
Ordered Dictionary & Binary Search Tree
Finite map from keys to values, assuming keys are comparable (<,
=, >).

I insert(k, v)
I lookup(k) aka find: the associated value if any
I delete(k)
I some more later

(Ordered set: No values; just keys, call them elements).

We will use a special kind of binary search trees called “AVL trees”.
It prevents pathological trees, ensures O(lg n) worst-case time.

(Binary tree height in Ω(lg n), so actually Θ(lg n) time.)

1 / 24



AVL Tree: Definition
AVL trees are one way to ensure Θ(lg n) tree height.
(Georgy Adelson-Velsky and Evgenii Landis)

I is a binary search tree
I at every node: subtree heights differ by at most 1.

44

17

32

78

50

48 62

88

(Keys shown, values omitted.)

2 / 24



Binary Search Tree: lookup

lookup(k):
n := root
while n , null:

if k < n.key then n := n.left
else if k > n.key then n := n.right
else return n.value

return null.

3 / 24



AVL Tree: insert
insert(k, v) begins like lookup,
expects to not find k (if found, change value to v),
but now it knows where to put the new node.

Add the new node there. The AVL property may break. Now fix it:

There are “rotations” we do along the path from insertion point to
root, restoring the AVL property.

And want to manipulate only that path. Why?

Because time budget is O(lg n).

4 / 24



AVL Tree: insert
insert(k, v) begins like lookup,
expects to not find k (if found, change value to v),
but now it knows where to put the new node.

Add the new node there. The AVL property may break. Now fix it:

There are “rotations” we do along the path from insertion point to
root, restoring the AVL property.

And want to manipulate only that path. Why?
Because time budget is O(lg n).

4 / 24



Rebalancing: Overview
To check and fix a node v:

if height(v.left) + 1 < height(v.right)
(the right is taller by 2)
re-balance at v (two further subcases)

else if height(v.left) > height(v.right) + 1
(the left is taller by 2)
re-balance at v (two further subcases)

else
nothing to fix for v

Do this for each node on the path from new node back to root.
⇒When processing v, descendents are already fixed.

5 / 24



Rebalance (Right Side) Subcase 1 of 2
Single-Rotation Counterclockwise

If height(v.left) + 1 < height(v.right):
Let x = v.right (Why does it exist?)
If height(x.left) ≤ height(x.right):

vh + 3

R
h

xh + 2

S
h + {0, 1}

T
h + 1

xh + {2, 3}

vh + {1, 2}

R
h

S
h + {0, 1}

T
h + 1

Why can we assume x is balanced? Answer on last slide.

Exercise: Why is the outcome a binary search tree?

6 / 24



Rebalance (Right Side) Subcase 1 of 2 Example

20

10

15

50

40 70

60 80

75

20

10

15

70

50

40 60

80

75

7 / 24



Rebalance (Right Side) Subcase 2 of 2
Why Single-Rotation No Workie

If height(v.left) + 1 < height(v.right):
Let x = v.right
If height(x.left) > height(x.right):

vh + 3

R
h

xh + 2

S
h + 1

T
h

xh + 3

vh + 2

R
h

S
h + 1

T
h

Result still unbalanced. Solution on next slide.

8 / 24



Rebalance (Right Side) Subcase 2 of 2
Why Single-Rotation No Workie

If height(v.left) + 1 < height(v.right):
Let x = v.right
If height(x.left) > height(x.right):

vh + 3

R
h

xh + 2

S
h + 1

T
h

xh + 3

vh + 2

R
h

S
h + 1

T
h

Result still unbalanced. Solution on next slide.

8 / 24



Rebalance (Right Side) Subcase 2 of 2
Double-Rotation Clockwise Then Counterclockwise

If height(v.left) + 1 < height(v.right):
Let x = v.right
If height(x.left) > height(x.right):

Let w = x.left:

vh + 3

R
h

xh + 2

wh + 1

S1
h − {0, 1}

S2
h − {0, 1}

T
h

wh + 2

vh + 1

R
h

S1
h − {0, 1}

xh + 1

S2
h − {0, 1}

T
h

9 / 24



Rebalance (Right Side) Subcase 2 of 2 Example

20

10

15

50

40 70

60

55

80

20

10

15

60

50

40 55

70

80

10 / 24



Rebalance (Left Side) Subcase 1 of 2
Single-Rotation Clockwise

If height(v.left) > height(v.right) + 1:
Let x = v.left
If height(x.left) ≥ height(x.right):

v

x

T S

R

x

T v

S R

11 / 24



Rebalance (Left Side) Subcase 2 of 2
Double-Rotation Counterclockwise Then Clockwise

If height(v.left) > height(v.right) + 1:
Let x = v.left
If height(x.left) < height(x.right):

Let w = x.right:

v

x

T w

S2 S1

R

w

x

T S2

v

S1 R

12 / 24



Rebalancing: Summary
For each node v on the path from new node back to root:

if height(v.left) + 1 < height(v.right)
let x = v.right
if height(x.left) ≤ height(x.right)

single-rotation ccw
else

double-rotation cw then ccw
else if height(v.left) > height(v.right) + 1

let x = v.left
if height(x.left) ≥ height(x.right)

single-rotation cw
else

double-rotation ccw then cw
else

no rotation

13 / 24



Height Comparison And Update
Two alternatives: Cache height or cache difference.

