
Context-Free Grammar (CFG)
A context-free grammar looks like this bunch of rules:

E → E + E E → M

M → M ×M M → A

A→ 0 A→ 1

A→ (E)

Main idea:

▶ E, M, A are non-terminal symbols aka variables. When you
see them, you apply rules to expand.
One of them is designated as the start symbol. You always
start from it. I will designate E as the start symbol.

▶ +, ×, 0, 1, (,) are terminal symbols. They are the characters
you want in your language.

1 / 14

Derivation (aka Generation)
Derivation is a finite sequence of applying the rules until all
non-terminal symbols are gone. Often aim for a specific final
string.

E → M

→ M ×M

→ A ×M

→ 1 ×M

→ 1 × A

→ 1 × (E)

→ 1 × (E + E)

→ 1 × (M + E)

→ 1 × (A + E)

→ 1 × (0 + E)

→ 1 × (0 +M)

→ 1 × (0 +M ×M)

→ 1 × (0 + A ×M)

→ 1 × (0 + 1 × A)

→ 1 × (0 + 1 × 1)

Context-free grammars can support: matching parentheses,
unlimited nesting.

2 / 14

https://www.smbc-comics.com/comic/language

Backus-Naur Form (BNF)
Backus-Naur Form is a computerized, practical notation for CFGs.

▶ Surround non-terminal symbols by <>; allow multi-letter
names.

▶ Merge rules with the same LHS.
▶ (Some versions.) Surround terminal strings by single or

double quotes.
▶ Use ::= for→.

Our example grammar in BNF:

<expr> ::= <expr> "+" <expr> | <mul>
<mul> ::= <mul> "*" <mul> | <atom>
<atom> ::= "0" | "1" | "(" <expr> ")"

3 / 14

Extended Backus-Naur Form (EBNF)

▶ {...} for 0 or more occurrences.
▶ [...] for 0 or 1 occurrences.
▶ Some versions: No <> needed around non-terminal symbols.

Example: Lisp/Scheme S-expression1 grammar (basic):

In BNF:
<s-expr> ::= <identifier > | "(" <s-exprs> ")"
<s-exprs> ::= <s-expr> | <s-expr> <s-exprs>

In EBNF:
<s-expr> ::= <identifier >

| "(" <s-expr> { <s-expr> } ")"

So you need fewer artificial non-terminals and rules that merely
mean “at least 0 of this”, “at least 1 of that”, etc.

1“symbolic expression”
4 / 14

Parse Tree aka Derivation Tree
A parse tree aka derivation tree presents a derivation with more
structure (tree), less repetition.

E

E

E

M

A

0

+ E

M

A

0

+ E

M

A

0

This example generates 0 + 0 + 0.

5 / 14

Parse Trees: General Points

▶ Internal nodes are non-terminal symbols.
▶ Both operators and operands are terminal symbols at leaves.
▶ Whole string recorded, just scattered.
▶ Purpose: Present derivation, help visualize derivation and

grammar.

6 / 14

Ambiguous Grammar
Two different trees generate the same 0 + 0 + 0:

E

E

E

M

A

0

+ E

M

A

0

+ E

M

A

0

E

E

M

A

0

+ E

E

M

A

0

+ E

M

A

0

If this happens, the grammar is ambiguous. Not very desirable:
parsing is more costly (return all results) or more surprising (return
one result but not what you expect).

(Bad news: CFG ambiguity is undecidable.)

7 / 14

Unambiguous Grammar Example
An unambiguous grammar that generates the same language as
our ambiguous grammar example:

<expr> ::= <expr> "+" <mul> | <mul>
<mul> ::= <mul> "*" <atom> | <atom>
<atom> ::= "0" | "1" | "(" <expr> ")"

Exercise: Find the parse trees for 0 + 0 + 0 and 0 × 0 × 0. Observe
that you are forced only one answer, and it’s left-leaning.

(Bad news: Equivalence of two CFGs is also undecidable.)

8 / 14

Abstract Syntax Tree (AST) (vs Parse Tree)

Parse tree:
E

E

E

M

A

0

+ E

M

A

0

+ E

M

A

0

Abstract syntax tree:
+

+

0 0

0

9 / 14

Abstract Syntax Tree: General Points

▶ Internal nodes are operators/constructs.
Example construct: if-then-else.

▶ Non-terminal symbols gone or replaced by constructs.
▶ Many terminal symbols gone too if they play no role other than

nice syntax (e.g., spaces, parentheses, punctuations).
Those bearing content, replaced by appropriate
representations, not stay as characters.
E.g., Character ’+’ replaced by data constructor or object,
character ’0’ replaced by number 0.

▶ Purpose: Present essential structure and content, ready for
interpreting, compiling, analyses.

▶ Parsers usually output abstract syntax trees when successful.

10 / 14

Left Recursive vs Right Recursive
<expr> ::= <expr> "+" <mul>

That is a left recursive rule. The recursion is at the beginning (left).

<expr> ::= <mul> "+" <expr>

That is a right recursive rule. The recursion is at the end (right).

Sometimes they convey intentions of left association or right
association. But not always.

They affect some parsing algorithms.

11 / 14

Recursive Descent Parsing (by example)
A simple strategy for writing a parser, not very efficient but easy to
understand and code up.

A rule like S ::= "x" R becomes

parserForS:
read a char, if not ’x’, fail
parserForR

A rule like R ::= "y" | S becomes

parserForR:
save input position # for backtracking below
try:
read a char, if not ’y’, fail

catch:
here be backtracking!
restore input position
parserForS

12 / 14

Recursive Descent Parsing (general points)

▶ Use mutually recursive procedures for mutually recursive
rules. (In practice can inline, refactor, add helpers.)

No good for left recursion.

▶ Use backtracking to handle choice.

Major cause of the reputation of high inefficiency.

▶ Execution is like walking down the parse tree. Hence
“descent”, “top-down”.

Some options for handling left recursion:

▶ Re-design grammar to not have left recursion.
▶ Many left recursive rules just express left-associating

operators. Can be done without left recursive code.

13 / 14

Lexical Analysis aka Tokenization
In principle: Grammar and parser can work on characters directly.
But usually messy.

In practice, two stages:

1. Lexical Analysis, tokenization: Chop character stream into
chunks, classify into lexemes aka tokens, discard spaces.
"(xa * xb)**25"

7→

[OpenParen, Var "xa", Op Mul, Var "xb",

CloseParen, Op Exp, NumLiteral 25]

Needs only regular expressions.

2. CFG parsing, but terminal symbols are tokens, not strings.

14 / 14

