
Planning to Avoid Side Effects

Toryn Q. Klassen1,2,3, Sheila A. McIlraith1,2,3, Christian Muise4, Jarvis Xu4

1Department of Computer Science, University of Toronto, Toronto, Canada
2Vector Institute for Artificial Intelligence, Toronto, Canada

3Schwartz Reisman Institute for Technology and Society, Toronto, Canada
4School of Computing, Queen’s University, Kingston, Canada

toryn@cs.toronto.edu, sheila@cs.toronto.edu, christian.muise@queensu.ca, 15gx3@queensu.ca

Abstract
In sequential decision making, objective specifications are of-
ten underspecified or incomplete, neglecting to take into ac-
count potential (negative) side effects. Executing plans with-
out consideration of their side effects can lead to catastrophic
outcomes – a concern recently raised in relation to the safety
of AI. In this paper we investigate how to avoid side ef-
fects in a symbolic planning setting. We study the notion of
minimizing side effects in the context of a planning environ-
ment where multiple independent agents co-exist. We define
(classes of) negative side effects in terms of their effect on
the agency of those other agents. Finally, we show how plans
which minimize side effects of different types can be com-
puted via compilations to cost-optimizing symbolic planning,
and investigate experimentally.

1 Introduction
Sequential decision making relies on the specification of an
objective, such as a final-state goal condition in the case of
symbolic planning, or a reward function in the case of rein-
forcement learning. Such objectives may be underspecified
or incomplete, allowing an AI to cause additional (often dis-
cretionary) changes to the environment, which we refer to
as side effects. In some cases these side effects are of little
consequence, while in other cases they may change the envi-
ronment in ways that are undesirable. Amodei et al. (2016)
give the example of a robot breaking a vase that it wasn’t
explicitly told not to break, noting that

[F]or an agent operating in a large, multifaceted en-
vironment, an objective function that focuses on only
one aspect of the environment may implicitly express
indifference over other aspects of the environment.

More reflective of the potential for catastrophic outcomes,
Stuart Russell gave the example of a robot, tasked to get cof-
fee, killing everyone on its path to getting it (Lebans 2020).

A number of approaches to (learn to) avoid negative side
effects have recently been developed for Markov Decision
Processes (MDPs) and related formalisms (Zhang, Durfee,
and Singh 2018; Krakovna et al. 2019; Turner, Hadfield-
Menell, and Tadepalli 2020; Krakovna et al. 2020; Saisub-
ramanian, Kamar, and Zilberstein 2020). In this paper we
explore how to avoid side effects in symbolic planning.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Objective underspecification seems to be an overlooked
topic in the classical planning literature. This may be be-
cause symbolic planning domains are typically designed by
hand for specific tasks, often without the necessary sym-
bols to even represent many side effects. However, in the
future more general-purpose symbolic domains – perhaps
learned from data – may come into use, bringing the issue of
side effects to the fore. Such domain descriptions may yield
more expansive state representations and associated action
descriptions. Those action descriptions are likely to charac-
terize action effects beyond those germane to the pursuit of
some preconceived tasks, and thereby expose a litany of side
effects. Furthermore, domain descriptions learned from data
may themselves be inaccurate or incomplete, which can also
be a cause of (negative) side effects (e.g., Saisubramanian,
Zilberstein, and Kamar 2020).

Here, we restrict our attention to side effects that result
from the underspecification of symbolic planning objectives.
The side effects we are largely concerned with are those that
impact the agency of other independent agents that co-exist
in the same environment. Consider, for example, a home en-
vironment with several humans and robots. In this context,
whether a side effect of a robot plan is construed as negative
or positive is determined by those affected by the change.
Consider a robot’s plan that has the side effect that a screw-
driver is left in the robot’s possession. This side effect may
be positive for the robot, but negative for all other agents
who require the screwdriver to realize their goals and plans.

How do we generate classical plans that avoid such neg-
ative side effects? In the absence of definitive information,
a conservative stance is for an agent generating a plan in
pursuit of an underspecified objective to minimize all side
effects – to leave the world as close as possible to the way it
was prior to the execution of its plan. In this paper, we con-
sider how one agent’s actions may prevent other agents from
achieving goals or executing plans that they would have oth-
erwise been able to pursue and achieve, and propose means
to generate plans that minimize such negative side effects.

The main contributions of this paper are the following.
1. We formalize the notion of side effect in classical plan-

ning.
2. We characterize classes of negative side effects that relate

to the impact of an acting agent’s plan on other agents’
ability to subsequently realize their goals and plans.

3. We propose and implement mechanisms for computing
side-effect-minimizing plans for STRIPS planning prob-
lems by compiling the task of achieving that objective
into a planning problem with action costs.

2 Preliminaries
We begin by reviewing some definitions and notation.

Mathematical notation. Given a set A, |A| denotes the
cardinality of A, and A∗ denotes the set of all finite se-
quences of elements from A. We use |π| for the length of
a sequence π. We use I(x) as the function which has value 1
if the condition described by x is true, and 0 otherwise.

We define a planning problem in terms of a state transition
system, following Ghallab, Nau, and Traverso (2004, 2016).
Definition 1 (State-transition system). A state-transition
system is a tuple ⟨S,A, δ⟩ where S is a finite set of states,
A is a finite set of actions, and δ : S × A → S is a partial
function.

Notation. We extend the definition of δ to take a sequence
of actions as an argument. If δ(s0, a1) = s1, δ(s1, a2) =
s2, . . . , δ(sk−1, ak) = sk, then δ(s0, a1, . . . , ak) = sk.
Definition 2 (Planning problem and plan). A planning prob-
lem is a tuple P = ⟨Σ, s0, SG⟩ where Σ = ⟨S,A, δ⟩ is
a state-transition system, s0 ∈ S is the initial state, and
SG ⊆ S is the set of goal states. A sequence of actions
π ∈ A∗ is a plan for P iff δ(s0, π) ∈ SG.

A more general sort of control structure than a plan is a
partial policy:
Definition 3 (Partial policy). Given a state-transition system
⟨S,A, δ⟩, a (partial) policy is a (partial) function ρ : S → A.

We will exploit this more flexible control structure in Sec-
tion 4. Furthermore, a partial policy can be constructed from
a sequential plan (Fritz and McIlraith 2007), which we will
make use of in Section 5.

In the above definitions we make no commitment to the
nature of the states in our planning problem. They could be
comprised of pixels or propositions. In symbolic planning, a
state is typically defined in terms of a set of propositions that
establish the truth or falsity of properties of the state. In so-
called classical planning a state s is represented compactly
in terms of the set of propositions (fluents) that are true in
the state and all fluents not in the set are regarded as false,
like a database. The transition function is similarly repre-
sented compactly in terms of a set of database operations
that add or delete propositions from the database when an
action is performed. The truth or falsity of all other proposi-
tions persists (the frame assumption). This class of planning
problems is referred to as STRIPS. Following Geffner and
Bonet (2013, p. 24), we have the following definition:
Definition 4 (STRIPS planning problem). A STRIPS plan-
ning problem is a tuple ⟨F, I,A,G⟩ where F is a finite set
of propositional symbols, I ⊆ F represents the initial state,
A is the finite set of actions, and G ⊆ F represents the goal.
Furthermore, an action a ∈ A is represented by three sets of
atoms: the “Add list” Add(a), the “Delete list” Del(a), and
the “Precondition list” Pre(a).

