
Modular First-Order Ontologies
via Repositories

Michael GRÜNINGER a, Torsten HAHMANN b, Ali HASHEMI a, Darren ONG a,
Atalay OZGOVDE b

a Department of Mechanical and Industrial Engineering, University of Toronto,
Toronto, Ontario, Canada M5S 3G8

b Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
M5S 3G8

Abstract.
From its inception, the focus of ontological engineering has been to support the

reusability and shareability of ontologies, as well as interoperability of ontology-
based software systems. Among the approaches employed to address these chal-
lenges have been ontology repositories and the modularization of ontologies. In this
paper we combine these approaches and use the relationships between first-order
ontologies within a repository (such as non-conservative extension and relative in-
terpretation) to characterize the criteria for modularity. In particular, we introduce
the notion of core hierarchies, which are sets of theories with the same non-logical
lexicons and which are all non-conservative extensions of a unique root theory. The
technique of relative interpretation leads to the notion of reducibility of a theory
to a set of theories in different core hierarchies. We show how these relationships
support a semi-automated procedure that decomposes an ontology into irreducible
modules. We also propose a semi-automated procedure that can use the relation-
ships between modules to characterize which modules can be shared and reused
among different ontologies.

Keywords. ontology repository, modularity, first-order logic, non-conservative
extension, conservative extension, reducibility, similarity

1. Introduction

Ontology repositories have been proposed as part of the infrastructure required to support
interoperability of ontology-based software systems through the reusability and share-
ability of ontologies. We are naturally led to the question as to the modular nature of the
constituent ontologies within such a repository. If a repository consists of a set of ontolo-
gies, can the repository provide a way of modularizing its constituent ontologies? What
criteria do we use to identify which modules are atomic, so that they form the smallest
building blocks for assembling new modular ontologies?

For the purpose of this paper, we consider ontologies as axiomatizations of some
concept(s) in the language of first-order logic; each ontology gives rise to a theory as
the closure of the ontology’s axiomatization under logical consequences (entailments).
A module of an ontology is then an axiomatization of a subtheory of the ontology. One
can take an “internal" view of modules in the sense that an ontology is explicitly con-

structed by extending and combining existing ontologies in the repository. An alternative
“external" view decomposes an ontology based on logical relationships of its subtheo-
ries to existing modules in the repository. In this paper we explore what logical relation-
ships among a set of first-order ontologies can be used as basis for the decomposition
of ontologies following this external view and how these relationships can be used. We
identify two levels of modularity that arise from these logical relationships.

One fundamental logical relationship is non-conservative extension; this leads in
Section 2 to the notion of a hierarchy of ontologies that have the same non-logical lex-
icon. The resulting first approach to modularity decomposes an ontology into atomic
modules in a single hierarchy based on similarities and differences between the ontol-
ogy and existing atomic modules in that hierarchy. Each ontology in a hierarchy is then
logically equivalent to a set of atomic modules.

For ontologies that are axiomatized using disjoint non-logical lexicons1, we need to
determine whether or not the non-logical lexicon of one ontology can be interpreted in
the non-logical lexicon of other ontologies in the repository. This leads in Section 3 to our
second approach to modularity, based on the relationship of reducibility, in which one
ontology is definably equivalent to the union of existing modules in different hierarchies.

We define a repository to be a set of hierarchies that are ordered by the reducibil-
ity relationship; the hierarchies whose constituent modules are not all reducible to other
modules in the repository are the core hierarchies and they form the modular building
blocks of the ontologies in the repository. Each core hierarchy has a common root the-
ory that captures inherent properties of the axiomatized concept. E.g. all ontologies in
a repository that axiomatize the notion of “time” are some kind of linear order. Each
atomic module non-conservatively extends the root theory but no other theory in the hi-
erarchy, and specifies an ontological design choice, which captures a property of all its
models not commonly accepted by all ontologies within the same hierarchy. E.g. there
are time ontologies that are dense and others that are discrete (and as such non-dense), so
density is an ontological design choice for time ontologies. In this pragmatic approach
not all theoretically feasible ontological design choices are extracted, but only the ones
that are used by at least one of the ontologies in the hierarchy. We can then view each on-
tology contained in a single core hierarchy of the repository as an axiomatization of the
root theory of the hierarchy extended by a set of additional ontological design choices.
Thereby, we give a more formal perspective on the informal notion of design choices.

We consider repositories to be dynamic ontology design artefacts, that is, the mod-
ularization of the constituent ontologies evolves with the addition of more ontologies.
We propose semi-automated procedures for the decomposition and refinement of ontolo-
gies that rely on the existing modules in the repository, giving practical guidance for
modularizing ontologies and designing new modular ontologies. The set of procedures
in Section 6 identify modules of an ontology that are all equivalent to modules in core
hierarchies which provides a modularization of the ontology. The set of procedures in
Section 7 update a single hierarchy with a new ontology that has the same non-logical
lexicon. The new ontology is decomposed into a set of independent ontological design
choices based on the other modules in that hierarchy. Through these procedures previ-
ously atomic ontological design choices may be split into a set of more fine-grained de-
sign choices and completely new design choices may be introduced. These procedures

1If ontologies do not use exactly the same non-logical lexicons but share some non-lexical symbols, those
shared can be easily renamed to ensure that the ontologies use strictly disjoint non-logical lexicons.

relate closely to the two kinds of modularity. The first set of procedures divide a new
ontology into modules in different hierarchies while the second set of procedures divide
those modules into atomic modules within each hierarchy.

2. Hierarchies

Before we define what it means for a set of ontologies (or their resulting theories) to be
in a hierarchy, we introduce some preliminary notions that are used throughout the paper.
These are well-known definitions in mathematical logic2.

Definition 1 A first-order theory is a set of first-order sentences closed under logical
entailment.

Definition 2 Let T be a first-order theory.
The non-logical lexicon (signature) of T , denoted by Σ(T), is the set of all constant
symbols, function symbols, and relation symbols that are used in T .

The language of T , denoted by L(T), is the set of all first-order formulas that only
use the non-logical symbols in the signature Σ(T).

Definition 3 Let T1, T2 be two first-order theories such that Σ(T1) ⊆ Σ(T2).
We say that T2 is an extension of T1 iff for any sentence σ ∈ L(T1),

if T1 |= σ then T2 |= σ.

T2 is a conservative extension of T1 iff for any sentence σ ∈ L(T1),

T2 |= σ iff T1 |= σ.

T2 is a non-conservative extension of T1 iff T2 is an extension of T1 and there exists
a sentence σ ∈ Σ(T1) so that

T1 2 σ and T2 |= σ.

A first-order ontology is a set of first-order sentences (axioms) that characterize a
first-order theory, which is the closure of the ontology’s axioms under logical entailment.
In the rest of the paper we will simply drop the term first-order and assume ontologies
and theories to be first-order.

Two ontologies O1 and O2 that use the same non-logical lexicon Σ have logically
equivalent theories if for all sentences σ expressed in Σ

O1 |= σ ⇐⇒ O2 |= σ

We do not distinguish ontologies with logically equivalent theories. Even though
ontologies stored in an actual repository are concrete sets of axioms, we will discuss our
ideas in this paper in terms of the more abstract repository of theories. In other words,

2For additional background for the notions of structures and models, we refer the reader to [17].

the concepts described in this paper do not depend on how the theories are axioma-
tized. Moreover, we do not distinguish logically equivalent theories with the same non-
logical lexicon. Thus, for the purposes of this paper we assume that each ontology can
be uniquely mapped to a theory and vice versa and that two logically equivalent theories
are identified by a unique ontology.

We also do not attempt to formally define the notion of an ontology. Although every
module is a set of axioms, not every module may be seen as an ontology from the point
of view of the modeller. Semantically, a module can simply be a reusable building block
for an ontology without capturing a meaningful metaphysical notion in its own right.

Now, the first step is to define sets of theories of the same concept which can be
characterized by combinations of ontological design choices. Two theories can then be
distinguished by their different sets of design choices. For example, the theory Tlp_dense

3

consists of the two atomic design choices of the order being linear dense. Each such
choice may manifest itself in multiple alternative sets of axioms; there may not be a one-
to-one mapping between design choices and concrete axioms of an ontology. While each
design choice may be written as an axiom – a so-called logical choice, not every logical
choice is an ontological design choice in its own right. The objective is to support the
comparability of theories within a hierarchy with respect to their ontological choices, and
in this way to explicitly identify their similarities and differences (the axioms in which
they differ from all the theories they extend). In this section we will formally define the
notions of hierarchy, root theory, trunk theory, similarity, and difference.

2.1. The Role of Non-conservative Extensions

If theories are characterized by sets of design choices, they can be ordered by the pres-
ence or absence of those design choices. In order for the design choices to be compa-
rable, their axiomatizations need to be expressed using the same signature. Using these
intuitions, we can define an ordering over a set of theories:

Definition 4 A hierarchy H = 〈H,≤〉 is a partially ordered, finite set of theories H =
T1, ..., Tn such that

1. Σ(Ti) = Σ(Tj), for all i, j;
2. T1 ≤ T2 iff T2 is an extension of T1;
3. T1 < T2 iff T2 is a non-conservative extension of T1.

Hierarchies are obviously not closed under subtheories since infinitely many subthe-
ories exist but we can define the following notion:

Definition 5 Let H = 〈H,≤〉 be a hierarchy. We call a theory T compatible with the
hierarchy H iff Σ(T) = Σ(Ti) for any Ti ∈ H.

Compatible theories may not be in the hierarchy, but all theories in a hierarchy are
also compatible with the hierarchy. We must also be aware that for a given theory T in

3We adopt the following naming convention for the online CLIF axiomatization of theories –
each theory is associated with a URI such that the subscript in the theory name is the unqualified
name in the URI. For example, the CLIF axiomatization of the theory Tlp_dense can be found at
http://stl.mie.utoronto.ca/colore/time/lp-dense.clif

Figure 1. Hierarchy of Ordering theories. Dashed lines denote non-conservative extensions.

Figure 2. Hierarchy of Timepoint theories. Dashed lines denote non-conservative extensions.

a hierarchy, a subtheory S of T in the hierarchy may not be axiomatizable by a subset
of the axioms of T . In other words, the partial order over theories within an hierarchy
cannot be established solely by relying on the subset relations between sets of axioms.

Consider the hierarchy of ordering theories shown in Figure 1, with theories ordered
such that ones higher in the hierarchy non-conservatively extend those they are con-
nected to below. For example, Tlinear_ordering is the theory of linearly ordered points and
Tdense_linear is the theory of dense linearly ordered points, so following Definition 1 we
have Tdense_linear > Tlinear_ordering since every sentence entailed by Tlinear_ordering
is also entailed by Tdense_linear and there exist sentences entailed by Tdense_linear that
are not entailed by Tlinear_ordering. Similarly, for the hierarchy of timepoint theories
shown in Figure 2, we have Tdense_linear_point > Tlp_dense since every sentence en-
tailed by Tlp_dense, the theory of dense linearly ordered timepoints, is also entailed by
Tdense_linear_point, the theory of dense linearly ordered timepoints that extends infinitely
into the past and future, but not vice versa.

Although the ordering over theories in a hierarchy is defined with respect to
entailment, the two notions are distinct. For example, consider the standard theory
Th(N , 0, S) of natural numbers vs. the theory Th(N , 0, S, lt) of natural numbers with
an additional ordering relation lt. We have

Th(N , 0, S, lt) |= Th(N , 0, S)

yet we do not have Th(N , 0, S, lt) ≤ Th(N , 0, S), since these two theories do not share
a signature and hence cannot be in the same hierarchy.

Let Mod(T) denote the set of models of a theory T . Given two theories T1 and T2
such that T2 |= T1, we do not in general have Mod(T2) ⊆ Mod(T1), since the models
of T2 may not be models of T1. For example, suppose that T1 is the theory of bipartite
incidence structures and T2 is the theory of ordered geometries. Models of T2 are not
isomorphic to models of T1; rather, they contain substructures that are isomorphic to
models of T1. On the other hand, if we restrict ourselves to theories within the same
hierarchy, then we can use subsets of models to characterize the relationships between
theories:

Lemma 1 If T1 and T2 are theories in the same hierarchy, then

T1 < T2 ⇔Mod(T2) (Mod(T1).

