \ output \ dim_prime_l inear_unbounded_theorems_5 . p9 . out IN 0 .01 ON 2012−12−6 1 7 : 1 9 : 0 5 , PROOF LENGTH=17
FAILED : dim\ theorems \ output \ dim_prime_l inear_unbounded_theorems_5 .m4 . out IN 0 .13 ON 2012−12−6 1 7 : 1 9 : 0 5
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dim\ theorems \ output \ dim_prime_l inear_unbounded_theorems_6 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : dim\ theorems \ output \ dim_prime_l inear_unbounded_theorems_6 . p9 . out IN 0 .01 ON 2012−12−6 1 7 : 1 9 : 0 9 , PROOF LENGTH=7

FAILED : dim\ theorems \ output \ dim_prime_l inear_unbounded_theorems_6 .m4 . out IN 0 .13 ON 2012−12−6 1 7 : 1 9 : 0 9

−−−−
cont
−−−−
cont \ output \ con t_bas i c t e s t e d wi th : Mace4 , Prove r9

FAILED : cont \ output \ con t_bas i c . p9 . out IN 0 .01 ON 2011−4−29 1 2 : 3 4 : 4 6
SUCCESS : cont \ output \ con t_bas i c .m4 . out IN 0 .00 ON 2011−4−29 1 2 : 3 4 : 4 6 , MODEL SIZE=3

cont \ output \ cont_c t e s t e d wi th : Mace4 , Prove r9
FAILED : cont \ output \ cont_c . p9 . out IN 0 .02 ON 2011−4−29 1 2 : 3 6 : 3 6

SUCCESS : cont \ output \ cont_c .m4 . out IN 0 .01 ON 2011−4−29 1 2 : 3 6 : 3 6 , MODEL SIZE=3
cont \ output \cont_c_a5 t e s t e d wi th : Mace4 , Prove r9

FAILED : cont \ output \cont_c_a5 . p9 . out IN 1 .98 ON 2012−5−28 2 0 : 0 0 : 0 9
SUCCESS : cont \ output \cont_c_a5 .m4 . out IN 0 .01 ON 2012−5−28 2 0 : 0 0 : 0 7 , MODEL SIZE=2

cont \ output \ cont_c_ext t e s t e d wi th : Mace4 , Prove r9
FAILED : cont \ output \ cont_c_ext . p9 . out IN 1 .97 ON 2011−4−29 1 2 : 3 7 : 0 2

SUCCESS : cont \ output \ cont_c_ext .m4 . out IN 0 .01 ON 2011−4−29 1 2 : 3 7 : 0 0 , MODEL SIZE=3
cont \ theorems \ output \ cont_bas i c_ex t t e s t e d wi th : Mace4 , Prove r9

FAILED : cont \ theorems \ output \ cont_bas i c_ex t . p9 . out IN 1 .96 ON 2012−5−20 1 6 : 0 4 : 0 7
SUCCESS : cont \ theorems \ output \ cont_bas i c_ex t .m4 . out IN 0 .01 ON 2012−5−20 1 6 : 0 4 : 0 5 , MODEL SIZE=2

cont \ theorems \ output \ cont_bas ic_ext_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : cont \ theorems \ output \ cont_bas ic_ext_1 . p9 . out IN 0 .01 ON 2012−10−30 1 3 : 3 8 : 5 0 , PROOF LENGTH=21

FAILED : cont \ theorems \ output \ cont_bas ic_ext_1 .m4 . out IN 0 .06 ON 2012−10−30 1 3 : 3 8 : 5 0
cont \ theorems \ output \ cont_c_theorems t e s t e d wi th : Mace4 , Prove r9

FAILED : cont \ theorems \ output \ cont_c_theorems . p9 . out IN 1 .94 ON 2012−10−30 1 4 : 0 1 : 0 4
SUCCESS : cont \ theorems \ output \ cont_c_theorems .m4 . out IN 0 .01 ON 2012−10−30 1 4 : 0 1 : 0 2 , MODEL SIZE=2

cont \ theorems \ output \ cont_c_theorems_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : cont \ theorems \ output \ cont_c_theorems_1 . p9 . out IN 0 .01 ON 2012−10−30 1 4 : 0 1 : 0 8 , PROOF LENGTH=10

FAILED : cont \ theorems \ output \ cont_c_theorems_1 .m4 . out IN 0 .11 ON 2012−10−30 1 4 : 0 1 : 0 8
cont \ theorems \ output \ cont_c_theorems_2 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : cont \ theorems \ output \ cont_c_theorems_2 . p9 . out IN 0 .01 ON 2012−10−30 1 4 : 0 1 : 1 2 , PROOF LENGTH=10
FAILED : cont \ theorems \ output \ cont_c_theorems_2 .m4 . out IN 0 .11 ON 2012−10−30 1 4 : 0 1 : 1 2

cont \ theorems \ output \ cont_c_theorems_3 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : cont \ theorems \ output \ cont_c_theorems_3 . p9 . out IN 0 .01 ON 2012−10−30 1 4 : 0 1 : 1 6 , PROOF LENGTH=10

FAILED : cont \ theorems \ output \ cont_c_theorems_3 .m4 . out IN 0 .11 ON 2012−10−30 1 4 : 0 1 : 1 6
cont \ theorems \ output \ cont_c_theorems_4 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : cont \ theorems \ output \ cont_c_theorems_4 . p9 . out IN 0 .01 ON 2012−10−30 1 4 : 0 1 : 2 0 , PROOF LENGTH=15
FAILED : cont \ theorems \ output \ cont_c_theorems_4 .m4 . out IN 0 .11 ON 2012−10−30 1 4 : 0 1 : 2 0

−−−−
c o d i
−−−−
c o d i \ c o n s i s t e n c y \ output \ c o d i _ d o w n _ n o n t r i v i a l t e s t e d wi th : Mace4 , Paradox3

FAILED : c o d i \ c o n s i s t e n c y \ output \ c o d i _ d o w n _ n o n t r i v i a l .m4 . out IN 600 .07 ON 2012−9−22 1 1 : 4 7 : 4 3
SUCCESS : c o d i \ c o n s i s t e n c y \ output \ c o d i _ d o w n _ n o n t r i v i a l . t p tp . out , MODEL SIZE=10

c o d i \ c o n s i s t e n c y \ output \ c o d i _ d o w n _ s i m p l e _ n o n t r i v i a l t e s t e d wi th : Mace4 , Prover9 , Paradox3
FAILED : c o d i \ c o n s i s t e n c y \ output \ c o d i _ d o w n _ s i m p l e _ n o n t r i v i a l . p9 . out IN 1 .91 ON 2012−11−4 1 0 : 1 5 : 4 9

SUCCESS : c o d i \ c o n s i s t e n c y \ output \ c o d i _ d o w n _ s i m p l e _ n o n t r i v i a l .m4 . out IN 0 .02 ON 2012−11−4 1 0 : 1 5 : 4 7 , MODEL SIZE=4
SUCCESS : c o d i \ c o n s i s t e n c y \ output \ c o d i _ d o w n _ s i m p l e _ n o n t r i v i a l . t p tp . out , MODEL SIZE=4

c o d i \ c o n s i s t e n c y \ output \ cod i_down_sum_nontr iv ia l t e s t e d wi th : Mace4 , Paradox3
FAILED : c o d i \ c o n s i s t e n c y \ output \ cod i_down_sum_nontr iv ia l .m4 . out IN 6000.03 ON 2012−2−27 1 8 : 5 5 : 3 5

SUCCESS : c o d i \ c o n s i s t e n c y \ output \ cod i_down_sum_nontr i v ia l . t p tp . out , MODEL SIZE=7
c o d i \ c o n s i s t e n c y \ output \ cod i_down_sum_pr ime_nontr iv ia l t e s t e d wi th : Mace4

SUCCESS : c o d i \ c o n s i s t e n c y \ output \ cod i_down_sum_pr ime_nontr iv ia l .m4 . out IN 0 .03 ON 2012−7−9 1 2 : 4 5 : 5 7 , MODEL SIZE=4
c o d i \ c o n s i s t e n c y \ output \ cod i_down_sum_theorems_nontr iv ia l t e s t e d wi th : Paradox3

SUCCESS : c o d i \ c o n s i s t e n c y \ output \ cod i_down_sum_theorems_nontr iv ia l . t p tp . out , MODEL SIZE=8
c o d i \ c o n s i s t e n c y \ output \ c o d i _ i n t _ n o n t r i v i a l t e s t e d wi th : Mace4 , Paradox3

FAILED : c o d i \ c o n s i s t e n c y \ output \ c o d i _ i n t _ n o n t r i v i a l .m4 . out IN 6000.01 ON 2011−4−29 1 9 : 0 7 : 3 5
SUCCESS : c o d i \ c o n s i s t e n c y \ output \ c o d i _ i n t _ n o n t r i v i a l . t p tp . out , MODEL SIZE=7

c o d i \ c o n s i s t e n c y \ output \ c o d i _ i n t _ s i m p l e _ n o n t r i v i a l t e s t e d wi th : Paradox3
SUCCESS : c o d i \ c o n s i s t e n c y \ output \ c o d i _ i n t _ s i m p l e _ n o n t r i v i a l . t p tp . out , MODEL SIZE=4

c o d i \ c o n s i s t e n c y \ output \ c o d i _ l i n e a r _ n o n t r i v i a l t e s t e d wi th : Mace4 , Paradox3
FAILED : c o d i \ c o n s i s t e n c y \ output \ c o d i _ l i n e a r _ n o n t r i v i a l .m4 . out IN 6000.02 ON 2011−4−29 1 4 : 4 2 : 3 3

SUCCESS : c o d i \ c o n s i s t e n c y \ output \ c o d i _ l i n e a r _ n o n t r i v i a l . t p tp . out , MODEL SIZE=4
c o d i \ c o n s i s t e n c y \ output \ c o d i _ l i n e a r _ n o z e x _ n o n t r i v i a l t e s t e d wi th : Mace4 , Paradox3

SUCCESS : c o d i \ c o n s i s t e n c y \ output \ c o d i _ l i n e a r _ n o z e x _ n o n t r i v i a l .m4 . out IN 0 .01 ON 2012−7−9 1 3 : 0 5 : 2 7 , MODEL SIZE=3
SUCCESS : c o d i \ c o n s i s t e n c y \ output \ c o d i _ l i n e a r _ n o z e x _ n o n t r i v i a l . t p tp . out , MODEL SIZE=5

c o d i \ c o n s i s t e n c y \ output \ c o d i _ l i n e a r _ z e x _ n o n t r i v i a l t e s t e d wi th : Mace4 , Prover9 , Paradox3
FAILED : c o d i \ c o n s i s t e n c y \ output \ c o d i _ l i n e a r _ z e x _ n o n t r i v i a l . p9 . out IN 600 .14 ON 2012−11−4 1 0 : 2 6 : 2 7
FAILED : c o d i \ c o n s i s t e n c y \ output \ c o d i _ l i n e a r _ z e x _ n o n t r i v i a l .m4 . out IN 600.02 ON 2012−11−4 1 0 : 2 6 : 3 1

SUCCESS : c o d i \ c o n s i s t e n c y \ output \ c o d i _ l i n e a r _ z e x _ n o n t r i v i a l . t p tp . out , MODEL SIZE=6
c o d i \ c o n s i s t e n c y \ output \ c o d i _ p l p _ a f f _ n o n t r i v i a l t e s t e d wi th : Paradox3

SUCCESS : c o d i \ c o n s i s t e n c y \ output \ c o d i _ p l p _ a f f _ n o n t r i v i a l . t p tp . out , MODEL SIZE=11
c o d i \ c o n s i s t e n c y \ output \ c o d i _ p l p _ l i n _ n o n t r i v i a l t e s t e d wi th : Paradox3

SUCCESS : c o d i \ c o n s i s t e n c y \ output \ c o d i _ p l p _ l i n _ n o n t r i v i a l . t p tp . out , MODEL SIZE=14
c o d i \ c o n s i s t e n c y \ output \ c o d i _ p l p _ s l i n _ n o n t r i v i a l t e s t e d wi th : Mace4 , Paradox3

FAILED : c o d i \ c o n s i s t e n c y \ output \ c o d i _ p l p _ s l i n _ n o n t r i v i a l .m4 . out IN 436.14 ON 2012−8−21 1 3 : 1 3 : 1 8
SUCCESS : c o d i \ c o n s i s t e n c y \ output \ c o d i _ p l p _ s l i n _ n o n t r i v i a l . t p tp . out , MODEL SIZE=5

c o d i \ c o n s i s t e n c y \ output \ cod i_updown_nont r i v i a l t e s t e d wi th : Mace4 , Paradox3
FAILED : c o d i \ c o n s i s t e n c y \ output \ cod i_updown_nont r i v i a l .m4 . out IN 6000.12 ON 2012−2−24 1 7 : 4 5 : 4 6

SUCCESS : c o d i \ c o n s i s t e n c y \ output \ cod i_updown_nont r i v i a l . t p tp . out , MODEL SIZE=8
c o d i \ c o n s i s t e n c y \ output \ c o n n e c t e d _ n o n t r i v i a l t e s t e d wi th : Mace4

SUCCESS : c o d i \ c o n s i s t e n c y \ output \ c o n n e c t e d _ n o n t r i v i a l .m4 . out IN 3 .03 ON 2012−4−9 1 6 : 3 8 : 3 6 , MODEL SIZE=7
c o d i \ c o n s i s t e n c y \ output \ con_icon_notucon t e s t e d wi th : Mace4 , Paradox3
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SUCCESS : c o d i \ c o n s i s t e n c y \ output \ con_icon_notucon .m4 . out IN 0 .02 ON 2012−4−9 1 6 : 3 9 : 4 5 , MODEL SIZE=2
SUCCESS : c o d i \ c o n s i s t e n c y \ output \ con_icon_notucon . tp tp . out , MODEL SIZE=6

c o d i \ c o n s i s t e n c y \ output \ con_not icon_notucon t e s t e d wi th : Mace4 , Paradox3
SUCCESS : c o d i \ c o n s i s t e n c y \ output \ con_not icon_notucon .m4 . out IN 0 .01 ON 2012−4−9 1 6 : 3 9 : 3 2 , MODEL SIZE=2
SUCCESS : c o d i \ c o n s i s t e n c y \ output \ con_not icon_notucon . tp tp . out , MODEL SIZE=7

c o d i \ c o n s i s t e n c y \ output \ con_ucon_not icon t e s t e d wi th : Mace4 , Paradox3
SUCCESS : c o d i \ c o n s i s t e n c y \ output \ con_ucon_not icon .m4 . out IN 0 .02 ON 2012−4−9 1 6 : 3 9 : 1 0 , MODEL SIZE=2
SUCCESS : c o d i \ c o n s i s t e n c y \ output \ con_ucon_not icon . tp tp . out , MODEL SIZE=6

c o d i \ c o n s i s t e n c y \ output \ p l _ a f f _ n o n t r i v i a l t e s t e d wi th : Paradox3
SUCCESS : c o d i \ c o n s i s t e n c y \ output \ p l _ a f f _ n o n t r i v i a l . t p tp . out , MODEL SIZE=10

c o d i \ c o n s i s t e n c y \ output \ p l _ l i n _ n o n t r i v i a l t e s t e d wi th : Paradox3
SUCCESS : c o d i \ c o n s i s t e n c y \ output \ p l _ l i n _ n o n t r i v i a l . t p tp . out , MODEL SIZE=10

c o d i \ c o n s i s t e n c y \ output \ p l _ s l i n _ n o n t r i v i a l t e s t e d wi th : Paradox3
SUCCESS : c o d i \ c o n s i s t e n c y \ output \ p l _ s l i n _ n o n t r i v i a l . t p tp . out , MODEL SIZE=3

c o d i \ d e f s \ output \ connected t e s t e d wi th : Mace4 , Prove r9
FAILED : c o d i \ d e f s \ output \ connected . p9 . out IN 1 .91 ON 2012−11−4 1 1 : 1 9 : 2 9

SUCCESS : c o d i \ d e f s \ output \ connected .m4 . out IN 0 .01 ON 2012−11−4 1 1 : 1 9 : 2 7 , MODEL SIZE=2
c o d i \ output \ c o d i t e s t e d wi th : Mace4 , Prove r9

FAILED : c o d i \ output \ c o d i . p9 . out IN 1 .97 ON 2012−5−28 2 0 : 0 5 : 1 6
SUCCESS : c o d i \ output \ c o d i .m4 . out IN 0 .01 ON 2012−5−28 2 0 : 0 5 : 1 4 , MODEL SIZE=2

c o d i \ output \ c o d i _ b a s i c t e s t e d wi th : Mace4 , Prove r9
FAILED : c o d i \ output \ c o d i _ b a s i c . p9 . out IN 1 .98 ON 2012−5−28 2 0 : 0 2 : 5 6

SUCCESS : c o d i \ output \ c o d i _ b a s i c .m4 . out IN 0 .01 ON 2012−5−28 2 0 : 0 2 : 5 4 , MODEL SIZE=2
c o d i \ output \codi_down t e s t e d wi th : Mace4 , Prove r9

FAILED : c o d i \ output \codi_down . p9 . out IN 0 .69 ON 2011−11−15 1 4 : 5 0 : 0 1
SUCCESS : c o d i \ output \codi_down .m4 . out IN 0 .01 ON 2011−11−15 1 4 : 4 9 : 5 9 , MODEL SIZE=3

c o d i \ output \codi_down_sum t e s t e d wi th : Mace4 , Prove r9
FAILED : c o d i \ output \codi_down_sum . p9 . out IN 6000.00 ON 2011−11−18 1 9 : 5 8 : 4 6

SUCCESS : c o d i \ output \codi_down_sum .m4 . out IN 600 .02 ON 2011−11−18 1 8 : 2 8 : 1 5 , MODEL SIZE=4
c o d i \ output \codi_down_sum_prime t e s t e d wi th : Mace4 , Prove r9

FAILED : c o d i \ output \codi_down_sum_prime . p9 . out IN 1 .95 ON 2012−7−9 1 2 : 4 2 : 5 5
SUCCESS : c o d i \ output \codi_down_sum_prime .m4 . out IN 0 .01 ON 2012−7−9 1 2 : 4 2 : 5 3 , MODEL SIZE=2

c o d i \ output \ c o d i _ l i n e a r t e s t e d wi th : Mace4 , Prove r9
FAILED : c o d i \ output \ c o d i _ l i n e a r . p9 . out IN 1 .97 ON 2012−5−28 2 0 : 0 5 : 0 1

SUCCESS : c o d i \ output \ c o d i _ l i n e a r .m4 . out IN 0 .01 ON 2012−5−28 2 0 : 0 4 : 5 9 , MODEL SIZE=2
c o d i \ output \ codi_plp_g t e s t e d wi th : Paradox3

SUCCESS : c o d i \ output \ codi_plp_g . tp tp . out , MODEL SIZE=1
c o d i \ output \ c o d i _ p l p _ s l i n t e s t e d wi th : Mace4 , Prove r9

FAILED : c o d i \ output \ c o d i _ p l p _ s l i n . p9 . out IN 1 .95 ON 2012−8−21 1 2 : 5 2 : 2 3
SUCCESS : c o d i \ output \ c o d i _ p l p _ s l i n .m4 . out IN 0 .02 ON 2012−8−21 1 2 : 5 2 : 2 1 , MODEL SIZE=2

c o d i \ output \ c o d i _ p l _ a f f t e s t e d wi th : Mace4 , Prove r9
FAILED : c o d i \ output \ c o d i _ p l _ a f f . p9 . out IN 1 .93 ON 2012−8−21 1 1 : 2 6 : 0 3

SUCCESS : c o d i \ output \ c o d i _ p l _ a f f .m4 . out IN 0 .27 ON 2012−8−21 1 1 : 2 6 : 0 1 , MODEL SIZE=10
c o d i \ output \ c o d i _ p l _ l i n t e s t e d wi th : Mace4 , Prove r9

FAILED : c o d i \ output \ c o d i _ p l _ l i n . p9 . out IN 1 .95 ON 2012−8−21 1 1 : 2 3 : 4 0
SUCCESS : c o d i \ output \ c o d i _ p l _ l i n .m4 . out IN 0 .01 ON 2012−8−21 1 1 : 2 3 : 3 8 , MODEL SIZE=2

c o d i \ output \ c o d i _ p l _ s l i n t e s t e d wi th : Mace4 , Prove r9
FAILED : c o d i \ output \ c o d i _ p l _ s l i n . p9 . out IN 1 .86 ON 2012−8−21 1 1 : 2 3 : 3 0

SUCCESS : c o d i \ output \ c o d i _ p l _ s l i n .m4 . out IN 0 .01 ON 2012−8−21 1 1 : 2 3 : 2 8 , MODEL SIZE=2
c o d i \ output \ codi_updown t e s t e d wi th : Mace4 , Prove r9

FAILED : c o d i \ output \codi_updown . p9 . out IN 1 .97 ON 2011−5−5 2 1 : 4 6 : 2 5
SUCCESS : c o d i \ output \codi_updown .m4 . out IN 0 .02 ON 2011−5−5 2 1 : 4 6 : 2 3 , MODEL SIZE=3

c o d i \ theorems \ output \codi_down_sum_commutative_theorems_1 t e s t e d wi th : Mace4 , Prove r9
FAILED : c o d i \ theorems \ output \codi_down_sum_commutative_theorems_1 . r e l e v a n c e 1 . p9 . out IN 1 .92 ON 2011−10−20 1 6 : 4 5 : 3 0

SUCCESS : c o d i \ theorems \ output \codi_down_sum_commutative_theorems_1 . r e l e v a n c e 1 .m4 . out IN 0 .02 ON 2011−10−20 1 6 : 4 5 : 2 8 , MODEL SIZE=3
c o d i \ theorems \ output \codi_down_sum_theorems t e s t e d wi th : Mace4 , Prove r9

FAILED : c o d i \ theorems \ output \codi_down_sum_theorems . p9 . out IN 1 .90 ON 2012−11−21 1 1 : 1 8 : 5 4
SUCCESS : c o d i \ theorems \ output \codi_down_sum_theorems .m4 . out IN 0 .01 ON 2012−11−21 1 1 : 1 8 : 5 2 , MODEL SIZE=2

c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_1 t e s t e d wi th : Mace4 , Prover9 , Vampire
UNKNOWN: c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_1

FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_1 . r e l e v a n c e 1 . p9 . out IN 600 .00 ON 2011−11−29 2 0 : 0 4 : 4 5
FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_1 . vam . out IN 119 .9
FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_1 . r e l e v a n c e 1 .m4 . out IN 600 .02 ON 2011−11−29 2 0 : 0 4 : 5 2

c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_2 t e s t e d wi th : Mace4 , Prover9 , Vampire
UNKNOWN: c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_2

FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_2 . r e l e v a n c e 1 . p9 . out IN 600 .00 ON 2011−11−29 2 0 : 1 4 : 5 6
FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_2 . vam . out IN 119 .8
FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_2 . r e l e v a n c e 1 .m4 . out IN 600 .03 ON 2011−11−29 2 0 : 1 5 : 0 2

c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_3 t e s t e d wi th : Mace4 , Prover9 , Vampire
SUCCESS : c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_3 . r e l e v a n c e 1 . p9 . out IN 0 .48 ON 2011−11−29 2 0 : 1 5 : 0 6 , PROOF LENGTH=52
SUCCESS : c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_3 . vam . out IN 0 .69

FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_3 . r e l e v a n c e 1 .m4 . out IN 1 .95 ON 2011−11−29 2 0 : 1 5 : 0 7
c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_4 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_4 . r e l e v a n c e 1 . p9 . out IN 3 .36 ON 2011−11−29 2 0 : 1 5 : 1 5 , PROOF LENGTH=93
SUCCESS : c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_4 . vam . out IN 0 .539

FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_4 . r e l e v a n c e 1 .m4 . out IN 3 .96 ON 2011−11−29 2 0 : 1 5 : 1 5
c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_5 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_5 . r e l e v a n c e 1 . p9 . out IN 0 .03 ON 2011−11−29 2 0 : 1 5 : 2 0 , PROOF LENGTH=8
SUCCESS : c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_5 . vam . out IN 0 .437

FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_5 . r e l e v a n c e 1 .m4 . out IN 1 .96 ON 2011−11−29 2 0 : 1 5 : 2 2
c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_6 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_6 . r e l e v a n c e 1 . p9 . out IN 0 .04 ON 2011−11−29 2 0 : 1 5 : 2 6 , PROOF LENGTH=8
SUCCESS : c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_6 . vam . out IN 0 .406

FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_6 . r e l e v a n c e 1 .m4 . out IN 1 .96 ON 2011−11−29 2 0 : 1 5 : 2 8
c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_7 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_7 . r e l e v a n c e 1 . p9 . out IN 0 .03 ON 2011−11−29 2 0 : 1 5 : 3 2 , PROOF LENGTH=8
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SUCCESS : c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_7 . vam . out IN 0 .446
FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_7 . r e l e v a n c e 1 .m4 . out IN 1 .93 ON 2011−11−29 2 0 : 1 5 : 3 4

c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_8 t e s t e d wi th : Mace4 , Prover9 , Vampire
UNKNOWN: c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_8

FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_8 . r e l e v a n c e 1 . p9 . out IN 600.00 ON 2011−11−29 2 0 : 2 5 : 4 1
FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_8 . vam . out IN 119 .9
FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst11−t14_8 . r e l e v a n c e 1 .m4 . out IN 600 .01 ON 2011−11−29 2 0 : 2 5 : 4 7

c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20 t e s t e d wi th : Mace4 , Prove r9
FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20 . p9 . out IN 1 .93 ON 2012−11−21 1 3 : 5 6 : 1 2

SUCCESS : c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20 .m4 . out IN 0 .02 ON 2012−11−21 1 3 : 5 6 : 1 0 , MODEL SIZE=2
c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_1 t e s t e d wi th : Mace4 , Prover9 , Vampire

UNKNOWN: c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_1
FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_1 . p9 . out IN 600 .01 ON 2012−11−21 1 2 : 0 3 : 2 8
FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_1 . vam . out IN 599.73
FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_1 .m4 . out IN 600 .03 ON 2012−11−21 1 2 : 0 3 : 2 7

c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_2 t e s t e d wi th : Mace4 , Prover9 , Vampire
UNKNOWN: c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_2

FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_2 . p9 . out IN 600 .01 ON 2012−11−21 1 2 : 1 3 : 4 1
FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_2 . vam . out IN 599.73
FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_2 .m4 . out IN 600 .02 ON 2012−11−21 1 2 : 1 3 : 4 2

c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_3 t e s t e d wi th : Mace4 , Prover9 , Vampire
UNKNOWN: c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_3

FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_3 . p9 . out IN 600 .01 ON 2012−11−21 1 2 : 2 3 : 5 9
FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_3 . vam . out IN 599.569
FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_3 .m4 . out IN 600 .04 ON 2012−11−21 1 2 : 2 4 : 0 4

c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_4 t e s t e d wi th : Mace4 , Prover9 , Vampire
UNKNOWN: c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_4

FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_4 . p9 . out IN 600 .01 ON 2012−11−21 1 2 : 3 4 : 1 3
FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_4 . vam . out IN 599 .8
FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_4 .m4 . out IN 600 .06 ON 2012−11−21 1 2 : 3 4 : 1 1

c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_5 t e s t e d wi th : Mace4 , Prover9 , Vampire
SUCCESS : c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_5 . p9 . out IN 0 .04 ON 2012−11−21 1 2 : 3 4 : 1 5 , PROOF LENGTH=23
SUCCESS : c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_5 . vam . out IN 0 .444

FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_5 .m4 . out IN 1 .87 ON 2012−11−21 1 2 : 3 4 : 1 7
c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_6 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_6 . p9 . out IN 0 .05 ON 2012−11−21 1 2 : 3 4 : 2 1 , PROOF LENGTH=23
SUCCESS : c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_6 . vam . out IN 0 .062

FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_6 .m4 . out IN 1 .92 ON 2012−11−21 1 2 : 3 4 : 2 3
c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_7 t e s t e d wi th : Mace4 , Prover9 , Vampire

UNKNOWN: c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_7
FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_7 . p9 . out IN 600 .00 ON 2012−11−21 1 2 : 4 4 : 3 2
FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_7 . vam . out IN 599 .8
FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_7 .m4 . out IN 600 .03 ON 2012−11−21 1 2 : 4 4 : 3 6

c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_8 t e s t e d wi th : Mace4 , Prover9 , Vampire
UNKNOWN: c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_8

FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_8 . p9 . out IN 600 .01 ON 2012−11−21 1 2 : 5 4 : 4 6
FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_8 . vam . out IN 599 .7
FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_8 .m4 . out IN 600 .02 ON 2012−11−21 1 2 : 5 4 : 4 5

c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_9 t e s t e d wi th : Mace4 , Prover9 , Vampire
UNKNOWN: c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_9

FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_9 . p9 . out IN 600 .00 ON 2012−11−21 1 3 : 0 4 : 5 5
FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_9 . vam . out IN 599.704
FAILED : c o d i \ theorems \ output \ codi_down_sum_theoremst15−t20_9 .m4 . out IN 600 .02 ON 2012−11−21 1 3 : 0 4 : 5 3

c o d i \ theorems \ output \codi_down_sum_theorems_1 t e s t e d wi th : Mace4 , Prover9 , Vampire
SUCCESS : c o d i \ theorems \ output \codi_down_sum_theorems_1 . p9 . out IN 0 .39 ON 2012−11−21 1 1 : 1 9 : 0 1 , PROOF LENGTH=24
SUCCESS : c o d i \ theorems \ output \codi_down_sum_theorems_1 . vam . out IN 0 .024

FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_1 .m4 . out IN 1 .84 ON 2012−11−21 1 1 : 1 9 : 0 3
c o d i \ theorems \ output \codi_down_sum_theorems_10 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c o d i \ theorems \ output \codi_down_sum_theorems_10 . p9 . out IN 0 .84 ON 2012−11−21 1 2 : 0 0 : 0 8 , PROOF LENGTH=33
SUCCESS : c o d i \ theorems \ output \codi_down_sum_theorems_10 . vam . out IN 0 .611

FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_10 .m4 . out IN 1 .68 ON 2012−11−21 1 2 : 0 0 : 0 9
c o d i \ theorems \ output \codi_down_sum_theorems_11 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c o d i \ theorems \ output \codi_down_sum_theorems_11 . p9 . out IN 0 .03 ON 2012−11−21 1 2 : 0 0 : 1 3 , PROOF LENGTH=7
SUCCESS : c o d i \ theorems \ output \codi_down_sum_theorems_11 . vam . out IN 0 .017

FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_11 .m4 . out IN 1 .91 ON 2012−11−21 1 2 : 0 0 : 1 5
c o d i \ theorems \ output \codi_down_sum_theorems_12 t e s t e d wi th : Mace4 , Prover9 , Vampire

FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_12 . p9 . out IN 600 .01 ON 2012−11−21 1 2 : 1 0 : 2 5
SUCCESS : c o d i \ theorems \ output \codi_down_sum_theorems_12 . vam . out IN 18.199

FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_12 .m4 . out IN 600.08 ON 2012−11−21 1 2 : 1 0 : 2 4
c o d i \ theorems \ output \codi_down_sum_theorems_13 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c o d i \ theorems \ output \codi_down_sum_theorems_13 . p9 . out IN 0 .05 ON 2012−11−21 1 2 : 1 0 : 2 8 , PROOF LENGTH=13
SUCCESS : c o d i \ theorems \ output \codi_down_sum_theorems_13 . vam . out IN 0 .008

FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_13 .m4 . out IN 1 .85 ON 2012−11−21 1 2 : 1 0 : 3 0
c o d i \ theorems \ output \codi_down_sum_theorems_14 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c o d i \ theorems \ output \codi_down_sum_theorems_14 . p9 . out IN 0 .02 ON 2012−11−21 1 2 : 1 0 : 3 4 , PROOF LENGTH=5
SUCCESS : c o d i \ theorems \ output \codi_down_sum_theorems_14 . vam . out IN 0 .006

FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_14 .m4 . out IN 1 .88 ON 2012−11−21 1 2 : 1 0 : 3 6
c o d i \ theorems \ output \codi_down_sum_theorems_15 t e s t e d wi th : Mace4 , Prover9 , Vampire

UNKNOWN: c o d i \ theorems \ output \codi_down_sum_theorems_15
FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_15 . p9 . out IN 600 .01 ON 2012−11−21 1 2 : 2 1 : 1 4
FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_15 . vam . out IN 599.581
FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_15 .m4 . out IN 600.04 ON 2012−11−21 1 2 : 2 1 : 1 2

c o d i \ theorems \ output \codi_down_sum_theorems_16 t e s t e d wi th : Mace4 , Prover9 , Vampire
UNKNOWN: c o d i \ theorems \ output \codi_down_sum_theorems_16

FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_16 . p9 . out IN 600 .00 ON 2012−11−21 1 2 : 3 1 : 2 3
FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_16 . vam . out IN 599.836
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FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_16 .m4 . out IN 600.03 ON 2012−11−21 1 2 : 3 1 : 2 3
c o d i \ theorems \ output \codi_down_sum_theorems_17 t e s t e d wi th : Mace4 , Prover9 , Vampire

UNKNOWN: c o d i \ theorems \ output \codi_down_sum_theorems_17
FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_17 . p9 . out IN 600.01 ON 2012−11−21 1 2 : 4 1 : 3 2
FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_17 . vam . out IN 599 .8
FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_17 .m4 . out IN 600.04 ON 2012−11−21 1 2 : 4 1 : 3 2

c o d i \ theorems \ output \codi_down_sum_theorems_18 t e s t e d wi th : Mace4 , Prover9 , Vampire
UNKNOWN: c o d i \ theorems \ output \codi_down_sum_theorems_18

FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_18 . p9 . out IN 600.01 ON 2012−11−21 1 2 : 5 1 : 4 0
FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_18 . vam . out IN 599 .8
FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_18 .m4 . out IN 600.04 ON 2012−11−21 1 2 : 5 1 : 4 2

c o d i \ theorems \ output \codi_down_sum_theorems_19 t e s t e d wi th : Mace4 , Prover9 , Vampire
UNKNOWN: c o d i \ theorems \ output \codi_down_sum_theorems_19

FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_19 . p9 . out IN 600.00 ON 2012−11−21 1 3 : 0 1 : 5 0
FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_19 . vam . out IN 599.727
FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_19 .m4 . out IN 600.02 ON 2012−11−21 1 3 : 0 1 : 5 0

c o d i \ theorems \ output \codi_down_sum_theorems_2 t e s t e d wi th : Mace4 , Prover9 , Vampire
SUCCESS : c o d i \ theorems \ output \codi_down_sum_theorems_2 . p9 . out IN 2 .53 ON 2012−11−21 1 1 : 1 9 : 0 9 , PROOF LENGTH=110
SUCCESS : c o d i \ theorems \ output \codi_down_sum_theorems_2 . vam . out IN 2 .129

FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_2 .m4 . out IN 3 .21 ON 2012−11−21 1 1 : 1 9 : 1 0
c o d i \ theorems \ output \codi_down_sum_theorems_20 t e s t e d wi th : Mace4 , Prover9 , Vampire

UNKNOWN: c o d i \ theorems \ output \codi_down_sum_theorems_20
FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_20 . p9 . out IN 600 .01 ON 2012−11−21 1 3 : 1 2 : 0 0
FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_20 . vam . out IN 599.737
FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_20 .m4 . out IN 600.12 ON 2012−11−21 1 3 : 1 1 : 5 7

c o d i \ theorems \ output \codi_down_sum_theorems_3 t e s t e d wi th : Mace4 , Prover9 , Vampire
FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_3 . p9 . out IN 600.00 ON 2012−11−21 1 1 : 2 9 : 2 0

SUCCESS : c o d i \ theorems \ output \codi_down_sum_theorems_3 . vam . out IN 310.693
FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_3 .m4 . out IN 600 .04 ON 2012−11−21 1 1 : 2 9 : 1 7

c o d i \ theorems \ output \codi_down_sum_theorems_4 t e s t e d wi th : Mace4 , Prover9 , Vampire
SUCCESS : c o d i \ theorems \ output \codi_down_sum_theorems_4 . p9 . out IN 0 .19 ON 2012−11−21 1 1 : 2 9 : 2 4 , PROOF LENGTH=39
SUCCESS : c o d i \ theorems \ output \codi_down_sum_theorems_4 . vam . out IN 0 .057

FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_4 .m4 . out IN 1 .91 ON 2012−11−21 1 1 : 2 9 : 2 5
c o d i \ theorems \ output \codi_down_sum_theorems_5 t e s t e d wi th : Mace4 , Prover9 , Vampire

UNKNOWN: c o d i \ theorems \ output \codi_down_sum_theorems_5
FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_5 . p9 . out IN 600.00 ON 2012−11−21 1 1 : 3 9 : 3 5
FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_5 . vam . out IN 599.704
FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_5 .m4 . out IN 600 .03 ON 2012−11−21 1 1 : 3 9 : 3 4

c o d i \ theorems \ output \codi_down_sum_theorems_6 t e s t e d wi th : Mace4 , Prover9 , Vampire
SUCCESS : c o d i \ theorems \ output \codi_down_sum_theorems_6 . p9 . out IN 0 .42 ON 2012−11−21 1 1 : 3 9 : 3 8 , PROOF LENGTH=50

FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_6 . vam . out IN 599.731
FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_6 .m4 . out IN 1 .89 ON 2012−11−21 1 1 : 3 9 : 4 0

c o d i \ theorems \ output \codi_down_sum_theorems_7 t e s t e d wi th : Mace4 , Prover9 , Vampire
SUCCESS : c o d i \ theorems \ output \codi_down_sum_theorems_7 . p9 . out IN 7 .26 ON 2012−11−21 1 1 : 3 9 : 5 1 , PROOF LENGTH=107
SUCCESS : c o d i \ theorems \ output \codi_down_sum_theorems_7 . vam . out IN 413 .57

FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_7 .m4 . out IN 2 .00 ON 2012−11−21 1 1 : 3 9 : 4 6
c o d i \ theorems \ output \codi_down_sum_theorems_8 t e s t e d wi th : Mace4 , Prover9 , Vampire

UNKNOWN: c o d i \ theorems \ output \codi_down_sum_theorems_8
FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_8 . p9 . out IN 600.00 ON 2012−11−21 1 1 : 4 9 : 5 8
FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_8 . vam . out IN 599.703
FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_8 .m4 . out IN 600 .03 ON 2012−11−21 1 1 : 4 9 : 5 7

c o d i \ theorems \ output \codi_down_sum_theorems_9 t e s t e d wi th : Mace4 , Prover9 , Vampire
UNKNOWN: c o d i \ theorems \ output \codi_down_sum_theorems_9

FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_9 . p9 . out IN 600.01 ON 2012−11−21 1 2 : 0 0 : 0 5
FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_9 . vam . out IN 599.832
FAILED : c o d i \ theorems \ output \codi_down_sum_theorems_9 .m4 . out IN 600 .04 ON 2012−11−21 1 2 : 0 0 : 0 4

c o d i \ theorems \ output \ codi_down_theoremsep−e1_1 t e s t e d wi th : Mace4 , Prover9 , Vampire
SUCCESS : c o d i \ theorems \ output \ codi_down_theoremsep−e1_1 . r e l e v a n c e 1 . p9 . out IN 1 .99 ON 2011−11−24 1 9 : 4 0 : 2 4 , PROOF LENGTH=37
SUCCESS : c o d i \ theorems \ output \ codi_down_theoremsep−e1_1 . vam . out IN 0 .511

FAILED : c o d i \ theorems \ output \ codi_down_theoremsep−e1_1 . r e l e v a n c e 1 .m4 . out IN 3 .94 ON 2011−11−24 1 9 : 4 0 : 2 6
c o d i \ theorems \ output \ codi_down_theoremsep−e2_1 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c o d i \ theorems \ output \ codi_down_theoremsep−e2_1 . r e l e v a n c e 1 . p9 . out IN 113 .01 ON 2011−11−24 1 9 : 4 2 : 2 9 , PROOF LENGTH=153
SUCCESS : c o d i \ theorems \ output \ codi_down_theoremsep−e2_1 . vam . out IN 0 .526

FAILED : c o d i \ theorems \ output \ codi_down_theoremsep−e2_1 . r e l e v a n c e 1 .m4 . out IN 113 .91 ON 2011−11−24 1 9 : 4 2 : 2 9
c o d i \ theorems \ output \ codi_down_theoremsep−e2_2 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c o d i \ theorems \ output \ codi_down_theoremsep−e2_2 . r e l e v a n c e 1 . p9 . out IN 0 .37 ON 2011−11−24 1 9 : 4 2 : 3 4 , PROOF LENGTH=23
SUCCESS : c o d i \ theorems \ output \ codi_down_theoremsep−e2_2 . vam . out IN 0 .011

FAILED : c o d i \ theorems \ output \ codi_down_theoremsep−e2_2 . r e l e v a n c e 1 .m4 . out IN 1 .96 ON 2011−11−24 1 9 : 4 2 : 3 6
c o d i \ theorems \ output \ codi_down_theoremsep−e2_3 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c o d i \ theorems \ output \ codi_down_theoremsep−e2_3 . r e l e v a n c e 1 . p9 . out IN 15 .95 ON 2011−11−24 1 9 : 4 2 : 5 6 , PROOF LENGTH=34
SUCCESS : c o d i \ theorems \ output \ codi_down_theoremsep−e2_3 . vam . out IN 0 .109

FAILED : c o d i \ theorems \ output \ codi_down_theoremsep−e2_3 . r e l e v a n c e 1 .m4 . out IN 1 .85 ON 2011−11−24 1 9 : 4 2 : 4 2
c o d i \ theorems \ output \ codi_down_theoremsep−e3_1 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c o d i \ theorems \ output \ codi_down_theoremsep−e3_1 . r e l e v a n c e 1 . p9 . out IN 19 .39 ON 2011−11−24 1 9 : 4 3 : 4 4 , PROOF LENGTH=97
SUCCESS : c o d i \ theorems \ output \ codi_down_theoremsep−e3_1 . vam . out IN 5 .256

FAILED : c o d i \ theorems \ output \ codi_down_theoremsep−e3_1 . r e l e v a n c e 1 .m4 . out IN 19 .96 ON 2011−11−24 1 9 : 4 3 : 4 4
c o d i \ theorems \ output \ codi_down_theoremspo−e1_1 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c o d i \ theorems \ output \ codi_down_theoremspo−e1_1 . r e l e v a n c e 1 . p9 . out IN 91 .09 ON 2012−2−24 1 6 : 0 8 : 0 7 , PROOF LENGTH=100
SUCCESS : c o d i \ theorems \ output \ codi_down_theoremspo−e1_1 . vam . out IN 0 .523

FAILED : c o d i \ theorems \ output \ codi_down_theoremspo−e1_1 . r e l e v a n c e 1 .m4 . out IN 91 .84 ON 2012−2−24 1 6 : 0 8 : 0 8
c o d i \ theorems \ output \ codi_down_theoremspo−e1_2 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c o d i \ theorems \ output \ codi_down_theoremspo−e1_2 . r e l e v a n c e 1 . p9 . out IN 78 .39 ON 2012−2−24 1 6 : 0 9 : 3 1 , PROOF LENGTH=153
SUCCESS : c o d i \ theorems \ output \ codi_down_theoremspo−e1_2 . vam . out IN 0 .164

FAILED : c o d i \ theorems \ output \ codi_down_theoremspo−e1_2 . r e l e v a n c e 1 .m4 . out IN 79 .47 ON 2012−2−24 1 6 : 0 9 : 3 2
c o d i \ theorems \ output \ codi_down_theoremst1−t2_1 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c o d i \ theorems \ output \ codi_down_theoremst1−t2_1 . r e l e v a n c e 1 . p9 . out IN 0 .24 ON 2011−11−24 1 9 : 3 8 : 4 5 , PROOF LENGTH=57
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SUCCESS : c o d i \ theorems \ output \ codi_down_theoremst1−t2_1 . vam . out IN 0 .447
FAILED : c o d i \ theorems \ output \ codi_down_theoremst1−t2_1 . r e l e v a n c e 1 .m4 . out IN 1 .93 ON 2011−11−24 1 9 : 3 8 : 4 7

c o d i \ theorems \ output \ codi_down_theoremst1−t2_2 t e s t e d wi th : Mace4 , Prover9 , Vampire
SUCCESS : c o d i \ theorems \ output \ codi_down_theoremst1−t2_2 . r e l e v a n c e 1 . p9 . out IN 0 .18 ON 2011−11−24 1 9 : 3 8 : 5 1 , PROOF LENGTH=46
SUCCESS : c o d i \ theorems \ output \ codi_down_theoremst1−t2_2 . vam . out IN 6 .097

FAILED : c o d i \ theorems \ output \ codi_down_theoremst1−t2_2 . r e l e v a n c e 1 .m4 . out IN 1 .97 ON 2011−11−24 1 9 : 3 8 : 5 3
c o d i \ theorems \ output \ codi_down_theoremst1−t2_3 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c o d i \ theorems \ output \ codi_down_theoremst1−t2_3 . r e l e v a n c e 1 . p9 . out IN 0 .29 ON 2011−11−24 1 9 : 3 8 : 5 8 , PROOF LENGTH=120
SUCCESS : c o d i \ theorems \ output \ codi_down_theoremst1−t2_3 . vam . out IN 79.022

FAILED : c o d i \ theorems \ output \ codi_down_theoremst1−t2_3 . r e l e v a n c e 1 .m4 . out IN 1 .95 ON 2011−11−24 1 9 : 3 9 : 0 0
c o d i \ theorems \ output \ codi_down_theoremst11pr ime_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c o d i \ theorems \ output \ codi_down_theoremst11pr ime_1 . r e l e v a n c e 1 . p9 . out IN 0 .68 ON 2012−2−23 1 8 : 2 8 : 0 3 , PROOF LENGTH=114
FAILED : c o d i \ theorems \ output \ codi_down_theoremst11pr ime_1 . r e l e v a n c e 1 .m4 . out IN 1 .96 ON 2012−2−23 1 8 : 2 8 : 0 4

c o d i \ theorems \ output \ codi_down_theoremst11_1 t e s t e d wi th : Mace4 , Prover9 , Vampire
SUCCESS : c o d i \ theorems \ output \ codi_down_theoremst11_1 . r e l e v a n c e 1 . p9 . out IN 0 .22 ON 2012−2−23 1 7 : 4 8 : 4 5 , PROOF LENGTH=63
SUCCESS : c o d i \ theorems \ output \ codi_down_theoremst11_1 . vam . out IN 9 .543

FAILED : c o d i \ theorems \ output \ codi_down_theoremst11_1 . r e l e v a n c e 1 .m4 . out IN 1 .91 ON 2012−2−23 1 7 : 4 8 : 4 7
c o d i \ theorems \ output \ codi_down_theoremst12 t e s t e d wi th : Mace4 , Prove r9

FAILED : c o d i \ theorems \ output \ codi_down_theoremst12 . p9 . out IN 1 .93 ON 2012−8−15 1 8 : 0 3 : 2 4
SUCCESS : c o d i \ theorems \ output \ codi_down_theoremst12 .m4 . out IN 0 .01 ON 2012−8−15 1 8 : 0 3 : 2 2 , MODEL SIZE=2

c o d i \ theorems \ output \ codi_down_theoremst12_1 t e s t e d wi th : Mace4 , Prove r9
UNKNOWN: c o d i \ theorems \ output \ codi_down_theoremst12_1

FAILED : c o d i \ theorems \ output \ codi_down_theoremst12_1 . p9 . out IN 600 .29 ON 2012−8−15 1 8 : 1 3 : 3 1
FAILED : c o d i \ theorems \ output \ codi_down_theoremst12_1 .m4 . out IN 600.04 ON 2012−8−15 1 8 : 1 3 : 3 6

c o d i \ theorems \ output \ codi_down_theoremst3−t5 t e s t e d wi th : Mace4 , Prover9 , Vampire
FAILED : c o d i \ theorems \ output \ codi_down_theoremst3−t5 . p9 . out IN 1 .92 ON 2012−11−19 1 9 : 2 4 : 4 4
FAILED : c o d i \ theorems \ output \ codi_down_theoremst3−t5 . vam . out IN 599.704

SUCCESS : c o d i \ theorems \ output \ codi_down_theoremst3−t5 .m4 . out IN 0 .01 ON 2012−11−19 1 9 : 2 4 : 4 2 , MODEL SIZE=2
c o d i \ theorems \ output \ codi_down_theoremst3−t5_1 t e s t e d wi th : Mace4 , Prover9 , Vampire

FAILED : c o d i \ theorems \ output \ codi_down_theoremst3−t5_1 . r e l e v a n c e 1 . p9 . out IN 600 .19 ON 2011−11−24 1 9 : 4 9 : 2 7
SUCCESS : c o d i \ theorems \ output \ codi_down_theoremst3−t5_1 . vam . out IN 109.556

FAILED : c o d i \ theorems \ output \ codi_down_theoremst3−t5_1 . r e l e v a n c e 1 .m4 . out IN 600.02 ON 2011−11−24 1 9 : 4 9 : 3 3
c o d i \ theorems \ output \ codi_down_theoremst3−t5_2 t e s t e d wi th : Mace4 , Prover9 , Vampire

UNKNOWN: c o d i \ theorems \ output \ codi_down_theoremst3−t5_2
FAILED : c o d i \ theorems \ output \ codi_down_theoremst3−t5_2 . r e l e v a n c e 1 . p9 . out IN 600 .78 ON 2011−11−24 1 9 : 5 9 : 3 7
FAILED : c o d i \ theorems \ output \ codi_down_theoremst3−t5_2 . vam . out IN 599.638
FAILED : c o d i \ theorems \ output \ codi_down_theoremst3−t5_2 . r e l e v a n c e 1 .m4 . out IN 600.01 ON 2011−11−24 1 9 : 5 9 : 4 2

c o d i \ theorems \ output \ codi_down_theoremst3−t5_3 t e s t e d wi th : Mace4 , Prover9 , Vampire
SUCCESS : c o d i \ theorems \ output \ codi_down_theoremst3−t5_3 . r e l e v a n c e 1 . p9 . out IN 0 .06 ON 2011−11−24 1 9 : 5 9 : 4 5 , PROOF LENGTH=66
SUCCESS : c o d i \ theorems \ output \ codi_down_theoremst3−t5_3 . vam . out IN 2 .464

FAILED : c o d i \ theorems \ output \ codi_down_theoremst3−t5_3 . r e l e v a n c e 1 .m4 . out IN 1 .95 ON 2011−11−24 1 9 : 5 9 : 4 6
c o d i \ theorems \ output \ codi_down_theoremst3−t5_4 t e s t e d wi th : Mace4 , Prover9 , Vampire

FAILED : c o d i \ theorems \ output \ codi_down_theoremst3−t5_4 . r e l e v a n c e 1 . p9 . out IN 600 .05 ON 2011−11−24 2 0 : 0 9 : 5 1
SUCCESS : c o d i \ theorems \ output \ codi_down_theoremst3−t5_4 . vam . out IN 214.442

FAILED : c o d i \ theorems \ output \ codi_down_theoremst3−t5_4 . r e l e v a n c e 1 .m4 . out IN 600.01 ON 2011−11−24 2 0 : 0 9 : 5 7
c o d i \ theorems \ output \ codi_down_theoremst3−t5_5 t e s t e d wi th : Mace4 , Prover9 , Vampire

UNKNOWN: c o d i \ theorems \ output \ codi_down_theoremst3−t5_5
FAILED : c o d i \ theorems \ output \ codi_down_theoremst3−t5_5 . r e l e v a n c e 1 . p9 . out IN 600 .07 ON 2011−11−24 2 0 : 2 0 : 0 0
FAILED : c o d i \ theorems \ output \ codi_down_theoremst3−t5_5 . vam . out IN 599.551
FAILED : c o d i \ theorems \ output \ codi_down_theoremst3−t5_5 . r e l e v a n c e 1 .m4 . out IN 600.01 ON 2011−11−24 2 0 : 2 0 : 0 7

c o d i \ theorems \ output \ codi_down_theoremst3−t 5 _ h e l p e r t e s t e d wi th : Vampire
SUCCESS : c o d i \ theorems \ output \ codi_down_theoremst3−t 5 _ h e l p e r . vam . out IN 0 .007

c o d i \ theorems \ output \ codi_down_theoremst6−t10 t e s t e d wi th : Mace4 , Prove r9
FAILED : c o d i \ theorems \ output \ codi_down_theoremst6−t10 . p9 . out IN 1 .91 ON 2012−11−19 1 9 : 2 5 : 4 9

SUCCESS : c o d i \ theorems \ output \ codi_down_theoremst6−t10 .m4 . out IN 0 .01 ON 2012−11−19 1 9 : 2 5 : 4 7 , MODEL SIZE=2
c o d i \ theorems \ output \ codi_down_theoremst6−t10_1 t e s t e d wi th : Mace4 , Prover9 , Vampire

UNKNOWN: c o d i \ theorems \ output \ codi_down_theoremst6−t10_1
FAILED : c o d i \ theorems \ output \ codi_down_theoremst6−t10_1 . p9 . out IN 600 .00 ON 2012−11−19 1 8 : 3 4 : 5 2
FAILED : c o d i \ theorems \ output \ codi_down_theoremst6−t10_1 . vam . out IN 599.662
FAILED : c o d i \ theorems \ output \ codi_down_theoremst6−t10_1 .m4 . out IN 600 .02 ON 2012−11−19 1 8 : 3 4 : 5 5

c o d i \ theorems \ output \ codi_down_theoremst6−t10_10 t e s t e d wi th : Mace4 , Prover9 , Vampire
FAILED : c o d i \ theorems \ output \ codi_down_theoremst6−t10_10 . p9 . out IN 600 .01 ON 2012−11−19 1 9 : 1 5 : 5 5

SUCCESS : c o d i \ theorems \ output \ codi_down_theoremst6−t10_10 . vam . out IN 1 .988
FAILED : c o d i \ theorems \ output \ codi_down_theoremst6−t10_10 .m4 . out IN 600.02 ON 2012−11−19 1 9 : 1 5 : 5 9

c o d i \ theorems \ output \ codi_down_theoremst6−t10_2 t e s t e d wi th : Mace4 , Prover9 , Vampire
UNKNOWN: c o d i \ theorems \ output \ codi_down_theoremst6−t10_2

FAILED : c o d i \ theorems \ output \ codi_down_theoremst6−t10_2 . p9 . out IN 600 .10 ON 2012−11−19 1 8 : 4 5 : 0 1
FAILED : c o d i \ theorems \ output \ codi_down_theoremst6−t10_2 . vam . out IN 599.703
FAILED : c o d i \ theorems \ output \ codi_down_theoremst6−t10_2 .m4 . out IN 600 .02 ON 2012−11−19 1 8 : 4 5 : 0 2

c o d i \ theorems \ output \ codi_down_theoremst6−t10_3 t e s t e d wi th : Mace4 , Prover9 , Vampire
SUCCESS : c o d i \ theorems \ output \ codi_down_theoremst6−t10_3 . p9 . out IN 2 .90 ON 2012−11−19 1 8 : 4 5 : 0 8 , PROOF LENGTH=44
SUCCESS : c o d i \ theorems \ output \ codi_down_theoremst6−t10_3 . vam . out IN 24.486

FAILED : c o d i \ theorems \ output \ codi_down_theoremst6−t10_3 .m4 . out IN 3 .83 ON 2012−11−19 1 8 : 4 5 : 0 9
c o d i \ theorems \ output \ codi_down_theoremst6−t10_4 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c o d i \ theorems \ output \ codi_down_theoremst6−t10_4 . p9 . out IN 2 .10 ON 2012−11−19 1 8 : 4 5 : 1 5 , PROOF LENGTH=41
SUCCESS : c o d i \ theorems \ output \ codi_down_theoremst6−t10_4 . vam . out IN 215.469

FAILED : c o d i \ theorems \ output \ codi_down_theoremst6−t10_4 .m4 . out IN 3 .87 ON 2012−11−19 1 8 : 4 5 : 1 7
c o d i \ theorems \ output \ codi_down_theoremst6−t10_5 t e s t e d wi th : Mace4 , Prover9 , Vampire

UNKNOWN: c o d i \ theorems \ output \ codi_down_theoremst6−t10_5
FAILED : c o d i \ theorems \ output \ codi_down_theoremst6−t10_5 . p9 . out IN 600 .01 ON 2012−11−19 1 8 : 5 5 : 2 3
FAILED : c o d i \ theorems \ output \ codi_down_theoremst6−t10_5 . vam . out IN 599 .8
FAILED : c o d i \ theorems \ output \ codi_down_theoremst6−t10_5 .m4 . out IN 600 .03 ON 2012−11−19 1 8 : 5 5 : 2 7

c o d i \ theorems \ output \ codi_down_theoremst6−t10_6 t e s t e d wi th : Mace4 , Prover9 , Vampire
UNKNOWN: c o d i \ theorems \ output \ codi_down_theoremst6−t10_6

FAILED : c o d i \ theorems \ output \ codi_down_theoremst6−t10_6 . p9 . out IN 600 .01 ON 2012−11−19 1 9 : 0 5 : 3 2
FAILED : c o d i \ theorems \ output \ codi_down_theoremst6−t10_6 . vam . out IN 599 .73
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FAILED : c o d i \ theorems \ output \ codi_down_theoremst6−t10_6 .m4 . out IN 600 .05 ON 2012−11−19 1 9 : 0 5 : 3 5
c o d i \ theorems \ output \ codi_down_theoremst6−t10_7 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c o d i \ theorems \ output \ codi_down_theoremst6−t10_7 . p9 . out IN 0 .03 ON 2012−11−19 1 9 : 0 5 : 3 8 , PROOF LENGTH=12
SUCCESS : c o d i \ theorems \ output \ codi_down_theoremst6−t10_7 . vam . out IN 0 .406

FAILED : c o d i \ theorems \ output \ codi_down_theoremst6−t10_7 .m4 . out IN 1 .90 ON 2012−11−19 1 9 : 0 5 : 4 0
c o d i \ theorems \ output \ codi_down_theoremst6−t10_8 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c o d i \ theorems \ output \ codi_down_theoremst6−t10_8 . p9 . out IN 0 .02 ON 2012−11−19 1 9 : 0 5 : 4 4 , PROOF LENGTH=24
SUCCESS : c o d i \ theorems \ output \ codi_down_theoremst6−t10_8 . vam . out IN 0 .105

FAILED : c o d i \ theorems \ output \ codi_down_theoremst6−t10_8 .m4 . out IN 1 .56 ON 2012−11−19 1 9 : 0 5 : 4 5
c o d i \ theorems \ output \ codi_down_theoremst6−t10_9 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c o d i \ theorems \ output \ codi_down_theoremst6−t10_9 . p9 . out IN 0 .03 ON 2012−11−19 1 9 : 0 5 : 4 8 , PROOF LENGTH=24
SUCCESS : c o d i \ theorems \ output \ codi_down_theoremst6−t10_9 . vam . out IN 0 .109

FAILED : c o d i \ theorems \ output \ codi_down_theoremst6−t10_9 .m4 . out IN 1 .57 ON 2012−11−19 1 9 : 0 5 : 4 9
c o d i \ theorems \ output \ codi_down_theoremsz−a1_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c o d i \ theorems \ output \ codi_down_theoremsz−a1_1 . r e l e v a n c e 1 . p9 . out IN 0 .01 ON 2011−11−16 1 8 : 2 5 : 2 3 , PROOF LENGTH=5
FAILED : c o d i \ theorems \ output \ codi_down_theoremsz−a1_1 . r e l e v a n c e 1 .m4 . out IN 1 .95 ON 2011−11−16 1 8 : 2 5 : 2 5

c o d i \ theorems \ output \ cod i_ in t_theo rems t e s t e d wi th : Mace4 , Prove r9
FAILED : c o d i \ theorems \ output \ cod i_ in t_theo rems . p9 . out IN 1 .88 ON 2012−11−19 1 8 : 5 3 : 0 1

SUCCESS : c o d i \ theorems \ output \ cod i_ in t_theo rems .m4 . out IN 0 .01 ON 2012−11−19 1 8 : 5 2 : 5 9 , MODEL SIZE=2
c o d i \ theorems \ output \ cod i_ in t_theo r ems t11p r ime t e s t e d wi th : Mace4 , Prove r9

FAILED : c o d i \ theorems \ output \ cod i_ in t_theo r ems t11p r ime . p9 . out IN 1 .95 ON 2012−11−19 1 8 : 2 3 : 0 8
SUCCESS : c o d i \ theorems \ output \ cod i_ in t_theo r ems t11p r ime .m4 . out IN 0 .01 ON 2012−11−19 1 8 : 2 3 : 0 6 , MODEL SIZE=2

c o d i \ theorems \ output \ cod i_ in t_theoremst11pr ime_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ cod i_ in t_theoremst11pr ime_1 . p9 . out IN 204 .19 ON 2012−11−19 1 8 : 2 6 : 3 8 , PROOF LENGTH=56