A STRIPS problem ⟨F, I,A,G⟩ represents a planning
problem ⟨Σ, s0, SG⟩ where Σ = ⟨S,A, δ⟩ is such that S =
2F , s0 = I , SG = {s ∈ S | G ⊆ s}, and δ is as follows:

δ(s, a) =

{
(s \ Del(a)) ∪ Add(a) if Pre(a) ⊆ s

undefined otherwise
Given a set of fluents F , we will write L(F) to denote

the set of Boolean formulas over those fluents, i.e., formulas
constructed using negation (¬), conjunction (∧), disjunction
(∨), and so on as usual. A literal is either an atomic for-
mula f ∈ F or its negation ¬f . We define the set of literals
lits(F) = F ∪{¬f | f ∈ F}. Given a literal ℓ, we may write
ℓ for the complementary literal, i.e., f = ¬f and ¬f = f .

Given a STRIPS state s ⊆ F and formula φ ∈ L(F),
we will write s |= φ if φ is true under the truth assignment
which maps all the fluents in s to true and all the fluents in
F \ s to false. Sometimes we will treat a set φ ⊆ F of atoms
as their conjunction.

While the problems we examine are cast as classical plan-
ning problems, our computation of side-effect minimizing
plans in Section 5 will cause us to go beyond classical plan-
ning, incorporating preconditions that involve negative liter-
als, effects that are conditional (Pednault 1989; Geffner and
Bonet 2013), and associating actions costs with plans in or-
der to compute cost-minimizing plans.

3 Minimizing Side Effects
As discussed in Section 1, planning problems with under-
specified objectives may lead to solutions that cause addi-
tional changes – side effects.

Definition 5 (Side effect (informal definition)). A side ef-
fect of a plan is any change to the state, resulting from the
execution of the plan, that was not prescribed explicitly as
part of the goal.

A simple way to minimize side effects could be for the
acting agent to minimize change – to construct a plan that
would leave the world as close as possible to the way it was
before it acted. We define a plan that minimizes change by
appealing to a distance function that measures the distance
(the change) between two states – here the initial state s0
and the terminating state of the plan π.

Definition 6 (Change-minimizing plan). Given a planning
problem P = ⟨Σ, s0, SG⟩ where Σ = ⟨S,A, δ⟩, and a dis-
tance function d : S × S → [0,∞), a plan π for P is
change minimizing iff there is no plan π′ for P such that
d(δ(s0, π

′), s0) < d(δ(s0, π), s0).

Depending on how the distance function is defined, it can
be used to minimize all change or change with additional
qualifications. (Despite it being called “distance”, the func-
tion does not have to be symmetric.)

The change-minimizing objective in Definition 6 could be
viewed as a classical planning version of the “very naive
approach” to side effects discussed by Amodei et al. (2016):

A very naive approach would be to penalize state dis-
tance d(si, s0) between the present state si and some
initial state s0. Unfortunately, such an agent wouldn’t
just avoid changing the environment—it will resist

any other source of change, including the natural evo-
lution of the environment and the actions of any other
agents!

This “naivety” does not stand out so much in our con-
text, since a standard assumption of classical planning “ex-
cludes the possibility of actions by other actors, or exoge-
nous events that are not due to any actor” (Ghallab, Nau,
and Traverso 2016, p. 20).

3.1 Minimizing Side Effects in STRIPS
When a planning problem is represented in STRIPS, having
a vocabulary of fluents gives an obvious way to define side
effects and measure distance between states. Below, we de-
fine a literal as being a fluent side effect of a plan if that plan
changes the literal’s truth value even though the goal didn’t
specify that the truth value should change.
Definition 7 (Fluent side effect (FSE)). Let ⟨F, I,A,G⟩ be a
STRIPS planning problem, and π a plan that solves it. Then
f ∈ F is a fluent side effect of π if f ∈ δ(I, π) but f /∈ I
and f /∈ G. Furthermore, if f /∈ δ(I, π) but f ∈ I , we will
say the literal ¬f is a fluent side effect of π.

One simple idea is to try to find a plan for a planning
problem that minimizes the number of side effects.
Definition 8 (Fluent-preserving plan). Given a STRIPS
planning problem P = ⟨F, I,A,G⟩ and associated plan π
for P , π is a fluent-preserving plan iff there is no plan π′ for
P such that π′ has strictly fewer fluent side effects than π.

This can be viewed as an instantiation of Definition 6 with
the distance function d defined so that d(δ(I, π), I) = |{ℓ ∈
lits(F) | ℓ is an FSE of π}|. It makes no attempt to distin-
guish side effects that are in any sense negative.

The determination of whether a side effect is negative
or positive is often domain specific. Changing some fluents
(e.g., one representing whether a vase is broken) could be
given greater weight than changing others. Such domain-
specific details could be built into a domain-tailored distance
function. In the next section, we propose and characterize
classes of negative side effects that relate, in general terms,
to the impact an acting agent has on other agents, and are
domain independent in the sense that they rely on general
properties of the planning problem specification.

4 Effects of Plans on Other Agents
We claim that important classes of negative side effects of a
plan are those that prevent agents operating in a shared en-
vironment from realizing possible goals or plans. We argue
that the acting agent should therefore minimize such nega-
tive side effects; i.e, they should conceive and prefer plans
that minimize the effect that the plan’s execution will have
on other agents’ (and possibly their own) ability to achieve
their goals or plans in the future.

In particular, we consider environments shared by multi-
ple agents – each with its own actions, goals, and plans that
it may wish to be able to execute at some point. Figure 1
introduces the Canadian wildlife domain, in which a robot
truck’s actions may prevent other agents (the wildlife) from
achieving their goals or from following particular paths. This

(a) (b)

(c) (d)

Figure 1: The Canadian wildlife domain. A robot truck (),
beaver (), and raccoon () can move to adjacent cells, but
not through walls () or each other. The robot wants to get
to the factory (), but each cell it touches is contaminated
with oil (), after which it cannot be visited by animals. The
beaver may want to reach the tree () or the wood (),
or the raccoon may want to wash its hands in the fountain
(); possible plans for these are shown in (b). If the robot
just goes directly to the factory, following the path in (a),
then the animals will be blocked from those goals by oil, as
shown in (c). However, the robot also has the limited ability
to clean up to three cells of oil. Following the plan in (d)
which cleans () some cells after reaching them, the robot
would allow the beaver to reach the tree, and the raccoon to
reach the fountain – but not by the raccoon’s plan in (b).

is an example of a shared environment with an acting agent
(the robot).
Definition 9 (Shared environment and acting agent). A
shared environment is a planning problem P = ⟨Σ, s0, SG⟩
with Σ = ⟨S,A, δ⟩, as in Definition 2, but where the action
set A is the union A =

⋃n
i=1 Ai, such that each set Ai cor-

responds to the actions available to one of n distinct agents.
We designate agent 1 as the acting agent.