Proof: ⇒: Assume that T1 < T2. Now suppose there exists a model M ∈ Mod(T2)
that is not a model of T1, i.e.M /∈ Mod(T1). There exists a sentence σ so that σ
is satisfied byM and σ is not consistent with T1 , i.e. T1 |= ¬σ. Since T2 6|= ¬σ,
T1 ≮ T2, a contradiction.
Moreover, T2 � T1, i.e. there exists a sentence σ such that T2 |= σ but T1 6|= σ.
There exists a model of T1 that satisfies ¬σ but which cannot be a model of T2.
Hence Mod(T2) (Mod(T1).
⇐: If T1 � T2, then there exists a sentence σ such that T1 |= σ but T2 6|= σ. A
model of T2 exists that satisfies ¬σ but cannot be a model of T1. This contradicts
the assumption that Mod(T2) (Mod(T1).
Moreover, there must be a model of T1 that is not a model of T2. Let σ capture
this model which is consistent with T1 but not consistent with T2. Thus, T2 |= ¬σ
while T1 6|= ¬σ, hence T2 � T1. �

In other words, models of a theory in a hierarchy are models of its subtheories that
are in the same hierarchy; extensions only restrict the sets of models, not the structures
of the models themselves. This is not in general the case for all theories; for example,
the theories in the PSL Ontology [12] do not form a hierarchy, since each theory expands
the non-logical lexicon; as a result, the models of a theory such as the PSL Ontology are
constructed by combining and extending models of other theories.

Root theories are the theories that do not extend any other theory in the hierarchy.

Definition 6 A theory T in a hierarchy is a root theory iff it does not non-conservatively
extend any other theory in the same hierarchy.

In the ordering hierarchy, Tpartial_ordering is the only root theory as it does not
extend any other theory in its hierarchy and for the timepoints hierarchy the only root
theory is Tlp_ordering for the same reason. Though in general multiple root theories may
exist, we later define a more constrained type of hierarchy – a closed hierarchy – that
requires the root theory to be uniquely determined up to logical equivalence.

For two theories T1, T2 with the same signature Σ we say that T2 is stronger than
T1 (or, equally, that T1 is weaker than T2) if T2 is a non-conservative extension of T1
independent of whether T1 and T2 are actually contained in a hierarchy. Obviously, if
T2 > T1 for theories T1, T2 in the same hierarchy, then T2 is stronger than T1.

2.2. Similarity between Theories in a Hierarchy

Within a hierarchy, all theories are partially ordered by their sets of theorems. In the
following we want to extract a specific subset S of the theorems shared by two theories
T1 and T2 within a hierarchy. We refer to this subset of shared inferred sentences, which
itself is a theory with signature Σ(T1), as the similarity of T1 and T2, while theorems that
T1 and T2 differ in are captured as remainders (with respect to the similarity S). Again,
this notion of similarity is defined with respect to subtheories and not with respect to sets
of axioms; however, it still varies from the idea discussed in [15].

Obviously, two theories in the same hierarchy have a common strongest subtheory
(up to logical equivalence). However, this subtheory may be overly specific. Consider
for example the theories Tnofinal and Tnoinitial in the hierarchy of ordering theories in
Fig. 1:

Tnofinal |= ∀x∃y(x < y)

Tnoinitial |= ∀x∃y(y < x)

Either sentence corresponds to some intuitive design choice for orderings: whether there
is some initial (smallest) element and whether there is some final (largest) element. This
is maybe better illustrated by the same entailments in the two theories of timepoints
Tinf_future and Tinf_past. In some applications (such as planning) it may be suitable to
assume that for every timepoint in the future there exists another timepoint even further
in the future. In an application that only reasons about the past (such as dating of an-
cient artefacts) such assumption may not be useful, but instead we may want to assume
that there is a timeline that reaches infinitely into the past. Those two assumptions are
independent design choices. Thus their shared theory should make no claim at all about
whether a smallest (or earliest) or greatest (latest) element exists. In particular, the simi-
larity of Tnofinal and Tnoinitial (and likewise of Tinf_future and Tinf_past) should not
entail the disjunctive sentence

[∀x∃y(x < y)] ∨ [∀x∃y(y < x)] (∗)

even though it is entailed by both Tnofinal and Tnoinitial. The reason is that Tnofinal
and Tnoinitial already entail disjoint stronger sentences which better capture their respec-
tive ontological choices. Hence, our definition of similarity is not simply the strongest
subtheory of two given theories in the same hierarchy:

Definition 7 Let T1 and T2 be theories in the same hierarchy with the signature Σ.
The similarity between T1 and T2 is the strongest theory (up to logical equivalence)

S ⊆ T1 ∩ T2 with Σ(S) = Σ(T1) so that for all σ, ω ∈ L(T1) if

T1 |= σ and T2 |= ω and S 6|= σ and S 6|= ω

then either σ ∨ ω is independent of S or σ ∨ ω is a tautology.

In other words, S contains all sentences shared by T1 and T2 except disjunctive
sentences σ ∨ ω so that T1 entails exactly one of σ and ω while T2 entails only the

other. In this sense, we rid the similarity from any unnecessarily specific new disjunc-
tive sentences. In our previous example, choose T1 = Tnofinal, T2 = Tnoinitial,
σ = ∀x∃y(x < y), and ω = ∀x∃y(y < x). Since T1 |= σ, T2 6|= σ, T2 |= ω, and
T1 6|= ω, the sentence (∗) cannot be entailed by the similarity S since it is not a tautology
and thus must be independent of S. Intuitively, the similarity of Tnofinal and Tnoinitial
is the common subtheory that also allows models without greatest element and without
initial element.

We now confirm that a similarity always exists for two theories in the same hierar-
chy. Then, by the Definition 7 the similarity must be unique.

Lemma 2 The similarity between two theories T1, T2 in the same hierarchy exists.

Proof: Suppose there does not exist a similarity between T1 and T2. This can be the
case only in one of the two following cases. (1) If T1 and T2 have no common
subtheory, or (2) if T1 and T2 have two subtheories S and S′ satisfying the last
condition of Def. 7 but neither one is stronger than the other.

(1) If no stronger theory satisfies the definition of similarity, then the empty the-
ory4, which is unique, is the strongest subtheory of T1 and T2.

(2) We will derive a contradiction for this case. It requires that two sentences
σ, ω ∈ L(T1) exists such that S � σ, S′ 2 σ, S′ � ω, S 2 ω, and

S ≡ (S ∩ S′) ∪ σ

and

S′ ≡ (S ∩ S′) ∪ ω.

Because S � σ and S ⊆ T1 ∩ T2 the sentence σ and any disjunction of the
form σ ∨ τ , where τ is an arbitrary sentence in the language L(T1), do not
need to be independent of S′ ⊆ T1 ∩ T2 and, thus, σ ∈ S′ by Def. 7. This
contradicts our initial assumption that S′ 2 σ. Likewise, we can argue that
ω ∈ S, which contradicts S 2 ω. Therefore we must have

S ≡ (S ∩ S′) ∪ σ ∪ ω ≡ (S ∩ S′) ∪ ω ∪ σ ≡ S′.

Hence, a strongest theory as defined by Def. 7 is unique and thus the similarity
always exists for two theories in the same hierarchy. �

Note that for general hierarchies, the similarity of two theories in the same hierarchy
is not necessarily contained in the hierarchy. Only in closed hierarchies as defined in
Section 2.3, the similarity must be itself a theory of the hierarchy.

Note further that two inconsistent theories in the same hierarchy do not necessar-
ily have the empty theory as similarity. For example, the theory Tdense_linear of dense
linearly ordered points and the theory Tdiscrete_linear of discrete linearly ordered points
are inconsistent. Whil Tdense_linear entails density between points, Tdiscrete_linear en-
tails discreteness between points. Their similarity is the strongest subtheory of both

4The ‘empty theory’ contains only first-order validities, but no other sentences.

Tdense_linear and Tdiscrete_linear that does neither entail density nor discreteness. This
theory, Tlinear_ordering, is one of linearly ordered points independent of the notions of
density or discreteness following Def. 7. Note that the similarity cannot always be con-
structed as the intersection of the axioms of two ontologies.

2.3. Closed Atomistic Hierarchies

We can now use the notion of similarity to define when a hierarchy is closed and show
that a closed hierarchy has a unique root theory.

Definition 8 A hierarchy H = 〈H,≤〉 is closed iff the similarity S between any two
theories T1, T2 ∈ H is non-empty and S ∈ H.

Since a hierarchy is a partially ordered set, this basically states that a closed hierar-
chy is a meet-semilattice, that is, the meet (similarity) of any two theories in the hierar-
chy is itself in the hierarchy. The following verifies that a closed hierarchy has a unique
smallest element, the so-called root theory.

Lemma 3 A closed hierarchy has a unique root theory up to logical equivalence.

Proof: Suppose two non-logically equivalent roots T1 and T2 exist in a hierarchy H.
Since the hierarchy is closed, the similarity S between T1 and T2 is non-empty
and inH. Both T1 and T2 extend S, thus S is the new root theory while T1 and T2
cannot be root theories in the hierarchy. �

Intuitively, the root theory of a hierarchy axiomatizes an elementary class of struc-
tures; each theory in the hierarchy axiomatizes a subclass of this class of structures. For
example, the theories that axiomatize classes of (non-strict) partial orderings form a hi-
erarchy – all theories have the same signature (i.e. the ordering relation ≤) and all are
extensions of the theory that contains the three axioms for a non-strict partial ordering
(transitivity, reflexivity, and antisymmetry).

Definition 9 Let 〈H,≤〉 be a hierarchy with T1, T2 ∈ H. If T1 < T2 and no other theory
T ∈ H exists so that T1 < T < T2, we say T2 covers T1 and write T1 ≺ T2.

Since a closed hierarchy contains a unique root theory, the class of theories that
cover the root theory will play a key role.

Definition 10 A trunk theory T is a theory that covers the unique root theory of a closed
hierarchy 〈H,≤〉.

The trunk theories are the atoms in the partially ordered set that the hierarchy forms.
By the way we defined similarity, the different trunk theories of a closed hierarchy each
axiomatize a single (atomic) ontological design choice that extends the root theory. For
example, the theory of dense partial orderings and the theory of discrete partial orderings
form trunk theories for the hierarchy associated with partial orderings. The former intro-
duces the ontological design choice “density” while the latter introduced the ontological
design choice of “discreteness”. This allows a more formal definition of the informal
concept of ontological design choices: Any remainder between a trunk theory and the

root theory in a hierarchy of the repository axiomatizes the atomic design choice made
by a particular trunk theory.

We can now verify that the similarity between trunk theories in the same closed
hierarchy is the unique root theory.

Lemma 4 The similarity between any two trunk theories of the same closed hierarchy is
logically equivalent to the root theory.

We can introduce an additional property for hierarchies which enforces the condition
that every theory in the hierarchy makes a set of atomic design choices. The hierarchy
is thereby required to be atomistic, i.e. each theory is the join of a set of atoms (trunk
theories).

Definition 11 A closed hierarchy H = 〈H,≤〉 is atomistic iff every T ∈ H that is not
a trunk theory satisfies the following property: if T1, ..., Tn ∈ H are all the theories
covered by T , then T is logically equivalent to T1 ∪ ... ∪ Tn.

Note that this allows for multiple logically equivalent axiomatizations, that is, the
set of theories covered by T is not necessarily the minimal set of theories whose union is
logically equivalent to T . We can define a minimal set by only including trunk theories:

Definition 12 A set of trunk theories T1, ..., Tn is a profile of a theory T iff T is logically
equivalent to T1 ∪ ... ∪ Tn.

We obtain the following theorem similar to what is known about atomistic lattices:

Theorem 1 A non-root theory T in a closed atomistic hierarchy has a unique profile up
to logical equivalence.

Proof: Proof by induction over the distance in the partial order < from a trunk theory
within the hierarchy H = 〈H,≤〉.
Base case: Each trunk theory T ∈ H has itself as its unique profile, since no other
trunk theory is entailed by or entails T (Lemma 4).
Induction step: Assume that T1, ..., Tn have unique profiles, and T covers a subset
thereof, that is, T covers all of T1, ..., Tk with k ≤ n. Then T is by the definition of
an atomistic hierarchy logically equivalent to the union of the profiles of T1, ..., Tk,
which in turn by the definition of profile is the unique profile of T .
Consequently every theory inH has a unique profile. �

For example, the ordering hierarchy is atomistic. E.g., the set of three trunk theories
Tnofinal, Tnoinitial, and Tlinear_ordering, make up the profile of Tinf_ordering. Since
Tnofinal is the theory of partial orders without a final point, Tnoinitial is the theory of
partial orders without an initial point, and Tlinear_ordering is the theory of linear orders, it
is easy to see that their union is logically equivalent to the theory of infinite linear orders,
Tlinear_ordering, and thus the three theories indeed form the profile of Tlinear_ordering.
This example illustrates how the profile modularizes a larger theory in the hierarchy into
a set of atomic theories.