FAILED : c o d i \ theorems \ output \ cod i_ in t_theoremst11pr ime_1 .m4 . out IN 200 .07 ON 2012−11−19 1 8 : 2 6 : 3 9
c o d i \ theorems \ output \ cod i_ in t_theoremst11pr ime_2 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c o d i \ theorems \ output \ cod i_ in t_theoremst11pr ime_2 . p9 . out IN 283 .48 ON 2012−11−19 1 8 : 3 1 : 2 8 , PROOF LENGTH=52
FAILED : c o d i \ theorems \ output \ cod i_ in t_theoremst11pr ime_2 .m4 . out IN 279 .00 ON 2012−11−19 1 8 : 3 1 : 2 9

c o d i \ theorems \ output \ cod i_ int_theorems_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ cod i_ int_theorems_1 . p9 . out IN 298 .83 ON 2012−11−19 1 8 : 3 9 : 5 9 , PROOF LENGTH=46

FAILED : c o d i \ theorems \ output \ cod i_ int_theorems_1 .m4 . out IN 294 .59 ON 2012−11−19 1 8 : 3 9 : 5 9
c o d i \ theorems \ output \ cod i_ int_theorems_10 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c o d i \ theorems \ output \ cod i_ int_theorems_10 . p9 . out IN 0 .44 ON 2012−11−19 1 8 : 4 8 : 0 5 , PROOF LENGTH=42
FAILED : c o d i \ theorems \ output \ cod i_ int_theorems_10 .m4 . out IN 1 .86 ON 2012−11−19 1 8 : 4 8 : 0 6

c o d i \ theorems \ output \ cod i_ int_theorems_11 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ cod i_ int_theorems_11 . p9 . out IN 1 .74 ON 2012−11−19 1 8 : 4 8 : 1 2 , PROOF LENGTH=36

FAILED : c o d i \ theorems \ output \ cod i_ int_theorems_11 .m4 . out IN 1 .28 ON 2012−11−19 1 8 : 4 8 : 1 1
c o d i \ theorems \ output \ cod i_ int_theorems_12 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c o d i \ theorems \ output \ cod i_ int_theorems_12 . p9 . out IN 1 .76 ON 2012−11−19 1 8 : 4 8 : 1 6 , PROOF LENGTH=32
FAILED : c o d i \ theorems \ output \ cod i_ int_theorems_12 .m4 . out IN 1 .42 ON 2012−11−19 1 8 : 4 8 : 1 6

c o d i \ theorems \ output \ cod i_ int_theorems_2 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ cod i_ int_theorems_2 . p9 . out IN 296 .96 ON 2012−11−19 1 8 : 4 5 : 0 2 , PROOF LENGTH=46

FAILED : c o d i \ theorems \ output \ cod i_ int_theorems_2 .m4 . out IN 292 .99 ON 2012−11−19 1 8 : 4 5 : 0 2
c o d i \ theorems \ output \ cod i_ int_theorems_3 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c o d i \ theorems \ output \ cod i_ int_theorems_3 . p9 . out IN 0 .01 ON 2012−11−19 1 8 : 4 5 : 0 6 , PROOF LENGTH=7
FAILED : c o d i \ theorems \ output \ cod i_ int_theorems_3 .m4 . out IN 1 .84 ON 2012−11−19 1 8 : 4 5 : 0 8

c o d i \ theorems \ output \ cod i_ int_theorems_4 t e s t e d wi th : Prove r9
SUCCESS : c o d i \ theorems \ output \ cod i_ int_theorems_4 . i n t−t8a . manual . p9 . out IN 0 .33 ON 2011−5−3 1 7 : 3 8 : 1 7 , PROOF LENGTH=80

c o d i \ theorems \ output \ cod i_ int_theorems_5 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ cod i_ int_theorems_5 . p9 . out IN 0 .23 ON 2012−11−19 1 8 : 4 5 : 1 8 , PROOF LENGTH=40

FAILED : c o d i \ theorems \ output \ cod i_ int_theorems_5 .m4 . out IN 1 .88 ON 2012−11−19 1 8 : 4 5 : 2 0
c o d i \ theorems \ output \ cod i_ int_theorems_6 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c o d i \ theorems \ output \ cod i_ int_theorems_6 . p9 . out IN 3 .77 ON 2012−11−19 1 8 : 4 5 : 2 8 , PROOF LENGTH=47
FAILED : c o d i \ theorems \ output \ cod i_ int_theorems_6 .m4 . out IN 3 .76 ON 2012−11−19 1 8 : 4 5 : 2 8

c o d i \ theorems \ output \ cod i_ int_theorems_7 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ cod i_ int_theorems_7 . p9 . out IN 49 .63 ON 2012−11−19 1 8 : 4 6 : 2 2 , PROOF LENGTH=92

FAILED : c o d i \ theorems \ output \ cod i_ int_theorems_7 .m4 . out IN 47 .91 ON 2012−11−19 1 8 : 4 6 : 2 2
c o d i \ theorems \ output \ cod i_ int_theorems_8 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c o d i \ theorems \ output \ cod i_ int_theorems_8 . p9 . out IN 4 .01 ON 2012−11−19 1 8 : 4 6 : 3 0 , PROOF LENGTH=44
FAILED : c o d i \ theorems \ output \ cod i_ int_theorems_8 .m4 . out IN 5 .70 ON 2012−11−19 1 8 : 4 6 : 3 2

c o d i \ theorems \ output \ cod i_ int_theorems_9 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ cod i_ int_theorems_9 . p9 . out IN 82 .88 ON 2012−11−19 1 8 : 4 7 : 5 9 , PROOF LENGTH=34

FAILED : c o d i \ theorems \ output \ cod i_ int_theorems_9 .m4 . out IN 82 .10 ON 2012−11−19 1 8 : 4 8 : 0 0
c o d i \ theorems \ output \ c o d i _ l i n e a r _ i n t t e s t e d wi th : Prove r9

SUCCESS : c o d i \ theorems \ output \ c o d i _ l i n e a r _ i n t . i n t−t11 ’ i . manual . p9 . out IN 0 .01 ON 2011−9−1 1 1 : 3 9 : 4 0 , PROOF LENGTH=19
c o d i \ theorems \ output \ cod i_p lp_theorems t e s t e d wi th : Mace4 , Prove r9

FAILED : c o d i \ theorems \ output \ cod i_p lp_theorems . p9 . out IN 1 .96 ON 2012−8−21 1 3 : 5 9 : 5 5
SUCCESS : c o d i \ theorems \ output \ cod i_p lp_theorems .m4 . out IN 0 .01 ON 2012−8−21 1 3 : 5 9 : 5 3 , MODEL SIZE=2

c o d i \ theorems \ output \ codi_plp_theorems_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ codi_plp_theorems_1 . p9 . out IN 2 .89 ON 2012−8−21 1 4 : 0 0 : 0 4 , PROOF LENGTH=104

FAILED : c o d i \ theorems \ output \ codi_plp_theorems_1 .m4 . out IN 3 .91 ON 2012−8−21 1 4 : 0 0 : 0 5
c o d i \ theorems \ output \ codi_plp_theorems_2 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c o d i \ theorems \ output \ codi_plp_theorems_2 . p9 . out IN 0 .03 ON 2012−8−21 1 4 : 0 0 : 0 9 , PROOF LENGTH=31
FAILED : c o d i \ theorems \ output \ codi_plp_theorems_2 .m4 . out IN 0 .86 ON 2012−8−21 1 4 : 0 0 : 1 0

c o d i \ theorems \ output \ codi_plp_theorems_3 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ codi_plp_theorems_3 . p9 . out IN 0 .03 ON 2012−8−21 1 4 : 0 0 : 1 3 , PROOF LENGTH=21

FAILED : c o d i \ theorems \ output \ codi_plp_theorems_3 .m4 . out IN 0 .84 ON 2012−8−21 1 4 : 0 0 : 1 4
c o d i \ theorems \ output \ cod i_p l_theorems t e s t e d wi th : Mace4 , Prove r9

FAILED : c o d i \ theorems \ output \ cod i_p l_theorems . p9 . out IN 1 .95 ON 2012−10−23 2 1 : 3 0 : 2 2
SUCCESS : c o d i \ theorems \ output \ cod i_p l_theorems .m4 . out IN 0 .01 ON 2012−10−23 2 1 : 3 0 : 2 0 , MODEL SIZE=2

c o d i \ theorems \ output \ codi_pl_theorems_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ codi_pl_theorems_1 . p9 . out IN 0 .03 ON 2012−10−23 2 1 : 3 0 : 2 8 , PROOF LENGTH=20

FAILED : c o d i \ theorems \ output \ codi_pl_theorems_1 .m4 . out IN 0 .86 ON 2012−10−23 2 1 : 3 0 : 2 9
c o d i \ theorems \ output \ codi_pl_theorems_2 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c o d i \ theorems \ output \ codi_pl_theorems_2 . p9 . out IN 0 .04 ON 2012−10−23 2 1 : 3 0 : 3 2 , PROOF LENGTH=29
FAILED : c o d i \ theorems \ output \ codi_pl_theorems_2 .m4 . out IN 0 .84 ON 2012−10−23 2 1 : 3 0 : 3 3
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c o d i \ theorems \ output \ codi_pl_theorems_3 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ codi_pl_theorems_3 . p9 . out IN 0 .03 ON 2012−10−23 2 1 : 3 0 : 3 6 , PROOF LENGTH=12

FAILED : c o d i \ theorems \ output \ codi_pl_theorems_3 .m4 . out IN 0 .84 ON 2012−10−23 2 1 : 3 0 : 3 7
c o d i \ theorems \ output \ cod i_theorems t e s t e d wi th : Mace4 , Prove r9

FAILED : c o d i \ theorems \ output \ cod i_theorems . p9 . out IN 1 .91 ON 2012−5−28 2 0 : 0 6 : 0 7
SUCCESS : c o d i \ theorems \ output \ cod i_theorems .m4 . out IN 0 .01 ON 2012−5−28 2 0 : 0 6 : 0 5 , MODEL SIZE=2

c o d i \ theorems \ output \ codi_theorems_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ codi_theorems_1 . p9 . out IN 0 .03 ON 2012−5−28 2 0 : 0 6 : 1 3 , PROOF LENGTH=15

FAILED : c o d i \ theorems \ output \ codi_theorems_1 .m4 . out IN 1 .96 ON 2012−5−28 2 0 : 0 6 : 1 5
c o d i \ theorems \ output \ codi_theorems_10 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c o d i \ theorems \ output \ codi_theorems_10 . p9 . out IN 16 .60 ON 2012−5−28 2 0 : 1 2 : 1 2 , PROOF LENGTH=52
FAILED : c o d i \ theorems \ output \ codi_theorems_10 .m4 . out IN 17 .64 ON 2012−5−28 2 0 : 1 2 : 1 3

c o d i \ theorems \ output \ codi_theorems_2 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ codi_theorems_2 . p9 . out IN 0 .02 ON 2012−5−28 2 0 : 0 6 : 1 9 , PROOF LENGTH=11

FAILED : c o d i \ theorems \ output \ codi_theorems_2 .m4 . out IN 1 .94 ON 2012−5−28 2 0 : 0 6 : 2 1
c o d i \ theorems \ output \ codi_theorems_3 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c o d i \ theorems \ output \ codi_theorems_3 . p9 . out IN 0 .17 ON 2012−5−28 2 0 : 0 6 : 2 5 , PROOF LENGTH=26
FAILED : c o d i \ theorems \ output \ codi_theorems_3 .m4 . out IN 1 .94 ON 2012−5−28 2 0 : 0 6 : 2 7

c o d i \ theorems \ output \ codi_theorems_4 t e s t e d wi th : Prove r9
SUCCESS : c o d i \ theorems \ output \ codi_theorems_4 . cd−t4 . manual . p9 . out IN 5 .27 ON 2011−10−21 1 6 : 1 9 : 5 5 , PROOF LENGTH=46

c o d i \ theorems \ output \ codi_theorems_5 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ codi_theorems_5 . p9 . out IN 0 .03 ON 2012−5−28 2 0 : 1 1 : 0 1 , PROOF LENGTH=21

FAILED : c o d i \ theorems \ output \ codi_theorems_5 .m4 . out IN 1 .94 ON 2012−5−28 2 0 : 1 1 : 0 3
c o d i \ theorems \ output \ codi_theorems_6 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c o d i \ theorems \ output \ codi_theorems_6 . p9 . out IN 5 .55 ON 2012−5−28 2 0 : 1 1 : 1 3 , PROOF LENGTH=53
FAILED : c o d i \ theorems \ output \ codi_theorems_6 .m4 . out IN 5 .85 ON 2012−5−28 2 0 : 1 1 : 1 3

c o d i \ theorems \ output \ codi_theorems_7 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ codi_theorems_7 . p9 . out IN 0 .02 ON 2012−5−28 2 0 : 1 1 : 1 7 , PROOF LENGTH=21

FAILED : c o d i \ theorems \ output \ codi_theorems_7 .m4 . out IN 1 .97 ON 2012−5−28 2 0 : 1 1 : 1 9
c o d i \ theorems \ output \ codi_theorems_8 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c o d i \ theorems \ output \ codi_theorems_8 . p9 . out IN 16 .87 ON 2012−5−28 2 0 : 1 1 : 4 0 , PROOF LENGTH=52
FAILED : c o d i \ theorems \ output \ codi_theorems_8 .m4 . out IN 17 .64 ON 2012−5−28 2 0 : 1 1 : 4 1

c o d i \ theorems \ output \ codi_theorems_9 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ codi_theorems_9 . p9 . out IN 5 .51 ON 2012−5−28 2 0 : 1 1 : 5 1 , PROOF LENGTH=53

FAILED : c o d i \ theorems \ output \ codi_theorems_9 .m4 . out IN 5 .86 ON 2012−5−28 2 0 : 1 1 : 5 1
c o d i \ theorems \ output \ codi_updown_theorems t e s t e d wi th : Mace4 , Prove r9

FAILED : c o d i \ theorems \ output \ codi_updown_theorems . p9 . out IN 1 .88 ON 2012−11−20 1 9 : 1 8 : 3 4
SUCCESS : c o d i \ theorems \ output \ codi_updown_theorems .m4 . out IN 0 .01 ON 2012−11−20 1 9 : 1 8 : 3 2 , MODEL SIZE=2

c o d i \ theorems \ output \ codi_updown_theorems_1 t e s t e d wi th : Mace4 , Prover9 , Vampire
SUCCESS : c o d i \ theorems \ output \ codi_updown_theorems_1 . p9 . out IN 0 .40 ON 2012−11−20 1 9 : 1 8 : 4 1 , PROOF LENGTH=47

FAILED : c o d i \ theorems \ output \ codi_updown_theorems_1 . vam . out IN 1046.59
FAILED : c o d i \ theorems \ output \ codi_updown_theorems_1 .m4 . out IN 1 .93 ON 2012−11−20 1 9 : 1 8 : 4 3

c o d i \ theorems \ output \ codi_updown_theorems_2 t e s t e d wi th : Mace4 , Prover9 , Vampire
SUCCESS : c o d i \ theorems \ output \ codi_updown_theorems_2 . p9 . out IN 0 .29 ON 2012−11−20 1 9 : 1 8 : 4 7 , PROOF LENGTH=66

FAILED : c o d i \ theorems \ output \ codi_updown_theorems_2 . vam . out IN 599.811
FAILED : c o d i \ theorems \ output \ codi_updown_theorems_2 .m4 . out IN 1 .94 ON 2012−11−20 1 9 : 1 8 : 4 9

c o d i \ theorems \ output \ codi_updown_theorems_3 t e s t e d wi th : Mace4 , Prover9 , Vampire
SUCCESS : c o d i \ theorems \ output \ codi_updown_theorems_3 . p9 . out IN 67 .17 ON 2012−11−20 1 9 : 2 0 : 0 1 , PROOF LENGTH=67

FAILED : c o d i \ theorems \ output \ codi_updown_theorems_3 . vam . out IN 599.702
FAILED : c o d i \ theorems \ output \ codi_updown_theorems_3 .m4 . out IN 67 .93 ON 2012−11−20 1 9 : 2 0 : 0 3

c o d i \ theorems \ output \ codi_updown_theorems_4 t e s t e d wi th : Mace4 , Prover9 , Vampire
SUCCESS : c o d i \ theorems \ output \ codi_updown_theorems_4 . p9 . out IN 0 .03 ON 2012−11−20 1 9 : 2 0 : 0 7 , PROOF LENGTH=9
SUCCESS : c o d i \ theorems \ output \ codi_updown_theorems_4 . vam . out IN 0 .018

FAILED : c o d i \ theorems \ output \ codi_updown_theorems_4 .m4 . out IN 1 .90 ON 2012−11−20 1 9 : 2 0 : 0 9
c o d i \ theorems \ output \ codi_updown_theorems_5 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c o d i \ theorems \ output \ codi_updown_theorems_5 . p9 . out IN 21 .26 ON 2012−11−20 1 9 : 2 0 : 3 5 , PROOF LENGTH=58
SUCCESS : c o d i \ theorems \ output \ codi_updown_theorems_5 . vam . out IN 22.018

FAILED : c o d i \ theorems \ output \ codi_updown_theorems_5 .m4 . out IN 2 .20 ON 2012−11−20 1 9 : 2 0 : 1 6
c o d i \ theorems \ output \ codi_updown_theorems_6 t e s t e d wi th : Mace4 , Prover9 , Vampire

UNKNOWN: c o d i \ theorems \ output \ codi_updown_theorems_6
FAILED : c o d i \ theorems \ output \ codi_updown_theorems_6 . p9 . out IN 600 .01 ON 2012−11−20 1 9 : 3 0 : 4 3
FAILED : c o d i \ theorems \ output \ codi_updown_theorems_6 . vam . out IN 599 .8
FAILED : c o d i \ theorems \ output \ codi_updown_theorems_6 .m4 . out IN 600 .04 ON 2012−11−20 1 9 : 3 0 : 4 3

c o d i \ theorems \ output \ codi_updown_theorems_7 t e s t e d wi th : Mace4 , Prover9 , Vampire
UNKNOWN: c o d i \ theorems \ output \ codi_updown_theorems_7

FAILED : c o d i \ theorems \ output \ codi_updown_theorems_7 . p9 . out IN 600.01 ON 2012−11−20 1 9 : 4 1 : 0 6
FAILED : c o d i \ theorems \ output \ codi_updown_theorems_7 . vam . out IN 599 .7
FAILED : c o d i \ theorems \ output \ codi_updown_theorems_7 .m4 . out IN 600 .04 ON 2012−11−20 1 9 : 4 1 : 0 0

c o d i \ theorems \ output \ codi_updown_theorems_8 t e s t e d wi th : Mace4 , Prover9 , Vampire
UNKNOWN: c o d i \ theorems \ output \ codi_updown_theorems_8

FAILED : c o d i \ theorems \ output \ codi_updown_theorems_8 . p9 . out IN 600.00 ON 2012−11−20 1 9 : 5 2 : 0 2
FAILED : c o d i \ theorems \ output \ codi_updown_theorems_8 . vam . out IN 599 .8
FAILED : c o d i \ theorems \ output \ codi_updown_theorems_8 .m4 . out IN 600 .05 ON 2012−11−20 1 9 : 5 1 : 4 2

c o d i \ theorems \ output \ codi_updown_theorems_9 t e s t e d wi th : Mace4 , Prover9 , Vampire
UNKNOWN: c o d i \ theorems \ output \ codi_updown_theorems_9

FAILED : c o d i \ theorems \ output \ codi_updown_theorems_9 . p9 . out IN 600.01 ON 2012−11−20 2 0 : 0 2 : 2 3
FAILED : c o d i \ theorems \ output \ codi_updown_theorems_9 . vam . out IN 599 .7
FAILED : c o d i \ theorems \ output \ codi_updown_theorems_9 .m4 . out IN 600 .05 ON 2012−11−20 2 0 : 0 2 : 2 5

c o d i \ theorems \ output \ con_theorems t e s t e d wi th : Mace4 , Prove r9
FAILED : c o d i \ theorems \ output \ con_theorems . p9 . out IN 1 .89 ON 2012−11−4 1 2 : 0 1 : 0 6

SUCCESS : c o d i \ theorems \ output \ con_theorems .m4 . out IN 0 .01 ON 2012−11−4 1 2 : 0 1 : 0 4 , MODEL SIZE=2
c o d i \ theorems \ output \ con_theorems_1 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c o d i \ theorems \ output \ con_theorems_1 . p9 . out IN 0 .02 ON 2012−11−4 1 2 : 0 1 : 1 2 , PROOF LENGTH=9
SUCCESS : c o d i \ theorems \ output \ con_theorems_1 . vam . out IN 0 .005

FAILED : c o d i \ theorems \ output \ con_theorems_1 .m4 . out IN 1 .94 ON 2012−11−4 1 2 : 0 1 : 1 4
c o d i \ theorems \ output \ con_theorems_2 t e s t e d wi th : Mace4 , Prover9 , Vampire
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SUCCESS : c o d i \ theorems \ output \ con_theorems_2 . p9 . out IN 0 .03 ON 2012−11−4 1 2 : 0 1 : 1 8 , PROOF LENGTH=22
SUCCESS : c o d i \ theorems \ output \ con_theorems_2 . vam . out IN 0 .006

FAILED : c o d i \ theorems \ output \ con_theorems_2 .m4 . out IN 1 .95 ON 2012−11−4 1 2 : 0 1 : 2 0
c o d i \ theorems \ output \ con_theorems_3 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c o d i \ theorems \ output \ con_theorems_3 . p9 . out IN 0 .02 ON 2012−11−4 1 2 : 0 1 : 2 4 , PROOF LENGTH=8
SUCCESS : c o d i \ theorems \ output \ con_theorems_3 . vam . out IN 0 .015

FAILED : c o d i \ theorems \ output \ con_theorems_3 .m4 . out IN 1 .94 ON 2012−11−4 1 2 : 0 1 : 2 6
c o d i \ theorems \ output \ con_theorems_4 t e s t e d wi th : Mace4 , Prover9 , Paradox3 , Vampire

UNKNOWN: c o d i \ theorems \ output \ con_theorems_4
FAILED : c o d i \ theorems \ output \ con_theorems_4 . p9 . out IN 600.46 ON 2012−11−4 1 2 : 1 1 : 3 1
FAILED : c o d i \ theorems \ output \ con_theorems_4 . vam . out IN 599 .7
FAILED : c o d i \ theorems \ output \ con_theorems_4 .m4 . out IN 600 .04 ON 2012−11−4 1 2 : 1 1 : 3 4
FAILED : c o d i \ theorems \ output \ con_theorems_4 . tp tp . out , ATTEMPTED UP TO MODEL SIZE=50

c o d i \ theorems \ output \ con_theorems_5 t e s t e d wi th : Mace4 , Prover9 , Paradox3 , Vampire
UNKNOWN: c o d i \ theorems \ output \ con_theorems_5

FAILED : c o d i \ theorems \ output \ con_theorems_5 . p9 . out IN 600.05 ON 2012−11−4 1 2 : 2 1 : 3 8
FAILED : c o d i \ theorems \ output \ con_theorems_5 . vam . out IN 599.718
FAILED : c o d i \ theorems \ output \ con_theorems_5 .m4 . out IN 600 .04 ON 2012−11−4 1 2 : 2 1 : 3 9
FAILED : c o d i \ theorems \ output \ con_theorems_5 . tp tp . out , ATTEMPTED UP TO MODEL SIZE=49

c o d i \ theorems \ output \ con_theorems_6 t e s t e d wi th : Mace4 , Prover9 , Vampire
SUCCESS : c o d i \ theorems \ output \ con_theorems_6 . p9 . out IN 0 .10 ON 2012−11−4 1 2 : 2 1 : 4 3 , PROOF LENGTH=43
SUCCESS : c o d i \ theorems \ output \ con_theorems_6 . vam . out IN 0 .015

FAILED : c o d i \ theorems \ output \ con_theorems_6 .m4 . out IN 1 .92 ON 2012−11−4 1 2 : 2 1 : 4 4
c o d i \ theorems \ output \ ep_theorems t e s t e d wi th : Mace4 , Prove r9

FAILED : c o d i \ theorems \ output \ ep_theorems . p9 . out IN 1 .95 ON 2011−10−20 1 9 : 3 7 : 5 1
SUCCESS : c o d i \ theorems \ output \ ep_theorems .m4 . out IN 0 .01 ON 2011−10−20 1 9 : 3 7 : 4 9 , MODEL SIZE=3

c o d i \ theorems \ output \ ep_theorems_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ ep_theorems_1 . r e l e v a n c e 1 . p9 . out IN 0 .01 ON 2011−10−20 1 9 : 5 1 : 2 9 , PROOF LENGTH=11

FAILED : c o d i \ theorems \ output \ ep_theorems_1 . r e l e v a n c e 1 .m4 . out IN 1 .03 ON 2011−10−20 1 9 : 5 1 : 3 0
c o d i \ theorems \ output \ ep_theorems_10 t e s t e d wi th : Mace4 , Prove r9

FAILED : c o d i \ theorems \ output \ ep_theorems_10 . r e l e v a n c e 1 . p9 . out IN 1 .97 ON 2011−10−20 1 9 : 5 2 : 1 1
SUCCESS : c o d i \ theorems \ output \ ep_theorems_10 . r e l e v a n c e 1 .m4 . out IN 0 .02 ON 2011−10−20 1 9 : 5 2 : 0 9 , MODEL SIZE=3

c o d i \ theorems \ output \ ep_theorems_2 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ ep_theorems_2 . r e l e v a n c e 1 . p9 . out IN 0 .02 ON 2011−10−20 1 9 : 5 1 : 3 3 , PROOF LENGTH=11

FAILED : c o d i \ theorems \ output \ ep_theorems_2 . r e l e v a n c e 1 .m4 . out IN 1 .04 ON 2011−10−20 1 9 : 5 1 : 3 4
c o d i \ theorems \ output \ ep_theorems_3 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c o d i \ theorems \ output \ ep_theorems_3 . r e l e v a n c e 1 . p9 . out IN 0 .12 ON 2011−10−20 1 9 : 5 1 : 3 7 , PROOF LENGTH=20
FAILED : c o d i \ theorems \ output \ ep_theorems_3 . r e l e v a n c e 1 .m4 . out IN 1 .10 ON 2011−10−20 1 9 : 5 1 : 3 8

c o d i \ theorems \ output \ ep_theorems_4 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ ep_theorems_4 . r e l e v a n c e 1 . p9 . out IN 0 .03 ON 2011−10−20 1 9 : 5 1 : 4 2 , PROOF LENGTH=10

FAILED : c o d i \ theorems \ output \ ep_theorems_4 . r e l e v a n c e 1 .m4 . out IN 1 .08 ON 2011−10−20 1 9 : 5 1 : 4 3
c o d i \ theorems \ output \ ep_theorems_5 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c o d i \ theorems \ output \ ep_theorems_5 . r e l e v a n c e 1 . p9 . out IN 0 .03 ON 2011−10−20 1 9 : 5 1 : 4 6 , PROOF LENGTH=13
FAILED : c o d i \ theorems \ output \ ep_theorems_5 . r e l e v a n c e 1 .m4 . out IN 1 .05 ON 2011−10−20 1 9 : 5 1 : 4 7

c o d i \ theorems \ output \ ep_theorems_6 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ ep_theorems_6 . r e l e v a n c e 1 . p9 . out IN 0 .03 ON 2011−10−20 1 9 : 5 1 : 5 0 , PROOF LENGTH=10

FAILED : c o d i \ theorems \ output \ ep_theorems_6 . r e l e v a n c e 1 .m4 . out IN 1 .05 ON 2011−10−20 1 9 : 5 1 : 5 1
c o d i \ theorems \ output \ ep_theorems_7 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c o d i \ theorems \ output \ ep_theorems_7 . r e l e v a n c e 1 . p9 . out IN 0 .03 ON 2011−10−20 1 9 : 5 1 : 5 4 , PROOF LENGTH=13
FAILED : c o d i \ theorems \ output \ ep_theorems_7 . r e l e v a n c e 1 .m4 . out IN 1 .07 ON 2011−10−20 1 9 : 5 1 : 5 5

c o d i \ theorems \ output \ ep_theorems_8 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ ep_theorems_8 . r e l e v a n c e 1 . p9 . out IN 0 .03 ON 2011−10−20 1 9 : 5 1 : 5 9 , PROOF LENGTH=15

FAILED : c o d i \ theorems \ output \ ep_theorems_8 . r e l e v a n c e 1 .m4 . out IN 1 .04 ON 2011−10−20 1 9 : 5 2 : 0 0
c o d i \ theorems \ output \ ep_theorems_9 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c o d i \ theorems \ output \ ep_theorems_9 . r e l e v a n c e 1 . p9 . out IN 0 .05 ON 2011−10−20 1 9 : 5 2 : 0 3 , PROOF LENGTH=30
FAILED : c o d i \ theorems \ output \ ep_theorems_9 . r e l e v a n c e 1 .m4 . out IN 1 .96 ON 2011−10−20 1 9 : 5 2 : 0 5

c o d i \ theorems \ output \ icon_theorems t e s t e d wi th : Mace4 , Prove r9
FAILED : c o d i \ theorems \ output \ icon_theorems . p9 . out IN 1 .93 ON 2012−3−15 1 0 : 2 5 : 2 2

SUCCESS : c o d i \ theorems \ output \ icon_theorems .m4 . out IN 0 .02 ON 2012−3−15 1 0 : 2 5 : 2 0 , MODEL SIZE=2
c o d i \ theorems \ output \ icon_theorems_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c o d i \ theorems \ output \ icon_theorems_1 . p9 . out IN 0 .07 ON 2012−3−15 1 0 : 2 5 : 3 0 , PROOF LENGTH=12
FAILED : c o d i \ theorems \ output \ icon_theorems_1 .m4 . out IN 1 .86 ON 2012−3−15 1 0 : 2 5 : 3 2

c o d i \ theorems \ output \ icon_theorems_2 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ icon_theorems_2 . p9 . out IN 2 .95 ON 2012−3−15 1 0 : 2 5 : 3 9 , PROOF LENGTH=80

FAILED : c o d i \ theorems \ output \ icon_theorems_2 .m4 . out IN 3 .92 ON 2012−3−15 1 0 : 2 5 : 4 0
c o d i \ theorems \ output \ icon_theorems_3 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c o d i \ theorems \ output \ icon_theorems_3 . p9 . out IN 0 .06 ON 2012−3−15 1 0 : 2 5 : 4 4 , PROOF LENGTH=12
FAILED : c o d i \ theorems \ output \ icon_theorems_3 .m4 . out IN 1 .84 ON 2012−3−15 1 0 : 2 5 : 4 6

c o d i \ theorems \ output \ icon_theorems_4 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ icon_theorems_4 . p9 . out IN 0 .68 ON 2012−3−15 1 0 : 2 5 : 5 1 , PROOF LENGTH=36