The introduction of a shared environment with multiple
agents might suggest that this problem be addressed using
multi-agent planning, but our approach is deliberately single
agent. Our focus is on the plan of the single acting agent,
and how it can act to avoid causing negative side effects for
agents who may act subsequently. The acting agent does not
assume that other agents are cooperative, nor does it nego-
tiate with them. Rather, it considers the achievement of its
own objective, exercising discretion to minimize the impact
of its plan on the subsequent agency of other agents, where
objective underspecification allows for such discretion.

Functionally, this amounts to considering a simplified set-
ting in which there are two phases: first, the acting agent
executes a plan to accomplish its goal, and then afterwards

some agent (possibly the same agent again) has the opportu-
nity to execute an additional action sequence. To illustrate,
consider a set of roommates who share a kitchen. Each pre-
pares their dinner alone, but with the understanding that any
one of the roommates will subsequently use the kitchen to
prepare a meal, and that the acting agent should minimize
negative impact on whoever uses the kitchen next.

The actions of the first agent could affect others in a pos-
itive or negative way. A positive side effect might advance
other agents’ future goals, while a negative side effect would
impede other agents’ goal or plan realization. Positive side
effects may be related to the notion of “helpfulness” (Freed-
man and Zilberstein 2017; Freedman et al. 2020), which
considers how much an agent can reduce the cost of a team’s
plan. For this paper, we are concerned with negative effects.

The following definition will be useful.
Definition 10 (Achievable/Unachievable). Given a shared
environment P , a goal ŜG ⊆ S is achievable by agent i
in state s ∈ S, written achievable(ŜG, i, s), if there ex-
ists a plan π̂ ∈ A∗

i (i.e., using agent i’s actions) such that
δ(s, π̂) ∈ ŜG. If no such plan exists, then we say the goal is
unachievable by agent i in s: unachievable(ŜG, i, s).

We can now define a class of negative side effects.
Definition 11 (Goal side effect (GSE)). Suppose P =
⟨Σ, s0, SG⟩ is a shared environment. Suppose ŜG ⊆ S is
another goal and achievable(ŜG, i, s0). Then a plan π ∈ A∗

1
for P has a goal side effect (GSE) on agent i w.r.t. goal ŜG

if unachievable(ŜG, i, δ(s0, π)).
Definition 11 captures the case where the acting agent’s

plan precludes the subsequent achievement of another
agent’s goal. To illustrate, the robot truck’s plan in Figure 1a
will have GSEs on each animal w.r.t. any goal that requires
that animal to move. There are many possible variants to
Definition 11. If we were to add a quality measure (e.g., ac-
tion costs or reward) then a negative side effect of a plan
could be one that compromises the quality of another agent’s
subsequent achievement of their goal.

As with FSEs, we may wish to minimize the GSEs of a
plan. To do so, we define a way of scoring how well a plan
avoids GSEs. Given a set H of goal-agent pairs (each indi-
cating a possible future goal that might be pursued by that
agent), and associated weights, the score of a plan is just the
sum of the weights of the goal-agent pairs from H such that
that agent cannot reach that goal after the plan is executed:
Definition 12 (GSE score and goal-preserving). Given a
shared environment P = ⟨⟨S,

⋃n
i=1 Ai, δ⟩, s0, SG⟩, a plan

π ∈ A∗
1 (i.e., consisting of the acting agent’s actions) for P ,

a finite set H of pairs ⟨ŜG, i⟩ where ŜG is a goal and i an
agent such that achievable(ŜG, i, s0), and a weight function
w : H → R, the GSE score of π is the sum∑

⟨ŜG,i⟩∈H w(ŜG, i) · I(unachievable(ŜG, i, δ(s0, π)))

We will say that π is goal-preserving if there is no other plan
for P in A∗

1 that has a lower GSE score.
If the weights are all 1, the GSE score is just how many

goals are made unreachable for the corresponding agents.
With weights of 1, the robot truck’s plan in Figure 1a would

have a GSE score of 3 (assuming H contains the animal
goals described in Figure 1), while the plan in Figure 1d
would have a superior GSE score of 1.

One reason to find a goal-preserving plan is to avoid caus-
ing a GSE under uncertainty about what future goal will be
desired – i.e., uncertainty about what side effects are nega-
tive. Weights could be used to reflect that uncertainty: if we
had a probability function Pr(⟨ŜG, i⟩) giving the probabil-
ity that the next agent to act would be i with goal ŜG, we
could set the weight of ⟨ŜG, i⟩ to that probability. Then a
goal-preserving plan would maximize the probability of not
having a GSE on the next agent to act w.r.t. whatever its goal
will be. (H could include all possible goals.)

An alternative reason to seek a goal-preserving plan might
be to preserve the freedom of other agents to choose from a
set of goals, even if some of those goals are not expected to
be actually chosen. In that case the weights might be used to
indicate how important different goals were.

Much as the acting agent may be uncertain about the goals
of other agents, it might also be uncertain about what plans
or policies (Definition 3) the other agents will follow. Avoid-
ing interfering with other agents’ plans or policies (even if
their goals are still reachable) could be important to save
other agents the effort of replanning. Various forms of inter-
ference could be of concern, but here we will consider just
whether a goal is still achievable with a partial policy.
Definition 13 (Achievable (with a partial policy)). Given
a planning problem P , we’ll say that a goal ŜG ⊆ S
is achievable with partial policy ρ from state s – written
achievable(ŜG, ρ, s) – if there are states s0, . . . , sk (for some
k ≥ 0), such that s0 = s, si+1 = δ(si, ρ(si)), and sk ∈ ŜG.
If there are not, then we may write unachievable(ŜG, ρ, s).

In other words, a goal is achievable with ρ if following
the actions selected by ρ zero or more times will lead to the
goal. We next define another class of negative side effects re-
garding when the acting agent’s plan prevents another agent
from achieving its goal using a particular (partial) policy.
Definition 14 (Policy side effect (PSE)). Suppose P =
⟨Σ, s0, SG⟩ is a shared environment, ρ : S → Ai is a
(partial) policy for some agent i, and ŜG ⊆ S is a goal
such that achievable(ŜG, ρ, s0). Then a plan π ∈ A∗

1 for P
has a policy side effect (PSE) on agent i w.r.t ρ and ŜG if
unachievable(ŜG, ρ, δ(s0, π)).
Definition 15 (PSE score and policy-preserving). Suppose
we have a shared environment P , plan π ∈ A∗

1, and weight
function w : H → R as in Definition 12, but the finite
set H now contains pairs ⟨ŜG, ρ⟩ where ŜG is a goal and
ρ : S → Ai is a partial policy (for some i) such that
achievable(ŜG, ρ, s0). Then the PSE score of π is the sum∑

⟨ŜG,ρ⟩∈H w(ŜG, ρ) · I(unachievable(ŜG, ρ, δ(s0, π))).