Theorem 2 Let H = 〈H,≤〉 be a closed atomistic hierarchy.
The similarity S of two theories T1, T2 ∈ H is logically equivalent to the union of

the trunk theories that are the intersection of the profile of T1 and the profile of T2.

Proof: Since the hierarchy is closed, the similarity S of T1 and T2 is in the hierarchy.
Moreover, the hierarchy is atomistic and thus by Thm. 2 S has a unique profile
in H. Then it is sufficient to prove that the profile of the similarity is equiva-
lent to the intersection of the profiles of T1 and T2. We show that profile(T1) ∩
profile(T2) ⊇ profile(S) and profile(T1) ∩ profile(T2) ⊆ profile(S).
profile(T1)∩ profile(T2) ⊇ profile(S): Suppose some trunk theory T is in the
profile of S, then both T1 |= T and T2 |= T . Since by Lemma 4 the similarity of
any two trunk theories is the root theory, no other trunk theory can entail T . But
for T1 and T2 to be equivalent to their respective profiles, each of the profiles of
T1 and T2 must entail T . Hence T is in the profiles of both T1 and T2, and thus in
the intersection of their profiles.
profile(T1)∩ profile(T2) ⊆ profile(S): Since the hierarchy is closed, the sim-
ilarity S between T1 and T2 is also inH. Since the hierarchy is atomistic, by Thm.
1 S has a unique profile in H. Now it is easy to see that any trunk theory that is
both in the profiles of T1 and T2, must also be in the profile of S. �

In the previous example, the profile of Tdense_linear is the set of trunk theories of
Tdense_partial and of Tlinear_ordering, and the profile of Tdiscrete_linear is the set of trunk
theories Tdiscrete_partial and Tlinear_ordering. We recall that the similarity of these two
theories is a theory of linearly ordered points that makes no commitment with respect to
density or discreteness, Tlinear_ordering, which is equivalent to the intersection of their
profiles.

2.4. Hierarchies and Interoperability

Ontologies often play a key role in ensuring interoperability between software systems.
We can talk about the interoperability of two software systems in terms of the relation-
ships of their underlying ontologies. We say that two software systems can be semanti-
cally integrated if the sets of intended models of their (explicit or implicit) ontologies are
equivalent. However, systems cannot exchange the models of their ontologies themselves
– they can only exchange sentences in the formal language (with a given signature) that
they use to represent their knowledge. Suppose that the software systems use as their
underlying ontologies two different theories within the same closed hierarchy. How can
we use the relationships among the theories in the repository to articulate the nature of
interoperability between the software systems relying on those theories?

If the theories of two software systems are logically equivalent, then obviously the
two software systems can exchange arbitrary sentences and preserve theorems. If the two
theories are not logically equivalent, then their similarity is the shared subtheory that
characterizes a set of theorems that can be shared. But how can we capture the sentences
that are not in the similarity but are entailed by one of the theories, that is, the sentences
that are not shared? If these sentences are mutually inconsistent, then they capture the
obstacles to semantic interoperability between the software system. On the other hand, if
these sentences that are different among the two theories are mutually consistent, then it
is possible for one or the other system to consider extending its theory in order to share

a larger subtheory. In the remainder of this section, we will use the notion of similarity
among theories in a hierarchy to explore a variety of metatheoretic relations between
theories through which we can compare theories in such a way as to support shareabiity
and reusability.

2.4.1. Remainders

The first metatheoretic relation we consider is between a theory T1 and one of its non-
conservative extensions T2.

Definition 13 Let T1, T2 be theories in the same hierarchy such that T1 < T2.
The remainder between T2 and T1 is the weakest theory (up to logical equivalence)

T ′ with Σ(T ′) = Σ(T1) so that

T2 ≡ T1 ∪ T ′.

Intuitively, the remainder constitutes the weakest axiomatization that suffices to ex-
tend T1 to T2; in particular it must contain the ontological design choices of T2 that are
not contained in T1. As such, this set of axioms may not be itself in the hierarchy or the
entire repository. In fact, the next lemma shows that remainders do not extend the com-
mon root theory in a closed hierarchy and are therefore not themselves in the hierarchy
if the hierarchy is closed.

Lemma 5 Let T1, T2 be theories in the same closed hierarchy with T1 < T2. The re-
mainder between T2 and T1 is non-empty and is not in the closed hierarchy.

Proof: Since T1 < T2, that is,Mod(T2) (Mod(T1), a sentence σ capturing a model in
Mod(T1) \Mod(T2) is not consistent with T2, that is T2 |= ¬σ, but is consistent
with T1, that is, T1 6|= ¬σ. Then by the definition of remainder, T ′ |= ¬σ, therefore
T ′ is non-empty.
The closed hierarchy has a unique root T root by Lemma 3. Suppose T ′ is in the
hierarchy, then it must extend T root. But then, by the definition of the remainder,
there exists a theory T ′′ that is weaker than T ′ which does not entail T root. Then
T ′ is not the remainder. �

Consider the theories of linearly ordered points, Tlinear_ordering, and of par-
tially ordered points, Tpartial_ordering. The minimal set of axioms required to extend
Tpartial_ordering to Tlinear_ordering is the axiom expressing that the order is total and as
such, that axiom constitutes the remainder. However, that single axiom alone does not
extend the root theory and therefore is not in the closed hierarchy of ordering theories.

2.4.2. Differences

Though remainders are not included in closed hierarchies, they lend themselves to a
definition of differences between a theory and a non-conservative extension thereof.

Definition 14 Let T1, T2 be theories in the same closed hierarchy H so that T1 < T2.
Let T ′ be the remainder between T2 and T1 and let T root be the unique root theory ofH.

The difference between T2 and T1 is the theory (up to logical equivalence) T d with
Σ(T d) = Σ(T1) so that

T d ≡ T root ∪ T ′.

For example, the difference of Tdense_linear and Tlinear_ordering in the order-
ing hierarchy is the theory that extends the root theory with the remainder between
Tdense_linear and Tlinear_ordering. The remainder between those two theories is the ax-
iom that enforces density between points; extending the root theory Tpartial_ordering
with this remainder yields the difference Tdense_partial.

It is easy to see that T d non-conservatively extends T root and that T2 non-
conservatively extends T d. Moreover, non-empty differences always exist by Def. 14.

Even though differences may not be included in a hierarchy, they are always com-
patible with the hierarchy. In closed atomistic hierarchies we can easily obtain the dif-
ference between any two constituent theories from the trunk theories of the hierarchy as
follows.

Theorem 3 Let T1, T2 be theories in the same closed atomistic hierarchy with T1 < T2.
The difference T d between T2 and T1 is logically equivalent to the set difference of

the profile of T2 and the profile of T1.

Proof: Let the trunk theories T21, ..., T2n be the profile of T2, that is T2 ≡ T21∪...∪T2n.
The profiles of T1 and T d are then subsets of the profile of T2. Suppose some T2i
is in the profiles of T1 and T d. Then T2i is in the similarity of T1 and T d and by
Lemma 3, T root |= T2i, so T2i is not a trunk theory – a contradiction. Thus the
profiles are disjoint subsets of profile(T2).
Now suppose there is a trunk theory T2i in the profile of T2 that is neither in the
profile of T1 nor of T d, that is T1 6|= T2i and T d 6|= T2i. With T2 |= T2i, this
violates the definition of difference (with the definition of remainder). �

For example, the profile of Tdense_linear is the set of trunk theories Tdense_partial
and Tlinear_ordering, and the profile of trunk theory Tlinear_ordering is itself. As de-
scribed in an earlier example, the difference between Tdense_linear and Tlinear_ordering
is the theory that extends the root theory with the axiom enforcing density between
points, Tdense_partial. Comparing the set difference of the profiles of Tdense_partial and
Tlinear_ordering, we see that it is equivalent to the difference between those theories.

3. Relationships between Hierarchies

Theories within the same hierarchy have the same non-logical lexicon; if we wish to
consider the different relationships between theories in different hierarchies, we consider
two cases – either the non-logical lexicon of one theory is an expansion of the non-logical
lexicon of the other theory (Σ(Ti) ⊂ Σ(Tj)) or the non-logical lexicons of the two theo-
ries are disjoint (Σ(Ti) ∩ Σ(Tj) = ∅). In this section, we explore these two possibilities
and discuss their roles in providing an adequate notion of ontology modularity.

3.1. Hierarchies and Conservative Extensions

The simplest relationship between theories that are in different hierarchies is that of
extension. In particular, the notion of conservative extension (see Definition 3) has played
a key role in the study of modular ontologies [18,9].

The following theorem shows that we do not speak of one hierarchyH1 being a non-
conservative extension of another hierarchy H2, since we can always add new theories
to H2 that are conservatively extended by theories in H1.

Theorem 4 Suppose T1, T2 are theories that are in different hierarchies such that
Σ(T1) ⊂ Σ(T2).

If T2 is a non-conservative extension of T1, then there exists a theory T3 such that

• T2 is a conservative extension of T3, and
• T3 is compatible with the hierarchy of T1, i.e., Σ(T3) = Σ(T1).

Proof: Suppose T2 is a non-conservative extension of T1 and Σ(T1) ⊂ Σ(T2).
If

Ω = {ω : ω ∈ L(T1), T1 6|= ω, T2 |= ω}

then T3 = T1 ∪Ω is a non-conservative extension of T1 with Σ(T1) = Σ(T3), and
T2 is a conservative extension of T1 ∪ Ω. �

If we include the new theory T3 in the hierarchy containing T1, the non-conservative
extensions is limited to this hierarchy.

An example of a modular ontology that is organized through both conservative and
non-conservative extensions is the PSL Ontology [12]. The theories that constitute PSL
Outer Core are shown in Figure 35. The theory Tocctree is a non-conservative extension
of Tpslcore which also expands the non-logical lexicon. Following Theorem 4, there ex-
ists a theory Taoa that is a non-conservative extension of Tpslcore within the same hierar-
chy such that Tocctree is a conservative extension of Taoa. Similarly, the theory Tatomic

is a non-conservative extension of Tsubactivity which also expands the non-logical lexi-
con. The theory Tsublat is a non-conservative extension of Tsubactivity within the same
hierarchy such that Tatomic is a conservative extension of Tsublat.

In the case of using E-connections to decompose a large ontology into modules (a
collection of axioms), each module encapsulates some terms of the original ontology.

5The CLIF axiomatization of these theories can be found at
http://stl.mie.utoronto.ca/colore/process/

Tpsclore

Taoa

Tocctree

Tsubactivity

Tatomic

Tsublat

Tcomplex

Tactocc

Tdisc state

Figure 3. Relationships between the theories in PSL Outer Core. Clouds indicate different hierarchies. Dashed
lines denote non-conservative extension while solid lines denote conservative extensions.

In [8] the definition of semantic encapsulation is given as a component that preserves
a basic set of entailments of a term in an ontology. This leads to the partitioning of
a large ontology into a collection of modules that are conservative extensions of one
another. The relationship of conservative extensions between modules ensures that each
module can be reused independent of the rest while retaining the original semantics of
its contained terms. The major limitation of using E-connections is that the use of such
modules as a means of refining an ontology (non-conservative extensions of a theory)
becomes impossible.

Using only the relationship of conservative extension does not give us a sufficient
characterization of the granularity of a module. PSL Outer Core gives us examples of
theories that are conservative extensions, yet we can decompose them into smaller theo-
ries through reducibility. Furthermore, there are also conservative extensions that are ir-
relevant to modularity. For example, the Peano Arithmetic is a conservative extension of
the theory of linear orderings, yet we would not say that the latter theory forms a module
within the former theory.

3.2. Interpretability between Theories

Ontologies whose non-logical lexicons are expansions of other non-logical lexicons can
be compared using the notions of satisfiability, extension, and independence. More dif-
ficult is to compare ontologies that are axiomatized using different non-logical lexicons;
in such cases, we need to determine whether or not the non-logical lexicon of one ontol-
ogy can be interpreted in the non-logical lexicon of the other ontology. For this purpose

we assume that the two theories use disjoint non-logical lexicon; if they are not disjoint
a simple renaming of one of the lexicons will do the trick. In this section, we consider
metatheoretic relationships between theories based on the notion of relative interpre-
tation, and we also discuss how they can support an approach to ontology modularity
through the organization of ontologies into a repository.

3.2.1. Relative Interpretation

The notion of interpretability between theories is widely used within mathematical logic
and applications of ontologies for semantic integration ([22]). We will adopt the follow-
ing definition from [5]:

Definition 15 An interpretation π of the theory T1 with signature Σ(T1) into a theory
T2 with signature Σ(T2) is a function on the set of non-logical symbols of Σ(T1) and
formulae in L(T1) such that

1. π assigns to ∀ a formula π∀ of L(T2) in which at most the variable v1 occurs
free, such that

T2 |= (∃v1) π∀

2. π assigns to each n-place relation symbol P a formula πP of L(T2) in which at
most the variables v1, ..., vn occur free.