FAILED : c o d i \ theorems \ output \ icon_theorems_4 .m4 . out IN 1 .93 ON 2012−3−15 1 0 : 2 5 : 5 2
c o d i \ theorems \ output \ inc_theorems_1 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c o d i \ theorems \ output \ inc_theorems_1 . r e l e v a n c e 1 . p9 . out IN 0 .05 ON 2011−10−20 2 0 : 5 2 : 3 9 , PROOF LENGTH=29
SUCCESS : c o d i \ theorems \ output \ inc_theorems_1 . vam . out IN 0 .057

FAILED : c o d i \ theorems \ output \ inc_theorems_1 . r e l e v a n c e 1 .m4 . out IN 1 .95 ON 2011−10−20 2 0 : 5 2 : 4 1
c o d i \ theorems \ output \ inc_theorems_2 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c o d i \ theorems \ output \ inc_theorems_2 . r e l e v a n c e 1 . p9 . out IN 5 .12 ON 2011−10−20 2 0 : 5 2 : 5 0 , PROOF LENGTH=53
SUCCESS : c o d i \ theorems \ output \ inc_theorems_2 . vam . out IN 0 .064

FAILED : c o d i \ theorems \ output \ inc_theorems_2 . r e l e v a n c e 1 .m4 . out IN 5 .92 ON 2011−10−20 2 0 : 5 2 : 5 1
c o d i \ theorems \ output \ inc_theorems_3 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c o d i \ theorems \ output \ inc_theorems_3 . r e l e v a n c e 1 . p9 . out IN 0 .07 ON 2011−10−20 2 0 : 5 2 : 5 6 , PROOF LENGTH=44
SUCCESS : c o d i \ theorems \ output \ inc_theorems_3 . vam . out IN 0 .077

FAILED : c o d i \ theorems \ output \ inc_theorems_3 . r e l e v a n c e 1 .m4 . out IN 1 .96 ON 2011−10−20 2 0 : 5 2 : 5 7
c o d i \ theorems \ output \ inc_theorems_4 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c o d i \ theorems \ output \ inc_theorems_4 . r e l e v a n c e 1 . p9 . out IN 0 .26 ON 2011−10−20 2 0 : 5 3 : 0 2 , PROOF LENGTH=27
SUCCESS : c o d i \ theorems \ output \ inc_theorems_4 . vam . out IN 0 .453
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FAILED : c o d i \ theorems \ output \ inc_theorems_4 . r e l e v a n c e 1 .m4 . out IN 1 .96 ON 2011−10−20 2 0 : 5 3 : 0 4
c o d i \ theorems \ output \ inc_theorems_5 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c o d i \ theorems \ output \ inc_theorems_5 . r e l e v a n c e 1 . p9 . out IN 0 .01 ON 2011−10−20 2 0 : 5 3 : 0 8 , PROOF LENGTH=18
SUCCESS : c o d i \ theorems \ output \ inc_theorems_5 . vam . out IN 0 .07

FAILED : c o d i \ theorems \ output \ inc_theorems_5 . r e l e v a n c e 1 .m4 . out IN 0 .69 ON 2011−10−20 2 0 : 5 3 : 0 9
c o d i \ theorems \ output \ inc_theorems_6 t e s t e d wi th : Mace4 , Prover9 , Vampire

FAILED : c o d i \ theorems \ output \ inc_theorems_6 . r e l e v a n c e 1 . p9 . out IN 600 .01 ON 2011−10−20 2 1 : 0 2 : 0 4
SUCCESS : c o d i \ theorems \ output \ inc_theorems_6 . vam . out IN 1 .886

FAILED : c o d i \ theorems \ output \ inc_theorems_6 . r e l e v a n c e 1 .m4 . out IN 600.01 ON 2011−10−20 2 1 : 0 2 : 1 1
c o d i \ theorems \ output \ int_theorems_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c o d i \ theorems \ output \ int_theorems_1 . r e l e v a n c e 1 . p9 . out IN 0 .03 ON 2011−5−2 1 6 : 4 0 : 4 7 , PROOF LENGTH=10
FAILED : c o d i \ theorems \ output \ int_theorems_1 . r e l e v a n c e 1 .m4 . out IN 1 .20 ON 2011−5−2 1 6 : 4 0 : 4 9

c o d i \ theorems \ output \ int_theorems_2 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ int_theorems_2 . r e l e v a n c e 1 . p9 . out IN 0 .03 ON 2011−5−2 1 6 : 4 0 : 5 2 , PROOF LENGTH=10

FAILED : c o d i \ theorems \ output \ int_theorems_2 . r e l e v a n c e 1 .m4 . out IN 1 .21 ON 2011−5−2 1 6 : 4 0 : 5 3
c o d i \ theorems \ output \ int_theorems_3 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c o d i \ theorems \ output \ int_theorems_3 . r e l e v a n c e 1 . p9 . out IN 0 .03 ON 2011−5−2 1 6 : 4 0 : 5 6 , PROOF LENGTH=9
FAILED : c o d i \ theorems \ output \ int_theorems_3 . r e l e v a n c e 1 .m4 . out IN 1 .22 ON 2011−5−2 1 6 : 4 0 : 5 7

c o d i \ theorems \ output \ int_theorems_4 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ int_theorems_4 . r e l e v a n c e 1 . p9 . out IN 0 .02 ON 2011−5−2 1 6 : 4 1 : 0 0 , PROOF LENGTH=11

FAILED : c o d i \ theorems \ output \ int_theorems_4 . r e l e v a n c e 1 .m4 . out IN 1 .26 ON 2011−5−2 1 6 : 4 1 : 0 1
c o d i \ theorems \ output \ int_theorems_5 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c o d i \ theorems \ output \ int_theorems_5 . r e l e v a n c e 1 . p9 . out IN 0 .03 ON 2011−5−2 1 6 : 4 1 : 0 4 , PROOF LENGTH=11
FAILED : c o d i \ theorems \ output \ int_theorems_5 . r e l e v a n c e 1 .m4 . out IN 1 .96 ON 2011−5−2 1 6 : 4 1 : 0 6

c o d i \ theorems \ output \ po_theorems_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ po_theorems_1 . r e l e v a n c e 1 . p9 . out IN 0 .01 ON 2011−10−20 2 1 : 0 3 : 4 5 , PROOF LENGTH=16

FAILED : c o d i \ theorems \ output \ po_theorems_1 . r e l e v a n c e 1 .m4 . out IN 0 .54 ON 2011−10−20 2 1 : 0 3 : 4 6
c o d i \ theorems \ output \ po_theorems_2 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c o d i \ theorems \ output \ po_theorems_2 . r e l e v a n c e 1 . p9 . out IN 0 .01 ON 2011−10−20 2 1 : 0 3 : 4 9 , PROOF LENGTH=10
FAILED : c o d i \ theorems \ output \ po_theorems_2 . r e l e v a n c e 1 .m4 . out IN 1 .96 ON 2011−10−20 2 1 : 0 3 : 5 1

c o d i \ theorems \ output \ po_theorems_3 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ po_theorems_3 . r e l e v a n c e 1 . p9 . out IN 0 .01 ON 2011−10−20 2 1 : 0 3 : 5 6 , PROOF LENGTH=19

FAILED : c o d i \ theorems \ output \ po_theorems_3 . r e l e v a n c e 1 .m4 . out IN 0 .55 ON 2011−10−20 2 1 : 0 3 : 5 6
c o d i \ theorems \ output \ sc_theorems_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c o d i \ theorems \ output \ sc_theorems_1 . r e l e v a n c e 1 . p9 . out IN 0 .02 ON 2011−10−20 2 1 : 2 5 : 1 9 , PROOF LENGTH=11
FAILED : c o d i \ theorems \ output \ sc_theorems_1 . r e l e v a n c e 1 .m4 . out IN 1 .95 ON 2011−10−20 2 1 : 2 5 : 2 1

c o d i \ theorems \ output \ sc_theorems_2 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ sc_theorems_2 . r e l e v a n c e 1 . p9 . out IN 0 .02 ON 2011−10−20 2 1 : 2 5 : 2 5 , PROOF LENGTH=18

FAILED : c o d i \ theorems \ output \ sc_theorems_2 . r e l e v a n c e 1 .m4 . out IN 0 .86 ON 2011−10−20 2 1 : 2 5 : 2 6
c o d i \ theorems \ output \ sc_theorems_3 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c o d i \ theorems \ output \ sc_theorems_3 . r e l e v a n c e 1 . p9 . out IN 0 .03 ON 2011−10−20 2 1 : 2 5 : 2 9 , PROOF LENGTH=18
FAILED : c o d i \ theorems \ output \ sc_theorems_3 . r e l e v a n c e 1 .m4 . out IN 0 .87 ON 2011−10−20 2 1 : 2 5 : 3 0

c o d i \ theorems \ output \ sc_theorems_4 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ sc_theorems_4 . r e l e v a n c e 1 . p9 . out IN 0 .16 ON 2011−10−20 2 1 : 2 5 : 3 4 , PROOF LENGTH=33

FAILED : c o d i \ theorems \ output \ sc_theorems_4 . r e l e v a n c e 1 .m4 . out IN 1 .95 ON 2011−10−20 2 1 : 2 5 : 3 6
c o d i \ theorems \ output \ sc_theorems_5 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c o d i \ theorems \ output \ sc_theorems_5 . r e l e v a n c e 1 . p9 . out IN 0 .02 ON 2011−10−20 2 1 : 2 5 : 4 0 , PROOF LENGTH=16
FAILED : c o d i \ theorems \ output \ sc_theorems_5 . r e l e v a n c e 1 .m4 . out IN 0 .85 ON 2011−10−20 2 1 : 2 5 : 4 1

c o d i \ theorems \ output \ sc_theorems_6 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c o d i \ theorems \ output \ sc_theorems_6 . r e l e v a n c e 1 . p9 . out IN 106 .62 ON 2011−10−20 2 1 : 2 7 : 3 1 , PROOF LENGTH=54

FAILED : c o d i \ theorems \ output \ sc_theorems_6 . r e l e v a n c e 1 .m4 . out IN 107 .56 ON 2011−10−20 2 1 : 2 7 : 3 2
c o d i \ theorems \ output \ sc_theorems_7 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c o d i \ theorems \ output \ sc_theorems_7 . r e l e v a n c e 1 . p9 . out IN 0 .02 ON 2011−10−20 2 1 : 2 7 : 3 7 , PROOF LENGTH=15
FAILED : c o d i \ theorems \ output \ sc_theorems_7 . r e l e v a n c e 1 .m4 . out IN 1 .97 ON 2011−10−20 2 1 : 2 7 : 3 9

−−−−
mt
−−−−
mt\ c o n s i s t e n c y \ output \ r c c _ b a s i c _ s t r i c t _ n o n t r i v i a l _ 2 t e s t e d wi th : Paradox3

SUCCESS : mt\ c o n s i s t e n c y \ output \ r c c _ b a s i c _ s t r i c t _ n o n t r i v i a l _ 2 . tp tp . out , MODEL SIZE=3
mt\ c o n s i s t e n c y \ output \ r c c _ b a s i c _ s t r i c t _ n o n t r i v i a l _ 4 t e s t e d wi th : Paradox3

SUCCESS : mt\ c o n s i s t e n c y \ output \ r c c _ b a s i c _ s t r i c t _ n o n t r i v i a l _ 4 . tp tp . out , MODEL SIZE=7
mt\ c o n s i s t e n c y \ output \ r c c _ b a s i c _ s t r i c t _ n o n t r i v i a l _ 4 a t o m s t e s t e d wi th : Paradox3

SUCCESS : mt\ c o n s i s t e n c y \ output \ r c c _ b a s i c _ s t r i c t _ n o n t r i v i a l _ 4 a t o m s . tp tp . out , MODEL SIZE=15
mt\ c o n s i s t e n c y \ output \ r t 0 _ 1 3 d i s t i n c t t e s t e d wi th : Paradox3

SUCCESS : mt\ c o n s i s t e n c y \ output \ r t 0 _ 1 3 d i s t i n c t . tp tp . out , MODEL SIZE=13
mt\ c o n s i s t e n c y \ output \ r t m i n u s _ 1 3 d i s t i n c t t e s t e d wi th : Mace4 , Prover9 , Paradox3

FAILED : mt\ c o n s i s t e n c y \ output \ r t m i n u s _ 1 3 d i s t i n c t . p9 . out IN 600 .00 ON 2012−11−2 1 6 : 5 1 : 1 3
FAILED : mt\ c o n s i s t e n c y \ output \ r t m i n u s _ 1 3 d i s t i n c t .m4 . out IN 63 .26 ON 2012−11−2 1 6 : 4 2 : 0 7

SUCCESS : mt\ c o n s i s t e n c y \ output \ r t m i n u s _ 1 3 d i s t i n c t . tp tp . out , MODEL SIZE=13
mt\ c o n s i s t e n c y \ output \ r tm inus_13e l ement s t e s t e d wi th : Paradox3

SUCCESS : mt\ c o n s i s t e n c y \ output \ r tminus_13e l ement s . tp tp . out , MODEL SIZE=13
mt\ output \ r c c t e s t e d wi th : Mace4 , Prove r9

UNKNOWN: mt\ output \ r c c
FAILED : mt\ output \ r c c . p9 . out IN 600.00 ON 2012−11−2 1 9 : 0 3 : 0 2
FAILED : mt\ output \ r c c .m4 . out IN 505.27 ON 2012−11−2 1 9 : 0 1 : 1 9

mt\ output \ r c c _ b a s i c t e s t e d wi th : Mace4 , Prove r9
UNKNOWN: mt\ output \ r c c _ b a s i c

FAILED : mt\ output \ r c c _ b a s i c . p9 . out IN 600 .00 ON 2012−11−2 1 9 : 0 1 : 5 0
FAILED : mt\ output \ r c c _ b a s i c .m4 . out IN 600 .01 ON 2012−11−2 1 9 : 0 1 : 5 1

mt\ output \ r c c _ b a s i c _ s t r i c t t e s t e d wi th : Mace4 , Prove r9
FAILED : mt\ output \ r c c _ b a s i c _ s t r i c t . p9 . out IN 1 .96 ON 2012−11−2 1 9 : 3 6 : 2 9

SUCCESS : mt\ output \ r c c _ b a s i c _ s t r i c t .m4 . out IN 0 .03 ON 2012−11−2 1 9 : 3 6 : 2 7 , MODEL SIZE=3
mt\ output \ r c c _ s t r i c t t e s t e d wi th : Mace4 , Prove r9

UNKNOWN: mt\ output \ r c c _ s t r i c t
FAILED : mt\ output \ r c c _ s t r i c t . p9 . out IN 600.00 ON 2012−11−2 1 9 : 0 2 : 3 3
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FAILED : mt\ output \ r c c _ s t r i c t .m4 . out IN 497 .94 ON 2012−11−2 1 9 : 0 0 : 4 2
mt\ output \ r t 1 3 t e s t e d wi th : Paradox3

SUCCESS : mt\ output \ r t 1 3 . tp tp . out , MODEL SIZE=13
mt\ output \ r t 1 3 _ d i s t i n c t t e s t e d wi th : Paradox3

SUCCESS : mt\ output \ r t 1 3 _ d i s t i n c t . tp tp . out , MODEL SIZE=13
mt\ output \ r tm inu s t e s t e d wi th : Mace4 , Prove r9

UNKNOWN: mt\ output \ r tm inus
FAILED : mt\ output \ r tm inus . p9 . out IN 600.28 ON 2012−11−2 1 7 : 4 1 : 4 9
FAILED : mt\ output \ r tm inus .m4 . out IN 600 .01 ON 2012−11−2 1 7 : 4 2 : 0 1

−−−−
i n c h
−−−−
i n c h \ c o n s i s t e n c y \ output \ i n c h _ c a l c u l u s _ e x t e n d e d _ f u l l t e s t e d wi th : Mace4 , Prover9 , Paradox3

FAILED : i n c h \ c o n s i s t e n c y \ output \ i n c h _ c a l c u l u s _ e x t e n d e d _ f u l l . p9 . out IN 600.11 ON 2012−7−5 1 8 : 3 4 : 0 2
FAILED : i n c h \ c o n s i s t e n c y \ output \ i n c h _ c a l c u l u s _ e x t e n d e d _ f u l l .m4 . out IN 600 .04 ON 2012−7−5 1 8 : 3 4 : 0 7

SUCCESS : i n c h \ c o n s i s t e n c y \ output \ i n c h _ c a l c u l u s _ e x t e n d e d _ f u l l . t p tp . out , MODEL SIZE=5
i n c h \ c o n s i s t e n c y \ output \ i n c h _ c a l c u l u s _ e x t e n d e d _ n o t i−e3 t e s t e d wi th : Mace4 , Prove r9

FAILED : i n c h \ c o n s i s t e n c y \ output \ i n c h _ c a l c u l u s _ e x t e n d e d _ n o t i−e3 . p9 . out IN 67 .87 ON 2012−6−29 0 3 : 3 8 : 1 0
SUCCESS : i n c h \ c o n s i s t e n c y \ output \ i n c h _ c a l c u l u s _ e x t e n d e d _ n o t i−e3 .m4 . out IN 65 .62 ON 2012−6−29 0 3 : 3 8 : 0 8 , MODEL SIZE=5

i n c h \ c o n s i s t e n c y \ output \ i n c h _ c a l c u l u s _ n o t c−a5 t e s t e d wi th : Mace4 , Prover9 , Paradox3
FAILED : i n c h \ c o n s i s t e n c y \ output \ i n c h _ c a l c u l u s _ n o t c−a5 . p9 . out
FAILED : i n c h \ c o n s i s t e n c y \ output \ i n c h _ c a l c u l u s _ n o t c−a5 .m4 . out

SUCCESS : i n c h \ c o n s i s t e n c y \ output \ i n c h _ c a l c u l u s _ n o t c−a5 . tp tp . out , MODEL SIZE=5
i n c h \ c o n s i s t e n c y \ output \ i n c h _ c a l c u l u s _ n o _ i n t e r s e c t i o n t e s t e d wi th : Mace4 , Prover9 , Paradox3

FAILED : i n c h \ c o n s i s t e n c y \ output \ i n c h _ c a l c u l u s _ n o _ i n t e r s e c t i o n . p9 . out
FAILED : i n c h \ c o n s i s t e n c y \ output \ i n c h _ c a l c u l u s _ n o _ i n t e r s e c t i o n .m4 . out

SUCCESS : i n c h \ c o n s i s t e n c y \ output \ i n c h _ c a l c u l u s _ n o _ i n t e r s e c t i o n . tp tp . out , MODEL SIZE=4
i n c h \ c o n s i s t e n c y \ output \ i n c h _ o r i g i n a l _ n o t i−pa7 t e s t e d wi th : Paradox3

SUCCESS : i n c h \ c o n s i s t e n c y \ output \ i n c h _ o r i g i n a l _ n o t i−pa7 . tp tp . out , MODEL SIZE=6
i n c h \ output \ i n c h _ c a l c u l u s t e s t e d wi th : Mace4 , Prove r9

FAILED : i n c h \ output \ i n c h _ c a l c u l u s . p9 . out IN 1 .95 ON 2012−5−20 1 6 : 2 9 : 5 8
SUCCESS : i n c h \ output \ i n c h _ c a l c u l u s .m4 . out IN 1 .23 ON 2012−5−20 1 6 : 2 9 : 5 7 , MODEL SIZE=2

i n c h \ output \ i n c h _ o r i g i n a l t e s t e d wi th : Mace4 , Prove r9
FAILED : i n c h \ output \ i n c h _ o r i g i n a l . p9 . out IN 1 .96 ON 2012−5−20 1 8 : 3 0 : 5 3

SUCCESS : i n c h \ output \ i n c h _ o r i g i n a l .m4 . out IN 0 .14 ON 2012−5−20 1 8 : 3 0 : 5 2 , MODEL SIZE=2
i n c h \ output \ inch_weak t e s t e d wi th : Mace4 , Prove r9

FAILED : i n c h \ output \ inch_weak . p9 . out IN 1 .95 ON 2012−5−20 1 6 : 2 5 : 3 1
SUCCESS : i n c h \ output \ inch_weak .m4 . out IN 0 .01 ON 2012−5−20 1 6 : 2 5 : 2 9 , MODEL SIZE=2

i n c h \ output \ inch_weak_c losed t e s t e d wi th : Mace4 , Prove r9
FAILED : i n c h \ output \ inch_weak_c losed . p9 . out IN 1 .97 ON 2012−5−20 1 6 : 2 5 : 4 0

SUCCESS : i n c h \ output \ inch_weak_c losed .m4 . out IN 0 .03 ON 2012−5−20 1 6 : 2 5 : 3 8 , MODEL SIZE=2
i n c h \ theorems \ output \codi_down_c−e4_i−m10 t e s t e d wi th : Mace4 , Prove r9

FAILED : i n c h \ theorems \ output \codi_down_c−e4_i−m10 . p9 . out IN 1 .96 ON 2012−5−28 1 8 : 3 2 : 0 3
SUCCESS : i n c h \ theorems \ output \codi_down_c−e4_i−m10 .m4 . out IN 0 .02 ON 2012−5−28 1 8 : 3 2 : 0 1 , MODEL SIZE=2

i n c h \ theorems \ output \codi_down_c−e4_i−m10_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \codi_down_c−e4_i−m10_1 . p9 . out IN 0 .03 ON 2012−5−28 1 8 : 3 2 : 1 0 , PROOF LENGTH=20

FAILED : i n c h \ theorems \ output \codi_down_c−e4_i−m10_1 .m4 . out IN 1 .88 ON 2012−5−28 1 8 : 3 2 : 1 2
i n c h \ theorems \ output \codi_down_c−e4_i−m10_2 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i n c h \ theorems \ output \codi_down_c−e4_i−m10_2 . p9 . out IN 0 .04 ON 2012−5−28 1 8 : 3 2 : 1 6 , PROOF LENGTH=21
FAILED : i n c h \ theorems \ output \codi_down_c−e4_i−m10_2 .m4 . out IN 1 .89 ON 2012−5−28 1 8 : 3 2 : 1 8

i n c h \ theorems \ output \codi_down_c−e4_i−m7 t e s t e d wi th : Mace4 , Prove r9
FAILED : i n c h \ theorems \ output \codi_down_c−e4_i−m7. p9 . out IN 1 .82 ON 2012−11−20 1 8 : 5 9 : 3 3

SUCCESS : i n c h \ theorems \ output \codi_down_c−e4_i−m7.m4 . out IN 0 .01 ON 2012−11−20 1 8 : 5 9 : 3 1 , MODEL SIZE=2
i n c h \ theorems \ output \codi_down_c−e4_i−m7_1 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : i n c h \ theorems \ output \codi_down_c−e4_i−m7_1 . p9 . out IN 0 .07 ON 2012−11−20 1 8 : 5 9 : 4 0 , PROOF LENGTH=31
SUCCESS : i n c h \ theorems \ output \codi_down_c−e4_i−m7_1 . vam . out IN 0 .006

FAILED : i n c h \ theorems \ output \codi_down_c−e4_i−m7_1 .m4 . out IN 1 .92 ON 2012−11−20 1 8 : 5 9 : 4 2
i n c h \ theorems \ output \codi_down_c−e4_i−m7_2 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : i n c h \ theorems \ output \codi_down_c−e4_i−m7_2 . p9 . out IN 151 .68 ON 2012−11−20 1 9 : 0 2 : 1 8 , PROOF LENGTH=29
SUCCESS : i n c h \ theorems \ output \codi_down_c−e4_i−m7_2 . vam . out IN 5 .16

FAILED : i n c h \ theorems \ output \codi_down_c−e4_i−m7_2 .m4 . out IN 151 .39 ON 2012−11−20 1 9 : 0 2 : 2 0
i n c h \ theorems \ output \codi_down_c−e4_i−m7_3 t e s t e d wi th : Mace4 , Prover9 , Vampire

UNKNOWN: i n c h \ theorems \ output \codi_down_c−e4_i−m7_3
FAILED : i n c h \ theorems \ output \codi_down_c−e4_i−m7_3 . p9 . out IN 600 .01 ON 2012−11−20 1 9 : 1 2 : 2 7
FAILED : i n c h \ theorems \ output \codi_down_c−e4_i−m7_3 . vam . out IN 599.802
FAILED : i n c h \ theorems \ output \codi_down_c−e4_i−m7_3 .m4 . out IN 600 .02 ON 2012−11−20 1 9 : 1 2 : 2 7

i n c h \ theorems \ output \codi_down_c−e4_i−m8 t e s t e d wi th : Mace4 , Prove r9
FAILED : i n c h \ theorems \ output \codi_down_c−e4_i−m8. p9 . out IN 1 .86 ON 2012−5−28 1 8 : 1 0 : 4 9

SUCCESS : i n c h \ theorems \ output \codi_down_c−e4_i−m8.m4 . out IN 0 .01 ON 2012−5−28 1 8 : 1 0 : 4 8 , MODEL SIZE=2
i n c h \ theorems \ output \codi_down_c−e4_i−m8_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i n c h \ theorems \ output \codi_down_c−e4_i−m8_1 . p9 . out IN 24 .73 ON 2012−5−28 1 8 : 1 1 : 2 0 , PROOF LENGTH=113
FAILED : i n c h \ theorems \ output \codi_down_c−e4_i−m8_1 .m4 . out IN 25 .52 ON 2012−5−28 1 8 : 1 1 : 2 1

i n c h \ theorems \ output \codi_down_c−e4_i−m8_2 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \codi_down_c−e4_i−m8_2 . p9 . out IN 55 .91 ON 2012−5−28 1 8 : 1 2 : 2 1 , PROOF LENGTH=94

FAILED : i n c h \ theorems \ output \codi_down_c−e4_i−m8_2 .m4 . out IN 57 .18 ON 2012−5−28 1 8 : 1 2 : 2 3
i n c h \ theorems \ output \codi_down_c−e4_i−m9 t e s t e d wi th : Mace4 , Prove r9

FAILED : i n c h \ theorems \ output \codi_down_c−e4_i−m9. p9 . out IN 1 .96 ON 2012−5−28 1 8 : 2 2 : 5 6
SUCCESS : i n c h \ theorems \ output \codi_down_c−e4_i−m9.m4 . out IN 0 .01 ON 2012−5−28 1 8 : 2 2 : 5 4 , MODEL SIZE=2

i n c h \ theorems \ output \codi_down_c−e4_i−m9_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \codi_down_c−e4_i−m9_1 . p9 . out IN 0 .02 ON 2012−5−28 1 8 : 2 3 : 0 2 , PROOF LENGTH=6

FAILED : i n c h \ theorems \ output \codi_down_c−e4_i−m9_1 .m4 . out IN 1 .89 ON 2012−5−28 1 8 : 2 3 : 0 4
i n c h \ theorems \ output \codi_down_c−e4_i−m9_2 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i n c h \ theorems \ output \codi_down_c−e4_i−m9_2 . p9 . out IN 0 .05 ON 2012−5−28 1 8 : 2 3 : 0 8 , PROOF LENGTH=35
FAILED : i n c h \ theorems \ output \codi_down_c−e4_i−m9_2 .m4 . out IN 1 .90 ON 2012−5−28 1 8 : 2 3 : 1 0

i n c h \ theorems \ output \codi_down_c−e4_i−m9_3 t e s t e d wi th : Mace4 , Prove r9
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SUCCESS : i n c h \ theorems \ output \codi_down_c−e4_i−m9_3 . p9 . out IN 0 .02 ON 2012−5−28 1 8 : 2 3 : 1 4 , PROOF LENGTH=7
FAILED : i n c h \ theorems \ output \codi_down_c−e4_i−m9_3 .m4 . out IN 0 .44 ON 2012−5−28 1 8 : 2 3 : 1 4

i n c h \ theorems \ output \codi_down_c−e4_i−m9_4 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \codi_down_c−e4_i−m9_4 . p9 . out IN 0 .02 ON 2012−5−28 1 8 : 2 3 : 1 8 , PROOF LENGTH=9

FAILED : i n c h \ theorems \ output \codi_down_c−e4_i−m9_4 .m4 . out IN 1 .93 ON 2012−5−28 1 8 : 2 3 : 2 0
i n c h \ theorems \ output \codi_down_c−e4_i−m9_5 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i n c h \ theorems \ output \codi_down_c−e4_i−m9_5 . p9 . out IN 0 .03 ON 2012−5−28 1 8 : 2 3 : 2 4 , PROOF LENGTH=8
FAILED : i n c h \ theorems \ output \codi_down_c−e4_i−m9_5 .m4 . out IN 0 .44 ON 2012−5−28 1 8 : 2 3 : 2 4

i n c h \ theorems \ output \codi_down_c−e4_i−m9_6 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \codi_down_c−e4_i−m9_6 . p9 . out IN 0 .03 ON 2012−5−28 1 8 : 2 3 : 2 8 , PROOF LENGTH=22

FAILED : i n c h \ theorems \ output \codi_down_c−e4_i−m9_6 .m4 . out IN 0 .44 ON 2012−5−28 1 8 : 2 3 : 2 8
i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−e1 t e s t e d wi th : Mace4 , Prove r9

FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−e1 . p9 . out IN 1 .93 ON 2012−5−28 1 6 : 2 3 : 4 7
SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−e1 .m4 . out IN 0 .00 ON 2012−5−28 1 6 : 2 3 : 4 5 , MODEL SIZE=2

i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−e1_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−e1_1 . p9 . out IN 0 .01 ON 2012−5−28 1 6 : 2 3 : 5 2 , PROOF LENGTH=25

FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−e1_1 .m4 . out IN 0 .34 ON 2012−5−28 1 6 : 2 3 : 5 2
i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m3 t e s t e d wi th : Mace4 , Prove r9

FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m3. p9 . out IN 1 .97 ON 2012−5−28 1 7 : 0 6 : 3 9
SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m3.m4 . out IN 0 .01 ON 2012−5−28 1 7 : 0 6 : 3 7 , MODEL SIZE=2

i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m3_1 t e s t e d wi th : Mace4 , Prover9 , Vampire
UNKNOWN: i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m3_1

FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m3_1 . p9 . out IN 600 .05 ON 2012−5−28 1 7 : 1 6 : 4 5
FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m3_1 . vam . out IN 599.802
FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m3_1 .m4 . out IN 600 .01 ON 2012−5−28 1 7 : 1 6 : 5 1

i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m3_2 t e s t e d wi th : Mace4 , Prover9 , Vampire
SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m3_2 . p9 . out IN 1 .22 ON 2012−5−28 1 7 : 1 6 : 5 6 , PROOF LENGTH=36
SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m3_2 . vam . out IN 2 .055

FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m3_2 .m4 . out IN 1 .80 ON 2012−5−28 1 7 : 1 6 : 5 7
i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m4 t e s t e d wi th : Mace4 , Prove r9

FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m4. p9 . out IN 1 .95 ON 2012−5−28 1 7 : 0 6 : 4 5
SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m4.m4 . out IN 0 .02 ON 2012−5−28 1 7 : 0 6 : 4 3 , MODEL SIZE=2

i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m4_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m4_1 . p9 . out IN 0 .01 ON 2012−5−28 1 7 : 0 6 : 5 0 , PROOF LENGTH=20

FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m4_1 .m4 . out IN 1 .83 ON 2012−5−28 1 7 : 0 6 : 5 2
i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m4_2 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m4_2 . p9 . out IN 0 .02 ON 2012−5−28 1 7 : 0 6 : 5 6 , PROOF LENGTH=21
FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m4_2 .m4 . out IN 1 .82 ON 2012−5−28 1 7 : 0 6 : 5 8

i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m5 t e s t e d wi th : Mace4 , Prove r9
FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m5. p9 . out IN 1 .96 ON 2012−5−28 1 7 : 0 7 : 0 8

SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m5.m4 . out IN 0 .00 ON 2012−5−28 1 7 : 0 7 : 0 6 , MODEL SIZE=2
i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m5_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m5_1 . p9 . out IN 0 .02 ON 2012−5−28 1 7 : 0 7 : 1 3 , PROOF LENGTH=23
FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m5_1 .m4 . out IN 1 .87 ON 2012−5−28 1 7 : 0 7 : 1 5

i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m5_2 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m5_2 . p9 . out IN 0 .02 ON 2012−5−28 1 7 : 0 7 : 1 9 , PROOF LENGTH=19

FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m5_2 .m4 . out IN 1 .84 ON 2012−5−28 1 7 : 0 7 : 2 1
i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m6 t e s t e d wi th : Mace4 , Prove r9

FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m6. p9 . out IN 1 .97 ON 2012−5−28 1 7 : 0 8 : 5 4
SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m6.m4 . out IN 0 .01 ON 2012−5−28 1 7 : 0 8 : 5 2 , MODEL SIZE=2

i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m6_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m6_1 . p9 . out IN 0 .06 ON 2012−5−28 1 7 : 0 9 : 0 0 , PROOF LENGTH=59

FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m6_1 .m4 . out IN 1 .85 ON 2012−5−28 1 7 : 0 9 : 0 2
i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m6_2 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m6_2 . p9 . out IN 2 .09 ON 2012−5−28 1 7 : 0 9 : 0 8 , PROOF LENGTH=32
FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−m6_2 .m4 . out IN 3 .78 ON 2012−5−28 1 7 : 0 9 : 1 0

i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−pa4 t e s t e d wi th : Mace4 , Prove r9
FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−pa4 . p9 . out IN 1 .94 ON 2012−5−28 1 6 : 2 3 : 3 0

SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−pa4 .m4 . out IN 0 .02 ON 2012−5−28 1 6 : 2 3 : 2 8 , MODEL SIZE=2
i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−pa4_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−pa4_1 . p9 . out IN 0 .26 ON 2012−5−28 1 6 : 2 3 : 3 6 , PROOF LENGTH=17
FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−pa4_1 .m4 . out IN 1 .89 ON 2012−5−28 1 6 : 2 3 : 3 8

i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−pa5 t e s t e d wi th : Mace4 , Prove r9
FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−pa5 . p9 . out IN 1 .89 ON 2012−5−28 1 6 : 2 2 : 4 2

SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−pa5 .m4 . out IN 0 .01 ON 2012−5−28 1 6 : 2 2 : 4 0 , MODEL SIZE=2
i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−pa5_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−pa5_1 . p9 . out IN 0 .41 ON 2012−5−28 1 6 : 2 2 : 4 9 , PROOF LENGTH=27
FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ c−e4_i−pa5_1 .m4 . out IN 1 .91 ON 2012−5−28 1 6 : 2 2 : 5 0

i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−e1 t e s t e d wi th : Mace4 , Prove r9
FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−e1 . p9 . out IN 1 .94 ON 2012−5−28 1 4 : 1 1 : 0 8

SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−e1 .m4 . out IN 0 .01 ON 2012−5−28 1 4 : 1 1 : 0 6 , MODEL SIZE=2
i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−e1_1 t e s t e d wi th : Mace4 , Prove r9

FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−e1_1 . p9 . out IN 1 .96 ON 2012−5−28 1 4 : 1 1 : 1 6
SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−e1_1 .m4 . out IN 0 .01 ON 2012−5−28 1 4 : 1 1 : 1 4 , MODEL SIZE=2

i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−m2 t e s t e d wi th : Mace4 , Prove r9
FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−m2. p9 . out IN 1 .96 ON 2012−5−28 1 4 : 2 5 : 1 4

SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−m2.m4 . out IN 0 .01 ON 2012−5−28 1 4 : 2 5 : 1 2 , MODEL SIZE=2
i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−m2_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−m2_1 . p9 . out IN 0 .04 ON 2012−5−28 1 4 : 2 5 : 2 0 , PROOF LENGTH=12
FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−m2_1 .m4 . out IN 0 .91 ON 2012−5−28 1 4 : 2 5 : 2 1

i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−m2_2 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−m2_2 . p9 . out IN 0 .03 ON 2012−5−28 1 4 : 2 5 : 2 4 , PROOF LENGTH=18

FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−m2_2 .m4 . out IN 0 .90 ON 2012−5−28 1 4 : 2 5 : 2 5
i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−m3 t e s t e d wi th : Mace4 , Prove r9

FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−m3. p9 . out IN 1 .98 ON 2012−5−28 1 6 : 5 4 : 2 5
SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−m3.m4 . out IN 0 .01 ON 2012−5−28 1 6 : 5 4 : 2 3 , MODEL SIZE=2
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i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−m3_1 t e s t e d wi th : Mace4 , Prove r9
UNKNOWN: i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−m3_1

FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−m3_1 . p9 . out IN 600 .06 ON 2012−5−28 1 7 : 0 4 : 3 1
FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−m3_1 .m4 . out IN 600 .02 ON 2012−5−28 1 7 : 0 4 : 3 3

i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−m3_2 t e s t e d wi th : Mace4 , Prove r9
FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−m3_2 . p9 . out IN 1 .95 ON 2012−5−28 1 7 : 0 4 : 3 8

SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−m3_2 .m4 . out IN 0 .02 ON 2012−5−28 1 7 : 0 4 : 3 6 , MODEL SIZE=3
i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−pa3 t e s t e d wi th : Mace4 , Prove r9

FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−pa3 . p9 . out IN 1 .94 ON 2012−5−28 1 4 : 0 7 : 2 5
SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−pa3 .m4 . out IN 0 .02 ON 2012−5−28 1 4 : 0 7 : 2 3 , MODEL SIZE=2

i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−pa3_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−pa3_1 . p9 . out IN 0 .03 ON 2012−5−28 1 4 : 0 7 : 3 1 , PROOF LENGTH=20

FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−pa3_1 .m4 . out IN 1 .93 ON 2012−5−28 1 4 : 0 7 : 3 3
i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−pa6 t e s t e d wi th : Mace4 , Prove r9

FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−pa6 . p9 . out IN 1 .94 ON 2012−5−28 1 4 : 1 4 : 1 2
SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−pa6 .m4 . out IN 0 .01 ON 2012−5−28 1 4 : 1 4 : 1 0 , MODEL SIZE=2

i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−pa6_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−pa6_1 . p9 . out IN 0 .15 ON 2012−5−28 1 4 : 1 4 : 1 8 , PROOF LENGTH=59

FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−pa6_1 .m4 . out IN 1 .93 ON 2012−5−28 1 4 : 1 4 : 2 0
i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−pa7 t e s t e d wi th : Mace4 , Prove r9

FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−pa7 . p9 . out IN 1 .94 ON 2012−5−28 1 4 : 1 8 : 1 2
SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−pa7 .m4 . out IN 0 .01 ON 2012−5−28 1 4 : 1 8 : 1 0 , MODEL SIZE=2

i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−pa7_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−pa7_1 . p9 . out IN 255 .44 ON 2012−5−28 1 4 : 2 2 : 3 4 , PROOF LENGTH=42

FAILED : i n c h \ theorems \ output \ c o d i _ l i n e a r _ i−pa7_1 .m4 . out IN 254 .02 ON 2012−5−28 1 4 : 2 2 : 3 5
i n c h \ theorems \ output \ i n ch_ ca l c u l u s_c−e4 t e s t e d wi th : Mace4 , Prove r9

UNKNOWN: i n c h \ theorems \ output \ i n ch _ca l cu l u s_c−e4
FAILED : i n c h \ theorems \ output \ i n ch _ca l cu l u s_c−e4 . p9 . out IN 600 .00 ON 2012−6−29 1 2 : 5 0 : 0 6
FAILED : i n c h \ theorems \ output \ i n ch _ca l cu l u s_c−e4 .m4 . out IN 600 .04 ON 2012−6−29 1 2 : 5 0 : 1 7

i n c h \ theorems \ output \ i n ch_ ca l c u l u s _c−e4_1 t e s t e d wi th : Mace4 , Prover9 , Vampire
UNKNOWN: i n c h \ theorems \ output \ i n ch_ ca l c u l u s _c−e4_1

FAILED : i n c h \ theorems \ output \ i n ch _ca l cu l u s_c−e4_1 . p9 . out IN 600.02 ON 2012−6−29 1 3 : 0 0 : 2 6
FAILED : i n c h \ theorems \ output \ i n ch _ca l cu l u s_c−e4_1 . vam . out IN 599.502
FAILED : i n c h \ theorems \ output \ i n ch _ca l cu l u s_c−e4_1 .m4 . out IN 600 .08 ON 2012−6−29 1 3 : 0 0 : 2 5

i n c h \ theorems \ output \ i n ch_ ca l c u l u s _c−e4_2 t e s t e d wi th : Mace4 , Prover9 , Vampire
FAILED : i n c h \ theorems \ output \ i n ch _ca l cu l u s_c−e4_2 . p9 . out IN 600.01 ON 2012−6−29 1 3 : 1 0 : 3 5

SUCCESS : i n c h \ theorems \ output \ i n ch_ ca l c u l u s _c−e4_2 . vam . out IN 18.517
FAILED : i n c h \ theorems \ output \ i n ch _ca l cu l u s_c−e4_2 .m4 . out IN 600 .04 ON 2012−6−29 1 3 : 1 0 : 3 4

i n c h \ theorems \ output \ inch_ca l cu lu s_ex tended_theo r ems t e s t e d wi th : Mace4 , Prove r9
FAILED : i n c h \ theorems \ output \ inch_ca l cu lu s_ex tended_theo r ems . p9 . out IN 1 .97 ON 2012−6−29 0 2 : 4 3 : 5 8

SUCCESS : i n c h \ theorems \ output \ inch_ca l cu lu s_ex tended_theo r ems .m4 . out IN 0 .01 ON 2012−6−29 0 2 : 4 3 : 5 6 , MODEL SIZE=2
i n c h \ theorems \ output \ inch_ca l cu lus_extended_theorems_1 t e s t e d wi th : Mace4 , Prove r9

FAILED : i n c h \ theorems \ output \ inch_ca l cu lu s_extended_theorems_1 . p9 . out IN 67 .88 ON 2012−6−29 0 2 : 4 5 : 1 1
SUCCESS : i n c h \ theorems \ output \ inch_ca l cu lus_extended_theorems_1 .m4 . out IN 65 .78 ON 2012−6−29 0 2 : 4 5 : 1 0 , MODEL SIZE=5

i n c h \ theorems \ output \ i n c h _ c a l c u l u s _ i n t e r s e c t i o n t e s t e d wi th : Mace4 , Prove r9
FAILED : i n c h \ theorems \ output \ i n c h _ c a l c u l u s _ i n t e r s e c t i o n . p9 . out IN 37 .15 ON 2012−6−21 1 5 : 3 0 : 5 1

SUCCESS : i n c h \ theorems \ output \ i n c h _ c a l c u l u s _ i n t e r s e c t i o n .m4 . out IN 33 .01 ON 2012−6−21 1 5 : 3 0 : 5 1 , MODEL SIZE=2
i n c h \ theorems \ output \ i n c h _ c a l c u l u s _ i n t e r s e c t i o n _ 1 t e s t e d wi th : Mace4 , Prover9 , Vampire

UNKNOWN: i n c h \ theorems \ output \ i n c h _ c a l c u l u s _ i n t e r s e c t i o n _ 1
FAILED : i n c h \ theorems \ output \ i n c h _ c a l c u l u s _ i n t e r s e c t i o n _ 1 . p9 . out IN 600 .86 ON 2012−6−21 1 5 : 4 1 : 0 0
FAILED : i n c h \ theorems \ output \ i n c h _ c a l c u l u s _ i n t e r s e c t i o n _ 1 . vam . out IN 599 .7
FAILED : i n c h \ theorems \ output \ i n c h _ c a l c u l u s _ i n t e r s e c t i o n _ 1 .m4 . out IN 600 .02 ON 2012−6−21 1 5 : 4 1 : 0 1

i n c h \ theorems \ output \ i n c h _ c a l c u l u s _ i n t e r s e c t i o n _ 2 t e s t e d wi th : Mace4 , Prover9 , Vampire
FAILED : i n c h \ theorems \ output \ i n c h _ c a l c u l u s _ i n t e r s e c t i o n _ 2 . p9 . out IN 600 .65 ON 2012−6−21 1 5 : 5 1 : 0 7

SUCCESS : i n c h \ theorems \ output \ i n c h _ c a l c u l u s _ i n t e r s e c t i o n _ 2 . vam . out IN 119.085
FAILED : i n c h \ theorems \ output \ i n c h _ c a l c u l u s _ i n t e r s e c t i o n _ 2 .m4 . out IN 600 .02 ON 2012−6−21 1 5 : 5 1 : 0 9

i n c h \ theorems \ output \ i n c h _ c a l c u l u s _ t h e o r e m s t e s t e d wi th : Mace4 , Prove r9
UNKNOWN: i n c h \ theorems \ output \ i n c h _ c a l c u l u s _ t h e o r e m s

FAILED : i n c h \ theorems \ output \ i n c h _ c a l c u l u s _ t h e o r e m s . p9 . out IN 600.00 ON 2012−11−21 1 1 : 2 5 : 1 0
FAILED : i n c h \ theorems \ output \ i n c h _ c a l c u l u s _ t h e o r e m s .m4 . out IN 600 .02 ON 2012−11−21 1 1 : 2 5 : 2 4

i n c h \ theorems \ output \ inch_ca l cu lu s_theo rems_1 t e s t e d wi th : Mace4 , Prover9 , Vampire
SUCCESS : i n c h \ theorems \ output \ inch_ca l cu lu s_theo rems_1 . p9 . out IN 182 .15 ON 2012−6−29 0 3 : 4 2 : 0 5 , PROOF LENGTH=34

FAILED : i n c h \ theorems \ output \ inch_ca l cu lu s_theo rems_1 . vam . out IN 599.631
FAILED : i n c h \ theorems \ output \ inch_ca l cu lu s_theo rems_1 .m4 . out IN 182 .57 ON 2012−6−29 0 3 : 4 2 : 0 6

i n c h \ theorems \ output \ inch_ca l cu lu s_theo rems_2 t e s t e d wi th : Mace4 , Prover9 , Vampire
SUCCESS : i n c h \ theorems \ output \ inch_ca l cu lu s_theo rems_2 . p9 . out IN 0 .03 ON 2012−6−29 0 3 : 4 2 : 1 0 , PROOF LENGTH=20
SUCCESS : i n c h \ theorems \ output \ inch_ca l cu lu s_theo rems_2 . vam . out IN 0 .067

FAILED : i n c h \ theorems \ output \ inch_ca l cu lu s_theo rems_2 .m4 . out IN 1 .96 ON 2012−6−29 0 3 : 4 2 : 1 2
i n c h \ theorems \ output \ inch_ca l cu lu s_theo rems_3 t e s t e d wi th : Mace4 , Prover9 , Vampire

FAILED : i n c h \ theorems \ output \ inch_ca l cu lu s_theo rems_3 . p9 . out IN 600 .00 ON 2012−6−29 0 3 : 5 2 : 1 7
SUCCESS : i n c h \ theorems \ output \ inch_ca l cu lu s_theo rems_3 . vam . out IN 29.717

FAILED : i n c h \ theorems \ output \ inch_ca l cu lu s_theo rems_3 .m4 . out IN 600 .07 ON 2012−6−29 0 3 : 5 2 : 1 9
i n c h \ theorems \ output \ inch_cd−a1 t e s t e d wi th : Mace4 , Prove r9

FAILED : i n c h \ theorems \ output \ inch_cd−a1 . p9 . out IN 1 .91 ON 2012−5−22 1 1 : 0 5 : 3 1
SUCCESS : i n c h \ theorems \ output \ inch_cd−a1 .m4 . out IN 0 .02 ON 2012−5−22 1 1 : 0 5 : 2 9 , MODEL SIZE=2

i n c h \ theorems \ output \ inch_cd−a1_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \ inch_cd−a1_1 . p9 . out IN 0 .02 ON 2012−5−22 1 1 : 0 5 : 3 6 , PROOF LENGTH=30

FAILED : i n c h \ theorems \ output \ inch_cd−a1_1 .m4 . out IN 0 .88 ON 2012−5−22 1 1 : 0 5 : 3 7
i n c h \ theorems \ output \ inch_cont_bas i c t e s t e d wi th : Mace4 , Prove r9

FAILED : i n c h \ theorems \ output \ inch_cont_bas i c . p9 . out IN 1 .95 ON 2012−5−20 1 6 : 3 0 : 0 7
SUCCESS : i n c h \ theorems \ output \ inch_cont_bas i c .m4 . out IN 0 .01 ON 2012−5−20 1 6 : 3 0 : 0 5 , MODEL SIZE=2

i n c h \ theorems \ output \ inch_cont_bas ic_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \ inch_cont_bas ic_1 . p9 . out IN 0 .02 ON 2012−5−22 1 0 : 4 8 : 0 2 , PROOF LENGTH=23

FAILED : i n c h \ theorems \ output \ inch_cont_bas ic_1 .m4 . out IN 1 .04 ON 2012−5−22 1 0 : 4 8 : 0 3
i n c h \ theorems \ output \ inch_cont_bas ic_2 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i n c h \ theorems \ output \ inch_cont_bas ic_2 . p9 . out IN 0 .02 ON 2012−5−22 1 0 : 4 8 : 0 6 , PROOF LENGTH=20
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FAILED : i n c h \ theorems \ output \ inch_cont_bas ic_2 .m4 . out IN 1 .89 ON 2012−5−22 1 0 : 4 8 : 0 8
i n c h \ theorems \ output \ inch_cont_bas ic_3 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i n c h \ theorems \ output \ inch_cont_bas ic_3 . p9 . out IN 0 .02 ON 2012−5−22 1 0 : 4 8 : 1 2 , PROOF LENGTH=26
FAILED : i n c h \ theorems \ output \ inch_cont_bas ic_3 .m4 . out IN 0 .84 ON 2012−5−22 1 0 : 4 8 : 1 3

i n c h \ theorems \ output \ inch_cont_bas ic_4 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \ inch_cont_bas ic_4 . p9 . out IN 0 .02 ON 2012−5−22 1 0 : 4 8 : 1 6 , PROOF LENGTH=26

FAILED : i n c h \ theorems \ output \ inch_cont_bas ic_4 .m4 . out IN 0 .85 ON 2012−5−22 1 0 : 4 8 : 1 7
i n c h \ theorems \ output \ inch_cont_bas ic_5 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i n c h \ theorems \ output \ inch_cont_bas ic_5 . p9 . out IN 0 .02 ON 2012−5−22 1 0 : 4 8 : 2 0 , PROOF LENGTH=21
FAILED : i n c h \ theorems \ output \ inch_cont_bas ic_5 .m4 . out IN 1 .77 ON 2012−5−22 1 0 : 4 8 : 2 2

i n c h \ theorems \ output \ i n c h _ d i m _ l i n e a r t e s t e d wi th : Mace4 , Prove r9
FAILED : i n c h \ theorems \ output \ i n c h _ d i m _ l i n e a r . p9 . out IN 1 .96 ON 2012−5−22 1 0 : 4 6 : 3 8

SUCCESS : i n c h \ theorems \ output \ i n c h _ d i m _ l i n e a r .m4 . out IN 0 .01 ON 2012−5−22 1 0 : 4 6 : 3 6 , MODEL SIZE=2
i n c h \ theorems \ output \ inch_d im_l inea r_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i n c h \ theorems \ output \ inch_d im_l inea r_1 . p9 . out IN 0 .01 ON 2012−5−22 1 0 : 4 6 : 4 2 , PROOF LENGTH=8
FAILED : i n c h \ theorems \ output \ inch_d im_l inea r_1 .m4 . out IN 0 .87 ON 2012−5−22 1 0 : 4 6 : 4 3

i n c h \ theorems \ output \ inch_d im_l inea r_2 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \ inch_d im_l inea r_2 . p9 . out IN 0 .01 ON 2012−5−22 1 0 : 4 6 : 4 6 , PROOF LENGTH=8

FAILED : i n c h \ theorems \ output \ inch_d im_l inea r_2 .m4 . out IN 0 .88 ON 2012−5−22 1 0 : 4 6 : 4 7
i n c h \ theorems \ output \ inch_d im_l inea r_3 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i n c h \ theorems \ output \ inch_d im_l inea r_3 . p9 . out IN 0 .03 ON 2012−5−22 1 0 : 4 6 : 5 0 , PROOF LENGTH=24
FAILED : i n c h \ theorems \ output \ inch_d im_l inea r_3 .m4 . out IN 1 .92 ON 2012−5−22 1 0 : 4 6 : 5 2

i n c h \ theorems \ output \ inch_d im_l inea r_4 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \ inch_d im_l inea r_4 . p9 . out IN 0 .02 ON 2012−5−22 1 0 : 4 6 : 5 6 , PROOF LENGTH=20

FAILED : i n c h \ theorems \ output \ inch_d im_l inea r_4 .m4 . out IN 1 .69 ON 2012−5−22 1 0 : 4 6 : 5 8
i n c h \ theorems \ output \ inch_d im_l inea r_5 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i n c h \ theorems \ output \ inch_d im_l inea r_5 . p9 . out IN 0 .02 ON 2012−5−22 1 0 : 4 7 : 0 2 , PROOF LENGTH=24
FAILED : i n c h \ theorems \ output \ inch_d im_l inea r_5 .m4 . out IN 0 .89 ON 2012−5−22 1 0 : 4 7 : 0 3

i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ d i f−a3 t e s t e d wi th : Mace4 , Prove r9
FAILED : i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ d i f−a3 . p9 . out IN 3 .92 ON 2012−6−26 1 2 : 1 8 : 0 9

SUCCESS : i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ d i f−a3 .m4 . out IN 2 .52 ON 2012−6−26 1 2 : 1 8 : 0 8 , MODEL SIZE=2
i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ d i f−a3_1 t e s t e d wi th : Mace4 , Prove r9

UNKNOWN: i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ d i f−a3_1
FAILED : i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ d i f−a3_1 . p9 . out IN 600 .22 ON 2012−6−26 1 2 : 2 8 : 1 5
FAILED : i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ d i f−a3_1 .m4 . out IN 600.07 ON 2012−6−26 1 2 : 2 8 : 2 3

i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ d i f−a3_2 t e s t e d wi th : Mace4 , Prove r9
UNKNOWN: i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ d i f−a3_2

FAILED : i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ d i f−a3_2 . p9 . out IN 600 .51 ON 2012−6−26 1 2 : 3 8 : 2 7
FAILED : i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ d i f−a3_2 .m4 . out IN 600.07 ON 2012−6−26 1 2 : 3 8 : 3 6

i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s t e s t e d wi th : Mace4 , Prove r9
FAILED : i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s . p9 . out IN 1 .95 ON 2012−5−20 1 8 : 3 4 : 3 4

SUCCESS : i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s .m4 . out IN 0 .01 ON 2012−5−20 1 8 : 3 4 : 3 2 , MODEL SIZE=2
i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s _ 1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s _ 1 . p9 . out IN 0 .01 ON 2012−7−5 1 7 : 5 7 : 0 0 , PROOF LENGTH=9
FAILED : i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s _ 1 .m4 . out IN 1 .96 ON 2012−7−5 1 7 : 5 7 : 0 2

i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t he o r e ms _ 1 0 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t h eo r e ms _ 1 0 . p9 . out IN 2 .45 ON 2012−7−5 1 8 : 0 8 : 1 9 , PROOF LENGTH=36

FAILED : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t he o r e ms _ 1 0 .m4 . out IN 3 .91 ON 2012−7−5 1 8 : 0 8 : 2 1
i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t he o r e ms _ 1 1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t h eo r e ms _ 1 1 . p9 . out IN 0 .01 ON 2012−7−5 1 8 : 0 8 : 2 5 , PROOF LENGTH=7
FAILED : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t he o r e ms _ 1 1 .m4 . out IN 1 .95 ON 2012−7−5 1 8 : 0 8 : 2 7

i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t he o r e ms _ 1 2 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t h eo r e ms _ 1 2 . p9 . out IN 0 .02 ON 2012−7−5 1 8 : 0 8 : 3 1 , PROOF LENGTH=12

FAILED : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t he o r e ms _ 1 2 .m4 . out IN 1 .96 ON 2012−7−5 1 8 : 0 8 : 3 3
i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t he o r e ms _ 1 3 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t h eo r e ms _ 1 3 . p9 . out IN 0 .03 ON 2012−7−5 1 8 : 0 8 : 3 7 , PROOF LENGTH=19
FAILED : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t he o r e ms _ 1 3 .m4 . out IN 1 .93 ON 2012−7−5 1 8 : 0 8 : 3 9

i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t he o r e ms _ 1 4 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t h eo r e ms _ 1 4 . p9 . out IN 0 .01 ON 2012−7−5 1 8 : 0 8 : 4 3 , PROOF LENGTH=12

FAILED : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t he o r e ms _ 1 4 .m4 . out IN 1 .95 ON 2012−7−5 1 8 : 0 8 : 4 5
i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t he o r e ms _ 1 5 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t h eo r e ms _ 1 5 . p9 . out IN 0 .02 ON 2012−7−5 1 8 : 0 8 : 4 9 , PROOF LENGTH=13
FAILED : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t he o r e ms _ 1 5 .m4 . out IN 1 .94 ON 2012−7−5 1 8 : 0 8 : 5 1

i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t he o r e ms _ 1 6 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t h eo r e ms _ 1 6 . p9 . out IN 0 .02 ON 2012−7−5 1 8 : 0 8 : 5 5 , PROOF LENGTH=19

FAILED : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t he o r e ms _ 1 6 .m4 . out IN 1 .95 ON 2012−7−5 1 8 : 0 8 : 5 7
i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t he o r e ms _ 1 7 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t h eo r e ms _ 1 7 . p9 . out IN 0 .01 ON 2012−7−5 1 8 : 0 9 : 0 1 , PROOF LENGTH=11
FAILED : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t he o r e ms _ 1 7 .m4 . out IN 1 .94 ON 2012−7−5 1 8 : 0 9 : 0 3

i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t he o r e ms _ 1 8 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t h eo r e ms _ 1 8 . p9 . out IN 0 .06 ON 2012−7−5 1 8 : 0 9 : 0 7 , PROOF LENGTH=20

FAILED : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t he o r e ms _ 1 8 .m4 . out IN 1 .94 ON 2012−7−5 1 8 : 0 9 : 0 9
i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t he o r e ms _ 1 9 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t h eo r e ms _ 1 9 . p9 . out IN 0 .01 ON 2012−7−5 1 8 : 0 9 : 1 3 , PROOF LENGTH=12
FAILED : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t he o r e ms _ 1 9 .m4 . out IN 1 .94 ON 2012−7−5 1 8 : 0 9 : 1 5

i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s _ 2 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s _ 2 . p9 . out IN 0 .01 ON 2012−7−5 1 7 : 5 7 : 0 6 , PROOF LENGTH=9

FAILED : i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s _ 2 .m4 . out IN 1 .93 ON 2012−7−5 1 7 : 5 7 : 0 8
i n c h \ theorems \ output \ i n c h _ o r i g i na l _ t he o r e ms _ 2 0 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t h eo r e ms _ 2 0 . p9 . out IN 0 .01 ON 2012−7−5 1 8 : 0 9 : 1 9 , PROOF LENGTH=17
FAILED : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t he o r e ms _ 2 0 .m4 . out IN 1 .94 ON 2012−7−5 1 8 : 0 9 : 2 1

i n c h \ theorems \ output \ i n c h _ o r i g i na l _ t he o r e ms _ 2 1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t h eo r e ms _ 2 1 . p9 . out IN 0 .02 ON 2012−7−5 1 8 : 0 9 : 2 5 , PROOF LENGTH=9

FAILED : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t he o r e ms _ 2 1 .m4 . out IN 1 .94 ON 2012−7−5 1 8 : 0 9 : 2 7
i n c h \ theorems \ output \ i n c h _ o r i g i na l _ t he o r e ms _ 2 2 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t h eo r e ms _ 2 2 . p9 . out IN 0 .03 ON 2012−7−5 1 8 : 0 9 : 3 1 , PROOF LENGTH=12
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FAILED : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t he o r e ms _ 2 2 .m4 . out IN 1 .94 ON 2012−7−5 1 8 : 0 9 : 3 3
i n c h \ theorems \ output \ i n c h _ o r i g i na l _ t he o r e ms _ 2 3 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t h eo r e ms _ 2 3 . p9 . out IN 0 .02 ON 2012−7−5 1 8 : 0 9 : 3 7 , PROOF LENGTH=11
FAILED : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t he o r e ms _ 2 3 .m4 . out IN 1 .94 ON 2012−7−5 1 8 : 0 9 : 3 9

i n c h \ theorems \ output \ i n c h _ o r i g i na l _ t he o r e ms _ 2 4 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t h eo r e ms _ 2 4 . p9 . out IN 0 .01 ON 2012−7−5 1 8 : 0 9 : 4 3 , PROOF LENGTH=9

FAILED : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t he o r e ms _ 2 4 .m4 . out IN 1 .95 ON 2012−7−5 1 8 : 0 9 : 4 5
i n c h \ theorems \ output \ i n c h _ o r i g i na l _ t he o r e ms _ 2 5 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t h eo r e ms _ 2 5 . p9 . out IN 1 .13 ON 2012−7−5 1 8 : 0 9 : 5 0 , PROOF LENGTH=32
FAILED : i n c h \ theorems \ output \ i n ch _ o r i g i n a l _ t he o r e ms _ 2 5 .m4 . out IN 1 .87 ON 2012−7−5 1 8 : 0 9 : 5 1

i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s _ 3 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s _ 3 . p9 . out IN 0 .01 ON 2012−7−5 1 7 : 5 7 : 1 2 , PROOF LENGTH=9