We will say that π is policy-preserving if there is no other
plan for P in A∗

1 that has a lower PSE score.
To illustrate, consider again the robot truck’s plan in Fig-

ure 1d, where we take the set H to be the partial policies
determined by the animals’ plans and goals from Figure 1b,
and let the weights be 1. The robot’s plan’s PSE score is 2.

Observation 1. Given a shared environment ⟨Σ, s0, SG⟩, if
a plan π has a GSE on agent i w.r.t. goal ŜG, then π also
has a PSE on agent i w.r.t. ρ and ŜG, for any partial policy
ρ such that achievable(ŜG, ρ, s0). On the other hand, a plan
may have PSEs without having any GSEs.

5 Computation
In this section we address how to compute side-effect min-
imizing plans. We represent the planning problems of our
acting agent in STRIPS and, as such, use G instead of SG to
refer to the goal, and Ĝ instead of ŜG to refer to a possible
future goal whose achievability we wish to preserve. To find
a goal-preserving plan for a STRIPS problem, for example,
we will have a set of pairs ⟨Ĝ, i⟩, where Ĝ ⊆ F and i is the
agent that might wish to achieve Ĝ.

We show how to find plans for the acting agent that
are fluent-preserving, policy-preserving, or goal-preserving
(Definitions 8, 15, and 12). We do so by compiling the orig-
inal STRIPS problem into a planning problem with action
costs. Plans for the compiled problem will involve extra
bookkeeping actions, but we show the compiled problem to
be equivalent in the sense defined shortly in Definition 17.

5.1 Preliminaries
We begin with two definitions – one old, one of our construc-
tions – that are necessary to the exposition in this section.

Regression Regression is a rewriting operation, first in-
troduced by Waldinger (1975), that given an action a and
a state, s′, resulting from performing a, returns a formula
that characterizes the conditions that must have been true in
the previous state to result in s′. (In this regard, the formula
parsimoniously characterizes a family of states.) Following
Muise (2014, Definition 2), we use the following definition:

Definition 16 (Regression in STRIPS). Given a STRIPS
problem ⟨F, I,A,G⟩, if φ ⊆ F and a ∈ A, then the regres-
sion of φ through a, written R(φ, a), is defined as follows:

R(φ, a)
def
=

{
(φ \ Add(a)) ∪ Pre(a) if Del(a) ∩ φ = ∅
undefined otherwise

Note that the result of regression is not interpreted as a
state but as representing a set of states (the set of states that
make it true). We use R∗(φ, π) to denote the iterated regres-
sion through all the actions in π in order.

The significance of regression for us comes from the fol-
lowing result, which is a specialization of Reiter’s regression
theorem (Reiter 2001).

Theorem 1 (Regression Theorem for STRIPS (Muise 2014,
Theorem 2)). An action sequence a⃗ is a plan for a STRIPS
planning problem ⟨F, I,A,G⟩ if and only if I |= R∗(G, a⃗).

The following definition will be used to establish the cor-
rectness of our compilations.

Definition 17 (x-equivalent). Let x be one of {fluent, pol-
icy, goal}. Suppose we have a STRIPS problem P =
⟨F, I,

⋃n
i=1 Ai, G⟩ and, if x ∈ {policy, goal}, an appro-

priate set H and weight function w for specifying x side
effect scores. We will say that a planning problem P ′ =

⟨F ′, I ′, A′, G′, c⟩ (with action costs c) is x-equivalent to P
if there is a set A′

1 = {a′ : a ∈ A1} ⊆ A′ such that:
1. For any cost-optimal plan π′ ∈ A′∗ for P ′, if the longest

prefix of π′ from A′∗
1 is a′1, . . . , a

′
k, then a1, . . . , ak ∈ A∗

1
is an x-preserving plan for P .

2. If a1, . . . , ak ∈ A∗
1 is an x-preserving plan for P , then

there is a cost-optimal plan for P ′ whose longest prefix
of actions from A′∗

1 is a′1, . . . , a
′
k.

5.2 Computing Fluent-Preserving Plans
To compute a fluent-preserving plan for a STRIPS problem
P = ⟨F, I,A1, G⟩, we will introduce the fluent-preserving
compilation P ′, which is fluent-equivalent to P .

The full definition of the compilation is below (Defini-
tion 18), but first we give an overview. Essentially, we are
taking as soft goals (see, e.g., Baier and McIlraith 2008) the
fluents initially true, as well as the negations of the fluents
initially false (that are not in the original goal), and applying
the soft goal compilation from Keyder and Geffner (2009).
For each fluent f ∈ F \G in P , the fluent-preserving com-
pilation P ′ introduces two new actions, ✓f and ×f , and a
new fluent notedf . For ✓f to be executed requires that f ’s
truth value not have changed from the initial state, while for
×f to be executed requires that f ’s truth value did change
(i.e., there was an FSE). Either of ✓f or ×f makes notedf

true, and the new goal G′ requires that notedf be true for ev-
ery f . For either ✓f or ×f to be executed requires the new
end action has been executed, which can only occur after the
original goal G has been achieved. The idea is that a plan for
P ′ will consist of actions that make G true, followed by end ,
followed by ✓f or ×f actions to make notedf true for every
f . The ×f actions have a cost, so a cost-optimal plan to P ′

will correspond to causing as few FSEs as possible.
Definition 18 (Fluent-preserving compilation). Given a
STRIPS planning problem P = ⟨F, I,A1, G⟩, its
fluent-preserving compilation P ′ is a planning problem
⟨F ′, I, A′, G′, c⟩ (with action costs c) where
• F ′ = F ∪ {ended} ∪ {notedf | f ∈ F \G}
• A′ = A′

1 ∪ {end} ∪A× ∪A✓ where
– A′

1 = {a′ | a ∈ A1}, where a′ is like a except that
Pre(a′) = Pre(a) ∪ {¬ended}

– Pre(end) = G, Add(end) = {ended}, Del(end) = ∅
– A× = {×f | f ∈ F \G}, where

Pre(×f) =

{
{¬f, ended} if f ∈ I

{f, ended} if f /∈ I
Add(×f) = {notedf}, Del(×f) = ∅

– A✓ = {✓f | f ∈ F \G}, where ✓f is like ×f except

Pre(✓f) =

{
{f, ended} if f ∈ I

{¬f, ended} if f /∈ I

• G′ = {ended} ∪ {notedf : f ∈ F \G}
• c(a) = 1 if a ∈ A× and 0 otherwise

Theorem 2. Given a STRIPS planning problem P , the
fluent-preserving compilation P ′ is fluent-equivalent to P .