3. π assigns to each n-place function symbol f a formula πf of L(T1) in which at
most the variables v1, ..., vn, vn+1 occur free, such that

T1 |= (∀v1, ..., vn) π∀(v1) ∧ ... ∧ π∀(vn)

⊃ (∃x) (π∀(x) ∧ ((∀vn+1) (πf (v1, ..., vn+1) ≡ (vn+1 = x))))

4. for any atomic sentence σ ∈ L(T1) with relation symbol P , π(σ) = π(P);
5. for any sentence σ ∈ L(T1),
π(¬σ) = ¬π(σ);

6. for any sentences σ, τ ∈ L(T1),
π(σ → τ) = π(σ)→ π(τ);

7. for any sentence σ ∈ L(T1),
π(∀x σ) = ∀x π∀ → π(σ);

8. For any sentence σ ∈ L(T1),

T1 |= σ ⇒ T2 |= π(σ)

Thus, the mapping π is an interpretation of T1 if it preserves the theorems of T1 and
we say T1 is interpretable in T2.

Definition 16 An interpretation π of a theory T1 into a theory T2 is faithful iff

T1 6|= σ ⇒ T2 6|= π(σ)

for any sentence σ ∈ L(T1).

Thus, the mapping π is a faithful interpretation of T1 if it preserves satisfiability with
respect to T1. We will also refer to this by saying that T1 is faithfully interpretable in T2.
For example, the work in [11] shows that the PSL-Core theory within the PSL Ontology
[12] is interpretable by Reiter’s axiomatization of situation calculus, but that this is not
a faithful interpretation, since there are sentences consistent with PSL-Core that are not
consistent with situation calculus.

Definable equivalence is a generalization of the notion of logical equivalence to
theories that do not have the same signature.

Definition 17 Two theories T1 and T2 are definably equivalent iff T1 is faithfully inter-
pretable in T2 and T2 is faithfully interpretable in T1.

For example, the theory of timepoints is definably equivalent to the theory of linear
orderings. On the other hand, although the theory of partial orderings is interpretable in
the theory of timepoints, these two theories are not definably equivalent, since the theory
of timepoints is not interpretable in the theory of partial orderings.

Faithful interpretations are a generalization of the notion of conservative extension,
leading to the following generalization of Theorem 4:

Theorem 5 T1 is faithfully interpretable in T2 iff there is theory T3 such that T1 is de-
finably equivalent to T3 and T2 is a conservative extension of T3.

Proof: Suppose T1 is definably equivalent to T3 and T2 is a conservative extension of
T3.
By the definition of definable equivalence, we know that T1 is faithfully inter-
pretable in T3, so that there exists an interpretation π of T1 into T3 such that

T1 |= σ ⇔ T3 |= π(σ)

Since T2 is a conservative extension of T3, we have

T3 |= σ ⇔ T2 |= π(σ)

and hence T1 is faithfully interpretable in T2.
For the converse, suppose that T1 is faithfully interpretable in T2 with the interpre-
tation π. Let

T3 = {π(σ) : σ ∈ T1}

Note that Σ(T3) = Σ(T1), and that T3 is definably equivalent to T1.
T2 is a conservative extension of T3; otherwise, there exists a sentence σ ∈ L(T3)
such that

T3 6|= σ and T2 |= σ

However, since T3 is definably equivalent to T1, this would mean that

T1 6|= σ

which contradicts the definable equivalence of T1 and T2. �

The use of relative interpretations between first-order axiomatized theories as a
means to explicitly combine smaller theories was introduced by [1]. This approach has
been implemented by the Interactive Mathematical Proof System (IMPS) [6], which is
theorem prover that utilizes a repository of axiomatized mathematical theories linked to
each other through relative interpretations using the little theories approach to mechanize
traditional tools of classical mathematical reasoning [7]. The use of relative interpreta-
tions by IMPS provide the means to transport a theorem from the theory it was proved
into any other theory linked with an interpretation. The IMPS repository is organized
around the relative interpretations available between stored theories. Furthermore, IMPS
guarantees the consistency of generated proofs based on the notion of relative consis-
tency between theories. Within IMPS there is a set of theories deemed foundational,
meaning they are regarded or known to be consistent. Since all proofs begin with a foun-
dational theory and any theory developed from another is a conservative extension of the
original theory, all theories developed are consistent relative to the original foundational
theory [6]. Although the use and definitions of theory interpretations and relative consis-
tency in IMPS are specific to the purpose of theorem proving, it nonetheless shows how
such relationships can be utilized to relate and combine theories.

Nevertheless, since relative interpretation and definable equivalence are generaliza-
tions of the notion of extension, these relationships between theories suffer from the
same drawbacks when attempting to decompose an ontology into modules. In particular,
knowing that one theory T1 is interpretable by a theory T2 does not explicitly identify
the subtheory of T1 that is definably equivalent to T2.

3.2.2. Reducibility

Definable equivalence is a relationship between two theories; we can generalize this to a
relationship among a set of theories. The basis for this approach is the model-theoretic
notion of reducibility introduced in [13]. In this paper, we characterize the relationship
between theories that corresponds to the model-theoretic notion of reducibility.

Definition 18 A theory T is reducible to a set of theories T1, ..., Tn iff

1. T faithfully interprets each theory Ti, and
2. T1 ∪ ... ∪ Tn faithfully interprets T .

We will also refer to the set of theories T1, ..., Tn in the definition as the reduction
of T in the repository.

It is easy to see that two definably equivalent theories are reducible to each other.
For example, the theory of timepoints is reducible to the theory of linear ordering and
vice versa.

A nontrivial example of reducibility can be seen with Tpslcore within the PSL On-
tology (see Figure 4). As discussed in [13], Tpslcore is reducible to Tlinear, Tpartition,
Tgraph−incidence. This example also illustrates how the notion of reducibility leads to the
decomposition of a theory that is treated as a module within a larger ontology, addressing
the issue of the granularity of modules.

Tpartial order

Ttree

Tlinear ordering

Tbranching time

Tlinear points

Tpslcore

...

Tweak bipartiteTweak tripartite

...

...

...

...

Hordering

Htimepoints

Hpslcore

Htri−incidence Hbi−incidence

Figure 4. A depiction of the reducibility of Tpslcore to other core theories. Clouds indicate hierarchies; only
the root theory of each hierarchy and other relevant theories are shown. Dashed lines denote non-conservative
extension within a hierarchy and solid lines denote reducibility of theories between hierarchies.

Lemma 6 Let T1, ..., Tn be a set of theories such that Σ(Ti) ∩ Σ(Tj) = ∅ for all 1 ≤
i, j ≤ n, i 6= j.

If T faithfully interprets each T1, ..., Tn, then T faithfully interprets T1 ∪ ... ∪ Tn.

Proof: Since the signatures of the theories are disjoint, we can construct an interpretation
π of T1 ∪ ... ∪ Tn in T by the union of the interpretations πi of each Ti in T . �

Theorem 6 Let T1, ..., Tn be a set of theories such that Σ(Ti) ∩ Σ(Tj) = ∅ for all
1 ≤ i, j ≤ n, i 6= j.

A theory T is reducible to T1, ..., Tn iff T is definably equivalent to

T1 ∪ ... ∪ Tn

Proof: Let T1, ..., Tn be a set of theories such that Σ(Ti)∩Σ(Tj) = ∅ for all 1 ≤ i, j ≤
n, i 6= j.
If T is reducible to T1, ..., Tn, then T1 ∪ ... ∪ Tn (faithfully) interprets T ; by
Lemma 6 T (faithfully) interprets T1∪...∪Tn, so it is easy to see that T is definably
equivalent to T1 ∪ ... ∪ Tn.

Suppose T is not reducible to a set of theories T1, ..., Tn but T is definably equiv-
alent to T1∪ ...∪Tn. Either T does not faithfully interpret some Ti or T1∪ ...∪Tn
does not faithfully interpret T . In the first case, there exists a sentence σ ∈ L(Ti)
and an interpretation π such that

Ti 6|= σ, T |= π(σ)

However, T is definably equivalent to T1 ∪ ... ∪ Tn, so that any sentence entailed
by T is also entailed by T1 ∪ ... ∪ Tn, and since σ ∈ L(Ti), we must have Ti |=
σ, which violates the assumption that T does not faithfully interpret some Ti. A
similar argument applies for the other case, thus contradicting the assumption that
T is not reducible to a set of theories T1, ..., Tn. �

Corollary 1 If T1 is definably equivalent to T2, then T1 is reducible to T2.

In the following, we will see that reducibility is the metatheoretic relation we need
for both the organization of ontology repositories and a definition of modules within an
ontology.

3.3. Ordering Hierarchies by Faithful Interpretation

In the same way that we defined a hierarchy to be a set of theories that are partially or-
dered by extension, we can use faithful interpretation and reducibility to define a qua-
siordering over hierarchies.

Definition 19 Let Hi = 〈Hi,≤〉 and Hj = 〈Hj ,≤〉 be hierarchies.
Hi � Hj iff each root theory inHj faithfully interprets a theory T that is compatible

withHi.

For example6, we have the following relationships:

Hbetween � Hordering � Htimepoints � Hpslcore

Since the � relation on hierarchies plays a key role, we show that it is indeed an
ordering relation on the set of hierarchies.

Lemma 7 If T1 is faithfully interpretable in T2 and T2 is faithfully interpretable in T3,
then T1 is faithfully interpretable in T3.

Proof: T1 is faithfully interpretable in T2 iff there exists an interpretation π1 such that

T1 |= σ ⇔ T2 |= π1(σ)

6We adopt a naming convention for hierarchies similar to the one that we use for theories. Each
hierarchy is associated with a URI such that the subscript in the hierarchy name is the unqual-
ified name in the URI. For example, the theories in the hierarchy Hordering can be found at
http://stl.mie.utoronto.ca/colore/ordering/.

Also note that the hierarchy Hordering is depicted in Figure 1 and that the hierarchy Htimepoints is
depicted in Figure 2.

T2 is faithfully interpretable in T3 iff there exists an interpretation π2 such that

T2 |= σ ⇔ T3 |= π2(σ)

Combining these gives us

T1 |= σ ⇔ T3 |= π2π1(σ)

so that π2π1 is a faithful interpretation of T1 in T1. �

Lemma 8 If T1 is faithfully interpretable in T2 and T1 < T3, then T3 is faithfully inter-
pretable in some extension of T2.

Proof: T1 is faithfully interpretable in T2 iff there is an interpretation π such that

T1 |= ω ⇔ T2 |= π(ω)

Suppose T1 < T3 (so that T1 and T3 are in the same hierarchy) and let

Ω = {ω : T3 |= ω, T1 6|= ω}

π(Ω) = {π(ω) : ω ∈ Ω}

We can specify a new theory

T4 = T2 ∪ π(Ω)

such that

T3 |= ω ⇔ T4 |= π(ω)

so that T3 is faithfully interpretable in an extension of T2. �

Lemma 9 The � relation is a quasiordering on the set of hierarchies.

Proof: � is reflexive because the root theory of any hierarchy is reducible to itself.
Suppose

H1 � H2,H2 � H3

Each root theory T root
3i faithfully interprets some theory T2i that is compatible with

H2.
There exists a root theory in H2 such that T root

2i < T2i and this root theory faith-
fully interprets some theory T1i compatible with H1.
By Lemma 8, T2i faithfully interprets an extension T11 of T2i.
By Lemma 7, the root theory T root

3i faithfully interprets some theory T11 compati-
ble with H1, and hence H1 � H3. �

From the example presented at the beginning of this section, we can already see
that this ordering relation alone will not be sufficient as the basis for an approach to
modularity. The theories of betweenness relations inHbetween are intuitively the weakest,
since they can be faithfully interpreted in the other theories in the example. However,
theories in Hordering are not reducible to theories in Hbetween. As a result, models of
the theories in Hbetween cannot be used to construct models of the theories in the other
hierarchies such as orderings, so that the theories in Hbetween fail to meet the intuition
that the weakest theories form modules that are the building blocks of other theories.

3.4. What is an Ontology Repository?

In this section, we investigate the use of reducibility as a means of organizing the hi-
erarchies in a repository. Recall that even though an actual repository can only contain
ontologies which are concrete sets of axioms, we will again discuss the more abstract
repository of theories.