FAILED : i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s _ 3 .m4 . out IN 1 .94 ON 2012−7−5 1 7 : 5 7 : 1 4
i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s _ 4 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s _ 4 . p9 . out IN 0 .02 ON 2012−7−5 1 7 : 5 7 : 1 8 , PROOF LENGTH=18
FAILED : i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s _ 4 .m4 . out IN 1 .93 ON 2012−7−5 1 7 : 5 7 : 2 0

i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s _ 5 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s _ 5 . p9 . out IN 0 .00 ON 2012−7−5 1 7 : 5 7 : 2 4 , PROOF LENGTH=2

FAILED : i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s _ 5 .m4 . out IN 1 .96 ON 2012−7−5 1 7 : 5 7 : 2 6
i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s _ 6 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s _ 6 . p9 . out IN 0 .01 ON 2012−7−5 1 7 : 5 7 : 3 0 , PROOF LENGTH=7
FAILED : i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s _ 6 .m4 . out IN 1 .95 ON 2012−7−5 1 7 : 5 7 : 3 2

i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s _ 7 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s _ 7 . p9 . out IN 0 .03 ON 2012−7−5 1 7 : 5 7 : 3 6 , PROOF LENGTH=14

FAILED : i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s _ 7 .m4 . out IN 1 .92 ON 2012−7−5 1 7 : 5 7 : 3 8
i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s _ 8 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s _ 8 . p9 . out IN 0 .08 ON 2012−7−5 1 7 : 5 7 : 4 2 , PROOF LENGTH=19
FAILED : i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s _ 8 .m4 . out IN 1 .90 ON 2012−7−5 1 7 : 5 7 : 4 4

i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s _ 9 t e s t e d wi th : Mace4 , Prove r9
UNKNOWN: i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s _ 9

FAILED : i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s _ 9 . p9 . out IN 600 .28 ON 2012−7−5 1 8 : 0 7 : 5 1
FAILED : i n c h \ theorems \ output \ i n c h _ o r i g i n a l _ t h e o r e m s _ 9 .m4 . out IN 600 .02 ON 2012−7−5 1 8 : 0 8 : 1 4

i n c h \ theorems \ output \ inch_weak_closed_z−a1 t e s t e d wi th : Mace4 , Prove r9
UNKNOWN: i n c h \ theorems \ output \ inch_weak_closed_z−a1

FAILED : i n c h \ theorems \ output \ inch_weak_closed_z−a1 . p9 . out IN 600.00 ON 2012−5−22 1 1 : 1 6 : 0 8
FAILED : i n c h \ theorems \ output \ inch_weak_closed_z−a1 .m4 . out IN 600 .03 ON 2012−5−22 1 1 : 1 6 : 2 0

i n c h \ theorems \ output \ inch_weak_closed_z−a1_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \ inch_weak_closed_z−a1_1 . p9 . out IN 0 .50 ON 2012−5−22 1 1 : 1 6 : 2 4 , PROOF LENGTH=27

FAILED : i n c h \ theorems \ output \ inch_weak_closed_z−a1_1 .m4 . out IN 1 .90 ON 2012−5−22 1 1 : 1 6 : 2 5
i n c h \ theorems \ output \ inch_weak_i−e1_d−a6 t e s t e d wi th : Mace4 , Prove r9

FAILED : i n c h \ theorems \ output \ inch_weak_i−e1_d−a6 . p9 . out IN 1 .87 ON 2012−5−28 1 3 : 5 7 : 4 9
SUCCESS : i n c h \ theorems \ output \ inch_weak_i−e1_d−a6 .m4 . out IN 0 .00 ON 2012−5−28 1 3 : 5 7 : 4 7 , MODEL SIZE=2

i n c h \ theorems \ output \ inch_weak_i−e1_d−a6_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i n c h \ theorems \ output \ inch_weak_i−e1_d−a6_1 . p9 . out IN 0 .03 ON 2012−5−28 1 3 : 5 7 : 5 4 , PROOF LENGTH=15

FAILED : i n c h \ theorems \ output \ inch_weak_i−e1_d−a6_1 .m4 . out IN 0 .48 ON 2012−5−28 1 3 : 5 7 : 5 5
i n c h \ theorems \ output \ inch_weak_z−a1 t e s t e d wi th : Mace4 , Prove r9

FAILED : i n c h \ theorems \ output \ inch_weak_z−a1 . p9 . out IN 1 .94 ON 2012−5−22 1 1 : 1 7 : 4 5
SUCCESS : i n c h \ theorems \ output \ inch_weak_z−a1 .m4 . out IN 0 .87 ON 2012−5−22 1 1 : 1 7 : 4 4 , MODEL SIZE=2

i n c h \ theorems \ output \ inch_weak_z−a1_1 t e s t e d wi th : Mace4 , Prove r9
FAILED : i n c h \ theorems \ output \ inch_weak_z−a1_1 . p9 . out IN 1 .94 ON 2012−5−22 1 1 : 1 7 : 5 1

SUCCESS : i n c h \ theorems \ output \ inch_weak_z−a1_1 .m4 . out IN 0 .41 ON 2012−5−22 1 1 : 1 7 : 5 0 , MODEL SIZE=2

−−−−
cod id
−−−−
cod ib \ c o n s i s t e n c y \ output \ c o d i b _ d o w n _ n o n t r i v i a l t e s t e d wi th : Paradox3

SUCCESS : c od ib \ c o n s i s t e n c y \ output \ c o d i b _ d o w n _ n o n t r i v i a l . t p tp . out , MODEL SIZE=9
cod ib \ c o n s i s t e n c y \ output \ c o d i b_ d o wn _ n on t r i v i a l_ i c on t e s t e d wi th : Mace4 , Prover9 , Paradox3

FAILED : c od ib \ c o n s i s t e n c y \ output \ c o d i b _ do w n _ no n t r i v i a l _ i co n . p9 . out IN 600 .01 ON 2012−9−4 0 0 : 4 0 : 4 9
FAILED : c od ib \ c o n s i s t e n c y \ output \ c o d i b _ do w n _ no n t r i v i a l _ i co n .m4 . out IN 600 .21 ON 2012−9−4 0 0 : 4 0 : 4 7

SUCCESS : c od ib \ c o n s i s t e n c y \ output \ c o d ib _ d ow n _ no n t r i v i a l _ i co n . tp tp . out , MODEL SIZE=5
cod ib \ c o n s i s t e n c y \ output \ c o d i b _ d o w n _ n o n t r i v i a l _ s i m p l e t e s t e d wi th : Paradox3

SUCCESS : c od ib \ c o n s i s t e n c y \ output \ c o d i b _ d o w n _ n o n t r i v i a l _ s i m p l e . tp tp . out , MODEL SIZE=8
cod ib \ c o n s i s t e n c y \ output \ cod ib_updown_nont r i v i a l t e s t e d wi th : Paradox3

SUCCESS : c od ib \ c o n s i s t e n c y \ output \ cod ib_updown_nont r i v i a l . t p tp . out , MODEL SIZE=10
cod ib \ c o n s i s t e n c y \ output \ cod ib_updown_nont r i v i a l_s imp l e t e s t e d wi th : Paradox3

SUCCESS : c od ib \ c o n s i s t e n c y \ output \ cod ib_updown_nont r i v i a l_s imp l e . tp tp . out , MODEL SIZE=9
cod ib \ c o n s i s t e n c y \ output \ c o d i d _ d o w n _ n o n t r i v i a l t e s t e d wi th : Paradox3

SUCCESS : c od ib \ c o n s i s t e n c y \ output \ c o d i d _ d o w n _ n o n t r i v i a l . t p tp . out , MODEL SIZE=9
cod ib \ c o n s i s t e n c y \ output \ c o d i d _ d o w n _ n o n t r i v i a l _ s i m p l e t e s t e d wi th : Paradox3

SUCCESS : c od ib \ c o n s i s t e n c y \ output \ c o d i d _ d o w n _ n o n t r i v i a l _ s i m p l e . tp tp . out , MODEL SIZE=8
cod ib \ c o n s i s t e n c y \ output \ cod id_updown_nont r i v i a l_s imp l e t e s t e d wi th : Paradox3

SUCCESS : c od ib \ c o n s i s t e n c y \ output \ cod id_updown_nont r i v i a l_s imp l e . tp tp . out , MODEL SIZE=9
cod ib \ c o n s i s t e n c y \ output \ c o d i _ b c o n t _ n o n t r i v i a l t e s t e d wi th : Mace4 , Prover9 , Paradox3

FAILED : c od ib \ c o n s i s t e n c y \ output \ c o d i _ b c o n t _ n o n t r i v i a l . p9 . out IN 1 .92 ON 2012−9−4 0 1 : 0 3 : 5 1
SUCCESS : c od ib \ c o n s i s t e n c y \ output \ c o d i _ b c o n t _ n o n t r i v i a l .m4 . out IN 0 .03 ON 2012−9−4 0 1 : 0 3 : 4 9 , MODEL SIZE=4
SUCCESS : c od ib \ c o n s i s t e n c y \ output \ c o d i _ b c o n t _ n o n t r i v i a l . t p tp . out , MODEL SIZE=4

cod ib \ c o n s i s t e n c y \ output \ c o d i _ b c o n t _ n o n t r i v i a l _ i c o n t e s t e d wi th : Paradox3
SUCCESS : c od ib \ c o n s i s t e n c y \ output \ c o d i _ b c o n t _ n o n t r i v i a l _ i c o n . tp tp . out , MODEL SIZE=5

cod ib \ c o n s i s t e n c y \ output \ c o d i _ b c o n t _ n o n t r i v i a l _ s i m p l e t e s t e d wi th : Paradox3
SUCCESS : c od ib \ c o n s i s t e n c y \ output \ c o d i _ b c o n t _ n o n t r i v i a l _ s i m p l e . tp tp . out , MODEL SIZE=8

cod ib \ output \ codib_down t e s t e d wi th : Mace4 , Prove r9
FAILED : c od ib \ output \codib_down . p9 . out IN 1 .92 ON 2012−7−13 1 3 : 5 2 : 3 3

SUCCESS : c od ib \ output \codib_down .m4 . out IN 0 .02 ON 2012−7−13 1 3 : 5 2 : 3 1 , MODEL SIZE=2
cod ib \ output \ codib_updown t e s t e d wi th : Mace4 , Prove r9

FAILED : c od ib \ output \codib_updown . p9 . out IN 1 .93 ON 2012−7−9 1 4 : 4 0 : 1 8
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SUCCESS : c od ib \ output \codib_updown .m4 . out IN 0 .02 ON 2012−7−9 1 4 : 4 0 : 1 6 , MODEL SIZE=2
cod ib \ output \ cod i_bcont t e s t e d wi th : Mace4 , Prove r9

FAILED : c od ib \ output \ cod i_bcont . p9 . out IN 1 .93 ON 2012−7−13 1 1 : 5 5 : 0 6
SUCCESS : c od ib \ output \ cod i_bcont .m4 . out IN 0 .02 ON 2012−7−13 1 1 : 5 5 : 0 4 , MODEL SIZE=2

cod ib \ theorems \ output \ codib_boundary_theorems t e s t e d wi th : Mace4 , Prove r9
FAILED : c od ib \ theorems \ output \ codib_boundary_theorems . p9 . out IN 1 .93 ON 2012−10−23 2 1 : 4 3 : 4 3

SUCCESS : c od ib \ theorems \ output \ codib_boundary_theorems .m4 . out IN 0 .01 ON 2012−10−23 2 1 : 4 3 : 4 1 , MODEL SIZE=2
cod ib \ theorems \ output \ codib_boundary_theorems_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c od ib \ theorems \ output \ codib_boundary_theorems_1 . p9 . out IN 0 .04 ON 2012−10−23 2 1 : 4 3 : 5 0 , PROOF LENGTH=17
FAILED : c od ib \ theorems \ output \ codib_boundary_theorems_1 .m4 . out IN 1 .91 ON 2012−10−23 2 1 : 4 3 : 5 1

cod ib \ theorems \ output \ codib_boundary_theorems_2 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c od ib \ theorems \ output \ codib_boundary_theorems_2 . p9 . out IN 0 .04 ON 2012−10−23 2 1 : 4 3 : 5 6 , PROOF LENGTH=12

FAILED : c od ib \ theorems \ output \ codib_boundary_theorems_2 .m4 . out IN 1 .88 ON 2012−10−23 2 1 : 4 3 : 5 7
cod ib \ theorems \ output \ codib_bp_theorems t e s t e d wi th : Mace4 , Prove r9

FAILED : c od ib \ theorems \ output \ codib_bp_theorems . p9 . out IN 1 .91 ON 2012−10−23 2 1 : 3 8 : 1 9
SUCCESS : c od ib \ theorems \ output \ codib_bp_theorems .m4 . out IN 0 .02 ON 2012−10−23 2 1 : 3 8 : 1 7 , MODEL SIZE=2

cod ib \ theorems \ output \ codib_bp_theorems_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c od ib \ theorems \ output \ codib_bp_theorems_1 . p9 . out IN 0 .08 ON 2012−10−23 2 1 : 3 8 : 2 8 , PROOF LENGTH=22

FAILED : c od ib \ theorems \ output \ codib_bp_theorems_1 .m4 . out IN 1 .92 ON 2012−10−23 2 1 : 3 8 : 3 0
cod ib \ theorems \ output \ codib_bp_theorems_2 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c od ib \ theorems \ output \ codib_bp_theorems_2 . p9 . out IN 0 .09 ON 2012−10−23 2 1 : 3 8 : 3 4 , PROOF LENGTH=17
FAILED : c od ib \ theorems \ output \ codib_bp_theorems_2 .m4 . out IN 1 .91 ON 2012−10−23 2 1 : 3 8 : 3 6

cod ib \ theorems \ output \ codib_bp_theorems_3 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c od ib \ theorems \ output \ codib_bp_theorems_3 . p9 . out IN 0 .10 ON 2012−10−23 2 1 : 3 8 : 4 0 , PROOF LENGTH=18

FAILED : c od ib \ theorems \ output \ codib_bp_theorems_3 .m4 . out IN 1 .93 ON 2012−10−23 2 1 : 3 8 : 4 2
cod ib \ theorems \ output \ codib_bp_theorems_4 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c od ib \ theorems \ output \ codib_bp_theorems_4 . p9 . out IN 0 .09 ON 2012−10−23 2 1 : 3 8 : 4 6 , PROOF LENGTH=21
FAILED : c od ib \ theorems \ output \ codib_bp_theorems_4 .m4 . out IN 1 .94 ON 2012−10−23 2 1 : 3 8 : 4 8

cod ib \ theorems \ output \ codib_bp_theorems_5 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c od ib \ theorems \ output \ codib_bp_theorems_5 . p9 . out IN 0 .07 ON 2012−10−23 2 1 : 3 8 : 5 2 , PROOF LENGTH=27

FAILED : c od ib \ theorems \ output \ codib_bp_theorems_5 .m4 . out IN 1 .91 ON 2012−10−23 2 1 : 3 8 : 5 4
cod ib \ theorems \ output \ cod ib_down_9 in te r s ec t i on_theo rems t e s t e d wi th : Mace4 , Prove r9

FAILED : c od ib \ theorems \ output \ cod ib_down_9 in te r s ec t i on_theo rems . p9 . out IN 1 .91 ON 2012−11−21 1 4 : 0 7 : 4 9
SUCCESS : c od ib \ theorems \ output \ cod ib_down_9 in te r s ec t i on_theo rems .m4 . out IN 0 .01 ON 2012−11−21 1 4 : 0 7 : 4 7 , MODEL SIZE=2

cod ib \ theorems \ output \ cod ib_down_9 inte r sec t ion_theorems_1 t e s t e d wi th : Mace4 , Prover9 , Vampire
SUCCESS : c od ib \ theorems \ output \ cod ib_down_9 inte r sec t ion_theorems_1 . p9 . out IN 0 .28 ON 2012−11−21 1 4 : 0 7 : 5 6 , PROOF LENGTH=16

FAILED : c od ib \ theorems \ output \ cod ib_down_9 inte r sec t ion_theorems_1 . vam . out IN 599.707
FAILED : c od ib \ theorems \ output \ cod ib_down_9 inte r sec t ion_theorems_1 .m4 . out IN 1 .91 ON 2012−11−21 1 4 : 0 7 : 5 8

cod ib \ theorems \ output \ cod ib_down_9 inte r sec t ion_theorems_2 t e s t e d wi th : Mace4 , Prover9 , Vampire
SUCCESS : c od ib \ theorems \ output \ cod ib_down_9 inte r sec t ion_theorems_2 . p9 . out IN 0 .91 ON 2012−11−21 1 4 : 0 8 : 0 3 , PROOF LENGTH=16
SUCCESS : c od ib \ theorems \ output \ cod ib_down_9 inte r sec t ion_theorems_2 . vam . out IN 0 .46

FAILED : c od ib \ theorems \ output \ cod ib_down_9 inte r sec t ion_theorems_2 .m4 . out IN 1 .91 ON 2012−11−21 1 4 : 0 8 : 0 4
cod ib \ theorems \ output \ cod ib_down_9 inte r sec t ion_theorems_3 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c od ib \ theorems \ output \ cod ib_down_9 inte r sec t ion_theorems_3 . p9 . out IN 0 .31 ON 2012−11−21 1 4 : 0 8 : 0 9 , PROOF LENGTH=15
SUCCESS : c od ib \ theorems \ output \ cod ib_down_9 inte r sec t ion_theorems_3 . vam . out IN 0 .278

FAILED : c od ib \ theorems \ output \ cod ib_down_9 inte r sec t ion_theorems_3 .m4 . out IN 1 .92 ON 2012−11−21 1 4 : 0 8 : 1 0
cod ib \ theorems \ output \ cod ib_down_9 inte r sec t ion_theorems_4 t e s t e d wi th : Mace4 , Prover9 , Vampire

SUCCESS : c od ib \ theorems \ output \ cod ib_down_9 inte r sec t ion_theorems_4 . p9 . out IN 0 .36 ON 2012−11−21 1 4 : 0 8 : 1 5 , PROOF LENGTH=15
SUCCESS : c od ib \ theorems \ output \ cod ib_down_9 inte r sec t ion_theorems_4 . vam . out IN 0 .236

FAILED : c od ib \ theorems \ output \ cod ib_down_9 inte r sec t ion_theorems_4 .m4 . out IN 1 .89 ON 2012−11−21 1 4 : 0 8 : 1 6
cod ib \ theorems \ output \ cod ib_down_9 inte r sec t ion_theorems_5 t e s t e d wi th : Mace4 , Prover9 , Vampire

UNKNOWN: c od ib \ theorems \ output \ cod ib_down_9 inte r sec t ion_theorems_5
FAILED : c od ib \ theorems \ output \ cod ib_down_9 inte r sec t ion_theorems_5 . p9 . out IN 600 .01 ON 2012−11−21 1 4 : 1 8 : 2 5
FAILED : c od ib \ theorems \ output \ cod ib_down_9 inte r sec t ion_theorems_5 . vam . out IN 599.703
FAILED : c od ib \ theorems \ output \ cod ib_down_9 inte r sec t ion_theorems_5 .m4 . out IN 600 .04 ON 2012−11−21 1 4 : 1 8 : 2 5

cod ib \ theorems \ output \ cod ib_ icont_tcont_theo rems t e s t e d wi th : Mace4 , Prove r9
FAILED : c od ib \ theorems \ output \ cod ib_ icont_tcont_theo rems . p9 . out IN 1 .93 ON 2012−10−23 2 1 : 3 9 : 4 7

SUCCESS : c od ib \ theorems \ output \ cod ib_ icont_tcont_theo rems .m4 . out IN 0 .02 ON 2012−10−23 2 1 : 3 9 : 4 5 , MODEL SIZE=2
cod ib \ theorems \ output \ cod ib_icont_tcont_theorems_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c od ib \ theorems \ output \ cod ib_icont_tcont_theorems_1 . p9 . out IN 0 .04 ON 2012−10−23 2 1 : 3 9 : 5 4 , PROOF LENGTH=12
FAILED : c od ib \ theorems \ output \ cod ib_icont_tcont_theorems_1 .m4 . out IN 1 .95 ON 2012−10−23 2 1 : 3 9 : 5 6

cod ib \ theorems \ output \ cod ib_icont_tcont_theorems_2 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c od ib \ theorems \ output \ cod ib_icont_tcont_theorems_2 . p9 . out IN 0 .26 ON 2012−10−23 2 1 : 4 0 : 0 1 , PROOF LENGTH=13

FAILED : c od ib \ theorems \ output \ cod ib_icont_tcont_theorems_2 .m4 . out IN 1 .93 ON 2012−10−23 2 1 : 4 0 : 0 2
cod ib \ theorems \ output \ cod ib_ icont_theo rems t e s t e d wi th : Mace4 , Prove r9

FAILED : c od ib \ theorems \ output \ cod ib_ icont_theo rems . p9 . out IN 1 .93 ON 2012−10−23 2 1 : 4 0 : 1 1
SUCCESS : c od ib \ theorems \ output \ cod ib_ icont_theo rems .m4 . out IN 0 .02 ON 2012−10−23 2 1 : 4 0 : 0 9 , MODEL SIZE=2

cod ib \ theorems \ output \ cod ib_icont_theorems_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c od ib \ theorems \ output \ cod ib_icont_theorems_1 . p9 . out IN 0 .03 ON 2012−10−23 2 1 : 4 0 : 1 9 , PROOF LENGTH=7

FAILED : c od ib \ theorems \ output \ cod ib_icont_theorems_1 .m4 . out IN 1 .96 ON 2012−10−23 2 1 : 4 0 : 2 0
cod ib \ theorems \ output \ cod ib_icont_theorems_2 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c od ib \ theorems \ output \ cod ib_icont_theorems_2 . p9 . out IN 0 .04 ON 2012−10−23 2 1 : 4 0 : 2 5 , PROOF LENGTH=15
FAILED : c od ib \ theorems \ output \ cod ib_icont_theorems_2 .m4 . out IN 1 .93 ON 2012−10−23 2 1 : 4 0 : 2 6

cod ib \ theorems \ output \ cod ib_icont_theorems_3 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c od ib \ theorems \ output \ cod ib_icont_theorems_3 . p9 . out IN 0 .03 ON 2012−10−23 2 1 : 4 0 : 3 1 , PROOF LENGTH=10

FAILED : c od ib \ theorems \ output \ cod ib_icont_theorems_3 .m4 . out IN 1 .95 ON 2012−10−23 2 1 : 4 0 : 3 3
cod ib \ theorems \ output \ cod ib_icont_theorems_4 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c od ib \ theorems \ output \ cod ib_icont_theorems_4 . p9 . out IN 0 .03 ON 2012−10−23 2 1 : 4 0 : 3 7 , PROOF LENGTH=13
FAILED : c od ib \ theorems \ output \ cod ib_icont_theorems_4 .m4 . out IN 1 .95 ON 2012−10−23 2 1 : 4 0 : 3 9

cod ib \ theorems \ output \ cod ib_icont_theorems_5 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c od ib \ theorems \ output \ cod ib_icont_theorems_5 . p9 . out IN 0 .03 ON 2012−10−23 2 1 : 4 0 : 4 3 , PROOF LENGTH=13

FAILED : c od ib \ theorems \ output \ cod ib_icont_theorems_5 .m4 . out IN 1 .93 ON 2012−10−23 2 1 : 4 0 : 4 5
cod ib \ theorems \ output \ cod ib_icont_theorems_6 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c od ib \ theorems \ output \ cod ib_icont_theorems_6 . p9 . out IN 0 .05 ON 2012−10−23 2 1 : 4 0 : 4 9 , PROOF LENGTH=20
FAILED : c od ib \ theorems \ output \ cod ib_icont_theorems_6 .m4 . out IN 1 .93 ON 2012−10−23 2 1 : 4 0 : 5 1

cod ib \ theorems \ output \ cod ib_stp_theorems t e s t e d wi th : Mace4 , Prove r9
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FAILED : c od ib \ theorems \ output \ cod ib_stp_theorems . p9 . out IN 1 .93 ON 2012−10−23 2 1 : 4 0 : 3 7
SUCCESS : c od ib \ theorems \ output \ cod ib_stp_theorems .m4 . out IN 0 .03 ON 2012−10−23 2 1 : 4 0 : 3 5 , MODEL SIZE=2

cod ib \ theorems \ output \ codib_stp_theorems_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c od ib \ theorems \ output \ codib_stp_theorems_1 . p9 . out IN 0 .03 ON 2012−10−23 2 1 : 4 0 : 4 5 , PROOF LENGTH=7

FAILED : c od ib \ theorems \ output \ codib_stp_theorems_1 .m4 . out IN 1 .88 ON 2012−10−23 2 1 : 4 0 : 4 7
cod ib \ theorems \ output \ codib_stp_theorems_2 t e s t e d wi th : Mace4 , Prove r9

FAILED : c od ib \ theorems \ output \ codib_stp_theorems_2 . p9 . out IN 1 .92 ON 2012−10−23 2 1 : 4 0 : 5 3
SUCCESS : c od ib \ theorems \ output \ codib_stp_theorems_2 .m4 . out IN 0 .05 ON 2012−10−23 2 1 : 4 0 : 5 1 , MODEL SIZE=5

cod ib \ theorems \ output \ codib_stp_theorems_3 t e s t e d wi th : Mace4 , Prove r9
FAILED : c od ib \ theorems \ output \ codib_stp_theorems_3 . p9 . out IN 1 .91 ON 2012−10−23 2 1 : 4 0 : 5 9

SUCCESS : c od ib \ theorems \ output \ codib_stp_theorems_3 .m4 . out IN 0 .03 ON 2012−10−23 2 1 : 4 0 : 5 7 , MODEL SIZE=4
cod ib \ theorems \ output \ cod ib_tcont_theorems t e s t e d wi th : Mace4 , Prove r9

FAILED : c od ib \ theorems \ output \ cod ib_tcont_theorems . p9 . out IN 1 .95 ON 2012−10−23 2 1 : 3 8 : 4 8
SUCCESS : c od ib \ theorems \ output \ cod ib_tcont_theorems .m4 . out IN 0 .01 ON 2012−10−23 2 1 : 3 8 : 4 6 , MODEL SIZE=2

cod ib \ theorems \ output \ codib_tcont_theorems_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c od ib \ theorems \ output \ codib_tcont_theorems_1 . p9 . out IN 0 .03 ON 2012−10−23 2 1 : 3 8 : 5 5 , PROOF LENGTH=7

FAILED : c od ib \ theorems \ output \ codib_tcont_theorems_1 .m4 . out IN 1 .95 ON 2012−10−23 2 1 : 3 8 : 5 7
cod ib \ theorems \ output \ codib_tcont_theorems_2 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c od ib \ theorems \ output \ codib_tcont_theorems_2 . p9 . out IN 0 .08 ON 2012−10−23 2 1 : 3 9 : 0 1 , PROOF LENGTH=15
FAILED : c od ib \ theorems \ output \ codib_tcont_theorems_2 .m4 . out IN 1 .95 ON 2012−10−23 2 1 : 3 9 : 0 3

cod ib \ theorems \ output \ codib_tcont_theorems_3 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c od ib \ theorems \ output \ codib_tcont_theorems_3 . p9 . out IN 0 .02 ON 2012−10−23 2 1 : 3 9 : 0 7 , PROOF LENGTH=10

FAILED : c od ib \ theorems \ output \ codib_tcont_theorems_3 .m4 . out IN 1 .95 ON 2012−10−23 2 1 : 3 9 : 0 9
cod ib \ theorems \ output \ codib_tcont_theorems_4 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c od ib \ theorems \ output \ codib_tcont_theorems_4 . p9 . out IN 0 .02 ON 2012−10−23 2 1 : 3 9 : 1 3 , PROOF LENGTH=10
FAILED : c od ib \ theorems \ output \ codib_tcont_theorems_4 .m4 . out IN 1 .95 ON 2012−10−23 2 1 : 3 9 : 1 5

cod ib \ theorems \ output \ codib_tcont_theorems_5 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c od ib \ theorems \ output \ codib_tcont_theorems_5 . p9 . out IN 0 .05 ON 2012−10−23 2 1 : 3 9 : 1 9 , PROOF LENGTH=20

FAILED : c od ib \ theorems \ output \ codib_tcont_theorems_5 .m4 . out IN 1 .94 ON 2012−10−23 2 1 : 3 9 : 2 1
cod ib \ theorems \ output \ cod ib_theorems t e s t e d wi th : Mace4 , Prove r9

FAILED : c od ib \ theorems \ output \ cod ib_theorems . p9 . out IN 1 .94 ON 2012−10−23 2 1 : 4 1 : 0 6
SUCCESS : c od ib \ theorems \ output \ cod ib_theorems .m4 . out IN 0 .02 ON 2012−10−23 2 1 : 4 1 : 0 4 , MODEL SIZE=2

cod ib \ theorems \ output \ codib_theorems_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c od ib \ theorems \ output \ codib_theorems_1 . p9 . out IN 0 .07 ON 2012−10−23 2 1 : 4 1 : 1 3 , PROOF LENGTH=29

FAILED : c od ib \ theorems \ output \ codib_theorems_1 .m4 . out IN 1 .96 ON 2012−10−23 2 1 : 4 1 : 1 5
cod ib \ theorems \ output \ cod ib_tp_ip_theorems t e s t e d wi th : Mace4 , Prove r9

FAILED : c od ib \ theorems \ output \ cod ib_tp_ip_theorems . p9 . out IN 1 .92 ON 2012−10−23 2 1 : 4 6 : 1 9
SUCCESS : c od ib \ theorems \ output \ cod ib_tp_ip_theorems .m4 . out IN 0 .01 ON 2012−10−23 2 1 : 4 6 : 1 7 , MODEL SIZE=2

cod ib \ theorems \ output \ codib_tp_ip_theorems_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c od ib \ theorems \ output \ codib_tp_ip_theorems_1 . p9 . out IN 0 .03 ON 2012−10−23 2 1 : 4 6 : 2 6 , PROOF LENGTH=13