Proof. See Appendix A.1

1Appendices are in the technical report (Klassen et al. 2021).

Remark 1. The fluent-preserving compilation’s search
space may be quite large, since the actions from A✓ and A×
can be performed in any order. However, following Keyder
and Geffner (2009), given an arbitrary ordering f1, . . . , fn
on the fluents, it’s easy to modify the compilation to allow
✓fk or ×fk to be executed only once notedfk−1

holds. Anal-
ogous optimizations can be applied to the policy- and goal-
preserving compilations in the next two sections. We adopt
these optimizations for evaluation.

5.3 Computing Policy-Preserving Plans
We next consider how to compute policy-preserving plans.
We will suppose that the partial policies in H are represented
using a plan (along with a goal). To make explicit how a plan
can correspond to a policy, we will make use of the follow-
ing definition that employs regression (from Definition 16).
Definition 19 (Rk(h)). Given a STRIPS problem P =
⟨F, I,A,G⟩ and a pair h = ⟨Ĝ, π̂⟩ where Ĝ ⊆ F is a goal
and π̂ = a1, . . . , am ∈ A∗, for k ∈ {1, . . . ,m} we define
Rk(h) = R∗(Ĝ, am−k+1, . . . , am). Also, R0(h) = Ĝ.

That is, for h = ⟨Ĝ, π̂⟩, we have defined Rk(h) to be the
regression of Ĝ through the last k actions in π̂. Following
Fritz and McIlraith (2007), we can derive a (partial) policy
from π̂ = a1, . . . , am, which outputs in a state the last action
ai such that executing ai, . . . , am will reach the goal:
Definition 20 (Policy derived from a plan). Given a STRIPS
problem P = ⟨F, I,A,G⟩ and a goal-plan pair h = ⟨Ĝ, π̂⟩
(such that δ(I, π̂) |= Ĝ) where π̂ = a1, . . . , am, the partial
policy ρ derived from π̂ (and Ĝ) is given by the following:

ρ(s) =

am−k+1 if s |= Rk(h), k ̸= 0, and

s ̸|= Rℓ(h) for ℓ < k

undefined otherwise

It follows from Theorem 1 that this policy can achieve Ĝ
from a state just in case Rk(h) is true for some k.

The policy-preserving compilation we define below is
similar to the fluent-preserving one, except that rather than
adding actions ×f and ✓f (and the fluent notedf) for f ∈
F \G to keep track of whether f ’s truth value has changed,
it does something similar for h ∈ H . For each goal-plan
pair h = ⟨Ĝ, π̂⟩ ∈ H , it adds the actions ×h and ✓k

h (for
k ∈ {0, . . . |π̂|}) – and the fluent notedh – to keep track of
whether the policy derived from π̂ can still reach Ĝ. ✓k

h can
only be executed in a state where Rk(h) holds, i.e., a state
in which the policy can reach its goal. ×h does not have that
precondition, but has a cost. Under the condition that each
given pair ⟨Ĝ, π̂⟩ is such that the plan π̂ can actually reach
the goal Ĝ from the initial state, a cost-optimal plan for the
compilation will correspond to causing as few PSEs as pos-
sible, as will be formalized in Theorem 3. (If that condition
is not guaranteed, a preprocessing step could be used to filter
out the input pairs in which the plan doesn’t reach the goal.)
Definition 21 (Policy-preserving compilation). Given a
STRIPS planning problem P = ⟨F, I,

⋃n
i=1 Ai, G⟩, a fi-

nite set H of pairs ⟨Ĝ, π̂⟩ where Ĝ ⊆ F is a goal and
π̂ ∈ A∗

i for some i, and a weight function w : H → R,
the policy-preserving compilation P ′ is a planning problem
⟨F ′, I, A′, G′, c⟩ defined below.

• F ′ = F ∪ {ended} ∪ {notedh | h ∈ H}
• A′ = A′

1 ∪ {end} ∪A× ∪A✓ where
– A′

1 = {a′ | a ∈ A1}, where a′ is like a except that
Pre(a′) = Pre(a) ∪ {¬ended}

– Pre(end) = G, Add(end) = {ended}, Del(end) = ∅
– A× = {×h | h ∈ H}, where Pre(×h) = {¬notedh,
ended}, Add(×h) = {notedh}, and Del(×h) = ∅

– A✓ = {✓k
h | h = ⟨Ĝ, π̂⟩ ∈ H and 0 ≤ k ≤ |π̂|},

where ✓k
h is like ×h except Pre(✓k

h) = Rk(h) ∪
Pre(×h), where regression is defined w.r.t. the origi-
nal problem P .

• G′ = {ended} ∪ {notedh : h ∈ H}
• c(a) = w(h) if a = ×h for an h ∈ H , and 0 otherwise

Theorem 3. Given a STRIPS problem P = ⟨F, I,
⋃n

i=1 Ai,

G⟩, a finite set H of pairs ⟨Ĝ, π̂⟩ where Ĝ ⊆ F is a goal
and π̂ ∈ A∗

i for some i (s.t. δ(I, π̂) |= Ĝ), and a weight
function w : H → R, the policy-preserving compilation P ′

is policy-equivalent to P .

Proof. See Appendix A.

5.4 Computing Goal-Preserving Plans
Finally, we show how to compute goal-preserving plans, us-
ing another compilation. Instead of describing an action’s ef-
fects with Add and Delete lists, we will sometimes use a set
of conditional effects. A conditional effect is a pair ⟨C,E⟩,
where C and E are sets of literals, denoting that if C holds in
the current state, then E will hold after executing the action.

Definition 22 (Goal-preserving compilation). Given a
STRIPS planning problem P = ⟨F, I,

⋃n
i=1 Ai, G⟩; a finite

set H of pairs ⟨Ĝ, i⟩ where Ĝ ⊆ F is a goal and i is an agent;
and a weight function w : H → R, the goal-preserving com-
pilation P ′ is a planning problem ⟨F ′, I ′, A′, G′, c⟩ where

• F ′ = F ∪ {ended} ∪ {notedh | h ∈ H} ∪ {fcloned :
f ∈ F} ∪ {resetNeeded} ∪ {acting i | 1 ≤ i ≤ n}

• I ′ = I ∪ {acting1}
• A′ = (

⋃n
i=1 A

′
i) ∪ {clone} ∪ {reset i | 1 ≤ i ≤ n} ∪

A× ∪A✓ where
– A′

i = {a′ | a ∈ Ai} where a′ is like a except that
Pre(a′) = Pre(a) ∪ {acting i}

– Pre(clone) = G ∪ {¬ended}, and clone’s effects are
given by this set of conditional effects:
{⟨f, fcloned⟩ : f ∈ F} ∪ {⟨¬f,¬fcloned⟩ : f ∈ F} ∪
{⟨⊤,¬acting1⟩, ⟨⊤, ended⟩, ⟨⊤, resetNeeded⟩}

– Pre(reset i) = {resetNeeded}, and reset i’s effects are
given by this set of conditional effects:
{⟨fcloned , f⟩ : f ∈ F} ∪ {⟨¬fcloned ,¬f⟩ : f ∈ F} ∪
{⟨⊤, acting i⟩, ⟨⊤,¬resetNeeded⟩}

– A× = {×h | h ∈ H}, where for each h = ⟨Ĝ, i⟩ ∈
H , we have Pre(×h) = {acting i,¬notedh, ended ,
¬resetNeeded}, Add(×h) = {notedh, resetNeeded},
Del(×h) = {acting i}.