Definition 20 Let H1, ...,Hn be a finite set of hierarchies.
A repository R = 〈R,v〉 is a partially ordered set where

• R = {H1, ...,Hn};
• Hi v Hj iff each root theory in Hj has a reduction that contains a theory T that

is compatible with Hi.

For example, we can see that Hordering v Htimepoints, since the root theory in
Htimepoints is definably equivalent to the theory Tlinear_ordering in Hordering. On the
other hand, Htimepoints 6@ Hordering, since the root theory for Hordering (which is
Tpartial_ordering) is not reducible to any theory in Htimepoints.

The reducibility of Tpslcore leads to the following relationships among hierarchies
(which is also depicted in Figure 4):

Hordering v Htimepoints v Hpslcore

Htri_incidence v Hpslcore

Hbi_incidence v Hpslcore

It is important to note that the v on hierarchies is distinct from this ordering based
on faithful interpretation. For example, theories of betweenness relations are faithfully
interpretable in theories of orderings relations, but they are not reducible to theories of or-
derings. Consequently, the hierarchies containing these theories would be incomparable
in the repository with respect to the @ ordering.

Nevertheless, we do have the following relationships between the two orderings,
which follows easily from the definition of reducibility:

Lemma 10 Let Hi = 〈Hi,≤〉 and Hj = 〈Hj ,≤〉 be hierarchies.

Hi v Hj ⇒ Hi � Hj

We can use earlier results about the � to establish properties of the v ordering over
hierarchies.

Theorem 7 A repository R = 〈R,v〉 is a quasiordering on the set of hierarchies.

Proof: v is reflexive because the root theory of any hierarchy is reducible to itself.
Now suppose Hi v Hj and Hj v Hk.
By Lemma 10, we know Hi � Hj and Hj � Hk.
By Lemma 7, we know Hi � Hk.
Thus, each root theory in Hk faithfully interprets a theory compatible with Hi.
SinceHj v Hk, there exist theories S1, ..., Sj , ..., Sn such that S1∪...∪Sj∪...∪Sn

faithfully interprets a root theory Sk in Hk.
SinceHi v Hj , there exist theories T1, ..., Ti, ..., Tm such that T1∪...∪Ti∪...∪Tm
faithfully interprets a root theory S in Hj .
By Lemma 8, T1 ∪ ... ∪ T ′i ∪ ... ∪ Tm faithfully interprets Sj in Hj .
By Lemma 7, S1 ∪ ...∪ (T1 ∪ ...∪T ′i ∪ ...∪Tm)∪ ...∪Sn faithfully interprets Sk.
By Theorem 6, Sk is reducible to this set of theories and consequently Hi v Hj .
Thus, v is transitive. �

3.5. Core Hierarchies

Since we are dealing with repositories that contain a finite set of hierarchies, we are
guaranteed that the partial ordering v has minimal elements.

Definition 21 A hierarchy C = 〈C,≤〉 is a core hierarchy iff it is a minimal hierarchy in
the repository R = 〈R,v〉.

A theory T is a core theory iff it is compatible with a core hierarchy.
The core repository is the set of core hierarchies within a repository R.
A complex hierarchy H = 〈H,≤〉 is a hierarchy which is not minimal in the reposi-

tory 〈R,v〉.
A theory T is a complex theory iff it is compatible with a complex hierarchy.

Using the examples of the preceding section, Hordering is a core hierarchy and all
theories that axiomatize different classes of orderings are core theories. On the other
hand, Htimepoint and Hpslcore are complex hierarchies. In particular, Tpslcore is a com-
plex theory; as we saw in Figure 4, this theory is reducible to a set of core theories. The
next theorem shows that this property holds for all complex theories:

Theorem 8 If H = 〈H,≤〉 is a complex hierarchy, then each theory inH is reducible to
a set of core theories.

Proof: Suppose that R = 〈R,v〉 is a repository such thatR = {H1, ...,Hn}.
LetH be a complex hierarchy inR, so that it is not minimal in thev quasiordering
(following Theorem 7). Because the repository is finite, and all finite quasiorder-
ings are well-founded, there exist core hierarchies C1, ...,Cn with Ci = 〈Ci,≤〉
such that

Ci v H

By the definition of v, each root theory T in H is reducible to

T1, ..., Tn

where Ti ∈ Ci. Since core hierarchies are minimal in the v quasiordering, all of
these theories Ti are core theories. �

Theorem 8 shows us that core theories are intuitively the building blocks of complex
theories, analogous to the way that trunk theories are the building blocks of other theories
in the same hierarchy. These insights lead us to a characterization of modularity.

3.6. Relationships between Theories

Thus far in the paper, we have used three different metatheoretic relationships to orga-
nize a first-order ontology repository – non-conservative extension (within a hierarchy),
faithful interpretation, and reducibility (between different hierarchies). In each case, we
can specify a partial ordering over the set of theories.

There have been several other approaches that have used similar relationships. In
his lattice of theories, Sowa [23] describes a partial ordering over all first-order theories
based on the notion of generalization and specialization. The top element of the lattice is
the set of first-order tautologies, and each theory below the top is an extension of the ones
above it. Sowa informally proposes four operations between theories within the lattice
– contraction, expansion, revision, and analogy. Although he does not propose formal
definitions for these operations, it appears that analogy could be defined with respect to
our notion of faithful interpretation.

In contrast to the approach in this paper, Sowa’s lattice of theories contains all pos-
sible first-order theories in all possible signatures. Most importantly, Sowa does not dis-
tinguish between conservative and non-conservative extension within this lattice of theo-
ries; consequently, no distinction can be made between the ordering over theories within
a hierarchy and the ordering over theories between hierarchies.

Another approach that utilizes metatheoretic relationships among ontologies is
HETS [20]. Using category theory as a mathematical basis, HETS defines the notions
of conservative extension and definable interpretation between theories. In this sense,
HETS could provide an alternative architecture to implement the ideas in this paper, al-
though HETS does not have a relationship that is equivalent to reducibility. In addition,
the notion of an ontology module within HETS [19] emphasizes the role of conservative
extension.

4. Two Characterizations of Modularity

Repositories as we defined them lend themselves to two notions of modularity, one de-
fined using similarities and another defined using reducibility. We conclude this section
by showing how they complement each other in modularizing an ontology.

Notice that the resulting modules are not linked to a specific axiomatization. In fact,
we do not distinguish between two equivalent theories with different axiomatizations.
Likewise, we do not distinguish two modules with different axiomatizations as long as
they are logically equivalent.

4.1. Similarity

As we saw in Theorem 1, any ontology that is a non-root core theory in a core hierar-
chy has a unique profile consisting of a set of trunk theories. This set provides a natural
modularization of the ontology: each trunk theory is a module that encapsulates an on-
tological design choice that the core theory shares with another theory in the same core
hierarchy. All other theories in the hierarchy are combinations of the trunk theories, and
additional modules arise to capture the similarities between different combinations.

Of course, the trunk theories are combined in a non-conservative way, which differs
from typical approaches to modularity such as [9]. Nevertheless, the use of trunk theories
for the notion of primitive module fits quite well with the intuition that they capture the
smallest possible theory which can be shared and reused among multiple ontologies.

4.2. Reducibility

If an ontology is not a core theory in the repository, then the notion of trunk theory
alone is insufficient to specify the modules within the ontology. In this case, we can
use the notion of reducibility to decompose the ontology into modules that are definably
equivalent to core theories within the repository.

Lemma 11 If a theory T is reducible to a set of core theories in a repository R, there
exist core theories S1, ..., Sn such that T is reducible to S1, ..., Sn and each Si belongs
to a different core hierarchy.

Proof: Suppose that there exist multiple theories S11, S12 within the same core hierarchy
C1 such that T is reducible to S1, ..., S11, S12, ..., Sn.
By Theorem 6, T is definably equivalent to S1 ∪ ... ∪ S11 ∪ S12 ∪ ... ∪ Sn. In
particular, T faithfully interprets both theories:

T |= σ ⇔ S11 |= π1(σ)

T |= σ ⇔ S12 |= π1(σ)

Since we also have

S1 ∪ ... ∪ S11 ∪ S12 ∪ ... ∪ Sn |= σ ⇔ T |= π(σ)

we know that S11 and S12 are logically equivalent. �

If the repository contains multiple equivalent core hierarchies, then the reduction
will contain multiple definably equivalent core theories, and hence there will exist mul-
tiple reductions that contain different sets of core theories.

Definition 22 A minimal reduction of a theory T in a repository R is a set of theories
S1, ..., Sn such that Si is not definably equivalent to Sj for any 1 ≤ i, j ≤ n such that
i 6= j.

The key result of this section shows how we can use the reduction of a complex
theory to decompose it into a set of subtheories that are irreducible modules.

Theorem 9 If S1, ..., Sn is a minimal reduction of a theory T in a repository R, then
there exist subtheories T1, ..., Tn of T such that

• T |= Ti;
• Ti is definably equivalent to Si.

Proof: If S1, ..., Sn is a minimal reduction of a theory T in a repository R, then T is
definably equivalent to S1 ∪ ... ∪ Sn by Theorem 6.
There exists an interpretation π of S1 ∪ ...∪Sn into T , so that for any σ ∈ L(S1 ∪
... ∪ Sn),

S1 ∪ ... ∪ Sn |= σ ⇔ T |= π(σ)

For each Si, there exists an interpretation πi of T into Si, so that for any σ ∈ L(T)

T |= σ ⇔ Si |= πi(σ)

Let

Ti = {σ : Si |= πi(σ), T |= σ}

By the definition of reducibility, T faithfully interprets Si, so that we have

Si |= σ ⇔ T |= π(σ)

so that Ti is definably equivalent to Si. �

We will refer to the set of subtheories T1, ..., Tn as the modularization of the theory
T in R. The subtheory (T \

⋃
Ti) is referred to as the residue of T in the modularization.

Note that even if there exist multiple reductions that contain different sets of core
theories, each reduction leads to the same modularization, since the different theories
in the reductions are definably equivalent. As we saw with the notion of similarity, we
also need to draw attention to the fact that the modularization is a relationship between
subtheories of T and not simply between subsets of axioms of T .

4.3. Synthesis

The two notions of module presented in this section are compared in Table 1. Together
they provide complementary approaches to both ontology modularity as well as ontology
repositories. Any ontology can first be decomposed by finding the set of core theories
that constitute its reduction. Each of these core theories can then be decomposed into the
set of trunk theories in its profile. The first modularization step yields a set of theories
that characterize the models of the ontology up to elementary equivalence, while the
second modularization step supports a characterization of sharability and reuse with other
ontologies.

Relationship between Theories Set of Theories Atomic Module Modularization

non-conservative extension hierarchy trunk theory profile

reducibility repository core theory reduction

Table 1. Comparison between the two notions of modularity discussed in this paper.

This approach also addresses the problem of the potentially exponential number of
modules, discussed in [3]. If we consider trunk theories in a hierarchy and core theories
within the reduction of a theory to be the building blocks of ontologies, then the number
of such modules is bounded by the number of axioms within the theory. Of course, this
can lead to an exponential set of theories in the repository if we explicitly construct
all possible combinations of trunk theories and core theories. In the remainder of this
paper, we investigate a series of procedures which decompose any ontology into a set of
core theories, and which identify the set of trunk theories which are equivalent to a core
theory. The only theories that we require to explicitly be included within the repository
are those required by core hierarchies being closed and atomistic.

5. Using the Repository

The applications of our notion of ontology repository revolve around two perspectives on
the intuitions underlying the notion of “module". In the first perspective, we decompose
a first-order ontology into a set of disjoint subtheories which intuitively correspond to the
modules of the ontology. The second perspective considers each trunk theory within a
core hierarchy to be a module that axiomatizes a distinct ontological design choice within
the setting of that core hierarchy. This notion of module is used to determine the relation-
ships between theories with respect to the similarities and differences among them. The
two perspectives on modularity motivate several scenarios that typify the application of
an ontology repository in supporting the modularization of ontologies. The remainder of
this paper will present semi-automated procedures that address these scenarios.

In the first scenario, we begin with a new ontology and determine whether or not it is
reducible to a set of core theories within the repository. This captures the first perspective
on modularity; as we will show in the Decomp Procedure (Section 6.4), reducibility
can be used to identify those subtheories of the new ontology which are its modules. If
a new ontology is not reducible, then there are two possibilities. In the optimistic case,
the ontology is reducible to a set of theories which are extensions of core theories within
the repository; once identified, the associated core hierarchies need to be updated with
the new core theories. In the pessimistic case, the new ontology is a theory in a new core
hierarchy, albeit one in which we have little understanding as to the intended models
of its constituent theories. This case is essentially one of ontology design insofar as the
verification of the ontology requires new representation theorems (since the characteri-
zation of the models cannot be reduced to the models of any existing ontologies in the
repository).