FAILED : c od ib \ theorems \ output \ codib_tp_ip_theorems_1 .m4 . out IN 1 .93 ON 2012−10−23 2 1 : 4 6 : 2 8
cod ib \ theorems \ output \ codib_tp_ip_theorems_2 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c od ib \ theorems \ output \ codib_tp_ip_theorems_2 . p9 . out IN 63 .96 ON 2012−10−23 2 1 : 4 7 : 3 7 , PROOF LENGTH=62
FAILED : c od ib \ theorems \ output \ codib_tp_ip_theorems_2 .m4 . out IN 65 .10 ON 2012−10−23 2 1 : 4 7 : 3 9

cod ib \ theorems \ output \ codib_tp_ip_theorems_3 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c od ib \ theorems \ output \ codib_tp_ip_theorems_3 . p9 . out IN 0 .06 ON 2012−10−23 2 1 : 4 7 : 4 3 , PROOF LENGTH=33

FAILED : c od ib \ theorems \ output \ codib_tp_ip_theorems_3 .m4 . out IN 1 .92 ON 2012−10−23 2 1 : 4 7 : 4 5
cod ib \ theorems \ output \ codib_tp_ip_theorems_4 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c od ib \ theorems \ output \ codib_tp_ip_theorems_4 . p9 . out IN 0 .05 ON 2012−10−23 2 1 : 4 7 : 4 9 , PROOF LENGTH=16
FAILED : c od ib \ theorems \ output \ codib_tp_ip_theorems_4 .m4 . out IN 1 .91 ON 2012−10−23 2 1 : 4 7 : 5 1

cod ib \ theorems \ output \ codib_tp_ip_theorems_5 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c od ib \ theorems \ output \ codib_tp_ip_theorems_5 . p9 . out IN 0 .02 ON 2012−10−23 2 1 : 4 7 : 5 5 , PROOF LENGTH=18

FAILED : c od ib \ theorems \ output \ codib_tp_ip_theorems_5 .m4 . out IN 1 .91 ON 2012−10−23 2 1 : 4 7 : 5 7
cod ib \ theorems \ output \ codib_tp_ip_theorems_6 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c od ib \ theorems \ output \ codib_tp_ip_theorems_6 . p9 . out IN 1 .37 ON 2012−10−23 2 1 : 4 8 : 0 2 , PROOF LENGTH=23
FAILED : c od ib \ theorems \ output \ codib_tp_ip_theorems_6 .m4 . out IN 1 .92 ON 2012−10−23 2 1 : 4 8 : 0 3

cod ib \ theorems \ output \ codib_updown_theorems t e s t e d wi th : Mace4 , Prove r9
FAILED : c od ib \ theorems \ output \ codib_updown_theorems . p9 . out IN 1 .91 ON 2012−7−10 1 4 : 1 7 : 4 0

SUCCESS : c od ib \ theorems \ output \ codib_updown_theorems .m4 . out IN 0 .03 ON 2012−7−10 1 4 : 1 7 : 3 8 , MODEL SIZE=2
cod ib \ theorems \ output \ codib_updown_theorems_1 t e s t e d wi th : Mace4 , Prove r9

UNKNOWN: c od ib \ theorems \ output \ codib_updown_theorems_1
FAILED : c od ib \ theorems \ output \ codib_updown_theorems_1 . p9 . out IN 600 .00 ON 2012−7−10 1 4 : 2 7 : 5 3
FAILED : c od ib \ theorems \ output \ codib_updown_theorems_1 .m4 . out IN 600 .17 ON 2012−7−10 1 4 : 2 7 : 5 1

cod ib \ theorems \ output \ cod i_bcont_theorems t e s t e d wi th : Mace4 , Prove r9
FAILED : c od ib \ theorems \ output \ cod i_bcont_theorems . p9 . out IN 1 .94 ON 2012−10−23 2 1 : 3 7 : 5 0

SUCCESS : c od ib \ theorems \ output \ cod i_bcont_theorems .m4 . out IN 0 .03 ON 2012−10−23 2 1 : 3 7 : 4 8 , MODEL SIZE=2
cod ib \ theorems \ output \ codi_bcont_theorems_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c od ib \ theorems \ output \ codi_bcont_theorems_1 . p9 . out IN 0 .02 ON 2012−10−23 2 1 : 3 7 : 5 7 , PROOF LENGTH=6
FAILED : c od ib \ theorems \ output \ codi_bcont_theorems_1 .m4 . out IN 1 .96 ON 2012−10−23 2 1 : 3 7 : 5 9

cod ib \ theorems \ output \ codi_bcont_theorems_2 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c od ib \ theorems \ output \ codi_bcont_theorems_2 . p9 . out IN 0 .03 ON 2012−10−23 2 1 : 3 8 : 0 3 , PROOF LENGTH=17

FAILED : c od ib \ theorems \ output \ codi_bcont_theorems_2 .m4 . out IN 1 .93 ON 2012−10−23 2 1 : 3 8 : 0 5
cod ib \ theorems \ output \ codi_bcont_theorems_3 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : c od ib \ theorems \ output \ codi_bcont_theorems_3 . p9 . out IN 0 .02 ON 2012−10−23 2 1 : 3 8 : 0 9 , PROOF LENGTH=7
FAILED : c od ib \ theorems \ output \ codi_bcont_theorems_3 .m4 . out IN 1 .94 ON 2012−10−23 2 1 : 3 8 : 1 1

cod ib \ theorems \ output \ codi_bcont_theorems_4 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c od ib \ theorems \ output \ codi_bcont_theorems_4 . p9 . out IN 0 .02 ON 2012−10−23 2 1 : 3 8 : 1 5 , PROOF LENGTH=18

FAILED : c od ib \ theorems \ output \ codi_bcont_theorems_4 .m4 . out IN 1 .92 ON 2012−10−23 2 1 : 3 8 : 1 7
cod ib \ theorems \ output \ codi_bcont_u−a1_theorems t e s t e d wi th : Mace4 , Prove r9

FAILED : c od ib \ theorems \ output \ codi_bcont_u−a1_theorems . p9 . out IN 1 .94 ON 2012−10−23 2 1 : 4 3 : 2 3
SUCCESS : c od ib \ theorems \ output \ codi_bcont_u−a1_theorems .m4 . out IN 0 .01 ON 2012−10−23 2 1 : 4 3 : 2 1 , MODEL SIZE=2

cod ib \ theorems \ output \ codi_bcont_u−a1_theorems_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : c od ib \ theorems \ output \ codi_bcont_u−a1_theorems_1 . p9 . out IN 9 .95 ON 2012−10−23 2 1 : 4 3 : 4 0 , PROOF LENGTH=58

FAILED : c od ib \ theorems \ output \ codi_bcont_u−a1_theorems_1 .m4 . out IN 11 .91 ON 2012−10−23 2 1 : 4 3 : 4 1
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−−−−
i g
−−−−
i g \ c o n s i s t e n c y \ output \ i g _ 2 d _ l i n _ n o n t r i v i a l t e s t e d wi th : Paradox3

SUCCESS : i g \ c o n s i s t e n c y \ output \ i g _ 2 d _ l i n _ n o n t r i v i a l . t p tp . out , MODEL SIZE=3
i g \ c o n s i s t e n c y \ output \ i g _ 2 d _ n o n t r i v i a l t e s t e d wi th : Mace4 , Prover9 , Paradox3

FAILED : i g \ c o n s i s t e n c y \ output \ i g _ 2 d _ n o n t r i v i a l . p9 . out IN 0 .01 ON 2012−10−24 2 1 : 2 7 : 0 2
SUCCESS : i g \ c o n s i s t e n c y \ output \ i g _ 2 d _ n o n t r i v i a l .m4 . out IN 0 .00 ON 2012−10−24 2 1 : 2 7 : 0 3 , MODEL SIZE=3
SUCCESS : i g \ c o n s i s t e n c y \ output \ i g _ 2 d _ n o n t r i v i a l . t p tp . out , MODEL SIZE=3

i g \ c o n s i s t e n c y \ output \ i g _ n o n t r i v i a l t e s t e d wi th : Mace4 , Prover9 , Paradox3
FAILED : i g \ c o n s i s t e n c y \ output \ i g _ n o n t r i v i a l . p9 . out IN 7 .95 ON 2012−11−4 1 0 : 0 1 : 5 2

SUCCESS : i g \ c o n s i s t e n c y \ output \ i g _ n o n t r i v i a l .m4 . out IN 6 .50 ON 2012−11−4 1 0 : 0 1 : 5 0 , MODEL SIZE=7
SUCCESS : i g \ c o n s i s t e n c y \ output \ i g _ n o n t r i v i a l . t p tp . out , MODEL SIZE=7

i g \ theorems \ output \ ig_2d_theorems t e s t e d wi th : Mace4 , Prove r9
FAILED : i g \ theorems \ output \ ig_2d_theorems . p9 . out IN 0 .01 ON 2012−10−24 2 2 : 0 8 : 0 5

SUCCESS : i g \ theorems \ output \ ig_2d_theorems .m4 . out IN 0 .00 ON 2012−10−24 2 2 : 0 8 : 0 5 , MODEL SIZE=2
i g \ theorems \ output \ ig_2d_theorems_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i g \ theorems \ output \ ig_2d_theorems_1 . p9 . out IN 0 .00 ON 2012−10−24 2 2 : 0 8 : 0 9 , PROOF LENGTH=10
FAILED : i g \ theorems \ output \ ig_2d_theorems_1 .m4 . out IN 0 .02 ON 2012−10−24 2 2 : 0 8 : 0 9

i g \ theorems \ output \ ig_2d_theorems_2 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i g \ theorems \ output \ ig_2d_theorems_2 . p9 . out IN 0 .00 ON 2012−10−24 2 2 : 0 8 : 1 3 , PROOF LENGTH=10

FAILED : i g \ theorems \ output \ ig_2d_theorems_2 .m4 . out IN 0 .02 ON 2012−10−24 2 2 : 0 8 : 1 3
i g \ theorems \ output \ ig_theorems t e s t e d wi th : Mace4 , Prove r9

FAILED : i g \ theorems \ output \ ig_theorems . p9 . out IN 0 .02 ON 2012−10−24 2 2 : 0 7 : 3 6
SUCCESS : i g \ theorems \ output \ ig_theorems .m4 . out IN 0 .01 ON 2012−10−24 2 2 : 0 7 : 3 6 , MODEL SIZE=2

i g \ theorems \ output \ ig_theorems_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : i g \ theorems \ output \ ig_theorems_1 . p9 . out IN 0 .01 ON 2012−10−24 2 2 : 0 7 : 4 1 , PROOF LENGTH=6

FAILED : i g \ theorems \ output \ ig_theorems_1 .m4 . out IN 1 .91 ON 2012−10−24 2 2 : 0 7 : 4 3
i g \ theorems \ output \ ig_theorems_2 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : i g \ theorems \ output \ ig_theorems_2 . p9 . out IN 0 .01 ON 2012−10−24 2 2 : 0 7 : 4 7 , PROOF LENGTH=6
FAILED : i g \ theorems \ output \ ig_theorems_2 .m4 . out IN 1 .90 ON 2012−10−24 2 2 : 0 7 : 4 9

−−−−
o i g
−−−−
o i g \ c o n s i s t e n c y \ output \ w o i g _ 2 d _ n o n t r i v i a l t e s t e d wi th : Mace4 , Prover9 , Paradox3

FAILED : o i g \ c o n s i s t e n c y \ output \ w o i g _ 2 d _ n o n t r i v i a l . p9 . out IN 1 .97 ON 2012−10−24 2 2 : 3 7 : 3 1
SUCCESS : o i g \ c o n s i s t e n c y \ output \ w o i g _ 2 d _ n o n t r i v i a l .m4 . out IN 0 .04 ON 2012−10−24 2 2 : 3 7 : 2 9 , MODEL SIZE=4
SUCCESS : o i g \ c o n s i s t e n c y \ output \ w o i g _ 2 d _ n o n t r i v i a l . t p tp . out , MODEL SIZE=4

o i g \ c o n s i s t e n c y \ output \ w o i g _ 3 d _ n o n t r i v i a l t e s t e d wi th : Mace4 , Prove r9
UNKNOWN: o i g \ c o n s i s t e n c y \ output \ w o i g _ 3 d _ n o n t r i v i a l

FAILED : o i g \ c o n s i s t e n c y \ output \ w o i g _ 3 d _ n o n t r i v i a l . p9 . out IN 600.00 ON 2012−8−27 1 8 : 2 7 : 2 6
FAILED : o i g \ c o n s i s t e n c y \ output \ w o i g _ 3 d _ n o n t r i v i a l .m4 . out IN 120.07 ON 2012−8−27 1 8 : 1 9 : 1 9

o i g \ c o n s i s t e n c y \ output \ w o i g _ n o n t r i v i a l t e s t e d wi th : Paradox3
SUCCESS : o i g \ c o n s i s t e n c y \ output \ w o i g _ n o n t r i v i a l . t p tp . out , MODEL SIZE=9

o i g \ output \woig_2d t e s t e d wi th : Mace4 , Prove r9
FAILED : o i g \ output \woig_2d . p9 . out IN 0 .01 ON 2012−10−24 2 2 : 3 4 : 5 9

SUCCESS : o i g \ output \woig_2d .m4 . out IN 0 .01 ON 2012−10−24 2 2 : 3 4 : 5 9 , MODEL SIZE=2
o i g \ theorems \ output \b_2d_theorems t e s t e d wi th : Mace4 , Prove r9

FAILED : o i g \ theorems \ output \ b_2d_theorems . p9 . out IN 0 .00 ON 2012−8−27 1 6 : 1 7 : 5 7
SUCCESS : o i g \ theorems \ output \b_2d_theorems .m4 . out IN 0 .01 ON 2012−8−27 1 6 : 1 7 : 5 7 , MODEL SIZE=2

o i g \ theorems \ output \b_2d_theorems_1 t e s t e d wi th : Mace4 , Prove r9
FAILED : o i g \ theorems \ output \b_2d_theorems_1 . p9 . out IN 1 .05 ON 2012−8−27 1 6 : 1 8 : 0 2

SUCCESS : o i g \ theorems \ output \b_2d_theorems_1 .m4 . out IN 0 .47 ON 2012−8−27 1 6 : 1 8 : 0 2 , MODEL SIZE=7
o i g \ theorems \ output \b_2d_theorems_2 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : o i g \ theorems \ output \b_2d_theorems_2 . p9 . out IN 0 .02 ON 2012−8−27 1 6 : 1 8 : 0 5 , PROOF LENGTH=10
FAILED : o i g \ theorems \ output \b_2d_theorems_2 .m4 . out IN 1 .91 ON 2012−8−27 1 6 : 1 8 : 0 7

o i g \ theorems \ output \b_2d_theorems_3 t e s t e d wi th : Mace4 , Prove r9
FAILED : o i g \ theorems \ output \b_2d_theorems_3 . p9 . out IN 0 .52 ON 2012−8−27 1 6 : 1 8 : 1 2

SUCCESS : o i g \ theorems \ output \b_2d_theorems_3 .m4 . out IN 0 .17 ON 2012−8−27 1 6 : 1 8 : 1 1 , MODEL SIZE=6
o i g \ theorems \ output \b_2d_theorems_4 t e s t e d wi th : Mace4 , Prove r9

FAILED : o i g \ theorems \ output \b_2d_theorems_4 . p9 . out IN 0 .52 ON 2012−8−27 1 6 : 1 8 : 1 6
SUCCESS : o i g \ theorems \ output \b_2d_theorems_4 .m4 . out IN 0 .18 ON 2012−8−27 1 6 : 1 8 : 1 5 , MODEL SIZE=6

o i g \ theorems \ output \b_2d_theorems_5 t e s t e d wi th : Mace4 , Prove r9
FAILED : o i g \ theorems \ output \b_2d_theorems_5 . p9 . out IN 0 .54 ON 2012−8−27 1 6 : 1 8 : 2 0

SUCCESS : o i g \ theorems \ output \b_2d_theorems_5 .m4 . out IN 0 .18 ON 2012−8−27 1 6 : 1 8 : 1 9 , MODEL SIZE=6
o i g \ theorems \ output \b_2d_theorems_6 t e s t e d wi th : Mace4 , Prove r9

FAILED : o i g \ theorems \ output \b_2d_theorems_6 . p9 . out IN 0 .55 ON 2012−8−27 1 6 : 1 8 : 2 4
SUCCESS : o i g \ theorems \ output \b_2d_theorems_6 .m4 . out IN 0 .18 ON 2012−8−27 1 6 : 1 8 : 2 3 , MODEL SIZE=6

o i g \ theorems \ output \b_3d_theorems t e s t e d wi th : Mace4 , Prove r9
FAILED : o i g \ theorems \ output \ b_3d_theorems . p9 . out IN 0 .03 ON 2012−8−27 1 6 : 1 9 : 3 8

SUCCESS : o i g \ theorems \ output \ b_3d_theorems .m4 . out IN 0 .01 ON 2012−8−27 1 6 : 1 9 : 3 8 , MODEL SIZE=2
o i g \ theorems \ output \b_3d_theorems_1 t e s t e d wi th : Mace4 , Prove r9

FAILED : o i g \ theorems \ output \b_3d_theorems_1 . p9 . out IN 1 .98 ON 2012−8−27 1 6 : 1 9 : 4 5
SUCCESS : o i g \ theorems \ output \b_3d_theorems_1 .m4 . out IN 0 .03 ON 2012−8−27 1 6 : 1 9 : 4 3 , MODEL SIZE=4

o i g \ theorems \ output \b_3d_theorems_2 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : o i g \ theorems \ output \b_3d_theorems_2 . p9 . out IN 0 .05 ON 2012−8−27 1 6 : 1 9 : 4 9 , PROOF LENGTH=10

FAILED : o i g \ theorems \ output \b_3d_theorems_2 .m4 . out IN 1 .95 ON 2012−8−27 1 6 : 1 9 : 5 1
o i g \ theorems \ output \b_3d_theorems_3 t e s t e d wi th : Mace4 , Prove r9

FAILED : o i g \ theorems \ output \b_3d_theorems_3 . p9 . out IN 1 .87 ON 2012−8−27 1 6 : 1 9 : 5 7
SUCCESS : o i g \ theorems \ output \b_3d_theorems_3 .m4 . out IN 0 .03 ON 2012−8−27 1 6 : 1 9 : 5 5 , MODEL SIZE=4

o i g \ theorems \ output \b_3d_theorems_4 t e s t e d wi th : Mace4 , Prove r9
FAILED : o i g \ theorems \ output \b_3d_theorems_4 . p9 . out IN 1 .84 ON 2012−8−27 1 6 : 2 0 : 0 1

SUCCESS : o i g \ theorems \ output \b_3d_theorems_4 .m4 . out IN 0 .04 ON 2012−8−27 1 6 : 1 9 : 5 9 , MODEL SIZE=4
o i g \ theorems \ output \b_3d_theorems_5 t e s t e d wi th : Mace4 , Prove r9

FAILED : o i g \ theorems \ output \b_3d_theorems_5 . p9 . out IN 1 .68 ON 2012−8−27 1 6 : 2 0 : 0 5
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SUCCESS : o i g \ theorems \ output \b_3d_theorems_5 .m4 . out IN 0 .02 ON 2012−8−27 1 6 : 2 0 : 0 3 , MODEL SIZE=4
o i g \ theorems \ output \b_3d_theorems_6 t e s t e d wi th : Mace4 , Prove r9

FAILED : o i g \ theorems \ output \b_3d_theorems_6 . p9 . out IN 1 .70 ON 2012−8−27 1 6 : 2 0 : 0 9
SUCCESS : o i g \ theorems \ output \b_3d_theorems_6 .m4 . out IN 0 .02 ON 2012−8−27 1 6 : 2 0 : 0 7 , MODEL SIZE=4

o i g \ theorems \ output \ woig_2d_theorems t e s t e d wi th : Mace4 , Prove r9
FAILED : o i g \ theorems \ output \ woig_2d_theorems . p9 . out IN 0 .01 ON 2012−10−24 2 3 : 0 1 : 1 0

SUCCESS : o i g \ theorems \ output \ woig_2d_theorems .m4 . out IN 0 .01 ON 2012−10−24 2 3 : 0 1 : 1 0 , MODEL SIZE=2
o i g \ theorems \ output \ woig_2d_theorems_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : o i g \ theorems \ output \ woig_2d_theorems_1 . p9 . out IN 0 .01 ON 2012−10−24 2 3 : 0 1 : 1 5 , PROOF LENGTH=10
FAILED : o i g \ theorems \ output \ woig_2d_theorems_1 .m4 . out IN 1 .90 ON 2012−10−24 2 3 : 0 1 : 1 7

o i g \ theorems \ output \ woig_2d_theorems_2 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : o i g \ theorems \ output \ woig_2d_theorems_2 . p9 . out IN 0 .01 ON 2012−10−24 2 3 : 0 1 : 2 1 , PROOF LENGTH=10

FAILED : o i g \ theorems \ output \ woig_2d_theorems_2 .m4 . out IN 1 .94 ON 2012−10−24 2 3 : 0 1 : 2 3
o i g \ theorems \ output \ woig_2d_theorems_3 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : o i g \ theorems \ output \ woig_2d_theorems_3 . p9 . out IN 0 .01 ON 2012−10−24 2 3 : 0 1 : 2 7 , PROOF LENGTH=10
FAILED : o i g \ theorems \ output \ woig_2d_theorems_3 .m4 . out IN 1 .95 ON 2012−10−24 2 3 : 0 1 : 2 9

o i g \ theorems \ output \ woig_2d_theorems_4 t e s t e d wi th : Mace4 , Prove r9
FAILED : o i g \ theorems \ output \ woig_2d_theorems_4 . p9 . out IN 148.79 ON 2012−10−24 2 3 : 0 4 : 0 3

SUCCESS : o i g \ theorems \ output \ woig_2d_theorems_4 .m4 . out IN 148 .12 ON 2012−10−24 2 3 : 0 4 : 0 2 , MODEL SIZE=10
o i g \ theorems \ output \ woig_2d_theorems_5 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : o i g \ theorems \ output \ woig_2d_theorems_5 . p9 . out IN 0 .01 ON 2012−10−24 2 3 : 0 4 : 0 8 , PROOF LENGTH=10
FAILED : o i g \ theorems \ output \ woig_2d_theorems_5 .m4 . out IN 1 .95 ON 2012−10−24 2 3 : 0 4 : 1 0

o i g \ theorems \ output \ woig_2d_theorems_6 t e s t e d wi th : Mace4 , Prove r9
FAILED : o i g \ theorems \ output \ woig_2d_theorems_6 . p9 . out IN 184.66 ON 2012−10−24 2 3 : 0 7 : 2 0

SUCCESS : o i g \ theorems \ output \ woig_2d_theorems_6 .m4 . out IN 184 .06 ON 2012−10−24 2 3 : 0 7 : 1 8 , MODEL SIZE=9
o i g \ theorems \ output \ woig_2d_theorems_7 t e s t e d wi th : Mace4 , Prove r9

FAILED : o i g \ theorems \ output \ woig_2d_theorems_7 . p9 . out IN 184.72 ON 2012−10−24 2 3 : 1 0 : 3 0
SUCCESS : o i g \ theorems \ output \ woig_2d_theorems_7 .m4 . out IN 184 .57 ON 2012−10−24 2 3 : 1 0 : 2 9 , MODEL SIZE=9

o i g \ theorems \ output \ woig_2d_theorems_8 t e s t e d wi th : Mace4 , Prove r9
FAILED : o i g \ theorems \ output \ woig_2d_theorems_8 . p9 . out IN 87 .22 ON 2012−10−24 2 3 : 1 2 : 0 2

SUCCESS : o i g \ theorems \ output \ woig_2d_theorems_8 .m4 . out IN 86 .65 ON 2012−10−24 2 3 : 1 2 : 0 1 , MODEL SIZE=9
o i g \ theorems \ output \ woig_2d_theorems_9 t e s t e d wi th : Mace4 , Prove r9

FAILED : o i g \ theorems \ output \ woig_2d_theorems_9 . p9 . out IN 87 .21 ON 2012−10−24 2 3 : 1 3 : 3 4
SUCCESS : o i g \ theorems \ output \ woig_2d_theorems_9 .m4 . out IN 86 .28 ON 2012−10−24 2 3 : 1 3 : 3 2 , MODEL SIZE=9

o i g \ theorems \ output \ woig_theorems t e s t e d wi th : Mace4 , Prove r9
FAILED : o i g \ theorems \ output \ woig_theorems . p9 . out IN 0 .04 ON 2012−10−24 2 2 : 1 8 : 1 2

SUCCESS : o i g \ theorems \ output \ woig_theorems .m4 . out IN 0 .02 ON 2012−10−24 2 2 : 1 8 : 1 2 , MODEL SIZE=2
o i g \ theorems \ output \ woig_theorems_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : o i g \ theorems \ output \ woig_theorems_1 . p9 . out IN 6 .85 ON 2012−10−24 2 2 : 1 8 : 2 3 , PROOF LENGTH=26
FAILED : o i g \ theorems \ output \ woig_theorems_1 .m4 . out IN 7 .89 ON 2012−10−24 2 2 : 1 8 : 2 5

o i g \ theorems \ output \ woig_theorems_2 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : o i g \ theorems \ output \ woig_theorems_2 . p9 . out IN 3 .47 ON 2012−10−24 2 2 : 1 8 : 3 2 , PROOF LENGTH=24

FAILED : o i g \ theorems \ output \ woig_theorems_2 .m4 . out IN 3 .91 ON 2012−10−24 2 2 : 1 8 : 3 3
o i g \ theorems \ output \ woig_theorems_3 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : o i g \ theorems \ output \ woig_theorems_3 . p9 . out IN 23 .03 ON 2012−10−24 2 2 : 1 9 : 0 0 , PROOF LENGTH=36
FAILED : o i g \ theorems \ output \ woig_theorems_3 .m4 . out IN 23 .75 ON 2012−10−24 2 2 : 1 9 : 0 1

o i g \ theorems \ output \ woig_theorems_4 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : o i g \ theorems \ output \ woig_theorems_4 . p9 . out IN 0 .13 ON 2012−10−24 2 2 : 1 9 : 0 5 , PROOF LENGTH=10

FAILED : o i g \ theorems \ output \ woig_theorems_4 .m4 . out IN 1 .95 ON 2012−10−24 2 2 : 1 9 : 0 7
o i g \ theorems \ output \ woig_theorems_5 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : o i g \ theorems \ output \ woig_theorems_5 . p9 . out IN 7 .28 ON 2012−10−24 2 2 : 1 9 : 1 8 , PROOF LENGTH=32
FAILED : o i g \ theorems \ output \ woig_theorems_5 .m4 . out IN 7 .88 ON 2012−10−24 2 2 : 1 9 : 1 9

o i g \ theorems \ output \ woig_theorems_6 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : o i g \ theorems \ output \ woig_theorems_6 . p9 . out IN 7 .26 ON 2012−10−24 2 2 : 1 9 : 3 0 , PROOF LENGTH=32

FAILED : o i g \ theorems \ output \ woig_theorems_6 .m4 . out IN 7 .87 ON 2012−10−24 2 2 : 1 9 : 3 1

−−−−
btw
−−−−
btw\ theorems \ output \ btw_bas ic_theorems t e s t e d wi th : Mace4 , Prove r9

FAILED : btw\ theorems \ output \ btw_bas ic_theorems . p9 . out IN 1 .97 ON 2012−8−27 1 6 : 0 5 : 0 3
SUCCESS : btw\ theorems \ output \ btw_bas ic_theorems .m4 . out IN 0 .00 ON 2012−8−27 1 6 : 0 5 : 0 1 , MODEL SIZE=2

btw\ theorems \ output \ btw_basic_theorems_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : btw\ theorems \ output \ btw_basic_theorems_1 . p9 . out IN 0 .01 ON 2012−8−27 1 6 : 0 5 : 0 7 , PROOF LENGTH=9

FAILED : btw\ theorems \ output \ btw_basic_theorems_1 .m4 . out IN 1 .95 ON 2012−8−27 1 6 : 0 5 : 0 9
btw\ theorems \ output \ btw_basic_theorems_2 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : btw\ theorems \ output \ btw_basic_theorems_2 . p9 . out IN 0 .01 ON 2012−8−27 1 6 : 0 5 : 1 3 , PROOF LENGTH=15
FAILED : btw\ theorems \ output \ btw_basic_theorems_2 .m4 . out IN 1 .93 ON 2012−8−27 1 6 : 0 5 : 1 5

btw\ theorems \ output \ btw_basic_theorems_3 t e s t e d wi th : Mace4 , Prove r9
FAILED : btw\ theorems \ output \ btw_basic_theorems_3 . p9 . out IN 1 .96 ON 2012−8−27 1 6 : 0 5 : 2 1

SUCCESS : btw\ theorems \ output \ btw_basic_theorems_3 .m4 . out IN 0 .01 ON 2012−8−27 1 6 : 0 5 : 1 9 , MODEL SIZE=4
btw\ theorems \ output \ btw_orderab le_theorems t e s t e d wi th : Mace4 , Prove r9

FAILED : btw\ theorems \ output \ btw_orderab le_theorems . p9 . out IN 1 .97 ON 2012−8−27 1 6 : 0 5 : 0 4
SUCCESS : btw\ theorems \ output \ btw_orderab le_theorems .m4 . out IN 0 .00 ON 2012−8−27 1 6 : 0 5 : 0 2 , MODEL SIZE=2

btw\ theorems \ output \ btw_orderab le_theorems_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : btw\ theorems \ output \ btw_orderab le_theorems_1 . p9 . out IN 0 .01 ON 2012−8−27 1 6 : 0 5 : 0 9 , PROOF LENGTH=28

FAILED : btw\ theorems \ output \ btw_orderab le_theorems_1 .m4 . out IN 1 .96 ON 2012−8−27 1 6 : 0 5 : 1 1
btw\ theorems \ output \ btw_orderab le_theorems_2 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : btw\ theorems \ output \ btw_orderab le_theorems_2 . p9 . out IN 0 .01 ON 2012−8−27 1 6 : 0 5 : 1 5 , PROOF LENGTH=13
FAILED : btw\ theorems \ output \ btw_orderab le_theorems_2 .m4 . out IN 1 .95 ON 2012−8−27 1 6 : 0 5 : 1 7

btw\ theorems \ output \ btw_orderab le_theorems_3 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : btw\ theorems \ output \ btw_orderab le_theorems_3 . p9 . out IN 0 .00 ON 2012−8−27 1 6 : 0 5 : 2 1 , PROOF LENGTH=20

FAILED : btw\ theorems \ output \ btw_orderab le_theorems_3 .m4 . out IN 1 .92 ON 2012−8−27 1 6 : 0 5 : 2 3
btw\ theorems \ output \ btw_orderab le_theorems_4 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : btw\ theorems \ output \ btw_orderab le_theorems_4 . p9 . out IN 0 .01 ON 2012−8−27 1 6 : 0 5 : 2 7 , PROOF LENGTH=22
FAILED : btw\ theorems \ output \ btw_orderab le_theorems_4 .m4 . out IN 1 .96 ON 2012−8−27 1 6 : 0 5 : 2 9
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−−−−
omt
−−−−
omt\ c o n s i s t e n c y \ output \ o m t _ 3 d _ l i n _ n o n t r i v i a l t e s t e d wi th : Paradox3