– A✓ = {✓h | h ∈ H}, where for h = ⟨Ĝ, i⟩ ∈ H , ✓h

is the same as ×h except that Pre(✓h) = Ĝ∪Pre(×h)

• G′ = {ended} ∪ {notedh : h ∈ H}

• c(a) = w(h) if a = ×h for an h ∈ H , and 0 otherwise
This is the most complicated compilation. The idea is that

in a plan for P ′, the original goal G will be reached and then
the special clone action is executed, which captures a copy
of the truth values of all the original fluents. Then the other
agents can try to achieve each of their goals (the acting i
fluents are used to make sure only one agent acts at a time).
Each time some agent’s goal Ĝ is completed by that agent,
the state can then be reset to what it was when G was reached
(because we’re interested in what goals are reachable from
that point). For each goal-agent pair h = ⟨Ĝ, i⟩ ∈ H , there
are two new actions, ✓h and ×h. For ✓h to be executed
requires that Ĝ be true while i is acting, while ×h does not
require that (but has a cost). The result is that a cost-optimal
plan for P ′ will be one in which the first actions (before
clone) set things up to maximize the weighted sum of goal-
agent pairs ⟨Ĝ, i⟩ ∈ H such that Ĝ can be reached by i.

Note that the compilation does not check if the goals in
H are all initially reachable by their agents. If they are not,
a preprocessing step to filter out unreachable goals would be
needed for the condition in the following theorem to apply.
Theorem 4. Given a STRIPS problem P = ⟨F, I,

⋃n
i=1 Ai,

G⟩, a finite set H of pairs ⟨Ĝ, i⟩ where Ĝ ⊆ F is a goal
and i an agent (such that achievable(Ĝ, i, s0)), and a weight
function w : H → R, the goal-preserving compilation P ′ is
goal-equivalent to P .

Proof. See Appendix A.

6 Experiments
We ran experiments to demonstrate, as a proof of concept,
how our compilations can minimize different types of side
effects, and also to assess the effect on run time of the dif-
ferent minimizations.2

We tested on a formalization of our Canadian wildlife do-
main (from Figure 1), and adaptations of the standard IPC
planning domains zenotravel, floortile, and storage (see Ap-
pendix B). These domains were chosen because they al-
lowed for agents to significantly interfere with each other.
For each domain and problem, we found plans for the acting
agent by standard planning (with no consideration of side ef-
fects), and by finding fluent-preserving, policy-preserving,
and goal-preserving plans (via planning on the respective
compilations3). The results are in Table 1.

The experiments were run on a Linux workstation with a
Core i9-9900K CPU (3.60 GHz) and 32GB of RAM. We
used the LM-Cut planner (Helmert and Domshlak 2011)
for all problems except the goal-preserving plans whose
compilations had conditional effects, necessitating LAMA
(Richter and Westphal 2010), which we ran to completion
instead. Both LM-Cut and LAMA are configurations of Fast
Downward (Helmert 2006) (version 20.06 was used).

The compile and planning times reflect the extra effort re-
quired to avoid side effects, with all such strategies requiring

2See https://github.com/tqk/side-effects-planner for the code
for the experiments, which was written in Python and heavily relies
on the Tarski library (https://github.com/aig-upf/tarski).

3We apply the optimization from Remark 1 to all compilations.

at least an order of magnitude more time than standard plan-
ning. Planning on the goal-preserving compilations took the
most time – not surprisingly since the planner has to, in ef-
fect, try to find a plan not just for the original problem’s goal,
but for all of the possible goals from H .

Compilation time was significant for all compilation
types, especially on the zenotravel problems, where the
number of (ground) actions is very large. The present imple-
mentation naively grounds planning problems before com-
piling them, which does not scale well with large numbers
of objects. This is illustrated by the greatly increased times
for the problems storage-c2 and storage-c3, which are iden-
tical to storage-c except for having extra irrelevant objects:
for each (non-agent) object in storage-c, storage-c2 has two
objects (the original object and a duplicate) and storage-c3
has three objects (the original object and two duplicates).
Future work might be able to improve on that by performing
the compilations directly on the lifted (PDDL) representa-
tion, or by using a smarter form of grounding.

With respect to the quality of the plans – the number
of side effects – it’s difficult to draw conclusions since
so much depends on the specifics of the domains includ-
ing the number of deadend-able goals, the number of irre-
versible actions, the diversity in the plans of future-acting
agents, and their relationship to the goal of the acting agent –
whether they’re tightly coupled, or more independent. What
we do see is that on the domains tested, the fluent-preserving
plans sometimes showed some modest reduction in PSEs
and GSEs, compared to standard planning, though this may
be anecdotal. What was more notable was the reduction in
GSEs and PSEs shown by the goal- and policy-preserving
plans, relative to standard and fluent-preserving plans.

7 Related Work
As discussed in the introduction, the problem of avoiding
side effects has been studied in MDPs in a number of pa-
pers. These works can be divided into two sorts, those which
involve interacting with a human to get further information
about what side effects are negative (e.g., Zhang, Durfee,
and Singh 2018; Saisubramanian, Kamar, and Zilberstein
2020), and those not making use of human feedback. The
latter are more related to our work.

In particular, our work was inspired at a high level by ap-
proaches to avoiding side effects without human feedback
where the agent in an MDP is encouraged to preserve its
own ability to reach states (Krakovna et al. 2019), gain re-
ward from other reward functions (Turner, Hadfield-Menell,
and Tadepalli 2020), or complete tasks from a given distri-
bution (Krakovna et al. 2020). Beyond the difference of for-
malism, a conceptual difference of our work is that we allow
for considering more than just the preservation of the agent’s
own abilities. To see why that’s important, consider how a
tall robot putting an object on a high shelf won’t interfere
with its own ability to use the object later, but may interfere
with shorter agents. Note that Turner (2019) did informally
discuss considering other agents’ attainable utilities.

In the rest of this section, we review planning papers that
have some relation to side effects on other agents.