The second scenario addresses an auxiliary theme of this paper, namely that ontol-
ogy repositories are dynamic ontology design artefacts, and as such need to have the ca-
pability of being updated with new theories. The Update Procedure (Section 7.1) spec-
ifies exactly how one updates an existing core hierarchy with a new core theory while

propagating the changes so that the resulting hierarchy is closed and atomistic: every
non-root theory in the hierarchy is the union of a set of trunk theories of the hierarchy
(compare Def. 11). The new core theory can either arise from the modularization proce-
dure in the first scenario, or it can simply be a new theory that has been proposed within
the research community.

Requiring all core hierarchies to be closed and atomistic allows us to easily deter-
mine the similarities and differences among various core theories within a single core
hierarchy. As we have already seen, the similarities between core theories correspond
to the ontological design choices that they share (i.e. the trunk theories in their shared
profiles) and the differences correspond to the design choices for which the theories dis-
agree. The third scenario generalizes this idea to complex hierarchies, that is, it uses the
relationships between hierarchies to determine the similarities between complex theories
within the same complex hierarchy.

These scenarios assume that we already have a repository with a set of (closed and
atomistic) core hierarchies and maybe some complex hierarchies as well. However, one
might ask how we actually can get to this stage. How can we initially populate the repos-
itory? In fact, this case can be reduced to the other two scenarios.

We first need to identify all hierarchies. By comparing the roots of any two hier-
archies, we can decide which hierarchies will initially be core hierarchies. This is not
covered by the procedures, but we can determine it by finding the similarity between any
roots of two hierarchies.

We can start with one of the roots of each such hierarchy and successively add the
other roots while ensuring that the hierarchy is closed and atomistic. Any non-root core
theory can then be inserted using the Update Procedure. Once this process completes, all
core hierarchies are in the repository and are closed and atomistic.

Finally, the non-core hierarchies are inserted one at a time using the Decomp Proce-
dure, potentially creating additional core theories.

6. Modularizing an Ontology

In this section, we present a semi-automated procedure that uses the repository to de-
compose an ontology T into a set of irreducible modules T1, ..., Tn. The basis for this
procedure is Theorem 9 – we first find a set of core theories which form the reduction of
T , and then we specify the subtheories of T which are definably equivalent to the core
theories.

6.1. Translation Definitions

Recall that a set of theories S1, ..., Sn is a reduction of T iff T is definably equivalent to
S1 ∪ ...∪Sn. The first step in the modularization of T will be to recast the metatheoretic
relationship of relative interpretation into an entailment problem.

Definition 23 Let T0 be a theory with signature Σ(T0) and let T1 be a theory with sig-
nature Σ(T1) such that Σ(T0) ∩ Σ(T1) = ∅.
Translation definitions for T0 into T1 are conservative definitions in Σ(T0) ∪ Σ(T1) of
the form

∀x pi(x) ≡ Φ(x)

where pi(x) is a relation symbol in Σ(T0) and Φ(x) is a formula in L(T1).

Following [24], translation definitions can be considered to be an axiomatization of
the interpretation of T0 into T1.

Theorem 10 T1 is interpretable in T2 iff there exist a set of translation definitions ∆ for
T1 into T2 such that

T2 ∪∆ |= T1

Proof: If T1 is interpretable in T2, then there exists an interpretation π such that π assigns
to each n-place relation symbol P a formula πP of L(T1) in which at most the
variables v1, ..., vn occur free [5].
It is easy to see that πP is the antecedent of a translation definition and that the
literal P (v1, ..., vn) is the consequent of a translation definition.
Conversely, suppose we are given a set of translation definitions ∆ such that
T2 ∪∆ |= T1, that is,

T1 |= σ ⇒ T2 ∪∆ |= σ

For each translation definition,

∀x pi(x) ≡ Φi(x)

specify the mapping

π(pi) = Φi(x)

For any sentence σ ∈ L(T1), we know that π(σ) is logically equivalent to σ by
substitution of the consequents of the translation definitions in ∆, so that

T2 ∪∆ |= π(σ)

Since the translation definitions are conservative, this is equivalent to

T2 |= π(σ)

and hence π is an interpretation. �

Theorem 11 T1 is faithfully interpretable in T2 iff there exist a set of translation defini-
tions ∆ for T1 into T2 such that T2 ∪∆ is a conservative extension of T1.

Proof: Theorem 10 shows that T2 ∪∆ is an extension of T1.
Let π be the interpretation associated with the translation definitions ∆.
T2 ∪∆ is a conservative extension of T1 iff for every sentence σ ∈ L(T1),

T2 ∪∆ |= σ ⇒ T1 |= σ

which holds iff

T2 |= π(σ)⇒ T1 |= σ

which is equivalent to π being a faithful interpretation. �

If we recall the definition of reducibility, we need to find a set of theories such that
T is definably equivalent to T1∪ ...∪Tn. The definition of definable equivalence requires
the solution of two distinct sets of entailment problems:

T ∪∆i |= Ti

T1 ∪ ... ∪ Tn ∪Π |= T

where ∆i is the set of translation definitions from T to the theory Ti, and Π is the set of
translation definitions from the combined theory T1 ∪ ... ∪ Tn to T .

The next lemma shows that the same translation definitions can be used for all the-
ories that are stronger than some theory in the same hierarchy.

Lemma 12 Let π be an interpretation of the theory T1 in the hierarchyH1 into the theory
T2 in the hierarchy H2. Let ∆ be the set of translation definitions for π.

If

T1 ∪∆ |= T2

and T1 < T11, then H2 can be extended with a theory T21 such that T2 < T21 and

T11 ∪∆ |= T21

Proof: It is easy to see that

(T21 \ T2) = {π(σ) : T11 |= σ, T2 6|= π(σ), T21 |= π(σ)}

�

In general, translation definitions cannot be automatically generated for two arbi-
trary theories, since it is not decidable to determine if an interpretation between the two
theories exists.

6.2. Translations of Axioms

Rather than use the translation definitions as additional axioms used to entail the sen-
tences in another theory, we can also specify a theory in which predicates in one signature
are replaced by their definitions in the other signature.

Definition 24 Let ∆ be the set of translation definitions ∆ for the theory T1 into the
theory T2.

The translation T r
1 of T1 is the set of sentences in L(T2) in which each predicate in

T1 has been replaced by the consequent of its translation definition in ∆.

As an example, we can consider one of the theories in the reduction of the theory
Tpslcore. The theory of linear orderings contains the sentence

(∀x, y, z) leq(x, y) ∧ leq(y, z) ⊃ leq(x, z)

Using the translation definition into the theory Tpslcore:

(∀x, y) leq(x, y) ≡ beforeEq(x, y)

the translation of the sentence is

(∀x, y, z) beforeEq(x, y) ∧ beforeEq(y, z) ⊃ beforeEq(x, z)

This technique of using the translations of sentences will play a key role in the
decomposition procedure introduced later in this section.

It is a straightforward corollary of Theorem 10 that the translation T r
1 of T1 is logi-

cally equivalent to a subtheory of T2.

Corollary 2 Let ∆ be the set of translation definitions ∆ for the theory T1 into the theory
T2.

If T r
1 is the translation of T1, then

T2 |= T r
1

6.3. Finding Reducible Theories

The FindTheory(R, T, T) Procedure addresses the first set of entailment problems by
finding the set T of maximal core theories in the repository R that are interpretable by
the theory T .

Beginning with the root theory in a core hierarchy C, the procedure searches7

through C to find the maximal theories that are interpretable by T . If there are multiple
maximal theories, the procedure returns the union of their sets of axioms.

7We assume the existence of three other algorithms related to partial orderings (see [2]). The first is
ChainDecomp(P) which outputs the set of chains for a poset P , and the second is PosetSort(X,P),
which constructs a poset P from an unordered set X . The third algorithm is NextTheory(T, P) which
returns the elements in the poset P that covers the element T .

It is important to notice that there are two steps within this procedure that require
user interaction. First, someone must determine whether or not the root theory of a par-
ticular core hierarchy is interpretable by T . Second, the entailment problem in step 11
typically requires human guidance even with an automated theorem prover.

Procedure 1 FindTheory(R, T, T)

Require: Core repository R = 〈R,v〉, theory T .
Ensure: Ti ∈ T is a maximal theory in Ci that is interpreted by T , for each core hierar-

chy Ci ∈ R.
T ← ∅
for all Ci ∈ R whose root theories are interpretable by T do

∆i ← translation definitions for T into theories in Ci

Chainsi ← ChainDecomp(Ci)
5: Collecti ← ∅

for all Gij ∈ Chainsi do
Candidateij ← ∅
Tcurrent ← minimal theory in Gij

Tmax ← maximal theory in Gij

10: while Tcurrent 6= Tmax do
if T ∪ ∆i |= Tcurrent and T ∪ ∆i is a conservative extension of Tcurrent
then
Candidateij ← Tcurrent
Tcurrent ← NextTheory(Gij , Tcurrent)

else
15: Tcurrent ← Tmax

end if
end while

end for
Collecti ←

⋃
j{Candidateij} (the set of candidate theories)

20: PosetSort(Collecti, P)
Ti ← set of axioms in the union of maximal theories in P
T ← T ∪ {Ti}

end for

We turn now to the correctness of the FindTheory Procedure.
By the following lemma, if a theory Ti in a core hierarchy Ci is not interpretable by

T , then no extension of it in Ci is interpretable by T . In particular, if the root theory of
Ci is not interpretable by T , then no theory in Ci is interpretable by T .

Lemma 13 Let C = 〈C,≤〉 be a core hierarchy such that T1, T2 ∈ C.
If T2 is interpretable by T and T1 < T2, then T1 is interpretable by T .

Proof: By Theorem 10 and Theorem 11, T2 is interpretable by T iff there exist transla-
tion definitions ∆ such that

T ∪∆ |= T2

and T ∪∆ is a conservative extension of T2.

Since T1 < T2, the definition of hierarchy gives us T2 |= T1 and hence

T ∪∆ |= T1

so that T1 is interpretable by T . �

Lemma 14 Let C = 〈C,≤〉 be a closed core hierarchy.
For any theory T , there exists at most one maximal theory in C that is interpretable

by T .

Proof: Since C is closed, it has a unique root theory.
By Lemma 13, if the root theory of C is not interpretable by T , then no extension
of the root theory is interpretable by T . Since all theories in C are extensions of
the root theory, no theories in C are interpretable by T .
If there are multiple maximal theories T1, ..., Tn that are interpretable by T , then
there exist translation definitions ∆ such that

T ∪∆ |= T1 ∪ ... ∪ Tn

so that T1 ∪ ... ∪ Tn is a consistent extension of each Ti which is interpretable by
T and is itself a theory in C. �

Theorem 12 Let R = 〈R,v〉 be a repository, and let T be a theory such that T 6∈ R.
If the FindTheory(R, T, T) Procedure terminates, then Ti ∈ T is a maximal the-

ory in Ci that is interpretable by T , for each core hierarchy Ci ∈ R.

Proof: The procedure has the following loop invariant:
L Candidateij is a theory in a chain in the core hierarchy Ci that is interpreted

by T .
The root theory of Ci is the unique minimal theory in each chain in Ci, and by
the condition in Line 1, the root theory is interpretable by T . The loop invariant is
therefore satisfied by the preconditions of the procedure.
We next show that the loop invariant is preserved at the end of the iteration.
Candidateij is updated in Line 12. By Lemma 12, the same translation definitions
are used for all theories in the same hierarchy. By Theorem 10, Theorem 11, and
the entailment problem in Line 11, if T ∪∆i |= Tcurrent, then Tcurrent is faithful
interpretable by T .
If T ∪∆i 6|= Tcurrent, then by Theorem 10, Tcurrent is not interpretable by T . By
Lemma 13, no extension of Tcurrent is interpretable by T . In this case, the loop
terminates andCandidateij is the maximal theory in the chain that is interpretable
by T .
By the assignment in Line 18,Collecti is the set of maximal theories in each chain
in Ci. The external Procedure PosetSort assigns to P the maximal elements in
Collecti. By Lemma 14, Ti is the unique maximal theory inCi that is interpretable
by T .
Finally, we can see that if the entailment problem in Step 11 terminates, then the
procedure terminates, since PosetSort terminates and each core hierarchy is finite
(and hence has minimal and maximal elements), so that the loops will eventually
terminate. �

6.4. Ontology Decomposition Procedure

In this section, we outline a semi-automated procedure for using the relationships among
core theories and complex theories within the repository to decompose an ontology into
irreducible modules.