SUCCESS : omt\ c o n s i s t e n c y \ output \ o m t _ 3 d _ l i n _ n o n t r i v i a l . t p tp . out , MODEL SIZE=10
omt\ c o n s i s t e n c y \ output \ omt_down_p lp_ l in_nont r i v i a l t e s t e d wi th : Mace4 , Prover9 , Paradox3

FAILED : omt\ c o n s i s t e n c y \ output \ omt_down_p lp_ l in_nont r i v i a l . p9 . out IN 600 .01 ON 2012−8−27 1 7 : 0 8 : 1 6
FAILED : omt\ c o n s i s t e n c y \ output \ omt_down_p lp_ l in_nont r i v i a l .m4 . out IN 312 .54 ON 2012−8−27 1 7 : 0 3 : 2 6

SUCCESS : omt\ c o n s i s t e n c y \ output \ omt_down_p lp_ l in_nont r i v i a l . t p tp . out , MODEL SIZE=10
omt\ c o n s i s t e n c y \ output \ omt_down_plp_l in_nontr iv ia l_btw t e s t e d wi th : Paradox3

SUCCESS : omt\ c o n s i s t e n c y \ output \ omt_down_plp_l in_nontr iv ia l_btw . tp tp . out , MODEL SIZE=10
omt\ output \omt_down t e s t e d wi th : Mace4 , Prove r9

FAILED : omt\ output \omt_down . p9 . out IN 1 .94 ON 2012−8−27 1 6 : 3 7 : 1 4
SUCCESS : omt\ output \omt_down .m4 . out IN 0 .01 ON 2012−8−27 1 6 : 3 7 : 1 2 , MODEL SIZE=2

omt\ theorems \ output \omt_down_theorems t e s t e d wi th : Mace4 , Prove r9
FAILED : omt\ theorems \ output \omt_down_theorems . p9 . out IN 1 .87 ON 2012−8−27 1 8 : 5 4 : 4 7

SUCCESS : omt\ theorems \ output \omt_down_theorems .m4 . out IN 0 .02 ON 2012−8−27 1 8 : 5 4 : 4 5 , MODEL SIZE=2
omt\ theorems \ output \omt_down_theorems_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : omt\ theorems \ output \omt_down_theorems_1 . p9 . out IN 0 .03 ON 2012−8−27 1 8 : 5 4 : 5 4 , PROOF LENGTH=9
FAILED : omt\ theorems \ output \omt_down_theorems_1 .m4 . out IN 1 .94 ON 2012−8−27 1 8 : 5 4 : 5 6

omt\ theorems \ output \omt_down_theorems_2 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : omt\ theorems \ output \omt_down_theorems_2 . p9 . out IN 0 .04 ON 2012−8−27 1 8 : 5 5 : 0 0 , PROOF LENGTH=9

FAILED : omt\ theorems \ output \omt_down_theorems_2 .m4 . out IN 1 .93 ON 2012−8−27 1 8 : 5 5 : 0 2
omt\ theorems \ output \omt_down_theorems_3 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : omt\ theorems \ output \omt_down_theorems_3 . p9 . out IN 0 .03 ON 2012−8−27 1 8 : 5 5 : 0 6 , PROOF LENGTH=9
FAILED : omt\ theorems \ output \omt_down_theorems_3 .m4 . out IN 1 .94 ON 2012−8−27 1 8 : 5 5 : 0 8

omt\ theorems \ output \omt_down_theorems_4 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : omt\ theorems \ output \omt_down_theorems_4 . p9 . out IN 0 .04 ON 2012−8−27 1 8 : 5 5 : 1 2 , PROOF LENGTH=9

FAILED : omt\ theorems \ output \omt_down_theorems_4 .m4 . out IN 1 .94 ON 2012−8−27 1 8 : 5 5 : 1 4

−−−−
omtb
−−−−
omtb\ c o n s i s t e n c y \ output \ omtb_down_p lp_ l in_nont r i v i a l t e s t e d wi th : Mace4 , Prover9 , Paradox3

FAILED : omtb\ c o n s i s t e n c y \ output \ omtb_down_p lp_ l in_nont r i v i a l . p9 . out IN 600 .02 ON 2012−11−4 1 2 : 5 8 : 2 3
FAILED : omtb\ c o n s i s t e n c y \ output \ omtb_down_p lp_ l in_nont r i v i a l .m4 . out IN 98 .97 ON 2012−11−4 1 2 : 4 9 : 5 8

SUCCESS : omtb\ c o n s i s t e n c y \ output \ omtb_down_p lp_ l in_nont r i v i a l . t p tp . out , MODEL SIZE=10
omtb\ output \omtb_down t e s t e d wi th : Mace4 , Prove r9

FAILED : omtb\ output \omtb_down . p9 . out IN 1 .86 ON 2012−8−27 2 0 : 0 0 : 3 6
SUCCESS : omtb\ output \omtb_down .m4 . out IN 0 .02 ON 2012−8−27 2 0 : 0 0 : 3 4 , MODEL SIZE=2

−−−−
space
−−−−
space \ c o n s i s t e n c y \ output \ s p a c e _ n o n t r i v i a l t e s t e d wi th : Mace4 , Prover9 , Paradox3

FAILED : space \ c o n s i s t e n c y \ output \ s p a c e _ n o n t r i v i a l . p9 . out IN 600 .04 ON 2012−9−3 1 4 : 2 3 : 3 9
FAILED : space \ c o n s i s t e n c y \ output \ s p a c e _ n o n t r i v i a l .m4 . out IN 600 .74 ON 2012−9−3 1 4 : 2 3 : 3 8

SUCCESS : space \ c o n s i s t e n c y \ output \ s p a c e _ n o n t r i v i a l . t p tp . out , MODEL SIZE=9
space \ c o n s i s t e n c y \ output \ s p c h _ n o n t r i v i a l t e s t e d wi th : Mace4 , Prover9 , Paradox3

FAILED : space \ c o n s i s t e n c y \ output \ s p c h _ n o n t r i v i a l . p9 . out IN 600 .00 ON 2012−11−2 1 7 : 1 7 : 2 7
FAILED : space \ c o n s i s t e n c y \ output \ s p c h _ n o n t r i v i a l .m4 . out IN 505 .54 ON 2012−11−2 1 7 : 1 5 : 4 8

SUCCESS : space \ c o n s i s t e n c y \ output \ s p c h _ n o n t r i v i a l . t p tp . out , MODEL SIZE=8
space \ c o n s i s t e n c y \ output \ v o i d s _ n o n t r i v i a l t e s t e d wi th : Mace4 , Prover9 , Paradox3

FAILED : space \ c o n s i s t e n c y \ output \ v o i d s _ n o n t r i v i a l . p9 . out IN 600 .01 ON 2012−11−2 1 7 : 3 0 : 0 4
FAILED : space \ c o n s i s t e n c y \ output \ v o i d s _ n o n t r i v i a l .m4 . out IN 367.27 ON 2012−11−2 1 7 : 2 6 : 0 8

SUCCESS : space \ c o n s i s t e n c y \ output \ v o i d s _ n o n t r i v i a l . t p tp . out , MODEL SIZE=9

space \ output \ space t e s t e d wi th : Mace4 , Prove r9
FAILED : space \ output \ space . p9 . out IN 1 .91 ON 2012−9−3 1 4 : 1 2 : 2 7

SUCCESS : space \ output \ space .m4 . out IN 0 .02 ON 2012−9−3 1 4 : 1 2 : 2 5 , MODEL SIZE=2
space \ output \ spch t e s t e d wi th : Mace4 , Prove r9

UNKNOWN: space \ output \ spch
FAILED : space \ output \ spch . p9 . out IN 600 .00 ON 2012−9−3 2 3 : 2 1 : 3 7
FAILED : space \ output \ spch .m4 . out IN 600 .61 ON 2012−9−3 2 3 : 2 1 : 3 4

space \ output \ v o i d s t e s t e d wi th : Mace4 , Prove r9
UNKNOWN: space \ output \ v o i d s

FAILED : space \ output \ v o i d s . p9 . out IN 600 .00 ON 2012−9−4 1 6 : 0 6 : 1 6
FAILED : space \ output \ v o i d s .m4 . out

space \ output \ vo id s_ex tended t e s t e d wi th : Mace4 , Prove r9
UNKNOWN: space \ output \ vo id s_ex tended

FAILED : space \ output \ vo id s_ex tended . p9 . out IN 600 .01 ON 2012−11−2 1 6 : 5 3 : 4 6
FAILED : space \ output \ vo id s_ex tended .m4 . out IN 600 .20 ON 2012−11−2 1 6 : 5 3 : 4 4

space \ theorems \ output \ ped_theorems t e s t e d wi th : Mace4 , Prove r9
FAILED : space \ theorems \ output \ ped_theorems . p9 . out IN 0 .01 ON 2012−10−23 1 8 : 4 3 : 4 6

SUCCESS : space \ theorems \ output \ ped_theorems .m4 . out IN 0 .01 ON 2012−10−23 1 8 : 4 3 : 4 6 , MODEL SIZE=2
space \ theorems \ output \ ped_theorems_1 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : space \ theorems \ output \ ped_theorems_1 . p9 . out IN 0 .01 ON 2012−10−23 1 8 : 4 3 : 5 1 , PROOF LENGTH=16
FAILED : space \ theorems \ output \ ped_theorems_1 .m4 . out IN 0 .07 ON 2012−10−23 1 8 : 4 3 : 5 1

space \ theorems \ output \ ped_theorems_2 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : space \ theorems \ output \ ped_theorems_2 . p9 . out IN 0 .01 ON 2012−10−23 1 8 : 4 3 : 5 5 , PROOF LENGTH=17

FAILED : space \ theorems \ output \ ped_theorems_2 .m4 . out IN 0 .06 ON 2012−10−23 1 8 : 4 3 : 5 5
space \ theorems \ output \ space_theorems t e s t e d wi th : Mace4 , Prove r9

FAILED : space \ theorems \ output \ space_theorems . p9 . out IN 1 .92 ON 2012−9−4 0 1 : 0 8 : 1 3
SUCCESS : space \ theorems \ output \ space_theorems .m4 . out IN 0 .02 ON 2012−9−4 0 1 : 0 8 : 1 1 , MODEL SIZE=2

space \ theorems \ output \ space_theorems_1 t e s t e d wi th : Mace4 , Prove r9
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SUCCESS : space \ theorems \ output \ space_theorems_1 . p9 . out IN 0 .19 ON 2012−9−4 0 1 : 0 8 : 2 0 , PROOF LENGTH=8
FAILED : space \ theorems \ output \ space_theorems_1 .m4 . out IN 1 .79 ON 2012−9−4 0 1 : 0 8 : 2 1

space \ theorems \ output \ space_theorems_2 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : space \ theorems \ output \ space_theorems_2 . p9 . out IN 0 .31 ON 2012−9−4 0 1 : 0 8 : 2 6 , PROOF LENGTH=46

FAILED : space \ theorems \ output \ space_theorems_2 .m4 . out IN 1 .95 ON 2012−9−4 0 1 : 0 8 : 2 7
space \ theorems \ output \ spch_theorems t e s t e d wi th : Mace4 , Prove r9

UNKNOWN: space \ theorems \ output \ spch_theorems
FAILED : space \ theorems \ output \ spch_theorems . p9 . out IN 600.00 ON 2012−11−2 1 7 : 1 6 : 3 0
FAILED : space \ theorems \ output \ spch_theorems .m4 . out IN 600 .26 ON 2012−11−2 1 7 : 1 6 : 2 8

space \ theorems \ output \ spch_theorems_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : space \ theorems \ output \ spch_theorems_1 . p9 . out IN 0 .06 ON 2012−11−2 1 7 : 1 6 : 3 4 , PROOF LENGTH=5

FAILED : space \ theorems \ output \ spch_theorems_1 .m4 . out IN 1 .95 ON 2012−11−2 1 7 : 1 6 : 3 6
space \ theorems \ output \ spch_theorems_2 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : space \ theorems \ output \ spch_theorems_2 . p9 . out IN 7 .62 ON 2012−11−2 1 7 : 1 6 : 4 8 , PROOF LENGTH=73
FAILED : space \ theorems \ output \ spch_theorems_2 .m4 . out IN 7 .77 ON 2012−11−2 1 7 : 1 6 : 4 8

space \ theorems \ output \ spch_theorems_3 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : space \ theorems \ output \ spch_theorems_3 . p9 . out IN 0 .13 ON 2012−11−2 1 7 : 1 6 : 5 2 , PROOF LENGTH=6

FAILED : space \ theorems \ output \ spch_theorems_3 .m4 . out IN 1 .97 ON 2012−11−2 1 7 : 1 6 : 5 4
space \ theorems \ output \ spch_theorems_4 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : space \ theorems \ output \ spch_theorems_4 . p9 . out IN 0 .07 ON 2012−11−2 1 7 : 1 6 : 5 8 , PROOF LENGTH=5
FAILED : space \ theorems \ output \ spch_theorems_4 .m4 . out IN 1 .96 ON 2012−11−2 1 7 : 1 7 : 0 0

space \ theorems \ output \ spch_theorems_5 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : space \ theorems \ output \ spch_theorems_5 . p9 . out IN 0 .40 ON 2012−11−2 1 7 : 1 7 : 0 4 , PROOF LENGTH=32

FAILED : space \ theorems \ output \ spch_theorems_5 .m4 . out IN 1 .94 ON 2012−11−2 1 7 : 1 7 : 0 6
space \ theorems \ output \ spch_theorems_6 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : space \ theorems \ output \ spch_theorems_6 . p9 . out IN 2 .28 ON 2012−11−2 1 7 : 1 7 : 1 2 , PROOF LENGTH=55
FAILED : space \ theorems \ output \ spch_theorems_6 .m4 . out IN 3 .90 ON 2012−11−2 1 7 : 1 7 : 1 4

space \ theorems \ output \ vo ids_extended_theorems t e s t e d wi th : Mace4 , Prove r9
UNKNOWN: space \ theorems \ output \ vo ids_extended_theorems

FAILED : space \ theorems \ output \ vo ids_extended_theorems . p9 . out IN 600 .00 ON 2012−11−2 1 8 : 0 8 : 1 6
FAILED : space \ theorems \ output \ vo ids_extended_theorems .m4 . out IN 600 .21 ON 2012−11−2 1 8 : 0 8 : 1 5

space \ theorems \ output \ vo ids_extended_theorems_1 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : space \ theorems \ output \ vo ids_extended_theorems_1 . p9 . out IN 3 .15 ON 2012−11−2 1 8 : 0 8 : 2 5 , PROOF LENGTH=34

FAILED : space \ theorems \ output \ vo ids_extended_theorems_1 .m4 . out IN 3 .81 ON 2012−11−2 1 8 : 0 8 : 2 6
space \ theorems \ output \ vo ids_extended_theorems_2 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : space \ theorems \ output \ vo ids_extended_theorems_2 . p9 . out IN 0 .31 ON 2012−11−2 1 8 : 0 8 : 3 0 , PROOF LENGTH=20
FAILED : space \ theorems \ output \ vo ids_extended_theorems_2 .m4 . out IN 1 .91 ON 2012−11−2 1 8 : 0 8 : 3 2

space \ theorems \ output \ vo ids_extended_theorems_3 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : space \ theorems \ output \ vo ids_extended_theorems_3 . p9 . out IN 0 .31 ON 2012−11−2 1 8 : 0 8 : 3 6 , PROOF LENGTH=20

FAILED : space \ theorems \ output \ vo ids_extended_theorems_3 .m4 . out IN 1 .95 ON 2012−11−2 1 8 : 0 8 : 3 8
space \ theorems \ output \ vo ids_extended_theorems_4 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : space \ theorems \ output \ vo ids_extended_theorems_4 . p9 . out IN 0 .25 ON 2012−11−2 1 8 : 0 8 : 4 2 , PROOF LENGTH=10
FAILED : space \ theorems \ output \ vo ids_extended_theorems_4 .m4 . out IN 1 .91 ON 2012−11−2 1 8 : 0 8 : 4 4

space \ theorems \ output \ vo ids_extended_theorems_5 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : space \ theorems \ output \ vo ids_extended_theorems_5 . p9 . out IN 0 .30 ON 2012−11−2 1 8 : 0 8 : 4 8 , PROOF LENGTH=10

FAILED : space \ theorems \ output \ vo ids_extended_theorems_5 .m4 . out IN 1 .94 ON 2012−11−2 1 8 : 0 8 : 5 0
space \ theorems \ output \ vo ids_extended_theorems_6 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : space \ theorems \ output \ vo ids_extended_theorems_6 . p9 . out IN 0 .22 ON 2012−11−2 1 8 : 0 8 : 5 4 , PROOF LENGTH=10
FAILED : space \ theorems \ output \ vo ids_extended_theorems_6 .m4 . out IN 1 .94 ON 2012−11−2 1 8 : 0 8 : 5 6

space \ theorems \ output \ vo ids_extended_theorems_7 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : space \ theorems \ output \ vo ids_extended_theorems_7 . p9 . out IN 0 .51 ON 2012−11−2 1 8 : 0 9 : 0 1 , PROOF LENGTH=14

FAILED : space \ theorems \ output \ vo ids_extended_theorems_7 .m4 . out IN 1 .91 ON 2012−11−2 1 8 : 0 9 : 0 2
space \ theorems \ output \ vo ids_extended_theorems_8 t e s t e d wi th : Mace4 , Prove r9

SUCCESS : space \ theorems \ output \ vo ids_extended_theorems_8 . p9 . out IN 0 .51 ON 2012−11−2 1 8 : 0 9 : 0 7 , PROOF LENGTH=30
FAILED : space \ theorems \ output \ vo ids_extended_theorems_8 .m4 . out IN 1 .93 ON 2012−11−2 1 8 : 0 9 : 0 8

space \ theorems \ output \ vo ids_extended_theorems_9 t e s t e d wi th : Mace4 , Prove r9
SUCCESS : space \ theorems \ output \ vo ids_extended_theorems_9 . p9 . out IN 0 .33 ON 2012−11−2 1 8 : 0 9 : 1 2 , PROOF LENGTH=16

FAILED : space \ theorems \ output \ vo ids_extended_theorems_9 .m4 . out IN 1 .94 ON 2012−11−2 1 8 : 0 9 : 1 4
space \ theorems \ output \ vo id s_theorems t e s t e d wi th : Mace4 , Prover9 , Vampire

UNKNOWN: space \ theorems \ output \ vo id s_theorems
FAILED : space \ theorems \ output \ vo id s_theorems . p9 . out IN 600.00 ON 2012−11−2 1 6 : 5 4 : 2 8
FAILED : space \ theorems \ output \ vo id s_theorems . vam . out IN 599.624
FAILED : space \ theorems \ output \ vo id s_theorems .m4 . out IN 600 .26 ON 2012−11−2 1 6 : 5 4 : 2 5

space \ theorems \ output \ vo ids_theorems_1 t e s t e d wi th : Mace4 , Prover9 , Paradox3 , Vampire
FAILED : space \ theorems \ output \ vo ids_theorems_1 . p9 . out IN 600 .03 ON 2012−11−2 1 7 : 0 4 : 4 0

SUCCESS : space \ theorems \ output \ vo ids_theorems_1 . vam . out IN 6 .571
FAILED : space \ theorems \ output \ vo ids_theorems_1 .m4 . out IN 600.26 ON 2012−11−2 1 7 : 0 4 : 4 0
FAILED : space \ theorems \ output \ vo ids_theorems_1 . tp tp . out , ATTEMPTED UP TO MODEL SIZE=24



Appendix F

Algebraic translations of the axioms
from Chapter 3 for automated
theorem proving

F.1 Axioms for automated proofs

Axioms as used for the automated proofs in Prover9. We use · and + denote the lattice operations of
meet and join. Universal closure is assumed throughout.

The theories OCA = {L2∨ –L6∨, L2∧ –L4∧, C0 –C3, O1′, O2′, O3′} and SPOCA = OCA ∪ {PC1,
PC2′, PC2′′, S} axiomatize OCAs and SPOCAs.

Lattice: Standard axioms for commutativity, associativity, and absorption

(L2∧) x · y = y · x

(L2∨) x+ y = y + x

(L3∧) (x · y) · z = x · (y · z)

(L3∨) (x+ y) + z = x+ (y + z)

(L4∧) x+ (x · y) = x

(L4∨) x · (x+ y) = x

Boundedness: Existence of a null and one (universal) element

(L5∨) 0 + x = x

(L6∨) 1 + x = 1

Orthocomplementation and pseudocomplementation

(O1′) x⊥⊥ = x

(PC1′) x · (x · y)∗ = x · y∗
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(O2′) x+ x⊥ = 1

(PC2′) 0∗ = 1

(O3′) x · y = (x⊥ + y⊥)⊥

(PC2′′) 1∗ = 0

The Stone identity

(S) (x+ y)∗∗ = x∗∗ + y∗∗

Contact: Basic axioms of a weak contact algebra

(C0) 0¬Cx

(C1) x 6= 0→ xCx

(C2) xCy → yCx

(C3) x · y = x ∧ zCx→ zCy

Mereological closures as defined in Section 4.4.1

(M-I) x · y 6= 0→ (z · (x · y) = z ↔ (z · x = z ∧ z · y = z))

(M-S) z · (x+ y) 6= 0↔ (x · z 6= 0 ∨ y · z 6= 0)

(M-C) z · x⊥ = 0↔ z · x = z

(O-Ext) ∀z(x · z = 0↔ y · z = 0)↔ x = y

Topological closures as defined in Section 4.4.2

(T-I) x · y 6= 0→ (zC(x · y)→ (zCx ∧ wCy))

(T-S) xC(y + z)↔ xCy ∨ xCz

(T-S←) xC(y + z)← xCy ∨ xCz

(C4) xC(y + z)→ xCy ∨ xCz

(C5) z · x⊥ = z ↔ z¬Cx (∼= T-C)

(C5′) (x 6= 0 ∨ z 6= 1) ∧ (x 6= 1 ∨ z 6= 0)→ (zCx↔ (z = x⊥ ∨ z · x⊥ 6= z)) (∼= T-C ′)

(C-Ext) ∀z(xCz ↔ yCz)↔ x = y

Other axioms of interest

(Atom) ∃a(a 6= 0 ∧ ∀x(x = 0 ∨ x = a ∨ x · a 6= x))

(Con) x = 0 ∨ x = 1 ∨ xCx⊥

(¬Con) x¬Cx⊥

(Dis) x 6= 1→ ∃y(y 6= 0 ∧ x¬Cy)

(Int) x¬Cy → ∃z(x¬Cz ∧ y¬Cz⊥)
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(¬Triv) ∃y[y 6= 1 ∧ y 6= 0]

(Uni) (x · y = 0 ∧ x+ y = 1 ∧ x · z = 0 ∧ x+ z = 1)→ y = z

F.2 Equivalence of algebraic axioms

Here we show that the axioms from Section 4.4 in a UCMT are equivalent to the algebraic versions
thereof, i.e., the axioms used for the automated proofs as shown in Appendix A. We can mainly rely on
Theorem 4.2 but have to show additionally that all cases involving the introduced null element 0 are
properly covered. We first show the equivalence for the mereological axioms and then for the topological
axioms.

F.2.1 Mereological axioms

(M-IUCMT) ∀w[P (w, x� y)↔ (P (w, x) · P (w, y))] (intersection)

(M-SUCMT) ∀w[O(w, x⊕ y)↔ (O(w, x) +O(w, y))] (sum)

(M-CUCMT) ∀w[O(w,	x)↔ ¬P (w, x)] (complement)

(M-I) x · y 6= 0→ [∀z[z · (x · y) = z ↔ (z · x = z ∧ z · y = z)]]

(M-S) z · (x+ y) 6= 0↔ (x · z 6= 0 ∨ y · z 6= 0)

(M-C) z · x⊥ = 0↔ z · x = z

Lemma F.1. Let UCMT be the theory of UCMT that satisfies P.1 –P.3, C.1 –C.3, UCMT.1 –UCMT.7
with the definitions O-D, U-D, PP-D. Let OCA be the theory of orthocomplemented contact algebras as
constructed in Theorem 4.2. Then:

1. UCMT |= M-IUCMT iff OCA |= M-I;

2. UCMT |= M-SUCMT iff OCA ∪ O-Ext|= M-S;

3. UCMT |= M-CUCMT iff OCA ∪ O-Ext|= M-C.

Proof. Let us define z = g(w) throughout.

1. Assume M-IUCMT.
By definition P (a, b)⇔ a ≤ b and because of a ≤ b↔ a · b = a we obtain z · (x · y) = z iff z · x = z

and z · y = z for all x, y, z 6= 0. If x = 0 or y = 0, then x · y = 0 and M-I holds.
If z = 0, then z · (x · y) = 0 = z and z · x = 0 = z and z · y = 0 = z and thus M-I also holds.
If M-I then for all x, y, z 6= 0 M-IUCMT follows from P (a, b)⇔ a · b = a.

2. Assume M-SUCMT.
Then if O is extensional by O-Ext and by the definition of O we obtain O(w, x⊕y)⇔ z ·(x+y) 6= 0
and thus also M-S for all x, y, z 6= 0. If z = 0, then z · (x + y) = 0 and x · z = 0 and y · z = 0
(the same is true if both x = 0 and y = 0). If only x = 0 then z · (x+ y) = z · y iff y · z = 0 since
x · z = 0 (the same is true for y = 0).
Reversely, if M-S then for all x, y, z 6= 0 M-SUCMT directly follows.
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3. Note that M-C is equivalent to z · x⊥ 6= 0↔ z · x 6= z.

Assume M-CUCMT.
Since we already established that the complementation operator 	 must at least satisfy the prop-
erties of an orthocomplementation, we have O(w,	x)⇒ z · x⊥ 6= 0 in the presence of O-Ext and
¬P (w, x)⇒ z · x 6= z which covers all cases of M-C in which x, z /∈ {0, 1}. The remaining cases of
M-C are:

(i) If z = 0, then z · x⊥ = 0 and z · x = 0 = z.

(ii) If z = 1 then 1 · x⊥ = x⊥ 6= 0 unless x = 1 and z · x = x 6= 1 unless x = 1. The case when
x = 1 is covered by (4).

(iii) If x = 0 then z · 0⊥ = z 6= 0 unless z = 0 and z · x = 0 6= 0 unless z = 0. The case z = 0 has
already been covered by (1).

(iv) If x = 1 then z · 1⊥ = 0 and z · 1 = z.

Reversely, if M-C then for all x, z 6= 0 and x 6= 1 M-CUCMT directly follows.

F.2.2 Topological axioms

(T-IUCMT) ∀w[C(w, x� y)→ (C(w, x) · C(w, y))] (intersection)

(T-SUCMT) ∀w[C(w, x⊕ y)↔ (C(w, x) + C(w, y))] (sum)

(T-CUCMT) ∀w[P (w,	x)↔ ¬C(w, x)] (complement)

(T-C′UCMT) ∀w[PP (w,	x)↔ ¬C(w, x)] (alternative complement)

(T-I) x · y 6= 0→ (zC(x · y)→ (zCx ∧ wCy))

(T-S) zC(x+ y)↔ zCx ∨ zCy

(C5) z · x⊥ = z ↔ ¬zCx

(C5′) (x 6= 0 ∨ z 6= 1) ∧ (x 6= 1 ∨ z 6= 0)→ (zCx↔ (z = x⊥ ∨ z · x⊥ 6= z))

Lemma F.2. Let UCMT be the theory of UCMT that satisfies P.1 –P.3, C.1 –C.3, UCMT.1 –UCMT.7
with the definitions O-D, U-D, PP-D. Let OCA be the theory of orthocomplemented contact algebras as
constructed in Theorem 4.2 Then:

1. UCMT |= T-IUCMT iff OCA |= T-I;

2. UCMT |= T-SUCMT iff OCA |= T-S;

3. UCMT |= T-CUCMT iff OCA |= C5;

4. UCMT |= T-C′UCMT iff OCA |= C5′.

Proof. Notice that we again define z = g(w) throughout.
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1. Assume T-IUCMT.
Then T-I for all x, y, z 6= 0. If z = 0, then ∀v[¬C(w, v)] and thus T-I. Otherwise, if x = 0 (or
y = 0), then x · y = 0 and thus also T-I.
Reversely, if T-I then for all x, y, z 6= 0 T-IUCMT directly follows.

2. Assume T-SUCMT.
Then T-S for all x, y, z 6= 0. If z = 0 then for all v ¬C(w, v) and thus T-S holds (the same is true
if x = 0 and y = 0). If only x = 0 then C(z, y) if and only if C(z, y) (the same is true if y = 0).
Reversely, if T-S then for all x, y, z 6= 0 T-SUCMT directly follows.

3. Assume T-CUCMT.
Since 	 must at least satisfy the properties of an orthocomplementation P (w,	x) ⇔ z · x⊥ = z.

The remaining cases are:

(i) If z = 0 then z · x⊥ = 0 = z and ¬C(0, x).

(ii) If z = 1 then 1 · x⊥ = x⊥ 6= z unless x = 0 and C(w, x) unless x = 0. The case when x = 0 is
covered by (3).

(iii) If x = 0 then z · 0⊥ = z and ¬C(w, 0).

(iv) If x = 1 then z · 1⊥ = 0 6= z unless z = 0 and C(z, 1) unless z = 0. The case when z = 0 is
covered by (1).

Reversely, if T-C then for all x, z 6= 0 and x 6= 1 T-CUCMT directly follows.

4. We can rewrite T-C′UCMT as ∀w[¬PP (w,	x)↔ C(w, x)].
Assume T-C′UCMT.
Then ¬PP (w,	x) ⇔ z = x⊥ or z · x⊥ 6= z since 	 must at least satisfy the properties of an
orthocomplementation. Then for all x, z /∈ {0, 1}, C5′ holds. Trivially, C5′ holds if x = 0 or z = 1
or x = 1 and z = 0. The remaining cases are:

(i) If z = 0 then ¬C(0, x) and 0 6= x⊥ unless x = 1 and 0 ·x⊥ = 0 = z. The case x = 1 is covered
by the precondition of C5′.

(ii) If x = 1 then C(z, 1) unless z = 0 and z 6= 1⊥ unless z = 0 and z · 1⊥ = 0 6= z unless z = 0.
The case z = 0 is covered by the precondition of C5′.

Reversely, if T-C′ then for all x, z 6= 0 and x 6= 1 T-C′UCMT directly follows.
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