Domain &
Problem |H| Standard planning Fluent-preserving Policy-preserving Goal-preserving

FSE PSE GSE PT FSE PSE GSE CT PT PSE CT PT GSE CT PT

wildlife 3, 3 17 3 3 0.5 13 3 3 0.8 20.2 1 0.6 6.5 1 0.6 38.0
zeno-a 5, 2 7 4 0 0.5 5 4 0 17.6 10.6 3 17.6 9.5 0 17.3 23.3
zeno-b 4, 2 5 2 0 0.4 5 2 0 17.6 7.2 0 17.4 10.4 0 17.0 24.6
zeno-c 7, 4 5 3 0 0.4 3 3 0 18.2 12.3 3 17.9 7.9 0 17.2 26.3

floortile-a 4, 2 6 4 0 0.5 2 3 1 2.8 16.9 0 2.5 9.2 0 2.5 56.4
floortile-b 4, 2 5 4 0 0.4 1 3 0 2.8 11.6 0 2.4 7.3 0 2.5 54.6
floortile-c 8, 4 5 8 1 0.5 1 5 0 2.8 18.5 1 2.5 4.9 0 2.5 97.2
storage-a 6, 2 5 5 0 0.4 5 5 0 0.9 7.4 0 0.9 10.4 0 0.9 14.1
storage-b 4, 2 8 4 0 0.4 5 2 0 0.9 6.2 0 0.9 5.2 0 0.9 15.5
storage-c 7, 4 14 3 2 0.4 10 3 0 0.9 7.0 3 0.9 5.7 0 0.9 16.2

storage-c2 7, 4 14 3 2 0.4 10 3 0 10.2 44.0 3 10.0 48.8 0 10.1 21.0
storage-c3 7, 4 14 3 2 0.4 10 3 0 49.8 163.5 3 50.3 159.3 0 48.5 53.7

Table 1: The number of fluent side effects (FSE), policy side effects (PSE), goal side effects (GSE), compilation time (CT)
and planning time (PT) (in seconds) caused by plans found by standard planning, and by fluent-, policy-, and goal-preserving
plans. The |H| column captures (i) the number of goal-policy pairs in the set H used in finding policy-preserving plans (and
in calculating the PSE scores), and (ii) the number of goal-agent pairs in the other set H used in finding goal-preserving plans
(and in calculating the GSE scores). The weights were all 1.

Freedman and Zilberstein (2017) defined “independent
interaction” in which one agent should achieve its own goal
while not stopping another agent from accomplishing its
task. However, the formalization appears to sometimes re-
quire the first agent to actively help the second. Meanwhile,
Karpas, Shleyfman, and Tennenholtz (2017) and following
work (e.g., Nir, Shleyfman, and Karpas 2020) have consid-
ered how “social laws” – restrictions on what actions can be
performed when – in multiagent STRIPS can prevent agents
from blocking each other’s plans.

In the context of active goal recognition, in which an ob-
serving agent performs actions to try to determine the goal
G of another agent from a set G of hypothesized possible
goals, Shvo and McIlraith (2020) defined an observer’s plan
τ to be non-intervening “if for every hypothesis G ∈ G the
set of plans π, whose execution achieves G are preserved
under the execution of τ .” This could be thought of as the
observer not having side effects on the observed agent.

Pozanco et al. (2019) introduced the problem of identify-
ing a state that would, given a set of possible goals, minimize
the average distance to the goals, or the maximum distance
to any goal, which could be thought of as having positive
effects on future goals. Another concept, related to having
negative effects on others, is Stackelberg planning (Speicher
et al. 2018), “where a leader player in a classical planning
task chooses a minimum-cost action sequence aimed at max-
imizing the plan cost of a follower player in the same task.”

8 Concluding Remarks
As AI systems proliferate within society, there is a growing
concern related to unintended and potentially harmful be-
haviour. The much-cited 2016 paper, “Concrete Problems in
AI Safety,” presents five practical research problems in this
vein, including the problem of “avoiding side effects” that
emerge from having an underspecified or incomplete objec-
tive function (Amodei et al. 2016). While discussion of AI

Safety has largely focused on data-driven machine learning
systems, in this paper we argue that it is also an important
problem for symbolic planning systems, particularly those
whose domain theories may eventually be learned.

This paper introduces and frames this important problem,
in a principled way, to the symbolic planning community.
Here, we have considered the problem of avoiding (negative)
side effects in classical planning. We observed that whether
a side effect was negative or positive was often determined
by those affected by the change. As such we argued for ex-
amining negative side effects in terms of their impact on
the agency of other agents. We presented several versions
of side-effect minimization, and showed how, in the case of
STRIPS planning problems, to compute them through com-
pilations to cost-optimizing planning problems.

Our work is not without its limitations. Goal- and policy-
preserving plans minimize their impact on what goals or
policies can be pursued immediately following the execu-
tion of the acting agent’s plan. This treatment of side effects
is somewhat myopic in that it doesn’t look ahead to consider
all possible sequences of goals that may arise in the future.
The approach presented here also does not consider side ef-
fects in a true multi-agent environment where other agents
are operating simultaneously alongside the acting agent. A
final limitation of the presented approach is that it relies on
having representations rich enough to make relevant distinc-
tions, e.g., to tell whether a vase is broken.

There are many avenues for future work. Further side-
effect-minimizing definitions could be made, taking into ac-
count aspects like action costs. There is also both need and
opportunity for further work on efficient ways to compute
plans that minimize side effects. Finally, the idea of consid-
ering the effect of actions on other agents’ abilities is one
that would be useful to bring from planning to reinforce-
ment learning, and we have started to explore that (Alizadeh
Alamdari et al. 2021, 2022).

Ethical Statement
Our work is concerned with making planning systems safer.
However, depending on how our techniques are used, this
is not guaranteed. For example, a robot acting to preserve
the ability of other agents to achieve goals from some set
could potentially further disrupt the environment, prevent-
ing the achievement of other goals that were not taken into
consideration. Furthermore, as with many AI systems, tech-
niques that are used to purposefully avoid harm can also be
used to wield harm towards others, in this case, by supply-
ing the acting agent with a plan that achieves its goals while
purposefully restricting the future agency of others. This is
not unlike the Stackelberg planning problem discussed at the
end of Section 7.

Acknowledgements
We gratefully acknowledge funding from the Natural
Sciences and Engineering Research Council of Canada
(NSERC), the Canada CIFAR AI Chairs Program, and Mi-
crosoft Research. Finally, we thank the Schwartz Reisman
Institute for Technology and Society for providing a rich
multi-disciplinary research environment.

A preliminary version of this paper appeared at an IJ-
CAI 2021 workshop, “Robust and Reliable Autonomy in the
Wild” (Klassen and McIlraith 2021).

The emojis in this paper are from the Twitter Emoji library
(https://github.com/twitter/twemoji), which is copyrighted
by Twitter, Inc and other contributors, and licensed under
CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
The truck and droplet emojis were modified.