Procedure 2 Decomp(R, T,M)

Require: Core repository R = 〈R,v〉, theory T .
Ensure: M is the modularization of T
M← ∅
T ← ∅
FindTheory(R, T, T)
Π← translation definitions for theories in T into T

5: if T ∪Π |= T and T ∪Π is a conservative extension of T then
for all Si ∈ T do
Ti ← ∅
for all σ ∈ Si do
σr ← translation of σ

10: Ti ← Ti ∪ {σr}
end for
M←M∪ {Ti}

end for
else

15: if T ∪Π ∪ T consistent then
T is reducible to an extension of theories in T

else
T is not reducible to any set of theories in R

end if
20: end if

The FindTheory Procedure finds a set of core theories which are interpretable by
the theory T . In order to show that a subset of these theories constitutes a reduction of
T , we need to show that the union of such theories interprets T .

As discussed above, a user is required to provide the translation definitions Π for the
core theories S1 ∪ ... ∪ Sn into T . If in fact we have S1 ∪ ... ∪ Sn ∪ Π |= T , then by
Theorem 8, we know that a modularization exists. Each module Ti of T is the subtheory
of T which is equivalent to the core theory Si; we therefore determine which axioms
within T are entailed by Si ∪Π for each core theory within the reduction of T .

If an ontology is not reducible to the set of theories in a repository, we can use
the notion of weak interpretability [4] to determine whether it is possible to extend the
repository to include new core theories in existing core hierarchies such that a reduction
exists in the new repository.

Definition 25 A theory T1 is weakly interpretable in theory T2 iff there is a function on
Σ(T1) such that for any sentence σ ∈ L(T1),

T1 |= σ ⇒ T2 6|= ¬π(σ)

The results of [4] show that a theory T1 is weakly interpretable in a theory T2 iff T1
is interpretable in some consistent extension of T2.

Lemma 15 T is interpretable in some consistent extension of S1 ∪ ...∪Sn iff there exist
translation definitions Π such that

S1 ∪ ... ∪ Sn ∪Π ∪ T

is consistent.

Proof: T is interpretable in some consistent extension of S1 ∪ ... ∪ Sn iff there exist
translation definitions Π such that

S′1 ∪ ... ∪ S′n ∪Π |= T

where Si ⊆ S′i, from which it follows that S1 ∪ ... ∪ Sn ∪Π ∪ T is consistent. �

This Lemma is the justification for lines 15-19 in the Decomp Procedure.
In general, the extension of the repository is an ontology design task. Under re-

stricted conditions, however, we can identify new core theories. For example, suppose
we have three core theories S11, S12, and S21 such that S11 < S12 and

T ∪∆1 ∪∆2 |= S21 ∪ S11

S21 ∪ S11 ∪Π 6|= T

but

S21 ∪ S12 ∪Π |= T

T ∪∆1 ∪∆2 6|= S21 ∪ S12

By Lemma 15, we know that there exists a theory S13 such that S11 < S13 and

T ∪∆1 ∪∆2 |= S21 ∪ S13

S21 ∪ S13 ∪Π |= T

and hence that T is reducible to S21 ∪ S13.
An additional problem is that if S1 ∪ ... ∪ Sn ∪ Π 6|= T , multiple core theories may

need to be extended, but we do not a priori know which ones need to be extended.
If a theory T is not reducible to any theories within the repository, then effectively

T itself is the first theory in a new hierarchy of its own. We say that such a theory is
under probation; as the etymology suggests, additional proofs are needed to determine
the relationship between this new theory and existing theories within the repository. In
particular, new representation theorems are required to establish the verification of the
new theory.

Theorem 13 Let R = 〈R,v〉 be a repository, and let T be a theory such that T 6∈ R.
If T is reducible to a set of theories in the repository and the Decomp(R, T,M)

Procedure terminate, thenM is a modularization of T .

Proof: By Theorem 12, FindTheory(R, T, T) returns a set of theories T in R that are
interpretable by T .
There are three cases:

1. T ∪Π |= T ;
2. T ∪Π 6|= T but T ∪Π ∪ T consistent;
3. T ∪Π ∪ T is not consistent.

Case 1: (Line 5) By Theorem 6, T is reducible to the theories in T , that is, T is a
reduction of T .
By Theorem 9, there exist subtheories T1, ..., Tn of T such that each Ti is definably
equivalent to some Si ∈ T .
The outer loop (Lines 6-13) iterates through the theories in T . The inner loop
(Lines 8-11) iterates through the axioms in Si ∈ T . T r

i is the set of translations of
axioms in Si. By Corollary 2, T r

i ⊆ T and and T r
i is definably equivalent to Si.

The assignment in Line 12 collects the subtheories of T .
Case 2: (Line 15) By Lemma 15, T is reducible to extensions of the theories in T .
Case 3: (Line 18) By Lemma 15, T is not reducible to any core theories in R. �

It is important to stress thatDecomp and FindTheory are procedures and not algo-
rithms, both because of the undecidable theorem proving and consistency-checking steps
(Line 9 in FindTheory and Lines 5 and 15 inDecomp), but also because of the user in-
tervention required for the specification of translation definitions (Line 2 ofFindTheory
and Line 4 of Decomp). In this sense, the procedures give practical guidance for the
designers of modular ontologies.

7. Updating a Hierarchy

In the preceding section, we observed that if an ontology is not reducible to a set of
theories already contained in a repository, then the repository can be extended to include
new theories.

Here we present a semi-automated procedure that inserts a new theory into a closed,
atomistic repository so that the resulting repository is still closed and atomistic. This
procedure is intended to be used with the core hierarchies which are required to be closed
and atomistic in our repository, but is not restricted to those. In general, this leads to the
introduction of new trunk theories into the (core) hierarchy, as well as the refinement of
some former trunk theories in the original (core) hierarchy.

Adding a theory T to an existing closed, atomistic hierarchy presumes, of course,
that the signature of T is the same as the signature of the theories in the hierarchy, and
that T is an extension of the root theory of the hierarchy. Procedures 3, 4, and 5 give the
full details. The following notation is used throughout the procedures:

root(C): Reference to the root theory of the closed, atomistic hierarchy C.
trunk(C): Reference to the set of trunk theories of the closed, atomistic hierarchy C.

profile(T): Reference to the set of theories that constitute the profile of the theory T .
similarity(T1, T2): Returns a theory T that is the similarity of the theories T1 and T2

in the sense of Definition 7.
difference(T1, T2): Returns a theory T that is the difference between the theories T1

and T2 in the sense of Definitions 13 and 14.

When adding a theory T to a closed, atomistic hierarchy, there are three possibili-
ties:

1. T is logically equivalent to an existing core theory;
2. T is logically equivalent to the union of a set of trunk theories in the hierarchy

(i.e. the profile of T);
3. There does not exist a subset of the trunk theories whose union entails T .

Procedure 3 UpdateHierarchy(C, T)

Require: A closed, atomistic hierarchy C = 〈C,≤〉, and a theory T such that Σ(C) =
Σ(T) and T |= root(C).

Ensure: C = 〈C ∪ {T},≤〉 is a closed, atomistic hierarchy.
UpdateProfile(C, T)
C ← C ∪ {T}
CloseHierarchy(C, T)

Procedure 4 UpdateProfile(C, T)

Require: A closed, atomistic hierarchy C = 〈C,≤〉, a theory T such that Σ(C) = Σ(T)
and T |= root(C).

Ensure: T has a profile in C, C is atomistic and the similarity between any two trunk
theories is a root theory.
Covered← ∅
T d ← T (the difference between T and the currently covered trunk theories)
while ∃T ′ ∈ trunk(C) \ Covered with similarity(T ′, T d) 6= root(C) do
S ← similarity(T ′, T d)

5: Covered← Covered ∪ {S}
T d ← difference(T d, S)
T ′d ← difference(T ′, S)
trunk(C)← (trunk(C) \ T ′) ∪ {S, T ′d}
profile(T ′)← {S, T ′d}

10: for all Ti ∈ C do
if T ′ ∈ profile(Ti) then
profile(Ti)← (profile(Ti) \ T ′) ∪ profile(T ′)

end if
end for

15: end while
trunk(C)← trunk(C) ∪ {T d}
profile(T)← Covered ∪ {T d}

Procedure 5 CloseHierarchy(C, T)

Require: An atomistic hierarchy C = 〈C,≤〉 and a theory T such that T ∈ C, T has a
profile in C and C′ = 〈C \ T,≤〉 is closed.

Ensure: C = 〈C ∪ {T},≤〉 is a closed, atomistic hierarchy.
for all Ti ∈ C do
profile(S)← profile(T) ∩ profile(Ti) (Similarity)
S ←

⋃
j Sj ∈ profile(S)

if S /∈ C then
5: C ← C ∪ S

CloseHierarchy(C, S)
end if

end for

In the first two cases, the profile of the new theory T consists entirely of already
existing trunk theories. In the first case, the execution of UpdateHierarchy results in
no change in the hierarchy. In the second case, the execution of the procedure amounts
to identification of the profile of the new theory and the similarities and differences of
the theory with other non-trunk theories.

The third case is more interesting, since it means that a new trunk theory must be
added to the core hierarchy C in order to maintain an atomistic hierarchy. This is handled
by the UpdateProfile Procedure which inserts all necessary new trunk theories into
the hierarchy and determines which (if any) existing trunk theories are no longer trunk
theories. As a side effect, UpdateProfile determines the new profile for every existing
theory in the hierarchy. In particular, the difference T d of T with respect the union of all
trunk theories entailed by T , i.e.

⋃
{T ′ | T ′ ∈ trunk(C) ∧ T |= T ′}, is itself a theory

in the same hierarchy by the definition of differences. Moreover, Tcomp is independent
of the other trunk theories that are in the profile of T . If there is no nontrivial similarity
between T d and the trunk theories (i.e. the similarity is the root theory), then T d covers
(see Def. 9) the root theory and is itself a new trunk theory. On the other hand, if T d

does have a nontrivial similarity S with one of the existing trunk theories T ′, then T ′ no
longer covers the root theory and hence it is no longer a trunk theory. In addition, the
difference between T ′ and S is also a subtheory of T ′ and the difference between T d

and S is also a subtheory of T d. Now S and both differences are trunk theories in the
hierarchy – unless we can find further similarities with other trunk theories.

For the first two cases, that is, if no new trunk theory needs to be added, we only
need to update the similarities to ensure closure. By Theorem 1 this can be achieved
using the profiles alone (see CloseHierarchy) because the hierarchy is still atomistic.
The UpdateHierarchy Procedure terminates in all three cases if all calls of similarity
and difference terminate. In the following, we prove this property as well as correct-
ness, i.e. that the resulting hierarchy C = 〈C ∪ T,≤〉 is closed (under similarities) and
atomistic.

Lemma 16 Let C = 〈C,≤〉 be a closed, atomistic hierarchy and let T be a theory such
that Σ(C) = Σ(T) and T |= root(C). If the UpdateProfile(C, T) Procedure termi-
nates, the resulting hierarchy Cnew = 〈Cnew,≤〉 is atomistic and T has a profile in
Cnew.

Proof: We begin by stating the loop invariants of the procedure:

L1
⋃

i Coveredi ∪ {T d} = T

L2 The similarity between any two trunk theories is the root theory.
L3

⋃
i Coveredi has a profile in C.

L4 C is atomistic.

Let the preconditions of the procedure be ρ and let T d = T and Covered = ∅ as
set before entering the loop. Then,
ρ⇒ L1: Since

⋃
i Coveredi = ∅ and T d = T

ρ⇒ L2: By Lemma 4
ρ⇒ L3: The profile of

⋃
i Coveredi is the empty profile.

ρ⇒ L4: Trivial.
Next we show that given the loop invariants hold before an iteration, they are
preserved at the end of the iteration.
L1: Line 5 adds a theory S to the Covered and line 6 updates T d to be the differ-
ence between the previous T d and S. L1 follows from the definitions of remainder
and difference.
L2: Trunk theories are updated in line 8. The condition holds since T ′ = S∪{T ′d}
and the similarity between S and T ′d is the root theory as T ′d is the difference
between T ′ and S (line 7).
L3: The only theory that is added to Covered is S. Since S is added to the trunk
theories in line 8, Covered has a profile in C.
L4: The only way this condition can be broken is if a non-trunk theory is created
that does not have a profile in C. Line 8, is the only operation in the procedure
that creates a non-trunk theory by removing T ′ from trunk(C). Since T ′ = S ∪
{T ′d} and both S and T ′d are added to trunk(C) in the same line, the condition
is preserved.
Once the loop condition is false, L1, L2, L3, L4 and the following hold:

∀T ′ ∈ trunk(C)[similarity(T ′, T d) = root(C)] (λ)

After the execution of lines 16 and 17 we obtain the postconditions:

T has a profile in C by L1, L3, λ and line 17.
C is atomistic by L4.
The similarity condition by L2, λ, 16.