Cache height (more bits):

I Each node has field h for known height of self.
I Query: height(v) = (v = null ? −1 : v.h)
I Update: Set children’s before parent’s, so simply:

v.h := 1 + max(height(v.left), height(v.right))

Cache difference (a.k.a. balance factor, fewer bits):

I Each node has field BF for known difference of children.
I Update: See Hadzilacos’s notes.

Either way, update at: New node and ancestors (later ancestors of
deleted node), nodes affected by rotations.

14 / 24



Only Path of Ancestors Needs Fixing
Why is it enough to just fix the path from new node back to root?

Say a node v is visited when finding where to add new node.
Say it is decided to be v’s right subtree.

⇒ v’s left subtree won’t change, doesn’t even need to check.

(v itself needs checking later because right subtree will change, but
it is on the path.)

Similar story for updating heights.

Similar story for deleting a node in later slides.

15 / 24



Only Path of Ancestors Needs Fixing
Why is it enough to just fix the path from new node back to root?

Say a node v is visited when finding where to add new node.
Say it is decided to be v’s right subtree.

⇒ v’s left subtree won’t change, doesn’t even need to check.

(v itself needs checking later because right subtree will change, but
it is on the path.)

Similar story for updating heights.

Similar story for deleting a node in later slides.

15 / 24



Only Path of Ancestors Needs Fixing
Why is it enough to just fix the path from new node back to root?

Say a node v is visited when finding where to add new node.
Say it is decided to be v’s right subtree.

⇒ v’s left subtree won’t change, doesn’t even need to check.

(v itself needs checking later because right subtree will change, but
it is on the path.)

Similar story for updating heights.

Similar story for deleting a node in later slides.

15 / 24



Summary of AVL Tree Insertion
Later we will see why tree height is in O(lg n).

With that in mind, AVL tree insertion:

1. find which node to become parent of new node [Θ(lg n) time]

2. put new node there [Θ(1) time]

3. from that parent to root (bottom-up): check and fix balance,
update height [Θ(lg n) nodes, Θ(1) time per node]

Total Θ(lg n) time.

16 / 24



Delete: Easy Case

44

17

32

78

50

48 62

88

Delete 32, or 48, or 62, or 88.

If the node has no children, just unlink from parent.
(Then update heights of ancestors, rebalance. . . )

17 / 24



Delete: Slightly Harder Case

44

17

32

78

50

48 62

88

Delete 17. (Note that 32 is a good replacement.)

If the node has at most one child, just link parent to that child.
(Then update heights of ancestors, rebalance. . . )

This generalizes the easy case.

18 / 24



Delete: Slightly Harder Case, Generally
Prune w. T0 may be empty. p and ancestors need height updates
and rebalancing.

44

17

T0

T1

p

w

44

T0 T1

p

44

17

T0

T1

p

w

44

T0 T1

p

There are two more mirror images.

19 / 24



Delete: Hard Case
Delete 5. Call the node w. Both children non-empty.

5

S0 80

50

10

T

S2

S1

w

x

10

S0 80

50

T S2

S1

w

Find successor: Go right once, go left all the way, call it x. Replace
w.key by x.key. x’s parent adopts x’s right child T.

Rebalancing and height updates start from:

x’s old parent.

20 / 24



Delete: Hard Case
Delete 5. Call the node w. Both children non-empty.

5

S0 80

50

10

T

S2

S1

w

x

10

S0 80

50

T S2

S1

w

Find successor: Go right once, go left all the way, call it x. Replace
w.key by x.key. x’s parent adopts x’s right child T.

Rebalancing and height updates start from: x’s old parent.

20 / 24



Delete: Hard Case, Degenerate
Delete 5. Call the node w. Both children non-empty.

5

S0 80

T

w

x

80

S0 T

w

Go right. Go left all the way—can’t! That’s already x. x’s parent is
w.

Still, replace w.key by x.key. w also adopts x’s right child T.

21 / 24



Summary of AVL Tree Deletion
Next we will see why tree height is O(lg n).

1. find which node has the key, call it w [Θ(lg n) time]

2. if at most one child, w.parent adopts that child [Θ(1) time]
3. else:

3.1 go to successor x [Θ(lg n) time]
3.2 w.key := x.key [Θ(1) time]
3.3 x.parent adopts x.right [Θ(1) time]

4. from adopter to root (bottom-up): check and fix balance,
update heights [Θ(lg n) time]

Total Θ(lg n) time.

22 / 24



AVL Tree Height
If there are n nodes, what is the maximum possible height?
⇔

If the height is h, what is the minimum possible number of nodes?

minsize(0) = 1

minsize(1) = 2

minsize(h + 2) = 1 + minsize(h + 1) + minsize(h)

Can prove by induction:

minsize(h) = fib(h + 3) − 1

Golden ratio: φ = (
√

5 + 1)/2 = 1.618 . . .

minsize(h) =
φh+3 − (1 − φ)h+3

√
5

− 1

23 / 24



AVL Tree Height

n ≥ minsize(h) =
φh+3
√

5
−

(1 − φ)h+3

√
5

− 1

>
φh+3
√

5
− 1 − 1

φh+3
√

5
− 2 < n

h <
lg(n + 2)

lg φ
+

√
5

lg φ
+ 3

= 1.44 lg(n + 2) + constant

∈ O(lg n)

24 / 24