References
Alizadeh Alamdari, P.; Klassen, T. Q.; Toro Icarte, R.; and
McIlraith, S. A. 2021. Avoiding Negative Side Effects by
Considering Others. In NeurIPS 2021 Workshop on Safe
and Robust Control of Uncertain Systems.

Alizadeh Alamdari, P.; Klassen, T. Q.; Toro Icarte, R.; and
McIlraith, S. A. 2022. Be Considerate: Avoiding Negative
Side Effects in Reinforcement Learning. In Proceedings
of the 21st International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2022). To appear.

Amodei, D.; Olah, C.; Steinhardt, J.; Christiano, P. F.; Schul-
man, J.; and Mané, D. 2016. Concrete Problems in AI
Safety. arXiv preprint arXiv:1606.06565.

Baier, J. A.; and McIlraith, S. A. 2008. Planning with Pref-
erences. AI Magazine, 29(4): 25–36.

Freedman, R. G.; Levine, S. J.; Williams, B. C.; and Zilber-
stein, S. 2020. Helpfulness as a Key Metric of Human-Robot
Collaboration. arXiv preprint arXiv:2010.04914. Presented
at Artificial Intelligence for Human-Robot Interaction, part
of the AAAI 2020 Fall Symposium Series.

Freedman, R. G.; and Zilberstein, S. 2017. Integration of
Planning with Recognition for Responsive Interaction Using
Classical Planners. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, 4581–4588.

Fritz, C.; and McIlraith, S. A. 2007. Monitoring Plan Op-
timality During Execution. In Proceedings of the Seven-
teenth International Conference on Automated Planning and
Scheduling, ICAPS 2007, 144–151.
Geffner, H.; and Bonet, B. 2013. A Concise Introduction
to Models and Methods for Automated Planning. Synthesis
Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
Planning Theory and Practice. Elsevier.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2016. Automated
Planning and Acting. Cambridge University Press.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.
Helmert, M.; and Domshlak, C. 2011. LM-Cut: Optimal
Planning with the Landmark-Cut Heuristic. In Seventh In-
ternational Planning Competition (IPC 2011), Determinis-
tic Part, 103–105.
Karpas, E.; Shleyfman, A.; and Tennenholtz, M. 2017. Au-
tomated Verification of Social Law Robustness in STRIPS.
In Proceedings of the Twenty-Seventh International Confer-
ence on Automated Planning and Scheduling, ICAPS 2017,
163–171.
Keyder, E.; and Geffner, H. 2009. Soft Goals Can Be Com-
piled Away. Journal of Artificial Intelligence Research, 36:
547–556.
Klassen, T. Q.; and McIlraith, S. A. 2021. Planning to Avoid
Side Effects (Preliminary Report). In IJCAI Workshop on
Robust and Reliable Autonomy in the Wild (R2AW).
Klassen, T. Q.; McIlraith, S. A.; Muise, C.; and Xu, J.
2021. Planning to Avoid Side Effects (Technical Appendix).
Technical Report CSRG-641, Department of Computer Sci-
ence, University of Toronto. https://ftp.cs.toronto.edu/csrg-
technical-reports/641/.
Krakovna, V.; Orseau, L.; Martic, M.; and Legg, S. 2019.
Penalizing Side Effects using Stepwise Relative Reachabil-
ity. In Proceedings of the Workshop on Artificial Intelli-
gence Safety 2019 co-located with the 28th International
Joint Conference on Artificial Intelligence, AISafety@IJCAI
2019, volume 2419 of CEUR Workshop Proceedings.
CEUR-WS.org.
Krakovna, V.; Orseau, L.; Ngo, R.; Martic, M.; and Legg, S.
2020. Avoiding Side Effects By Considering Future Tasks.
In Advances in Neural Information Processing Systems 33
(NeurIPS 2020).
Lebans, J. 2020. The threat from AI is not that it will revolt,
it’s that it’ll do exactly as it’s told. CBC Radio. URL https:
//www.cbc.ca/radio/quirks/apr-25-deepwater-horizon-10-
years-later-covid-19-and-understanding-immunity-and-
more-1.5541299/the-threat-from-ai-is-not-that-it-will-
revolt-it-s-that-it-ll-do-exactly-as-it-s-told-1.5541304.
Muise, C. 2014. Exploiting Relevance to Improve Ro-
bustness and Flexibility in Plan Generation and Execution.
Ph.D. thesis, University of Toronto.
Nir, R.; Shleyfman, A.; and Karpas, E. 2020. Automated
Synthesis of Social Laws in STRIPS. In Proceedings of the

Thirty-Fourth AAAI Conference on Artificial Intelligence,
9941–9948.
Pednault, E. P. D. 1989. ADL: Exploring the Middle Ground
Between STRIPS and the Situation Calculus. In Proceed-
ings of the 1st International Conference on Principles of
Knowledge Representation and Reasoning (KR’89), 324–
332.
Pozanco, A.; E-Martı́n, Y.; Fernández, S.; and Borrajo, D.
2019. Finding Centroids and Minimum Covering States in
Planning. In Proceedings of the Twenty-Ninth International
Conference on Automated Planning and Scheduling, ICAPS
2019, 348–352.
Reiter, R. 2001. Knowledge in Action: Logical Foundations
for Specifying and Implementing Dynamical Systems. MIT
Press.
Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
Journal of Artificial Intelligence Research, 39: 127–177.
Saisubramanian, S.; Kamar, E.; and Zilberstein, S. 2020.
A Multi-Objective Approach to Mitigate Negative Side Ef-
fects. In Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, IJCAI 2020, 354–361.
Saisubramanian, S.; Zilberstein, S.; and Kamar, E. 2020.
Avoiding Negative Side Effects due to Incomplete Knowl-
edge of AI Systems. arXiv preprint arXiv:2008.12146.
Shvo, M.; and McIlraith, S. A. 2020. Active Goal Recogni-
tion. In Proceedings of the Thirty-Fourth AAAI Conference
on Artificial Intelligence, 9957–9966.
Speicher, P.; Steinmetz, M.; Backes, M.; Hoffmann, J.; and
Künnemann, R. 2018. Stackelberg Planning: Towards Ef-
fective Leader-Follower State Space Search. In Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelli-
gence, (AAAI-18), 6286–6293.
Turner, A. 2019. Reframing Impact. Blog post, https://www.
lesswrong.com/s/7CdoznhJaLEKHwvJW.
Turner, A. M.; Hadfield-Menell, D.; and Tadepalli, P. 2020.
Conservative Agency via Attainable Utility Preservation. In
Proceedings of the AAAI/ACM Conference on AI, Ethics,
and Society, AIES ’20, 385–391.
Waldinger, R. 1975. Achieving several goals simultane-
ously. Technical Note 107, SRI Project 2245.
Zhang, S.; Durfee, E. H.; and Singh, S. P. 2018. Minimax-
Regret Querying on Side Effects for Safe Optimality in Fac-
tored Markov Decision Processes. In Proceedings of the
Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI 2018, 4867–4873.