Finally, we show that if the similarity and difference functions terminate, the pro-
cedure terminates. At each iteration the selected trunk theory is split into two parts:
the similarity S which is added to Covered and T ′d whose similarity with T d is
the root theory. Therefore neither of the new trunk theories will be selected again.
Since the hierarchy contain only finitely many theories and thus have only a finite
number of trunk theories, the loop will eventually terminate. �

Lemma 17 Let C = 〈C,≤〉 be an atomistic hierarchy and let T be a theory such that
T ∈ C, T has a profile in C and C′ = 〈C \ T,≤〉 is closed. After executing the
CloseHierarchy(C, T) Procedure the resulting hierarchy Cnew = 〈Cnew,≤〉 is closed
and atomistic.

Proof: The procedure amounts to finding all theories that have similarities with T ,
adding the similarities to the hierarchy if they do not already exist and repeating
the procedure for all the newly added similarities. It is straightforward to see that
if the procedure terminates the hierarchy will be closed. We observe that a discov-
ered similarity is the intersection of the profiles of two existing theories in the hier-
archy. Since each theory in the hierarchy is distinct, the newly added theories have
profiles that include fewer trunk theories than their parents. Therefore, since the
hierarchy has a finite number of trunk theories, at some point no new similarities
can be discovered and the procedure terminates. �

Note that, in general there may be a theory T ′ in C such that T is inconsistent with
T ′. Since T is an extension of the root theory of the hierarchy and the hierarchy is closed,
a non-empty similarity between T and T ′ is guaranteed to exist. In other words, T and
T ′ will at least share the root theory as their similarity, hence the closed property of the
hierarchy will be preserved.

Theorem 14 Let C = 〈C,≤〉 be a closed, atomistic hierarchy and let T be a theory
such that Σ(C) = Σ(T) and T |= root(C). If the UpdateHierarchy(C, T) Procedure
terminates, the resulting hierarchy Cnew = 〈Cnew,≤〉 is closed, atomistic and T has a
profile in Cnew.

Proof: Follows directly from Lemmas 16 and 17. �

Consider the core hierarchy in Figure 5 as example. It consists of two trunk the-
ories Tdense_nofinal_partial and Tdiscrete_noinitial_partial that share only the root the-
ory Tpartial_ordering as their similarity. Now we would like to add a new core theory,
Tinf_ordering, to this hierarchy while maintaining that the core hierarchy is closed and
atomistic. In this scenario, the theory we are adding, Tinf_ordering, is not equivalent to
any combination of core theories in the hierarchy. Therefore, UpdateProfile is run in
order to determine the new subtheory that must be added to the hierarchy to ensure that
Tinf_ordering is the union of a set of trunk theories. Since Tinf_ordering shares similar-
ities with each trunk theory, the procedure breaks down those trunk theories into two
subtheories each (one being the similarity shared with Tinf_ordering and the other being
the difference between the old trunk theory and the similarity). Here, the similarity be-
tween Tinf_ordering and Tdense_nofinal_partial is Tnofinal, and the difference between
Tdense_nofinal_partial and the new similarity is Tdense_partial. For the other trunk the-
ory, we get the new subtheories Tnoinitial and Tdiscrete_partial. It then follows from the
definition of trunk theories that these new subtheories are added to the set of trunk the-
ories while the original trunk theories that cover them are no longer considered as trunk
theories. Each time a subtheory is added to the hierarchy, it is also added to the profile
of the original theory. Here, subtheories Tnoinitial and Tdiscrete_partial were added to
the profile of Tdiscrete_nointial_partial at the same time they were added as trunk theo-
ries in the hierarchy. Finally, the subtheory of Tinf_ordering that shares no non-trivial

Figure 5. Initial hierarchy with two trunk theories extending the root theory. Dashed lines denote non-conser-
vative extensions.

Figure 6. Hierarchy after a new theory Tinf_ordering is added using UpdateHierarchy. Dashed lines
denote non-conservative extensions. Theories that existed in the hierarchy before insertion of the new theory
are outlined.

similarity with any trunk theory (Tlinear_ordering) is added to the set of trunk theories.
UpdateProfile completes and the next step CloseHierarchy makes no changes for
this example as the hierarchy at this step happens to be closed under similarity. Figure 6
shows the hierarchy after UpdateHierachy is completed, with the original theories be-
fore the procedure was run outlined.

8. Towards an Implementation in COLORE

All of the techniques and metatheoretic relationships between theories discussed in this
paper are being developed in the context of the COLORE (Common Logic Ontology
Repository) project, which is building an open repository of first-order ontologies that
serve as a testbed for ontology evaluation and integration techniques, and that can support
the design, evaluation, and application of ontologies in first-order logic. All ontologies
are specified using Common Logic (ISO 24707), which is a recently standardized logical
language for the specification of first-order ontologies and knowledge bases.

At the lowest level are theories of general mathematical structures, such as alge-
braic structures (e.g. semigroups, groups, rings, vector spaces), and combinatorial struc-
tures (e.g. orderings, lattices, graphs). These ontologies serve as the basis for the re-
ducibility of generic ontologies currently within the repository, such as processes, time,
mereotopology, and geometry.

The relation < between theories within the same hierarchy and the relation of con-
servative extensions of theories in different hierarchies are both equivalent to the clo-

sure of cl-module within COLORE under the cl-imports relation. The notion of
reducibility and the v relation between hierarchies will require extensions to Common
Logic.

Recent work in the verification of time ontologies has demonstrated the utility of
the procedures introduced in this paper. In [21], the relationships between three different
hierarchies of time interval ontologies are explored. New ontologies arose from defin-
able equivalence between hierarchies and similarities within each hierarchy. In [14] and
[10], a hierarchy was constructed that combined several ontologies that axiomatize both
timepoints and time intervals. One interesting discovery was that the similarity of two
ontologies proposed in [16] was actually equivalent to the time ontology independently
axiomatized in [25].

9. Summary

This paper has explored the deep connection between ontology modularity and the logi-
cal relationships between theories within an ontology repository. Our formal characteri-
zation of repository revolves around the notion of hierarchies. Hierarchies are sets of the-
ories that have the same non-logical lexicon; theories within the same hierarchy are re-
lated by non-conservative extension. The hierarchies themselves are related by reducibil-
ity, by which a theory in a complex hierarchy is definably equivalent to a set of theo-
ries in core hierarchies. For each of these relationships, we can define a class of theories
that correspond to the intuition of modules. Within hierarchies, the atomic modules are
known as trunk theories, which can be considered as a formalization of the ontological
design choices for the hierarchy. On the level of repositories, the ordering over hierar-
chies defines core theories, which are building blocks for more complex ontologies.

Based on these complementary approaches to modularity, we present two sets of
semi-automated procedures that support the decomposition of an ontology into modules.
The first set of procedures identifies modules as subtheories of the ontology that are
definably equivalent to some core theories and that are related to the ontology through
reducibility. The second set of procedures takes any core theory and constructs the set of
trunk theories whose combination is logically equivalent to the core theory. In addition,
this set of trunk theories allows a characterization of which subtheories are shareable and
reusable between ontologies.

This work naturally leads to the following challenges:

• Develop techniques for finding new core theories in the case when a reduction
of a new theory T does not exist, but T is reducible to an extension of the core
hierarchies.

• Incorporate techniques for ontology verification to characterize the models of new
theories that are under probation as a result of the Decomp Procedure.

• Explore techniques that use the reductions and profiles of theories to generate
semantic mappings between ontologies.

• In any hierarchy, the complete set of trunk theories for a core hierarchy corre-
sponds to the axioms of all complete extensions of the root theory. Can these
trunk theories in turn be used to design new extensions of existing ontologies that
are reducible to the core hierarchies?

10. Acknowledgement

We are grateful to the three reviewers for their detailed comments which helped to im-
prove the clarity of the presentation of the paper.

References

[1] Burstall, R.M. and Goguen, J.A. (1977) Putting theories together to make specifications. International
Joint Conference on Artificial Intelligence 1977, pp. 1045-1058.

[2] Daskalakis, C., Karp, R., Mossel, E., and Riesenfeld, S. (2009) Sorting and Selection in Posets. Proc. of
the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 392–401.

[3] Del Vescovo, C., Parsia, B., Sattler, U., and Schneider, T. (2009) The Modular Structure of an Ontology:
An Empirical Study. Proc. of the Fourth Int. Workshop on Modular Ontologies, IOS Press.

[4] Dzhaparidze, G. (1993) A Generalized Notion of Weak Interpretability and the Corresponding Modal
Logic. In: Annals of Pure and Applied Logic 61:113–160.

[5] Enderton, H. (1972) Mathematical Introduction to Logic, Academic Press.
[6] Farmer, W. M. (2000) An Infrastructure for Intertheory Reasoning. Proc. of the Seventeenth Int. Confer-

ence on Automated Deduction (CADE-17), LNCS 1831, pp. 115–131.
[7] Farmer, W. M., Guttman, J. D., Thayer, F. J. (1992) Little Theories. Proc. of the Eleventh Int. Conference

on Automated Deduction (CADE-11), LNCS 607, pp. 567–581.
[8] Cuenca Grau, B., Parsia, B., Sirin, E., Kalyanpur, A. Automatic Partitioning of OWL Ontologies Using

E-Connections. Proc. of the Int. Workshop on Description Logics (DL2005), 2005.
[9] Cuenca Grau, B., Parsia, B., Sirin, E. (2009) Ontology Integration Using E-Connections. Modular On-

tologies: Concepts, Theories and Techniques for Knowledge Modularization, LNCS 5445, pp. 159–186.
[10] Grüninger, M. (2011) Verification of the OWL-Time Ontology, in Proceedings of the Tenth International

Semantic Web Conference. Bonn, Germany.
[11] Grüninger, M. (2009) Definability and Process Ontologies. Proc. of the Ninth Int. Symposium on Logical

Formalizations of Commonsense Reasoning, Toronto, Canada.
[12] Grüninger, M. (2009) Process Ontologies. In: Handbook of Ontologies, 2nd Edition, S. Staab (ed.), pp.

419–421, Springer.
[13] Grüninger, M., Hahmann, T., Hashemi, A., and Ong, D. (2010) Ontology Verification with Repositories.

Proc. of the Sixth Int. Conference on Formal Ontologies in Information Systems (FOIS 2010), pp. 317–
330, IOS Press.

[14] Grüninger, M. and Ong, D. (2011) Verification of Time Ontologies with Points and Intervals, in 18th
International Symposium on Temporal Representation and Reasoning, Lübeck, Germany.

[15] Hashemi, A. (2009) Using Repositories for Ontology Design and Semantic Mapping, MASc thesis,
University of Toronto, Toronto, Canada.

[16] Hayes, P. (1996) A Catalog of Temporal Theories, Tech Report UIUC-BI-AI-96-01, Univ. Illinois.
[17] Hodges, W. (1993) Model Theory. Cambridge University Press.
[18] Konev, B., Lutz, C., Walther, D., and Wolter, F. (2009) Formal Properties of Modularisation. Modular

Ontologies: Concepts, Theories and Techniques for Knowledge Modularization, LNCS 5445, pp. 25–66.
[19] Kutz, O. and Mossakowski, T. (2008) Conservativity in structured ontologies. In Proceedings of the

European Conference on Artificial Intelligence 2008. IOS Press, Amsterdam.
[20] Mossakowski, T., Maeder, C., Lüttich, K., Wölfl, S. (2004) The Heterogeneous Tool Set. Available at

www.tzi.de/cofi/hets, University of Bremen.
[21] Ong, D. and Grüninger, M. (2011) Constructing an Ontology Repository: A Case Study with Theories of

Time Intervals, in Proceedings of the Fifth International Workshop on Modular Ontologies. Lljubljana.
[22] Schorlemmer, M. and Kalfoglou, Y. (2008) Institutionalising Ontology-Based Semantic Integration, Ap-

plied Ontology 3:131-150.
[23] Sowa, J. (2000) Knowledge Representation: Logical, Philosophical, and Computational Foundations,

Brooks/Cole Publishing Co., Pacific Grove, CA.
[24] Szczerba, L.W. (1977) Interpretability of Elementary Theories. In: Logic, Foundations of Mathematics

and Computability Theory, Butts and Hintikka (eds.), pp. 129–145, Springer.
[25] Vila, L. (2005) Formal Theories of Time and Temporal Incidence, in Handbook of Temporal Reasoning

in Artificial Intelligence, Fisher, Gabbay, Vila: eds. Elsevier, 2005.

